Простейшие тригонометрические уравнения с тангенсом и котангенсом
Чтобы уверенно решать простейшие уравнения с тангенсом или котангенсом нужно знать значения стандартных точек на круге и стандартные значения на осях тангенсов и котангенсов (если в этом материале есть пробелы, читайте « Как запомнить тригонометрический круг »).
Алгоритм решения простейших уравнений с тангенсом
Давайте с вами рассмотрим типичное уравнение, например, (tgx=sqrt<3>).
Пример. Решить уравнение (tgx=sqrt<3>).
Чего от нас здесь хотят? Чтобы мы написали все такие значения угла в Пи, для которых тангенс равен корню из трех. Причем написать надо именно все такие углы. Давайте нарисуем тригонометрический круг и ось тангенсов…
…и обозначим то место на оси, куда мы должны попасть в итоге.
Теперь найдем через какие точки на окружности мы должны идти, чтобы попасть в этот самый корень из трех –проведем прямую через начало координат и найденную точку на оси тангенсов.
Точки найдены. Давайте подпишем значение одной из них…
…и запишем окончательный ответ – все возможные варианты значений в Пи, находящиеся в отмеченных точках: (x=frac<π><3>+πn), (n∈Z).
Замечание. Вы, наверно, обратили внимание, что в отличие от уравнений с синусом и косинусом , здесь записывается только одна серия корней, причем в формуле добавляется (πn), а не (2πn). Дело в том, что в любом уравнении с тангенсом решением получаются две точки на окружности, которые находятся друг от друга на расстоянии (π). Благодаря этому значение обеих точек можно записать одной формулой в виде (x=t_0+πn), (n∈Z).
Пример. Решить уравнение (tgx=-1).
Итак, окончательный алгоритм решения подобных задач выглядит следующим образом:
Шаг 1. Построить окружность, оси синусов и косинусов, а также ось тангенсов.
Шаг 2. Отметить на оси тангенсов значение, которому тангенс должен быть равен.
Шаг 3. Соединить прямой линией центр окружности и отмеченную точку на оси тангенсов.
Шаг 4. Найти значение одной из точек на круге.
Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z) (подробнее о формуле в видео), где (t_0) – как раз то значение, которые вы нашли в шаге 4.
Специально для вас мы сделали удобную табличку со всеми шагами алгоритма и разными примерами к нему. Пользуйтесь на здоровье! Можете даже распечатать и повесить на стенку, чтоб больше никогда не ошибаться в этих уравнениях.
Алгоритм решения простейших уравнений с котангенсом
Сразу скажу, что алгоритм решения уравнений с котангенсом почти такой же, как и с тангенсом.
Шаг 1. Вопрос у нас практически тот же – из каких точек круга можно попасть в (frac<1><sqrt<3>>) на оси котангенсов?
Строим круг, проводим нужные оси.
Теперь отмечаем на оси котангенсов значение, которому котангенс должен быть равен…
…и соединяем центр окружности и точку на оси котангенсов прямой линией.
По сути точки найдены. Осталось записать их все. Вновь определяем значение в одной из них…
…и записываем окончательный ответ по формуле (x=t_0+πn), (n∈Z), потому что у котангенса период такой же как у тангенса: (πn).
Кстати, вы обратили внимание, что ответы в задачах совпали? Здесь нет ошибки, ведь для любой точки круга, тангенс которой равен (sqrt<3>), котангенс будет (frac<1><sqrt<3>>).
Разберем еще пример, а потом подведем итог.
Пример. Решить уравнение (ctgx=-1). Здесь подробно расписывать не буду, так как логика полностью аналогична вышеизложенной.
Итак, алгоритм решения простейших тригонометрических уравнений с котангенсом:
Шаг 1. Построить окружность и оси синусов и косинусов, а также ось котангенсов.
Шаг 2. Отметить на оси котангенсов значение, которому котангенс должен быть равен.
Шаг 3. Соединить центр окружности и точку на оси котангенсов прямой линией.
Шаг 4. Найти значение одной из точек на круге.
Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z), где (t_0) – как раз то значение, которые вы нашли в шаге 4. И табличка в награду всем дочитавшим до этого места.
Примечание. Возможно, вы обратили внимание, что при решении примеров 2 и 3 в обеих табличках мы использовали функции (arctg) и (arcctg). Если вы не знаете, что это – читайте эту статью.
Простейшие тригонометрические уравнения. Часть 1
Простейшими называются тригонометрические уравнения следующих четырёх видов:
Любое тригонометрическое уравнение в конечном счёте сводится к решению одного или нескольких простейших. К сожалению, на этом заключительном стандартном шаге школьники часто допускают ошибки, что ведет к потере баллов на ЕГЭ. Именно поэтому так важна данная тема.
Существуют два подхода к решению простейших тригонометрических уравнений.
Первый подход — бессмысленный и тяжёлый. Следуя ему, надо выучить по шпаргалке общие формулы, а также все частные случаи. Польза от этого столь же невелика, как от зубрежки шестнадцати строк заклинаний на непонятном языке. Мы отказываемся от такого подхода раз и навсегда.
Второй подход — логический и наглядный. Для решения простейших тригонометрических уравнений мы пользуемся тригонометрическим кругом и определениями тригонометрических функций.
Уравнения и
Напомним, что — абсцисса точки на единичной окружности, соответствующей углу , а — её ордината.
Из определения синуса и косинуса следует, что уравнения и имеют решения только при условии .
Абитуриент, будь внимателен! Уравнения или решений не имеют!
Начнём с самых простых уравнений.
. .
Мы видим, что на единичной окружности имеется лишь одна точка с абсциссой 1:

Эта точка соответствует бесконечному множеству углов: . Все они получаются из нулевого угла прибавлением целого числа полных углов (т. е. нескольких полных оборотов как в одну, так и в другую сторону).
Следовательно, все эти углы могут быть записаны одной формулой:
Это и есть множество решений данного уравнения. Напоминаем, что — это множество целых чисел.
Снова видим, что на единичной окружности есть лишь одна точка с абсциссой :
Эта точка соответствует углу и всем углам, отличающихся от на несколько полных оборотов в обе стороны, т. е. на целое число полных углов. Следовательно, все решения данного уравнения записываются формулой:
. .
Отмечаем на тригонометрическом круге единственную точку с ординатой :
И записываем ответ:
Обсуждать тут уже нечего, не так ли? 
Можете, кстати, записать ответ и в другом виде:
Это — дело исключительно вашего вкуса.
Заодно сделаем первое полезное наблюдение. Чтобы описать множество углов, отвечающих одной-единственной точке тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить .
На тригонометрическом круге имеются две точки с ординатой 0:
Эти точки соответствуют углам Все эти углы получаются из нулевого угла прибавлением целого числа углов (т. е. с помощью нескольких полуоборотов в обе стороны). Таким образом,
Точки, лежащие на концах диаметра тригонометрического круга, мы будем называть диаметральной парой.
Точки с абсциссой 0 также образуют диаметральную пару, на сей раз вертикальную:
Все углы, отвечающие этим точкам, получаются из — прибавлением целого числа углов (полуоборотов):
Теперь мы можем сделать и второе полезное наблюдение.
Чтобы описать множество углов, отвечающих диаметральной паре точек тригонометрического круга, нужно взять какой-либо один угол из этого множества и прибавить .
Переходим к следующему этапу. Теперь в правой части будет стоять табличное значение синуса или косинуса (отличное от 0 или ). Начинаем с косинуса.
Имеем вертикальную пару точек с абсциссой :
Все углы, соответствующие верхней точке, описываются формулой (вспомните первое полезное наблюдение!):
Аналогично, все углы, соответствующие нижней точке, описываются формулой:
Обе серии решений можно описать одной формулой:
Остальные уравнения с косинусом решаются совершенно аналогично. Мы приводим лишь рисунок и ответ.




Теперь рассмотрим уравнения с синусом. Тут ситуация немного сложнее.
Имеем горизонтальную пару точек с ординатой :
Углы, отвечающие правой точке:
Углы, отвечающие левой точке:
Описывать эти две серии одной формулой никто не заставляет. Можно записать ответ в таком виде:
Тем не менее, объединяющая формула существует, и её надо знать. Выглядит она так:
На первый взгляд совершенно не ясно, каким образом она дает обе серии решений. Но давайте посмотрим, что получается при чётных . Если , то
Мы получили первую серию решений . А если — нечетно, , то
Это вторая серия .
Обратим внимание, что в качестве множителя при обычно ставится правая точка, в данном случае .
Остальные уравнения с синусом решаются точно так же. Мы приводим рисунок, запись ответа в виде совокупности двух серий и объединяющую формулу.


На этом с синусом и косинусом пока всё. Переходим к тангенсу.
Линия тангенсов.
Начнём с геометрической интерпретации тангенса — так называемой линии тангенсов. Это касательная к единичной окружности, параллельная оси ординат (см. рисунок).
Из подобия треугольников и имеем:
Мы рассмотрели случай, когда находится в первой четверти. Аналогично рассматриваются случаи, когда находится в остальных четвертях. В результате мы приходим к следующей геометрической интерпретации тангенса.
Тангенс угла равен ординате точки , которая является точкой пересечения линии тангенсов и прямой , соединяющей точку с началом координат.
Вот рисунок в случае, когда находится во второй четверти. Тангенс угла отрицателен.
Уравнение
Заметим, что тангенс может принимать любые действительные значения. Иными словами, уравнение имеет решения при любом .
.
Имеем диаметральную горизонтальную пару точек:

Эта пара, как мы уже знаем, описывается формулой:
Имеем диаметральную пару:
Вспоминаем второе полезное наблюдение и пишем ответ:
Остальные уравнения с тангенсом решаются аналогично. Мы приводим лишь рисунки и ответы.





На этом заканчиваем пока и с тангенсом.
Уравнение нет смысла рассматривать особо. Дело в том, что:
уравнение равносильно уравнению ;
при уравнение равносильно уравнению .
Впрочем, существует также и линия котангенсов, но. . . Об этом мы вам расскажем на занятиях 
Итак, мы разобрали простейшие тригонометрические уравнения, содержащие в правой части табличные значения тригонометрических функций. Именно такие задачи встречаются в части В вариантов ЕГЭ.
А что делать, например, с уравнением ? Для этого надо сначала познакомиться с обратными тригонометрическими функциями. О них мы расскажем вам в следующей статье.
Геометрия. Урок 1. Тригонометрия
Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Тригонометрия в прямоугольном треугольнике
Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.
Синус угла – отношение противолежащего катета к гипотенузе.
sin α = Противолежащий катет гипотенуза
Косинус угла – отношение прилежащего катета к гипотенузе.
cos α = Прилежащий катет гипотенуза
Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).
tg α = Противолежащий катет Прилежащий катет
Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).
ctg α = Прилежащий катет Противолежащий катет
Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °:
sin ∠ A = C B A B
cos ∠ A = A C A B
tg ∠ A = sin ∠ A cos ∠ A = C B A C
ctg ∠ A = cos ∠ A sin ∠ A = A C C B
sin ∠ B = A C A B
cos ∠ B = B C A B
tg ∠ B = sin ∠ B cos ∠ B = A C C B
ctg ∠ B = cos ∠ B sin ∠ B = C B A C
Тригонометрия: Тригонометрический круг
Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.
Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.
Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )
На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы.
Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .
Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) .
Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y .
Рассмотрим прямоугольный треугольник A O B :
cos α = O B O A = O B 1 = O B
sin α = A B O A = A B 1 = A B
Поскольку O C A B – прямоугольник, A B = C O .
Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).
Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :
Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный .
Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y .
Координата по оси x – косинус угла , координата по оси y – синус угла .
Ещё одно замечание.
Синус тупого угла – положительная величина, а косинус – отрицательная.
Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный .
Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный .
Основное тригонометрическое тождество
sin 2 α + cos 2 α = 1
Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :
A B 2 + O B 2 = O A 2
sin 2 α + cos 2 α = R 2
sin 2 α + cos 2 α = 1
Тригонометрия: Таблица значений тригонометрических функций
0 °
30 °
45 °
60 °
90 °
sin α
0
1 2
2 2
3 2
1
cos α
1
3 2
2 2
1 2
0
tg α
0
3 3
1
3
нет
ctg α
нет
3
1
3 3
0
Тригонометрия: градусы и радианы
Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!
Тригонометрия: Формулы приведения
Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,
можно заметить, что:
sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °
sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °
sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °
sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °
cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °
cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °
cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °
cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °
Рассмотрим тупой угол β :
Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:
sin ( 180 ° − α ) = sin α
cos ( 180 ° − α ) = − cos α
tg ( 180 ° − α ) = − tg α
ctg ( 180 ° − α ) = − ctg α
Тригонометрия: Теорема синусов
В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.
a sin ∠ A = b sin ∠ B = c sin ∠ C
Тригонометрия: Расширенная теорема синусов
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R
Тригонометрия: Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A
b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B
c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с тригонометрией.
Тригонометрия: Тригонометрические уравнения
Это тема 10-11 классов.
Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!
Содержание:
При изучении физических процессов, связанных с гармоническими колебаниями, рассматривают функцию
Например.
Одна из задач, которую решают при изучении процесса колебания, заключается в том, чтобы найти моменты времени 

Рассмотрим методы решения тригонометрических уравнений.
Что такое тригонометрические уравнения
Тригонометрические уравнения — это уравнения вида
Например, уравнения 
Уравнение sin x=a
- При
или
уравнение
не имеет корней, так как множеством значений функции
является промежуток
Например, уравнения
не имеют корней.
- Рассмотрим частные случаи решения уравнения
а) Решим уравнение 


Таким образом, получим, что 


б) Решим уравнение 



в) Решим уравнение 



3. Решим уравнение 
Рассмотрим решение уравнения 

На промежутке возрастания функции 






Запишем полученные решения в виде
и объединим эти две формулы в одну: 

Таким образом, получены все решения уравнения 
Пример №1
Решите уравнение:
Решение:
а) Так как 

Ответ: нет корней.

Ответ:

Ответ:
г) Так как 



Ответ:
д) Так как 

Ответ.
Уравнение cos x=a
1. При 


Например, уравнения 
2. Частные случаи решения уравнения 
3. Решим уравнение 

Рассмотрим решение уравнения 
Для 




Так как функция 

Учитывая периодичность функции 
Таким образом, получены все решения уравнения 
Представим их в виде таблицы.
Пример №2
Решите уравнение:
Решение:
а) Так как 

Ответ: нет корней.
Ответ:
Ответ:
г) Для решения уравнения 
Так как 


Ответ:
д) Так как 

Ответ:
Уравнение tg x=a
Множеством значений функции 
Рассмотрим решение уравнения 








Пример №3
Решите уравнение:
Решение:
а) По формуле 
Ответ: 

в) Для решения уравнения 

Ответ:
Ответ:
Уравнение ctg x=a
Множеством значений функции 
Все решения уравнения 

Пример №4
Решите уравнение:
Решение:
а) По формуле 
Ответ:
Ответ:
Ответ:
Тригонометрические уравнения при решении, как правило, сводятся к простейшим.
Виды тригонометрических уравнений
Уравнения, в которых можно выполнить замену переменной
Рассмотрим уравнения вида



Например, решим уравнение 


Подставим найденные значения 

Решения первого уравнения совокупности:
Решения второго уравнения:
Ответ:
Однородные тригонометрические уравнения
Однородные тригонометрические уравнения второй степени — это уравнения, которые можно привести к виду 

Заметим, что в однородном уравнении 




Решим уравнение
Разделим обе части уравнения на 

Выполнив замену переменной 

Значит,
Решим уравнение 
Корнями уравнения 
Ответ:
Примеры заданий и их решения
Пример №5
Решите уравнение:
Решение:
а) Поскольку 


б) Так как функция синус является нечетной функцией, то данное уравнение равносильно уравнению 

Тогда
в) Поскольку 


г) Воспользуемся четностью функции косинус и получим уравнение 

д) Запишем уравнение 

е) Воспользуемся нечетностью функции котангенс и получим уравнение 
Ответ:
Пример №6
Решите уравнение:
Решение:
а) Используем основное тригонометрическое тождество и заменим 


Подставим найденные значения 

Ответ:
б) Так как 
Пусть 
Подставим найденные значения 

Ответ:
Пример №7
Решите уравнение:
Решение:

Ответ:
Второе уравнение совокупности не имеет корней, поскольку 
Ответ:
Пример №8
Решите уравнение:
Решение:
а) Уравнение 


Ответ:
б) Воспользуемся основным тригонометрическим тождеством и получим:






Пример №9
Найдите (в градусах) наименьший положительный корень уравнения
Решение:

Ответ:
Простейшие тригонометрические уравнения
Уравнения вида 
Уравнение sin х = а
Область изменения синуса отрезок [-1; 1]. Поэтому, при |а| > 1 уравнение sin х = а не имеет решений. Рассмотрим случай 
Как видно, существует бесконечно много точек, в которых прямая
у = а пересекает синусоиду. Это говорит о том, что при 



Если один из углов поворота равен а , тогда другой будет 











Пример №10
Сколько корней имеет уравнение 

Решение. Запишем решение уравнения 
При других значениях параметра 
Пример №11
Решим уравнение 
Решение.
т.к.
Ещё проще можно найти решения уравнения
sin х = а при а = 0, а = 1, а = -1.
Это можно увидеть и на единичной окружности.
Пример №12
Решим уравнение
Решение. Выполним следующую замену:
Получаем уравнение 

Отсюда: 
Пример №13
Решим уравнение 
Решение. Здесь х угол выражен в градусах. Тогда решения уравнения можно записать так: 
Уравнение cos х = а
Аналогичным образом, при |а| > 1 уравнение cosx = а не имеет корней. При 


Если 












Пример №14
Решим уравнение 
Решение: Один из корней уравнения 
Тогда все корни будут 
Решения можно записать так: 
Пример №15
Решим уравнение 
Решение:
Так как 

при
Это можно увидеть по изображению на единичной окружности.
Пример №16
Решим уравнение 
Выполним замену 

Принимая во внимание замену, имеем: 
1) Запишите решения уравнений, принадлежащих промежутку 





Решение уравнения:


удовлетворяют только значения х равные 





Уравнения tg x = a и ctg x=a
Уравнения
На промежутке 






То, что решение верно показано на рисунке, при помощи точек пересечения графиков функций 
Аналогично можно показать, что все решения уравнения 
Пример №17
Решим уравнение 
Решение: Выполним замену
Получим уравнение 
Принимая во внимание замену получим:
Пример №18
Решим уравнение 
Решение: Выполнив замену 
Так как 

Из замены следует, что 
3 получим все решения уравнения 

Пример №19
Решим уравнение 
Для решения уравнения такого типа используйте калькулятор.
Если после нажатия кнопки 

Решение уравнения при помощи кнопки Radian будет иметь вид:

Решения уравнений вида 
Пример №20
Решим уравнение 
Решение.





Пример №21
Решение: На единичной окружности точкам 





Значит решения уравнения 

Пример №22
Решение: Запишем уравнение в виде 
Общее решение уравнения 

Отсюда получаем:
Если 

Разделим каждую сторону на 
Подставим полученные значения 
получим корни заданного уравнения: 


Методы решения тригонометрических уравнений
Решение любого тригонометрического уравнения сводится к решению простейших тригонометрических уравнений. Рассмотрим основные методы решения тригонометрических уравнений на следующих примерах.
Метод разложения на множители
Пример №23
Решим уравнение 
Решение:
Ответ:
Обратите внимание, что в различных семействах решений параметры 
Пример №24
Решим уравнение 

Решение:
Каждый множитель приравниваем к нулю и находим х (если это возможно).
Решение уравнении в общем виде: 
Корни уравнении, расположенные на отрезке 
Метод введении новой переменной
Пример №25
Ответ: 
Решение однородных уравнений
Если 
Пример №26
Если нет общего множителя, то обе части однородного уравнения можно разделить на большую степень cos х.
Пример №27
Здесь 




Здесь
Применение формулы понижения степени
Пример №28
Решим уравнение
Решение:
Здесь удобно применить формулу понижения степени
Метод введении вспомогательного угла
Уравнения вида 


Пример №29
Здесь 
Разделим обе части уравнения на 2:
Ответ:
Пример №30
Сколько корней имеет уравнение 

Решение:
Для параметра 





Ответ: два корня.
Убедится в правильности решения можно построив графики функций 

Система тригонометрических уравнений
Рассмотрим решение системы уравнений, одно из которых алгебраическое, а другое уравнение — тригонометрическое.
Пример №31
Решите систему уравнений
Решение: выполнив замену 
По формулам приведения 
Разделим каждый член на 
Решением уравнения 
Выполним замену 
Таким образом, решением данной системы будет
Как видно, множество целых значений данной системы зависит только от одного параметра
Обычно решение систем тригонометрических уравнений с двумя переменными зависит от двух параметров.
Пример №32
Решите систему уравнений
Решение: разложим левую часть второго уравнения на множители и, учитывая первое уравнение, получим следующую систему
Здесь
Решениями данных уравнений являются
Тогда решение системы будет
Понятие тригонометрического уравнения
Понятие обратной функции:
Если функция 

Функции 
Свойства обратной функции:
- Графики прямой и обратной функций симметричны относительно прямой
- Если функция
возрастает (убывает) на некотором промежутке, то она имеет обратную функцию на этом промежутке, которая возрастает, если
возрастает, и убывает, если
убывает.
Объяснение и обоснование:
Понятие обратной функции
Известно, что зависимость пути от времени движения тела, которое движется равномерно с постоянной скоростью 







Рассмотрим процедуру получения обратной функции в общем виде.
Пусть функция 
















Из определения обратной функции вытекает, что область значений прямой функции 


То есть:
Свойства обратной функции
Свойство 1. Графики прямой и обратной функций симметричны относительно прямой
Учитывая приведенную выше процедуру построения функции, обратной к функции 










Действительно, прямая 
Таким образом, при симметрии относительно этой прямой ось 








Следовательно, при симметрии относительно прямой 



Таким образом, при симметрии относительно прямой 








Свойство 2. Если функция 


Действительно, если функция 

Обосновать, что функция 

Пусть числа 

Обозначим 





Если допустить, что функция 





Таким образом, наше предположение неверно, и функция 



Практический прием нахождения формулы функции, обратной к функции y=f(x)
Из определения обратной функции следует, что для получения обратной зависимости необходимо знать, как значение 








Эти рассуждения вместе с соответствующим алгоритмом приведены в таблице 25 и реализованы в решении следующих задач.
Практический прием нахождения формулы функции, обратной функции 
Алгоритм нахождения функции
- Выяснить, будет ли функция
обратимой на всей области определения: для этого достаточно выяснить, имеет ли уравнение
единственный корень относительно переменной
Если нет, то попытаться выделить промежуток, где существует обратная функция (например, это может быть промежуток, где функция
возрастает или убывает).
- Из равенства
выразить
через
- В полученной формуле ввести традиционные обозначения: аргумент обозначить через
а функцию — через
Пример №33
Найдите функцию, обратную к функции
Решение:
Из равенства 

Эта формула задает обратную функцию, но в ней аргумент обозначен через 
Обозначим в полученной формуле аргумент через 
Получаем функцию 
Пример №34
Найдите функцию, обратную к функции
Комментарий:
На всей области определения 





Изменяя обозначения на традиционные, получаем конечный результат.
Решение:
Область определения: 

Обозначим аргумент через 


Пример №35
Найдите функцию, обратную к функции
Решение:
Из равенства 







Комментарий:
Область значений заданной функции: 







Пример №36
Найдите функцию, обратную к функции
Решение:
Из равенства 


Обозначим аргумент через 



Комментарий:
Множество значений заданной функции: 





Эта формула задает обратную функцию, но в ней аргумент обозначен через 

Замечание. В примерах 2 и 3 мы фактически рассматриваем различные функции (они имеют разные области определения), хотя в обоих случаях эти функции задаются одной и той же формулой. Как известно, графиком функции 


Обратные тригонометрические функции
Для получения обратных тригонометрических функций для каждой тригонометрической функции выделяется промежуток, на котором она возрастает (или убывает). Для обозначения обратных тригонометрических функций перед соответствующей функцией ставится буквосочетание «агс» (читается: «арк»).
Функция y=arcsin x
График 
На промежутке 
График
Значение
Ориентир:


Пример:

Нечетность функции y=arcsin x:

Объяснение и обоснование:
График функции y=arcsin x
Функция 





Функция 


Значение arcsin a
По определению обратной функции (на выбранном промежутке), если 

образом, запись 



Например, 
Аналогично 
Нечетность функции y=arcsin x
Для нахождения арксинусов отрицательных чисел можно также пользоваться нечетностью функции 
Это следует из того, что график функции 






Таким образом, 


Например,
Пример №37
Найдите:
Решение:
Пусть 

Пусть 


Таким образом,
Комментарий:
Так как запись 



Если обозначить выражение в скобках через 

Тогда 


Функция y=arccos x
График 
На промежутке 
График 
Значение 
Ориентир:


Пример №38

Формула для 

Объяснение и обоснование:
График функции y=arccos x
Функция 








Значение arccos a
По определению обратной функции (на выбранном промежутке), если 





Например,
Аналогично
Формула для arccos (-a)
Для нахождения арккосинусов отрицательных чисел можно также пользоваться формулой 








Например,
Отметим, что равенство 

Пример №39
Найдите
Решение:
Пусть 


Поскольку запись 




Функция y=arctg x
График 
На промежутке 
График 
Значение arctg a:
Ориентир:


Пример:

Нечетность функции y=arctg x
Объяснение и обоснование:
График функции y=arctg x
Функция 





Функция 


Значение arctg a
По определению обратной функции (на выбранном промежутке), если 

запись 



Например, 
Аналогично 
Нечетность функции y=arctg x
Для нахождения арктангенсов отрицательных чисел можно также пользоваться нечетностью функции 
Это следует из того, что график функции 


Тогда и соответствующие точки 



Например,
Пример №40
Найдите
Решение:
Пусть 
Таким образом,
Комментарий:
Поскольку запись 

Эту формулу можно не запоминать: достаточно обозначить выражение в скобках через 
Функция y=arcctg x
График
На промежутке 
График 
Значение arcctg a:
Ориентир:


Пример:

Формула для arcctg (-a)

Объяснение и обоснование:
График функции y=arcсtg x
Функция 







функции 

Значение arcctg a
По определению обратной функции (на выбранном промежутке), если 





Например, 
Аналогично 
Формула для arcctg (-a)
Для нахождения арккотангенсов отрицательных чисел можно также пользоваться формулой
Это следует из того, что точки 






Получаем:
Например,
Отметим, что равенство 

Пример №41
Найдите
Решение:
Пусть 

Комментарий:
Поскольку запись 

Эту формулу можно не запоминать: достаточно обозначить выражение в скобках через 
Пример №42
Докажите, что
Решение:
Пусть
- Поскольку
то
- Если
то
Тогда
По определению арктангенса получаем
Таким образом,
а это и означает, что
Комментарий:
Запишем заданное равенство в виде 


При доказательстве следует также учесть определение арккотангенса: если
Решение простейших тригонометрических уравнений
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
Уравнение cos x=a
1. Графическая иллюстрация и решение уравнения
Графическая иллюстрация
Решение:
Примеры:
Корней нет, поскольку
2. Частные случаи решения уравнения

Объяснение и обоснование:
Корни уравнения cos x=a
При 





Пусть 






Косинус — четная функция, поэтому на промежутке 


Таким образом, на промежутке 



Функция 


Частные случаи решения уравнения cos x=a
Полезно помнить специальные записи корней уравнения 

Поскольку косинус равен абсциссе соответствующей точки единичной окружности, получаем, что 


Аналогично 




Примеры решения задач:
Пример №43
Решите уравнение
Решение:
Ответ:
Комментарий:
Поскольку 


Тогда
Пример №44
Решите уравнение
Решение:
Поскольку 
Ответ: корней нет.
Комментарий:
Поскольку 
Пример №45
Решите уравнение
Решение:
Ответ:
Комментарий:
Поскольку 


Замечание. Если по условию задания необходимо найти приближенное значение корней данного уравнения на каком-то промежутке, то с помощью калькулятора находим 


Пример №46
Решите уравнение
Решение:
Ответ:
Комментарий:
Поскольку 
Уравнение sin x=a
Графическая иллюстрация и решения уравнения
Графическая иллюстрация
Решение:
Примеры:
Корней нет, так как
Частные случаи решения уравнения sin x=a

Объяснение и обоснование:
Корни уравнения sin x=a
При 





Пусть 






На промежутке 






Таким образом, на промежутке 



Функция 


Все значения корней уравнения 
Действительно, из формулы (3) при четном 



Частные случаи решения уравнения sin x=a
Полезно помнить специальные записи корней при 
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что 


Аналогично 
Также 

Примеры решения задач:
Пример №47
Решите уравнение
Решение:
Ответ:
Комментарий:
Поскольку 

Для вычисления 
Тогда
Замечание. Ответ к задаче 1 часто записывают в виде 
Пример №48
Решите уравнение
Решение:
Поскольку 
Ответ: корней нет
Комментарий:
Поскольку 
Пример №49
Решите уравнение
Решение:
Ответ:
Комментарий:
Поскольку 

Уравнения tg x = a и ctg x=a
Графическая иллюстрация и решения уравнения 
Формула:
Частный случай:
Пример:
Графическая иллюстрация и решения уравнения 
Формула:
Частный случай:
Пример:
Объяснение и обоснование:
Корни уравнений tg x = a и ctg x=a
Рассмотрим уравнение 






Функция 


При 
Рассмотрим уравнение 









При 
Примеры решения задач:
Пример №50
Решите уравнение
Решение:
Ответ:
Комментарий:
Уравнение 




Пример №51
Решите уравнение
Решение:
Ответ:
Комментарий:
Сначала по формуле (1) найдем значение выражения 
Пример №52
Решите уравнение
Решение:
Ответ:
Комментарий:
Уравнение 

Учитывая, что 
Пример №53
Решите уравнение
Решение:
Ответ:
Комментарий:
Сначала по формуле (2) найдем значение выражения 
Для нахождения 

Решение тригонометрических уравнений, отличающихся от простейших
Как правило, решение тригонометрических уравнений сводится к решению простейших уравнений с помощью преобразований тригонометрических выражений, разложения на множители и замены переменных.
Замена переменных при решении тригонометрических уравнений
Следует помнить общий ориентир, когда замена переменных может выполняться без преобразования данных тригонометрических выражений.
Если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Пример №54
Решите уравнение
Решение:
Пусть 
Отсюда
1. При 

2. При 

Ответ:
Комментарий:
Анализируя вид этого уравнения, замечаем, что в его запись входит только одна тригонометрическая функция 
После решения квадратного уравнения необходимо выполнить обратную замену и решить полученные простейшие тригонометрические уравнения.
Замечание. Записывая решения задачи 1, можно при введении замены 




Пример №55
Решите уравнение
Комментарий:
В заданное уравнение переменная входит только в виде 

Решение:
Пусть 





1. При 
2.При 
3. При 


Ответ:
При поиске плана решения более сложных тригонометрических уравнений можно воспользоваться таким ориентиром.
- Пробуем привести все тригонометрические функции к одному аргументу.
- Если удалось привести к одному аргументу, то пробуем все тригонометрические выражения привести к одной функции.
- Если к одному аргументу удалось привести, а к одной функции — нет, тогда пробуем привести уравнение к однородному.
- В других случаях переносим все члены в одну сторону и пробуем получить произведение или используем специальные приемы решения.
Решение тригонометрических уравнений приведением к одной функции (с одинаковым аргументом)
Пример №56
Решите уравнение
Решение:
Используя формулу косинуса двойного аргумента и основное тригонометрическое тождество, получаем:
Замена 
Тогда 
- При
имеем
— корней нет, поскольку
- При
имеем
Тогда
Ответ:
Комментарий:
Все тригонометрические функции приводим к одному аргументу 
Потом все тригонометрические выражения приводим к одной функции 
В полученное уравнение переменная входит в одном и том же виде 
Замечание. При желании ответ можно записать в виде
Пример №57
Решите уравнение:
Решение:


При 


- При
имеем
тогда
- При
имеем
тогда
Ответ:
Комментарий:
Все аргументы уже одинаковые 

В полученное уравнение переменная входит в одном и том же виде 
Решение однородных тригонометрических уравнении и приведение тригонометрического уравнения к однородному
Рассмотрим уравнение
Для поиска плана решения этого уравнения (но не для его решения) выполним замены: 
Все одночлены, стоящие в левой части этого уравнения, имеют степень 2 (напомним, что степень одночлена 
Если все члены уравнения, в левой и правой частях которого стоят многочлены от двух переменных (или от двух функций одной переменной), имеют одинаковую суммарную степень, то уравнение называется однородным. Решается однородное уравнение делением на наибольшую степень одной из переменных.
Замечание. Придерживаясь этого ориентира, приходится делить обе части уравнения на выражение с переменной. При этом можно потерять корни (если корнями являются те числа, при которых делитель равен нулю). Чтобы избежать этого, необходимо отдельно рассмотреть случай, когда выражение, на которое мы собираемся делить обе части уравнения, равно нулю, и только после этого выполнять деление на выражение, не равное нулю.
Пример №58
Решите уравнение
Решение:
При 

то есть
Тогда
Замена: 
Выполняем обратную замену:
- При
тогда
- При
имеем
тогда
Ответ:
Комментарий:
Данное уравнение однородное, поскольку все его члены имеют одинаковую суммарную степень 2. Его можно решить делением обеих частей на 
Если мы будем делить на 

Подставляя 







В полученное уравнение переменная входит в одном и том же виде 
Пример №59
Решите уравнение:
Решение:
При 
Получаем

Ответ:
Комментарий:
Данное уравнение однородное, поскольку все его члены имеют одинаковую степень 1. Его можно решить делением обеих частей на 
Если мы будем делить на 

Подставляя 





Пример №60
Решите уравнение
Решение:
Используя формулу синуса двойного аргумента, имеем


Отсюда



Замена: 
Выполняем обратную замену:
- При
имеем
тогда
- При
имеем
тогда
Ответ:
Комментарий:
Сначала приведем все тригонометрические функции к одному аргументу 
Теперь в левой части уравнения (1) стоит однородное выражение второй степени, а в правой части — число 2.Если домножить 2 на 1, а единицу расписать по основному тригонометрическому тождеству 

Если мы будем делить на 

Подставляя 






В полученное уравнение(3) переменная входит в одном и том же виде 
Решение тригонометрических уравнении вида f(x)=0 с помощью разложения на множители
Пример №61
Решение 
Решение:
Получаем:
последние простейшие тригонометрические уравнения, имеем:
Ответ:
Комментарий:
Достаточно трудно все тригонометрические функции в этом уравнении привести к одному аргументу.
В таком случае приходится пользоваться четвертым пунктом ориентира, приведенного на с. 170: переносим все члены уравнения в одну сторону и пробуем получить произведение, равное нулю.
Для этого воспользуемся формулой преобразования разности синусов в произведение:
Если произведение равно нулю, то хотя бы один из сомножителей равен нулю, а остальные сомножители имеют смысл. В данном случае все данные и полученные выражения имеют смысл на всем множестве действительных чисел. В конце учитываем, что данное уравнение равносильно совокупности уравнений 

Пример №62
Решите уравнение
Решение:
Из первого из этих уравнений:
Второе уравнение преобразуем так:
Отсюда
Из этих уравнений получаем:
Ответ:
Комментарий:
Сразу воспользуемся четвертым пунктом ориентира, приведенного на с. 170: переносим все члены уравнения в одну сторону и пробуем получить произведение, которое равно нулю.
Для этого применим формулу преобразования суммы синусов, стоящей в левой части уравнения, в произведение:

Для того чтобы вынести какое-то выражение за скобки и получить произведение, достаточно записать 
Если произведение равно нулю, то хотя бы один из сомножителей равен нулю.
Во втором из полученных уравнений преобразуем разность косинусов в произведение. В конце учитываем, что все данные и полученные выражения существуют на всем множестве действительных чисел. Таким образом, данное уравнение на этом множестве равносильно совокупности уравнений:
и поэтому в ответ необходимо записать все корни каждого из этих уравнений.
Замечание. Запись ответа можно сократить. Так, если изобразить все найденные решения на единичной окружности, то можно увидеть, что решение 






Отбор корней тригонометрических уравнений
Если при решении тригонометрических уравнений необходимо выполнять отбор корней, то чаще всего это делается так:
- находят (желательно наименьший) общий период всех тригонометрических функций, входящих в запись уравнения (конечно, если этот общий период существует); потом на этом периоде отбирают корни (отбрасывают посторонние), а те, которые остаются, периодически продолжают.
Пример №63
Решите уравнение
1 способ решения
Решение:
Тогда:
Функция 




При 


При значениях 

Тогда решениями данного уравнения будут:
Ответ:
Комментарий:
Если число 

Заменив уравнение (1) на эту совокупность, мы не потеряем корни данного уравнения, но можем получить посторонние для него корни. Например, такие, при которых первый множитель равен нулю, а второй не существует.
Чтобы отбросить такие значения, выполним проверку полученных корней подстановкой в исходное уравнение на одном периоде — промежутке длиной
На этом периоде отбираем корни (отбрасываем посторонние), а те, которые остаются, периодически повторяем (то есть добавляем к полученным корням
Замечание. При решении уравнения (1) мы не следили за равносильностью выполненных преобразований, но выполняли преобразования, не приводящие к потере корней. Тогда говорят, что мы пользовались уравнениями-следствиями (если все корни первого уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого). В этом случае мы могли получить посторонние для данного уравнения корни (то есть те корни последнего уравнения, которые не являются корнями данного). Чтобы этого не случилось, можно пользоваться следующим ориентиром.
Если при решении уравнения мы пользовались уравнениями-следствиями, то проверка полученных корней подстановкой в исходное уравнения является обязательной составной частью решения.
Если для решения этого же уравнения (1) мы будем использовать равносильные преобразования, то отбор корней будет организован немного иначе. А именно, нам придется учесть ОДЗ уравнения, то есть общую область определения для всех функций, входящих в запись уравнения.
2 способ решения уравнения
Комментарий:
Все равносильные преобразования уравнений выполняются на их области допустимых значений (ОДЗ), поэтому необходимо учесть ОДЗ.
Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а второй множитель имеет смысл. На ОДЗ оба множителя имеют смысл, поэтому на ОДЗ данное уравнение равносильно совокупности уравнений
Те корни совокупности, которые входят в ОДЗ, достаточно отобрать на одном периоде — промежутке длиной 
Значение 
Значения 
Решение:
Тогда
Функция 






Решение систем тригонометрических уравнений
Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов: из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.
Пример №64
Решите систему уравнений
Решение:
Из первого уравнения находим 


- Если
- Если
Ответ:
Замечание. Если бы мы для нахождения значения 
Действительно, в таком случае имеем
Тогда, например, при 
Таким образом, кроме решений, которые вошли в ответ, мы имеем еще две возможности:
Но эти пары значений 
Когда решение уравнения 
Пример №65
Решите систему уравнений
Решение:
Почленно сложим и вычтем эти уравнения. Получим равносильную систему:
Представим последнюю систему в виде совокупности двух систем, записывая решения второго уравнения отдельно со знаком «+» и отдельно со знаком « — »:

Ответ:
Замечание. В запись ответа вошли два параметра 
Если попробовать при решении заданной системы воспользоваться только одним параметром, например 

Уравнения-следствия и равносильные преобразования уравнений
Понятие уравнения и его корней:
Определение:
Равенство с переменной называется уравнением. В общем виде уравнение с одной переменной 

Пример:



Корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.
Пример:




Область допустимых значений (ОДЗ):
Областью допустимых значений (или областью определения) уравнения называется общая область определения для функций 
Для уравнения 





Уравнения-следствия:
Если каждый корень первого уравнения является корнем второго, то второе уравнение называется следствием первого уравнения. Если из правильности первого равенства следует правильность каждого последующего, то получаем уравнения-следствия.
При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому при использовании уравнений-следствий проверка полученных корней подстановкой их в исходное уравнение является составной частью решения (см. пункт 5 этой таблицы).
Возведем обе части уравнения в квадрат:
Проверка. 


Ответ: 2.
Равносильные уравнения:
Определение:
Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни.
То есть каждый корень первого уравнения является корнем второго уравнения и, наоборот, каждый корень второго уравнения является корнем первого. (Схема решения уравнений с помощью равносильных преобразований приведена в пункте 5 этой таблицы.)
Простейшие теоремы:
- Если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве).
- Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получим уравнение, равносильное заданному (на ОДЗ заданного уравнения).
Схема поиска плана решений уравнений
Объяснение и обоснование:
Понятие уравнения и его корней
Уравнение в математике чаще всего понимают как аналитическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной 
Часто уравнения определяют короче — как равенство с переменной. Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.
Например, уравнение 



Область допустимых значений (ОДЗ) уравнения
Если задано уравнение 




Понятно, что каждый корень данного уравнения принадлежит как области определения функции 

Например, в уравнении 





Нахождение ОДЗ данного уравнения может быть полезным для его решения, но не всегда является обязательным элементом решения уравнения.
Методы решения уравнений
Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения уравнений в курсе математики 5-6 классов использовались зависимости между компонентами и результатами действий и свойства числовых равенств; в курсе алгебры 7-9 классов — равносильные преобразования уравнений, а для приближенного решения уравнений — графический метод.
Графический метод решения уравнений не дает высокой точности нахождения корней уравнения, и с его помощью чаще всего можно получить только грубые приближения корней. Иногда удобно графически определить количество корней уравнения или найти границы, в которых находятся эти корни. В некоторых случаях можно графически доказать, что уравнение не имеет корней. По указанным причинам в школьном курсе алгебры и начал анализа под требованием «решить уравнение» понимается требование «используя методы точного решения, найти корни данного уравнения». Приближенными методами решения уравнений можно пользоваться только тогда, когда об этом говорится в условии задачи (например, если ставится задача решить уравнение графически).
В основном при решении уравнений разных видов нам придется применять один из двух методов решения. Первый из них состоит в том, что данное уравнение заменяется более простым уравнением, имеющим те же корни,— равносильным уравнением. В свою очередь, полученное уравнение заменяется еще более простым, равносильным ему, и т. д. В результате получаем простейшее уравнение, которое равносильно заданному и корни которого легко находятся. Эти корни и только они являются корнями данного уравнения.
Второй метод решения уравнений состоит в том, что данное уравнение заменяется более простым уравнением, среди корней которого находятся все корни данного, то есть так называемым уравнением-следствием. В свою очередь, полученное уравнение заменяется еще более простым уравнением-следствием, и так далее до тех пор, пока не получим простейшее уравнение, корни которого легко находятся. Тогда все корни данного уравнения находятся среди корней последнего уравнения. Поэтому, чтобы найти корни данного уравнения, достаточно корни последнего уравнения подставить в данное и с помощью такой проверки получить корни данного уравнения (и исключить так называемые посторонние корни — те корни последнего уравнения, которые не удовлетворяют заданному).
В следующем параграфе будет также показано применение свойств функций к решению уравнений определенного вида.
- Заказать решение задач по высшей математике
Уравнения-следствия
Рассмотрим более детально, как можно решать уравнения с помощью уравнений-следствий. При решении уравнений главное — не потерять корни данного уравнения, и поэтому в первую очередь мы должны следить за тем, чтобы каждый корень исходного уравнения оставался корнем следующего. Фактически это и является определением уравнения-следствия:
- в том случае, когда каждый корень первого уравнения является корнем второго, второе уравнение называется следствием первого.
Это определение позволяет обосновать такой ориентир: для получения уравнения-следствия достаточно рассмотреть данное уравнение как верное числовое равенство и гарантировать (то есть иметь возможность обосновать), что каждое следующее уравнение мы можем получить как верное числовое равенство.
Действительно, если придерживаться этого ориентира, то каждый корень первого уравнения обращает это уравнение в верное числовое равенство, но тогда и второе уравнение будет верным числовым равенством, то есть рассматриваемое значение переменной является корнем и второго уравнения, а это и означает, что второе уравнение является следствием первого.
Применим приведенный ориентир к уравнению 
Если правильно то, что дробь равна нулю, то обязательно ее числитель равен нулю. Таким образом, из заданного уравнения получаем уравнение-следствие 



Это происходит поэтому, что, используя уравнения-следствия, мы гарантируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не является корнем первого уравнения. Для первого уравнения этот корень является посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение.
Таким образом, чтобы правильно применять уравнения-следствия для решения уравнений, необходимо помнить еще один ориентир: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстановкой корней в исходное уравнение является составной частью решения.
Схема применения этих ориентиров дана в таблице 33. В пункте 3 этой таблицы приведено решение уравнения
Для решения этого уравнения с помощью уравнений-следствий достаточно данное уравнение рассмотреть как верное числовое равенство и учесть, что в случае, когда два числа равны, то и их квадраты также будут равны:
То есть мы гарантируем, что если равенство (1) верно, то и равенство (2) также будет верным, а это и означает (как было показано выше), что уравнение (2) является следствием уравнения (1). Если мы хотя бы один раз использовали уравнения-следствия (а не равносильные преобразования), то можем получить посторонние корни, и тогда в решение обязательно входит проверка полученных корней подстановкой их в заданное уравнение.
Замечание. Переход от данного уравнения к уравнению-следствию можно обозначить специальным значком 
Равносильные уравнения
С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, которые не имели корней. Формально будем считать, что и в этом случае уравнения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом
В курсе алгебры и начал анализа мы будем рассматривать более общее понятие равносильности, а именно — равносильность на определенном множестве.
Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни, то есть каждый корень первого уравнения является корнем второго и, наоборот, каждый корень второго уравнения является корнем первого.
Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения? » Например, уравнения 

При рассмотрении равносильности уравнений на множестве, которое отличается от множества всех действительных чисел, ответ на вопрос «Равносильны ли данные уравнения? » может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рассмотреть уравнения: 





Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем случае), а чаще всего таким множеством является ОДЗ исходного уравнения.
Договоримся, что далее все равносильные преобразования уравнений (а также неравенств и систем уравнений и неравенств) мы будем выполнять на ОДЗ исходного уравнения (неравенства или системы). Отметим, что в том случае, когда ОДЗ заданного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.
Например, для уравнения 









Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.
Как указывалось выше, выполняя равносильные преобразования уравнений, необходимо учесть ОДЗ данного уравнения — это и есть первый ориентир для выполнения равносильных преобразований уравнений.
По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантировать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 187).
Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и гарантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из определения равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения).
Таким образом, при выполнении равносильных преобразований мы должны гарантировать сохранение правильности равенства на каждом шаге решения не только при прямых, а и при обратных преобразованиях — это и является вторым ориентиром для решения уравнений с помощью равносильных преобразований. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 33.)
Например, чтобы решить с помощью равносильных преобразований уравнение 

Запись решения в этом случае может быть такой:





Для выполнения равносильных преобразований уравнений можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности уравнений обобщим также формулировки простейших теорем о равносильности, известных из курса алгебры 7 класса.
- Теорема 1. Если из одной части уравнения перенести в другую часть слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве).
- Теорема 2. Если обе части уравнения у множить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получаем уравнение, равносильное заданному (на ОДЗ исходного).
Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований данного уравнения.
Замечание. Для обозначения перехода от данного уравнения к равносильному ему уравнению можно применять специальный значок 
Пример №66
Решите уравнение:
Решение:
ОДЗ: 
то есть
Учтем ОДЗ. При 


Ответ:
Комментарий:
Используем равносильные преобразования для решения данного уравнения. Для этого необходимо учесть ОДЗ, поэтому зафиксируем ее ограничения в начале решения.
Укажем, что в уравнениях ограничения ОДЗ можно только зафиксировать, но не решать, а в конце проверить, выполняются ли эти ограничения для найденных корней.
При переносе члена данного уравнения из одной части уравнения в другую с противоположным знаком получаем уравнение (1), равносильное заданному.
Приводя к общему знаменателю, раскрывая скобки и приводя подобные члены, снова получаем верное равенство и можем обосновать, что при выполнении обратных действий равенство также не нарушается, таким образом, полученные уравнения (1)—(3) равносильны заданному (на его ОДЗ).
Дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю. Но второе условие уже учтено в ограничениях ОДЗ, таким образом, получаем уравнение (4), равносильное заданному уравнению на его ОДЗ. Поскольку все преобразования были равносильными только с учетом ОДЗ, то мы должны проверить, удовлетворяет ли полученное число ограничениям ОДЗ.
Причины появления посторонних корней и потери корней при решении уравнений
Наиболее типичные случаи появления посторонних корней и потери корней приведены в таблице 34. Там же указано, как в каждом из этих случаев получить правильное (или полное) решение.
Получение уравнений следствий:
1. Приведение подобных членов.


а) переход к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;
2. Приведение обеих частей уравнения к общему знаменателю (при сокращении знаменателя).


3. Возведение обеих частей иррационального уравнения в квадрат.
б) выполнение преобразований, при которых происходит неявное умножение на нуль;
Умножение обеих частей уравнения на выражение с переменной.









Ответ: корней нет.




В данном уравнении не было необходимости умножить на 




в) применение к обеим частям уравнения функции, которая не является возрастающей или убывающей.
Возведение обеих частей уравнения в четную степень или применение к обеим частям уравнения тригонометрических функций.
Возведем обе части уравнения в квадрат: 
Явное или неявное сужение ОДЗ заданного уравнения, в частности выполнение преобразований, в ходе которых происходит неявное деление на нуль.
1. Деление обеих частей уравнения на выражение с переменной.


2. Сложение, вычитание, умножение или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ заданного уравнения.



Где ошибка при решении уравнения
1. 
В данном уравнении не было необходимости возводить в квадрат.
Ответ: –2.
Если применить возведение в квадрат, то проверка показывает, что 

Потеряли корень 



Те значения, на которые сузилась ОДЗ, необходимо рассмотреть отдельно.
- При
получаем
— верное равенство, таким образом,
— корень.
- При
получаем
Ответ. 0; 1. (Конечно, удобнее решать так:
Потеряли корень 


В данном уравнении не было необходимости прибавлять к обеим частям 
Ответ: 


Применение свойств функций к решению уравнений:
Конечная ОДЗ:
Если область допустимых значений (ОДЗ) уравнения (неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения.
ОДЗ:
Проверка: 


Ответ: 1
Оценка левой и правой частей уравнения:
Если надо решить уравнение вида 



Итак, заданное уравнение равносильно системе
Ответ: 0
Сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю.
Итак, заданное уравнение равносильно системе 

Ответ: 2.
Использование возрастания и убывания функций:
- Подбираем один или несколько корней уравнения.
- Доказываем, что других корней это уравнение не имеет (используя теоремы о корнях уравнения или оценку левой и правой частей уравнения)
1. Если в уравнении 

Пример:
Уравнение 



2. Если в уравнении 


Пример:
Уравнение 





Объяснение и обоснование:
Конечная ОДЗ
Напомним, что в случае, когда дано уравнение 



Например, если дано уравнение 






Рассмотренный пример позволяет выделить ориентир для решения аналогичных уравнений:
- если ОДЗ уравнения (а также неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения.
Замечание. В том случае, когда ОДЗ — пустое множество (не содержит ни одного числа), мы можем сразу дать ответ, что данное уравнение не имеет корней.
Например, если необходимо решить уравнение 


Оценка левой и правой частей уравнения
Некоторые уравнения можно решить с помощью оценки левой и правой частей уравнения.
Пусть дано уравнение 


Рассмотрим два случая:
Если 













Пример использования такого приема решения уравнений приведен в пункте 2 таблицы 35.
Аналогично предыдущим рассуждениям обосновывается и ориентир по решению уравнения 
Если предположить, что 



Таким образом, сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю. О Например, чтобы решить уравнение 


Из второго уравнения получаем 
Использование возрастания и убывания функций
Использование возрастания и убывания функций к решению уравнений опирается на такое свойство: возрастающая или убывающая функция принимает каждое свое значение только в одной точке ее области определения. Полезно помнить специальные теоремы о корнях уравнения.
Теорема 1. Если в уравнении 

Графически утверждение теоремы проиллюстрировано на рисунке 96. Прямая 




Если на промежутке 








Теорема 2. Если в уравнении 


Графически утверждение теоремы проиллюстрировано на рисунке 97.
Если на промежутке 





Каждая из этих теорем утверждает, что в рассмотренном промежутке данное уравнение может иметь не более чем один корень, то есть или это уравнение совсем не имеет корней, или оно имеет единственный корень. Если нам удалось подобрать один корень такого уравнения, то других корней в заданном промежутке уравнение не имеет.
Например, чтобы решить уравнение 




Заметим, что каждая из этих теорем гарантирует единственность корня уравнения (если он есть) только на промежутке возрастания (или убывания) соответствующей функции. Если функция имеет несколько промежутков возрастания и убывания, то приходится рассматривать каждый из них отдельно.
Пример №67
Решим с помощью теоремы 2 уравнение
Сначала следует учесть его ОДЗ: 


- При
данное уравнения имеет корень
Функция
возрастает при
(как было показано выше, она возрастает на множестве
а функция
убывает на промежутке
Таким образом, данное уравнение
имеет единственный корень
- При
данное уравнение имеет корень
Функция
возрастает при
а функция
убывает на этом промежутке. Поэтому данное уравнение
при
имеет единственный корень
В ответ следует записать все найденные корни (хотя на каждом из промежутков корень единственный, но всего корней — два). Итак, данное уравнение имеет только два корня:
Примеры решения задач:
Пример №68
Решение
Решение:
ОДЗ: 


Из второго уравнения системы получаем 
Ответ: 1.
Комментарий:
Если раскрыть скобки и привести обе части уравнения к общему знаменателю, то для нахождения корней полученного уравнения придется решать полное уравнение восьмой степени, все корни которого мы не сможем найти.
Попытаемся оценить области значений функций, стоящих в левой и правой частях уравнения. Поскольку на ОДЗ 


Пример №69
Решите систему уравнении
Решение:
ОДЗ: 




Подставляя 



Ответ:
Замечание. Утверждение, обоснованное в комментарии к задаче 2, может быть использовано при решении аналогичных задач. Коротко его можно сформулировать так: если функция 
Примеры решения более сложных тригонометрических уравнений и их систем
Иногда приходится решать тригонометрические уравнения, в которые входят только сумма или разность синуса и косинуса одного и того же аргумента и их произведение. В таком случае целесообразно эту сумму (или разность) обозначить новой переменной.
Пример №70
Решите уравнение
Комментарий:
Если в заданном уравнении привести все тригонометрические функции к одному аргументу 




Решение:
Данное уравнение равносильно уравнению
Если обозначить 

Таким образом,
Тогда 



Ответ:
Замечание. При возведении обеих частей уравнения в квадрат можно получить посторонние корни (см. таблицу 34). Но возведение обеих частей равенства замены в квадрат является равносильным преобразованием.
Действительно, в этом случае левая и правая части равенства имеют одинаковые знаки, и тогда 












Для решения некоторых тригонометрических уравнений могут применяться свойства функций, в частности, оценка левой и правой частей уравнения.
Пример №71
Решите уравнение
Решение:
Оценим область значений функции 



Если 


Аналогично, если допустить, что 



Приравнивая правые части этих равенств, получаем
Поскольку 






Поэтому последнее уравнение имеет решения в целых числах значениях вида 


Пример №72
Решите уравнение
Комментарий:
Преобразуем левую часть по формуле 
Решение:
Данное уравнение равносильно уравнению 







Проверим, удовлетворяют ли найденные значения второму уравнению системы. Если 

Ответ:
Иногда для решения тригонометрических уравнений приходится применять тригонометрические формулы, которые приводят к сужению ОДЗ данного уравнения. Такие преобразования могут приводить к потере корней уравнения. Чтобы этого не случилось, можно пользоваться таким ориентиром:
- если для решения уравнений (или неравенств) приходится выполнять преобразования, сужающие ОДЗ исходного уравнения (или неравенства ), то те значения, на которые сужается ОДЗ, необходимо рассматривать отдельно.
В таблице 36 указаны тригонометрические формулы, которые могут приводить к сужению ОДЗ, и соответствующие значения переменной, которые приходится проверять при использовании этих формул.
Формула (используется слева направо)





Чтобы убедиться, что приведенные формулы приводят к сужению ОДЗ, достаточно сравнить области допустимых значений их левых и правых частей.
Например, рассмотрим формулу
ОДЗ левой части: 



Сравнивая ОДЗ левой и правой частей рассмотренной формулы, видим, что ОДЗ правой части содержит дополнительные ограничение 



Приведем пример использования указанного ориентира:
Пример №73
Решите уравнение
Комментарий:
Если воспользоваться первыми двумя формулами таблицы 36, то мы приведем все тригонометрические выражения в этом уравнении и к одному аргументу, и к одной функции 
происходит сужение ОДЗ на значение 
- Подставляем те значения переменной, на которые сужается ОДЗ, в уравнении (1). При вычислениях учитываем периодичность функций и формулы приведения.
- При
(на ОДЗ уравнения (1)) использование формул
и
Приводит к уравнению(2)(см. решение), которое равносильно заданному (на той части ОДЗ, где 
Заметим, что ОДЗ уравнения (2) отличается от ОДЗ уравнения (1) только тем, что в нее не входят значения 
Решение:
1. Если 

Таким образом, 
2. Если 
Замена 





Ответ:
Некоторые тригонометрические уравнения удается решить, используя такой ориентир, который условно можно назвать «ищи квадратный трехчлен» , то есть:
- попробуйте рассмотреть данное уравнение как квадратное относительно некоторой переменной (или относительно некоторой функции).
Пример №74
Решите уравнение
Комментарий:
Есть несколько подходов к решению данного уравнения.
- Рассмотреть данное уравнение как квадратное относительно переменной х и учесть, что оно может иметь корни тогда и только тогда, когда его дискриминант будет неотрицательным.
- Если в левой части уравнения выделить полный квадрат
то получим уравнение
Учтем, что всегда 
А сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю.
Также можно последнее уравнение записать в таком виде:
и оценить левую и правую части этого уравнения.
Решение:
Рассмотрим уравнение как квадратное относительно






Из второго уравнения первой системы имеем 


Ответ:
При решении систем тригонометрических уравнений не всегда удается выполнять только равносильные преобразования уравнений системы, иногда приходится пользоваться уравнениями-следствиями. В таких случаях могут возникать посторонние решения, поэтому полученные решения необходимо проверять. Причем проверять можно как значения переменных, полученные в конце решения, так и значения тригонометрических функций, полученные в ходе решения. Если все тригонометрические функции, которые входят в запись системы, по каждой из переменных имеют общий период, то достаточно выполнить проверку для всех значений переменных из одного периода (для каждой переменной).
Пример №75
Решите систему уравнений
Комментарий:
Если из первого уравнения системы выразить 



Но при возведении обеих частей уравнения в квадрат получаем уравнение-следствие. Таким образом, среди полученных решений могут быть и посторонние решения для данной системы, которые придется отсеивать проверкой.
Для проверки учитываем, что все функции относительно переменной 



Следовательно, проверку решений достаточно выполнить для всех пар чисел 

Для каждой переменной все полученные решения необходимо повторить через период.
Решение:
Возведем обе части каждого уравнения системы в квадрат и почленно сложим полученные уравнения. Получаем уравнение-следствие


Подставляя полученные значения в уравнение (2), получаем
Тогда 


Для системы (3) это пары чисел: 
Решениями заданной системы являются только пары чисел:
Ответ получим, повторяя приведенные решения через период (для каждой переменной).
Ответ:


Также при решении уравнений с обратными тригонометрическими функциями часто бывает удобно от обеих частей уравнения взять какую-нибудь тригонометрическую функцию и воспользоваться определением соответствующих обратных тригонометрических функций.
Пример №76
Решите уравнение
Комментарий:
Если взять от обеих частей данного уравнения функцию синус, то получим уравнение-следствие: если числа равны, то и синусы будут равны, но если синусы двух чисел равны, то это еще не значит, что числа обязательно будут равны. То есть верное равенство будет сохраняться при прямых преобразованиях, но не обязательно будет сохраняться при обратных преобразованиях. Таким образом, в конце решения необходимо выполнить проверку полученных корней.
Если обозначить 





Проверяя полученные решения, в тех случаях, когда найденные числа не являются корнями данного уравнения, иногда удобно сравнить полученные
решения с табличными значениями. Например, 
Учитывая возрастание функции 
Решение:
Если обозначить 

Возьмем от обеих частей уравнения (1) функцию синус и получим
По определению арксинуса 


Таким образом, 
2) 
Действительно, при 
Аналогично при 
Ответ: 0.
Замечание. Для решения уравнения 
В этом случае необходимо учесть ОДЗ данного уравнения:




На промежутке 

Все найденные решения принадлежат ОДЗ (удовлетворяют условиям (3)), но условию (4) удовлетворяет только 
Тригонометрические уравнения с параметрами
Если в запись тригонометрического уравнения кроме переменной и числовых коэффициентов входят также буквенные коэффициенты — параметры, то при решении таких уравнений можно пользоваться следующим ориентиром.
Любое уравнение или неравенство с параметрами можно решать как обычное уравнение или неравенство до тех пор, пока все преобразования или рассуждения, необходимые для решения, можно выполнить однозначно. Если какое-то преобразование нельзя выполнить однозначно, то решение необходимо разбить на несколько случаев, чтобы в каждом из них ответ через параметры записывался однозначно.
Решение уравнений с параметрами
На этапе поиска плана решения уравнения или неравенства с параметрами или в ходе рассуждений, связанных с самим решением как таковым, часто удобно сопровождать соответствующие рассуждения схемами, по которым легко проследить, в какой момент мы не смогли однозначно выполнить необходимые преобразования, на сколько случаев пришлось разбить решение и чем отличается один случай от другого. Чтобы на таких схемах (или в записях громоздких решений) не потерять какой-нибудь ответ, целесобразно помещать окончательные ответы в прямоугольные рамки.
Пример №77
Решите уравнение
Решение:
Ответ:
Комментарий:
Наличие параметра 

Уравнение 



1) если 

Пример №78
Решите уравнение
Решение:
Тогда
Откуда 
Ответ: ( см. в конце замечания)
Комментарий:
Сначала приведем все тригонометрические функции к одному аргументу 

Поскольку оба множителя имеют смысл при любых значениях переменной 

Для уравнения 





Замечание. Для записи полученных ответов (они на схемах расположены в прямоугольных рамках) целесообразно уточнить, при каких значениях а выполняются ограничения
Для этого решаем соответствующие неравенства:
Чтобы облегчить запись ответа в случаях сложных или громоздких решений, изобразим ось параметра (а) и отметим на ней все особые значения параметра, которые появились в процессе решения. Под осью параметра (левее от нее ) выпишем все полученные решения ( кроме «решений нет» ) и напротив каждого ответа отметим, при каких значениях параметра этот ответ можно использовать (см. схему ниже). После этого ответ записывается для каждого из особых значений параметра и для каждого из полученных промежутков оси параметра.
Из этой схемы хорошо видно, что при 

Ответ: 1)если
2)если
Пример №79
Решите уравнение
Комментарий:
Для решения уравнения (1) используем равносильные преобразования. Тогда мы обязательно должны учесть ОДЗ данного уравнения. Для этого записываем условия существования тангенса и котангенса и решаем соответствующие ограничения. Мы можем привести все тригонометрические функции к одному аргументу 



При 
На ОДЗ уравнения (1) знаменатели дробей в уравнении (2) не равны нулю. Таким образом, после умножения обеих частей уравнения (2) на выражения, которые стоят в знаменателях, получаем уравнение 
- Если
то есть
то получаем уравнение
которое не имеет корней.
- Если
то есть
то получаем
Чтобы решить это уравнение, необходимо знать знак выражения, которое стоит в правой части, поскольку 
Конечно, для каждого случая необходимо уточнить, при каких значениях 
Решение:
1. При 



2. При 


1) Если 
2) Если 
Выясним, при каких значениях а полученные корни уравнения (4) не входят в ОДЗ. Для этого достаточно в уравнении (4) вместо аргумента 
Учитывая, что функции, которые входят в запись данного уравнения (1), имеют общий период 










Но ни при одном значении 


Изобразим полученные ответы:
Ответ: 1)если
2) если
Исследовательские задачи с параметрами
Кроме задач с параметрами, в которых требуется «решить уравнение или неравенство», часто предлагаются исследовательские задания с параметрами. Такие задания иногда удается решить с помощью непосредственных вычислений: решить данное уравнение или неравенство и после этого дать ответ на вопрос задачи. Но достаточно часто исследовательские задания не удается решить непосредственными вычислениями (или такие вычисления являются очень громоздкими), и поэтому приходится сначала обосновать какое-то свойство данного уравнения или неравенства, а потом, пользуясь этим свойством, уже давать ответ на вопрос задачи.
Рассмотрим некоторые из таких свойств. Например, принимая во внимание четность функций, которые входят в запись данного уравнения, используется такой ориентир.
Если в уравнении 


Пример №80
Найдите все значения параметра 

Решение:
Функция 





Если 









Поскольку 
Из второго уравнения системы получаем 


Ответ:
Комментарий:
Отмечаем, что в левой части данного уравнения стоит четная функция, и используем ориентир, приведенный выше. Действительно, если 







Выясним, существуют ли такие значения параметра 

Поскольку значение 


Для решения уравнения (2) оценим его левую и правую части:
При решении некоторых исследовательстких задач с параметрами помогает использование следующего ориентира.
Если в условии задачи с параметрами говорится о том, что решениями данного уравнения или неравенства являются все значения переменной из некоторого множества, то иногда полезно подставить конкретные значения переменной из заданного множества и получить некоторые ограничения на параметр.
Пример №81
Найдите все пары чисел 

Решение:
Если корнями данного уравнения являются все действительные числа, то корнем будет и число ноль.
При 




Из первого уравнения системы получаем 
Следовательно, условие задачи может выполняться только при
При 
Но по условию корнями уравнения (1), а значит и уравнения (3) должны быть все действительные числа, таким образом, корнем будет и число 






Если корнями уравнения (3) являются все действительные числа, то корнем будет и число
При 




Если 



Если 


Если 




Ответ:
Комментарий:
Мы не в состоянии решить данное уравнение (но его и не требуют решить), поэтому воспользуемся тем, что по условию его корнями будут все действительные числа, и подставим вместо переменной 
Для подстановки чаще всего выбирают такие значения переменной, которые обращают какие-то выражения в нуль. Так, при 

Если 



Попытаемся еще раз превратить выражение в первых скобках в нуль, используя то, что число 


Потом попробуем превратить в нуль 
При целом 


Поскольку значения 


В случае, когда 



Использование условий расположения корней квадратного трехчлена f(x)=ax2+bx+c (a≠0) Относительно заданных чисел A и B
При решении некоторых исследовательских задач с параметрами можно использовать необходимые и достаточные условия расположения корней квадратного трехчлена. Основные из этих условий приведены в таблице 37 (использованы традиционные обозначения
Расположение корней:
при 
при 
В общем случае
при 
при 
В общем случае
при 
при 
В общем случае
при 
при 
В общем случае
при 
при 
В общем случае 
при 
при 
В общем случае 
при 
при 
В общем случае
Объяснение и обоснование:
Для обоснования указанных условий достаточно воспользоваться тем, что график функции 

Например, для того чтобы два разных корня квадратного трехчлена 
















Так же при изменении значения аргумента 







Аналогичные рассуждения при 

Действительно 



Аналогично обосновываются и другие условия, приведенные в таблице 37.
Заметим, что эти условия можно не запоминать, а для их записи пользоваться графиком квадратичной функции (изображенным для необходимого расположения корней) и таким ориентиром.
Для того чтобы корни квадратного трехчлена 

- знак коэффициента при старшем члене;
- знаки значений
- знак дискриминанта
- положение абсциссы вершины параболы
относительно данных чисел
Отметим, что для случаев, в которых хотя бы одно из данных чисел находится между корнями квадратного трехчлена (см. вторую, пятую, шестую и седьмую строки табл. 37), достаточно выполнения первых двух условий этого ориентира, а для других случаев приходится рассматривать все четыре условия. Также заметим, что, записывая каждое из указанных условий, следует смотреть, будет ли выполняться требование задачи в том случае, если в этом условии записать знак нестрогого неравенства.
Пример №82
Найдите все значения параметра

Комментарий:
Сначала выполним равносильные преобразования данного уравнения: приведем к одному аргументу и к одной функции, а потом выполним замену 







В конце необходимо объединить все полученные результаты. Заметим, что для получения ответа можно решить уравнение (2):


Решение:
Данное уравнение равносильно уравнению: 

Уравнение (1) будет иметь корни тогда и только тогда, когда уравнение (2) будет иметь хотя бы один корень на промежутке
- Для того чтобы оба корня квадратного трехчлена
находились в этом промежутке, достаточно выполнения условии —
- Для того чтобы один корень
находился в промежутке
а второй справа от 1 (или в точке 1), достаточно выполнения условии
- Для того чтобы один корень
находился в промежутке
а второй слева от-1 (или в точке -1), достаточно выполнения условий
Решаем совокупность систем неравенств (3)-(5): 10 + а >0, 10-а >0, а2-64 > 0, или
Тогда
Первая система не имеет решений, а из других получаем 
- Тригонометрические неравенства
- Формулы приведения
- Синус, косинус, тангенс суммы и разности
- Формулы двойного аргумента
- Функция y=sin x и её свойства и график
- Функция y=cos x и её свойства и график
- Функции y=tg x и y=ctg x — их свойства, графики
- Арксинус, арккосинус, арктангенс и арккотангенс числа
урок 5. Математика ЕГЭ
Тригонометрические уравнения
Тригонометрия – одна из самых важных тем на ЕГЭ по профильной математике. Она может встретиться в №1 (простейшие уравнения), №4 (преобразование выражений, в том числе тригонометрических), знание свойств тригонометрических функций может пригодится в №9, №11 (производные) и в задании из второй части №12 (тригонометрические уравнения).
Как видите, потенциально хорошие знания по тригонометрии могут принести вам до 6 первичных баллов на ЕГЭ. Конечно, вряд ли тригонометрия будет сразу во всех перечисленных номерах, но без нее написать хорошо профильную математику будет сложно.
Самой сложной темой из тригонометрии являются тригонометрические уравнения. Здесь вам понадобятся все ваши умения по работе с тригонометрической окружностью, знание тригонометрических формул, умение работать с тригонометрическими выражениями и переводить градусы в радианы и наоборот. Тригонометрические уравнения почти всегда попадаются в 12-м номере ЕГЭ, а это уже вторая часть, и за это задание дают целых два первичных балла.
Что такое тригонометрические уравнения?
Итак, если в уравнении переменная (x) (или какое-то выражение от (x)) содержится внутри функций синуса, косинуса, тангенса или котангенса, то такое уравнение называется тригонометрическим. Например:
$$3sin(2x)-2cos(x)^2=0;$$
Но будьте внимательными, если уравнения имеет вид:
$$cos(x)+2x=3;$$
То уравнение уже будет называться смешанным, так как в нем есть и тригонометрическая функция ((cos(x))), и линейная ((2x)). Такое уравнение уже значительно сложнее, и в ЕГЭ они если и встречаются, то очень редко. Здесь смешанные уравнения мы рассматривать не будем.
Но начинать изучение мы будем с простейших тригонометрических уравнений. Это фундамент, на котором строится все остальное. Простейшие уравнения имеют такой вид:
$$sin(f(x))=a;$$
$$cos(f(x))=a;$$
$$tg(f(x))=a;$$
$$ctg(f(x))=a;$$
где (a) — некоторое число, а (f(x)) – некоторое выражение, зависящее от (x);
Примеры простейших тригонометрических уравнений:
$$sin(x)=frac{1}{2};$$
$$cos(3x)=-1;$$
Как решать простейшие тригонометрические уравнения?
Существует два основных метода решения:
- При помощи единичной окружности;
- С использованием готовых формул;
Лично я сторонник решения при помощи единичной окружности. С использованием формул решать, на мой взгляд, не очень удобно, потому что нужно их учить и теряется, как и при любой зубрежке, элемент понимания того, что ты делаешь. Но мы разберем оба способа.
Решение тригонометрического уравнения с синусом на окружности
Здесь необходимо идеальное знание тригонометрической окружности. Если его нет (а без нее в тригонометрии, в любом случае, делать нечего), то рекомендую почитать про нее по ссылке, либо же переходите сразу к методу решения через формулы.
Будем учиться на примере простейшего тригонометрического уравнения:
Пример 1
$$sin(x)=frac{1}{2};$$
Что такое решить уравнение? Значит найти такие значения углов (x), синус от которых будет равен (frac{1}{2}).
Чтобы найти эти самые углы, нарисуем тригонометрическую окружность. (Рис.1)
Рис.1. Тригонометрические уравнения с синусом
На оси синусов (вертикальная ось) отметим значение (frac{1}{2}), обозначим эту точку за (K).
Для того, чтобы понять, какие углы соответствуют этому значению, необходимо провести перпендикуляр (прямая (a)) к оси синусов через точку (K).
Этот перпендикуляр пересечет нашу единичную окружность в двух точках (M) и (N).
Эти точки как раз и будут соответствовать углам, синус от которых будет равен (frac{1}{2}).
На рисунке 1 эти углы отмечены как (angle{MOA}) и (angle{NOA}).
Понятное дело, что мы с вами не можем точно понять по рисунку, что это за углы. Для этого нам понадобится очень точный рисунок на миллиметровке. В нашем случае рисунок показывает нам, что оказывается, есть как минимум два угла (angle{MOA}) и (angle{NOA}), синус от которых будет (frac{1}{2}).
А чтобы найти эти самые углы, мы воспользуемся таблицей значений тригонометрических функций. Видим, что синус равен (frac{1}{2}) от угла в (30^o) или, если в радианах,(frac{pi}{6}).
Рис.2. Таблица значений тригонометрических функций
Но в таблице дан только один угол, синус от которого (frac{1}{2}). И этот угол, если вспомнить, что все положительные углы на единичной окружности отсчитываются от отрезка (OA) против часовой стрелки, судя по всему, соответствует углу (angle{MOA}).
$$x_{1}=frac{pi}{6};$$
А где же взять значение второго угла (angle{NOA})?
И тут нам опять поможет единичная окружность. Посмотрите на рисунок 1: он абсолютно симметричен относительно оси синусов, его можно сложить, как открытку, и правая часть окружности полностью совпадет с левой. Это значит, что углы (angle{MOA}) и (angle{KOC}) равны геометрически:
$$angle{MOA}=angle{KOC}=30^o=frac{pi}{6};$$
Этот интуитивный факт можно строго доказать из равенства треугольников (triangle{MKO}) и (triangle{NKO}).
Итак, из равенства (angle{MOA}=angle{KOC}) можно легко найти угол (angle{NOA}):
$$angle{NOA}=180-angle{KOC}=180-30=150^o;$$
Или в радианах:
$$angle{NOA}=pi-angle{KOC}=pi-frac{pi}{6}=frac{6pi-pi}{6}=frac{5pi}{6};$$
Мы нашли значения обоих углов. Получается, что теперь можем записать значения искомого в уравнении (x):
$$x_{1}=30^o=frac{pi}{6};$$
$$x_{2}=150^o=frac{5pi}{6};$$
Но, к сожалению, ответ пока записывать рано. Потому что есть еще один очень важный момент!
Если вы внимательно изучали предыдущие темы по тригонометрии, то должны знать, что если прибавить к углам (angle{MOA}) и (angle{NOA}) полный оборот ((360^p) или (2pi)), то мы получим новые углы равные соответственно (30^o+360^o=390^o) и (150^o+360^o=510^o), значение синуса которых тоже будет (frac{1}{2})! Так как эти углы тоже соответствуют точкам (M) и (N).
Кроме того, я могу прибавить не один оборот, а хоть миллион оборотов, и опять попаду в те же самые точки (M) и (N), соответствующие синусу (frac{1}{2}). А углы еще бывают отрицательные, и еще можно вычитать полные обороты и опять попадать в эти точки.
Другими словами, у функции синуса есть период, равный ((360^o=2pi)), то есть каждый полный оборот значение синуса будет повторяться.
Для нас это все означает, что существует БЕСКОНЕЧНОЕ количество углов, синус от которых будет (frac{1}{2}) c периодом (360^o=2pi)).
И вот теперь мы можем записать ответ. Он записывается в виде правила, которое описывает это бесконечное количество решений нашего уравнения (правил у нас будет два, каждое соответствует точкам (M) и (N)). И запишу я ответ в радианах, так как в градусах его никто не пишет:
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=frac{5pi}{6}+2pi*n, quad n in Z;$$
Обратите внимание, что к нашим первоначальным корням (x_{1}=30^o=frac{pi}{6}) и (x_{2}=150^o=frac{5pi}{6}) теперь прибавляется слагаемое (2pi*n), где (n) — это некоторое целое число. Подставляя вместо (n) различные целые числа, вы будете получать углы, удовлетворяющие нашему уравнению. Например, при (n=3) получим корни:
$$x_{1}=frac{pi}{6}+2pi*3=frac{pi}{6}+6pi=frac{37pi}{6};$$
$$x_{2}=frac{5pi}{6}+2pi*3=frac{5pi}{6}+6pi=frac{41pi}{6};$$
А при (n=-2) корни:
$$x_{1}=frac{pi}{6}+2pi*(-2)=frac{pi}{6}-4pi=-frac{23pi}{6};$$
$$x_{2}=frac{5pi}{6}+2pi*(-2)=frac{5pi}{6}-4pi=-frac{19pi}{6};$$
И так можно подставлять абсолютно любые (n) и получать корни.
Таким образом, тригонометрические уравнения обычно имеют бесконечное количество решений, которые записываются в виде некоторых правил, как в нашем примере. Запомните это, почему-то немногие это понимают.
Ответ:
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=frac{5pi}{6}+2pi*n, quad n in Z.$$
Пример 2
$$sin(x)=-frac{sqrt{2}}{2};$$
Этот пример так подробно, как предыдущий, разбирать не будем, а только распишем алгоритм решения:
- Рисуем тригонометрическую окружность;
- Отмечаем примерное значение (-frac{sqrt{2}}{2}approx-frac{1,4}{2}=-0,7) на оси синусов в точке (P);
- Проводим перпендикуляр к оси синусов через точку (P);
- Получили две точки пересечения с единичной окружностью (F) и (T);
- Согласно построению, углы (angle{AOF}) и (angle{AOT}) искомые (показаны на рис. 3 синим цветом): синус от них будет равен (-frac{sqrt{2}}{2}). Не забываем отсчитывать углы от отрезка (OA) ПРОТИВ часовой стрелки, здесь углы будут тупыми, как показано на рисунке;
- Выяснили при помощи окружности, что нас устраивает как минимум два значения (x) (угол (angle{AOF}) и (angle{AOT}));
- Внимание! Осталось найти значения этих углов. И вот тут у нас загвоздка, так как значение синуса у нас отрицательное, и его нет в таблице стандартных углов. Как же найти углы?
Но зато в таблице есть значение (frac{sqrt{2}}{2})! (См.Рис. 2)
Проделаем и отметим на окружности все предыдущие шаги, как будто мы решаем уравнение (sin(x)=frac{sqrt{2}}{2}). Теперь все происходит в верхней половине окружности. Обозначим углы, синус от которых (frac{sqrt{2}}{2}) за (angle{MOA}) и (angle{NOA}). Эти углы мы найти можем, так как значение синуса (frac{sqrt{2}}{2}) есть в таблице стандартных углов:
$$angle{MOA}=45^o=frac{pi}{4};$$
Аналогично примеру №1 находим:
$$angle{NOA}=180^o-angle{NOC}=180^o-45^o=135^o=frac{3pi}{4};$$Получилась абсолютно симметричная картина относительно горизонтальной оси (оси косинусов). (См. Рис. 3). Если согнуть рисунок по горизонтальной оси, то верхняя половина единичной окружности точно совпадет с нижней. Это значит, что (angle{MOA}=angle{FOA}) и (angle{TOA}=angle{NOA}) (углы показаны на рис.3. зелёным цветом).
Тогда согласно рис.3 мы можем выразить искомые углы:
$$angle{AOF}=360^o-angle{FOA}=360^o-angle{MOA}=360^o-45^o=315^o=2pi-frac{pi}{4}=frac{7pi}{4};$$
$$angle{AOT}=360^o-angle{TOA} =360^o-angle{NOA}=360^o-135^o=225^o=2pi-frac{3pi}{4}=frac{5pi}{4};$$ - Углы найдены, добавляем к каждому период (2pi*n) и записываем ответ.
Ответ:
$$x_{1}=frac{5pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=frac{7pi}{4}+2pi*n, quad n in Z;$$
Важное замечание!Напоминаю, что углы на тригонометрической окружности можно отсчитывать от отрезка (OA) и ПО часовой стрелке, только тогда они будут со знаком минус. А для нас это прекрасная новость, ведь тогда:
$$angle{FOA}=-angle{MOA}=-45^o=-frac{pi}{4};$$
$$angle{TOA}=-angle{NOA}=-135^o=-frac{3pi}{4};$$
И ответ на пример №2 можно записать в другом виде через углы (angle{FOA}) и (angle{TOA}), отсчитанным против часовой стрелки:
Ответ:
$$x_{1}=-frac{pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{3pi}{4}+2pi*n, quad n in Z;$$
Абсолютно без разницы в каком виде записать ответ в примере №2, по сути, первый и второй вариант ответа это одно и то же. Напоминаю, что ответы в тригонометрии мы записываем в виде правила, которому подчиняются бесконечное количество углов. Правило одно и то же, и задает одни и те же углы, только разная точка отсчета, к которой прибавляется период (2pi*n.) Попробуйте на бумаге поподставлять различные значения (n) и туда, и туда. Убедитесь сами, что корни будут получаться одинаковые.
Я бы использовал второй вариант написания ответа, на мой взгляд, он легче.
Пример 3
$$sin(x)=1;$$
Решим вот такое интересное тригонометрическое уравнение.
- Рисуем единичную окружность;
- На оси синусов отмечаем значение (1);
- Проводим перпендикуляр к оси синусов через (1);
- Наш перпендикуляр пересечет окружность только в одной точке! На Рис.4. эта точка отмечена как (B);
- Раз у нас всего лишь одна точка, значит и угол будет один. Точка (B) соответствует углу (90^o=frac{3pi}{2});
- Записываем ответ, не забывая про период;
Ответ:(x=frac{3pi}{2}+2pi*n, quad n in Z;)
Пример 4
$$sin(x)=5;$$
Это пример-ловушка. Дело в том, что (sin(x)) – это функция ограниченная. Синус не может принимать значения большие (1) и меньшие (-1):
$$sin(x)in[-1;1];$$
Этот факт следует из определения синуса. Его нужно запомнить и быть внимательным.
Арксинус. Обратная тригонометрическая функция синусу
И разберем последнее типовое тригонометрическое уравнение с синусом:
Пример 5
$$sin(x)=frac{1}{3};$$
Алгоритм решения здесь такой же. Не будем четвертый раз повторяться.
Но здесь есть большая проблема. Дело в том, что значение синуса (frac{1}{3}) не табличное, его нет в таблице стандартных углов! Как же тогда искать углы, синус от которых будет (frac{1}{3})?
Чтобы было возможно решать такие тригонометрические уравнения без калькулятора, люди придумали дополнительную функцию, которую назвали арксинус.
(arcsin(frac{1}{3})) – это обозначение такого угла, синус от которого равен (frac{1}{3}).
$$sin(arcsinleft(frac{1}{3}right))=frac{1}{3};$$
В общем случае (arcsin(a)) – это угол, синус от которого равен (a). Где (ain[-1;1]), так как значения синуса принадлежат промежутку ([-1;1].)
$$sin(arcsin(a))=a;$$
Кстати, для арксинуса справедлива очень важная формула:
$$mathbf{arcsin(-a)=-arcsin(a);}$$
Запомните ее, мы еще с ней встретимся.
В общем, арксинус – это просто обозначение угла. Но так как в предыдущих примерах мы выяснили, что практически любому значению синуса соответствует как минимум два угла, то какой из этих углов это арксинус?
Посмотрите выше на рис. 5. Значению (frac{1}{3}) соответствует два угла (angle{MOA}) и (angle{NOA}), какой именно угол из этих двух будет равен (arcsin(frac{1}{3}))?
Для того, чтобы не было такой неопределённости, и чтобы арксинусу (frac{1}{3}) однозначно соответствовал ровно один угол, придумали ограничения, накладываемые на функцию арксинуса:
$$arcsin(a)in[-frac{pi}{2};frac{pi}{2}];$$
То есть арксинусы – это углы, обязательно лежащие в промежутке ([-frac{pi}{2};frac{pi}{2}].). На рисунке промежуток показан фиолетовым цветом.
Тогда в нашем примере:
$$angle{MOA}=arcsin(frac{1}{3});$$
Для того, чтобы найти (angle{NOA}), нужно просто из геометрических соображений из угла (180^o=pi) вычесть угол (angle{NOB}=angle{MOA}=arcsin(frac{1}{3})):
$$angle{NOA}=pi-arcsin(frac{1}{3});$$
Добавляем к получившимся углам период и получаем:
Ответ:
$$angle{MOA}=arcsin(frac{1}{3})+2pi*n, quad n in Z;$$
$$angle{NOA}=pi-arcsin(frac{1}{3})+2pi*n, quad n in Z.$$
Решение тригонометрического уравнения с косинусом на окружности
На самом деле, уравнения с косинусом мало чем отличаются от уравнений с синусом. Рассмотрим алгоритм решения на примере:
Пример 6
$$cos(x)=frac{1}{2};$$
- Рисуем единичную окружность;
- Отмечаем на линии косинусов (горизонтальная линия) значение (frac{1}{2}) в точке (P);
- Проводим перпендикуляр (a) к линии косинусов через точку (P);
- Перпендикуляр (a) пересечет окружность в точках (K) и (L);
- Точки (K) и (L) соответствуют углам (angle{KOA}) и (angle{LOA});
- Косинус от углов (angle{KOA}) и (angle{LOA}) будет равен (frac{1}{2}) по построению;
- Осталось найти значение этих углов. Смотрим в таблицу стандартных значений и находим, что косинус от угла (60^o=frac{pi}{3}) будет как раз равен (frac{1}{2});
- Тогда, держа в голове, что углы отсчитываются ПРОТИВ часовой стрелки от отрезка (OA) делаем вывод, что (angle{KOA}=60^o=frac{pi}{3};)
- Угол (angle{LOA}) находим из соображения симметрии картинки относительно горизонтальной оси косинусов: (angle{LOA}=-angle{KOA}=-60^o=-frac{pi}{3}.) Знак минус появляется потому что (angle{LOA}) мы отсчитываем от отрезка (OA) ПО часовой стрелке.
- Мы нашли углы, косинус от которых будет равен (frac{1}{2}), добавляем период (2pi*n) и записываем ответ;
Ответ:
$$x_{1}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{pi}{3}+2pi*n, quad n in Z;$$
Тригонометрические уравнения с косинусом легче, чем с синусом: находишь один угол, а второй просто записываешь со знаком минус из горизонтальной симметрии.
Пример 7
$$cos(x)=- frac{sqrt{3}}{2};$$
- Рисуем тригонометрическую окружность;
- Отмечаем на линии косинусов примерное значение (-frac{sqrt{3}}{2}approx-frac{1,7}{2}=-0,85) в точке (F);
- Проводим перпендикуляр к линии косинусов через точку (F);
- Обозначим точки пересечения с окружностью за (M) и (N);
- Точки (M) и (N) соответствуют углам (angle{MOA}) и (angle{NOA});
- Осталось найти значение этих углов. Но у нас опять небольшая проблема: в таблице стандартных углов нет значения (-frac{sqrt{3}}{2}). Зато там есть (frac{sqrt{3}}{2}).
Отметим на той же окружности решение уравнения (cos(x)=frac{sqrt{3}}{2}) (см. Рис. 7), оно будет в правой части окружности, а углы (angle{EOA}) и (angle{TOA}) будут решениями. Из таблицы стандартных углов находим, что косинус от угла (30^o=frac{pi}{6}) будет равен (frac{sqrt{3}}{2}). Значит (angle{EOA}=frac{pi}{6}), а (angle{TOA}=-frac{pi}{6}), если его отсчитать по часовой стрелке.
Обратите внимание, что рисунок симметричен относительно вертикальной оси синусов, что нам дает равенство углов (angle{MOC}=angle{EOA}=30^o=frac{pi}{6}). Теперь можем найти (angle{MOA}):
$$angle{MOA}=180^o-angle{MOC}=180^o-30^o=150^o=pi-frac{pi}{6}=frac{5pi}{6};$$
А угол (angle{NOA}) из геометрических соображений равен (angle{MOA}), но отсчитываем мы его ПО часовой стрелке:
$$angle{NOA}=-angle{MOA}=-frac{5pi}{6};$$ - Мы нашли углы, косинус от которых будет равен (-frac{sqrt{3}}{2}), добавляем период (2pi*n) и записываем ответ;
Ответ:
$$x_{1}=frac{5pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{3}+2pi*n, quad n in Z.$$
Пример 8
$$cos(x)=0;$$
- Как обычно, рисуем окружность;
- На оси косинусов отмечаем значение (0), оно лежит прямо в пересечении осей синуса и косинуса;
- Проводим перпендикуляр к оси косинусов через точку (0). Будьте внимательны, этот перпендикуляр полностью совпадет с осью синусов и пересечет окружность в точках (B) и (D;)
- Углы (angle{BOA}) и (angle{DOA}) искомые;
- Точки (B) и (D) соответствуют на окружности углам (90^o=frac{pi}{2}) и (-90^o=-frac{3pi}{2}.)
- Учитывая период, записываем ответ:
Ответ:
$$x_{1}=frac{pi}{2}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{pi}{2}+2pi*n, quad n in Z;$$
Арккосинус. Обратная тригонометрическая функция косинусу
По аналогии с арксинусом существует функция обратная косинусу. Каждый раз, когда вам встречается не табличное значение, придется использовать арккосинус. Познакомимся с ним на примере:
Пример 9
$$cos(x)=frac{1}{5};$$
Как обычно, отметим на оси косинусов (frac{1}{5}) и нарисуем соответствующие этому значению углы (angle{KOA}) и (angle{LOA}).
В таблице значения (frac{1}{5}) нет. И чтобы этот пример можно было решить, люди придумали функцию арккосинуса, при помощи которой обозначают нестандартные углы.
(arccos(frac{1}{5})) – это обозначение угла, косинус от которого будет равен (frac{1}{5}).
$$cos(arccosleft(frac{1}{5}right))=frac{1}{5};$$
В общем виде (arccos(a)) – это угол, косинус от которого будет равен (a), где (ain[-1;1]), ведь значения косинуса лежат в промежутке ([-1;1].)
Так как почти любому значению косинуса соответствует минимум две точки (два угла) на окружности, то для того, чтобы понять, какой именно угол из этих двух будет арккосинусом, на функцию арккосинус накладываются определенные ограничения:
$$arccos(a)in[0;pi];$$
То есть, арккосинус – это углы, лежащие в верхней половине единичной окружности в промежутке ([0;pi].)
Кстати, для арккосинуса справедлива формула:
$$mathbf{arccos(-a)=pi-arccos(a);}$$
Возвращаясь к нашему примеру:
$$angle{KOA}=arccos(frac{1}{5});$$
А для того, чтобы найти второй угол (angle{LOA}), нужно заметить, что:
$$angle{LOA}=-angle{KOA}=-arccos(frac{1}{5});$$
Если считать угол по часовой стрелке.
Не забываем про период и записываем ответ:
Ответ:
$$angle{KOA}=arccos(frac{1}{5})+2pi*n, quad n in Z;$$
$$angle{LOA}=-arccos(frac{1}{5}+2pi*n, quad n in Z;$$
Важно! Значения косинуса, так же, как и синуса, принадлежат промежутку ([-1;1]). Если вы встретите уравнение по типу (cos(x)=3), то оно не будет иметь решений.
Тригонометрическое уравнение с тангенсом на окружности
Тангенс и котангенс на единичной окружности ведут себя несколько иначе, чем синус и косинус. Кто не помнит, как тангенс и котангенс отображаются на окружности и какими свойствами обладают, рекомендую повторить.
Как обычно, будем учиться на примерах:
Пример 10
$$tg(x)=1;$$
- На тригонометрической окружности необходимо нарисовать ось тангенсов. Напоминаю, что она параллельна оси синусов и проходит через точку (A);
- На оси тангенсов отмечаем значение (1), обозначим эту точку за (K);
- Соединим точку (K) с центром окружности и продлим до пересечения с окружностью;
- Получим две точки на окружности (M) и (N);
- Они соответствуют углам (angle{MOA}) и (angle{NOA}), тангенс от которых будет равен (1);
- По таблице стандартных углов находим, что тангенс равен (1) от угла (45^o=frac{pi}{4}), судя по рисунку №10, это будет угол (angle{MOA});
- Угол (angle{NOA}) можно найти по формуле:
$$angle{NOA}=180^o+angle{MOA}=pi+angle{MOA}=pi+frac{pi}{4}=frac{5pi}{4};$$
Это следует из окружности, посмотрите на Рис.10. Наши два угла отличаются ровно на (180^o=pi) градусов. Это важный момент, который дает нам возможность записывать ответ в одну строчку, а не в две, как у синуса и косинуса:
$$x=frac{pi}{4}+pi*n, quad n in Z;$$
Это весь ответ, больше ничего писать не нужно. Обратите внимание на период, здесь он у нас (pi*n), а не (2pi*n), как было у синуса и косинуса. Подставляя различные значения (n), вы будет прибавлять к (frac{pi}{4}):
$$n=1 qquad x_{1}=frac{pi}{4}+pi;$$
Смотрите, прибавив (pi) при (n=1) вы из точки (M) попали в точку (N).
$$n=2 qquad x_{2}=frac{pi}{4}+2pi;$$
При (n=2) мы опять вернулись из точки (N) в точку (M).
$$n=3 qquad x_{1}=frac{pi}{4}+3pi;$$
При (n=3) попадаем из (M) в точку (N).
Другими словами, период (pi*n) означает, что ваши корни лежат на окружности с периодом в половину окружности, а правило (x=frac{pi}{4}+pi*n, quad n in Z;) покрывает обе точки и (M), и (N).
Главный вывод в том, что у простейшего уравнения с тангенсом записывается в ответ только одна точка (любая) и прибавляется период (pi*n). Этот факт можно просто запомнить.
Ответ: (x=frac{pi}{4}+pi*n, quad n in Z.)
Арктангенс. Обратная тригонометрическая функция тангенсу
По аналогии с арксинусом и арккосинусом существует и арктангенс – функция, обратная тангенсу. Она необходима, когда перед вами нестандартные (не табличные) значения тангенса.
В общем виде арктангенс от некоторого числа (a) – это угол, тангенс от которого равен (a):
$$tg(arctg(a))=a; qquad ain(-infty;+infty); $$
$$arctg(a)in(-frac{pi}{2};frac{pi}{2}).$$
Обратите внимание, что значения арктангенса всегда по определению лежат в промежутке ((-frac{pi}{2};frac{pi}{2})): в правой полуокружности.
Кстати, для арктангенса справедлива формула:
$$mathbf{arctg(-a)=-arctg(a)};$$
Пример 11
$$tg(x)=3;$$
- Рисуем единичную окружность;
- Отмечаем на оси тангенсов значение (3), обозначим за точку (K);
- Через точку (K) и центр окружности проводим прямую, которая пересечет окружность в двух точках (M) и (N);
- В таблице стандартных углов тангенс, равный (3), вы не найдете. И тут нам пригодится арктангенс. Арктангенсом мы будем называть угол, тангенс от которого равен 3-м. Поэтому угол (angle{MOA}=arctg(3),) согласно определению арктангенса;
- Угол (angle{NOA}) можно найти по формуле:
$$angle{NOA}=angle{MOA}+180^0=angle{MOA}+pi=arctg(3)+pi;$$ - Но на самом деле, оба угла (angle{MOA}) и (angle{MOA}) для ответа нам не нужны. В ответ мы можем записать любой из них и указать период (pi*n), который покроет оба угла;
Ответ: (x=arctg(3)+pi*n, quad n in Z.)
Тригонометрическое уравнение с котангенсом
Уравнения с котангенсом очень похожи на уравнения с тангенсом с одним исключением: ось котангенсов на единичной окружности параллельна горизонтальной оси косинусов, полностью ее дублирует и проходит через точку (B).
Пример 12
$$ctg(x)=sqrt{3};$$
- Рисуем единичную окружность;
- Проводим через точку (B) ось котангенсов параллельно горизонтальной оси;
- На оси котангенсов отмечаем значение (sqrt{3}approx1,7), обозначим за точку (P);
- Соединяем точку (P) с центром окружности и продляем до пересечения с ней в двух точках: (L) и (F);
- Котангенс от углов (angle{LOA}) и (angle{FOA}) и будет равен (sqrt{3});
- В таблице стандартных углов находим, что (ctg(frac{pi}{6})=sqrt{3};)
- Согласно рисунку (angle{LOA}=frac{pi}{6}), а угол (angle{FOA}=frac{pi}{6}+pi=frac{7pi}{6};)
- Как и с тангенсом, оба угла нам не нужно, достаточно в ответе указать одну точку с периодом (pi*n);
Ответ: (x=frac{pi}{6}+pi*n, quad n in Z.)
В простейших уравнениях с котангенсом в ответе мы указываем любой из двух получившихся углов, при этом не забываем про период (pi*n).
Разберем еще уравнение с отрицательной правой частью:
Пример 13
$$ctg(x)=-1;$$
Отметим на тригонометрической окружности ось котангенсов и на ней значение (-1). Так подробно расписывать решение, как в прошлых примерах, мы не будем, идея уже должна быть давно понятна.
На рисунке искомыми углами будут (angle{MOA}) и (angle{NOA}). Мы не можем воспользоваться таблицей стандартных углов, так как там нет значения котангенса (-1), но зато есть значение (1.)
Решим на этой же самой окружности уравнение (ctg(x)=1). Котангенс от углов (angle{KOA}) и (angle{LOA}) будет равен (1). Из таблицы стандартных углов делаем вывод, что (angle{KOA}=frac{pi}{4}).
Так как получившийся рисунок симметричен относительно вертикальной оси синусов, то из геометрических соображений:
$$angle{KOA}=angle{MOC};$$
Тогда:
$$angle{MOA}=pi-angle{MOC}=pi-angle{KOA}=pi-frac{pi}{4}=frac{3pi}{4};$$
Кроме того, наш рисунок симметричен относительно горизонтальной оси косинусов. Из чего легко сделать вывод:
$$angle{NOA}=-angle{KOA}=-frac{pi}{4};$$
Знак минус возникает из-за того, что мы отсчитываем угол (angle{NOA}) ПО часовой стрелке.
Записываем ответ, указывая любой из углов (angle{MOA}) или (angle{NOA}) с учетом периода (pi*n).
Ответ: (x=-frac{pi}{4}+pi*n, quad n in Z.)
Арккотангенс. Обратная тригонометрическая функция котангенсу
И нам осталось обсудить последнюю тригонометрическую функцию в школьной программе: арккотангенс.
Как и другие обратные функции, арккотангенс от некоторого числа (a) – это угол, котангенс от которого будет равен (a):
$$tg(arcctg(a))=a; qquad ain(-infty;+infty); $$
$$arcctg(a)in(0;pi).$$
Обратите внимание на ограничения, которые по определению накладываются на арккотангенс: его значения принадлежат промежутку ((0;pi)), то есть это углы, лежащие в верхней половине окружности. Эти ограничения необходимы для однозначности функции арккотангенса, так как любому значению котангенса всегда соответствует две точки на окружности, а значит минимум два угла (в верхней и нижней полуокружностях).
Кстати, для арккотангенса справедлива формула:
$$mathbf{arcctg(-a)=pi-arcctg(a);}$$
Арккотангенс используется, когда в уравнении встречаются нестандартные значения:
Пример 14
$$ctg(x)=5;$$
Отметим все на окружности. Искомыми углами будут (angle{MOA}) и (angle{KOA}).
Так как значение (5) нестандартное, то нам придется воспользоваться функцией арккотангенса: (arcctg(5)).
На нашей окружности (angle{MOA}=arcctg(5)) так как именно он лежит в верхней половине окружности.
Второй угол, как и во всех уравнениях с тангенсом и котангенсом искать совсем не обязательно, но для тренировки сделаем это:
$$angle{KOA}=pi+arcctg(5);$$
И записываем в ответ любой из этих углов с периодом (pi*n).
Ответ: (x=arcctg(5)+pi*n, quad n in Z.)
Формулы для решения тригонометрических уравнений
Мы разобрали решения всех основные типы простейших тригонометрических уравнений при помощи единичной окружности. Я бы рекомендовал всегда решать именно при помощи окружности, это очень полезно для понимания.
А сейчас мы запишем формулы, при помощи которых можно решать уравнения без единичной окружности.
Пусть у нас есть простейшие тригонометрические уравнения:
$$sin(x)=a;$$
где (a) некоторое число, удовлетворяющее условию (ain[-1;1]);
Тогда решением этого уравнения будет:
$$x=(-1)^n*arcsin(a)+pi*n, quad n in Z;$$
$$cos(x)=a;$$
где (a) некоторое число, удовлетворяющее условию (ain[-1;1]);
Тогда решением этого уравнения будет:
$$x=pmarccos(a)+2pi*n, quad n in Z;$$
$$tg(x)=a;$$
где (a) некоторое число, удовлетворяющее условию (ain(-infty;+infty));
Тогда решением этого уравнения будет:
$$x=arctg(a)+pi*n, quad n in Z;$$
$$ctg(x)=a;$$
где (a) некоторое число, удовлетворяющее условию (ain(-infty;+infty));
Тогда решением этого уравнения будет:
$$x=arcctg(a)+pi*n, quad n in Z;$$
Можно просто запомнить формулы и решать уравнения с их помощью.
И полезно помнить формулы, которые мы вводили, когда давали определение обратных функций:
$$arcsin(-a)=-arcsin(a);$$
$$arccos(-a)=pi-arccos(a);$$
$$arctg(-a)=-arctg(a);$$
$$arcctg(-a)=pi-arcctg(a).$$
Рассмотрим примеры:
Пример 15
$$sin(x)=frac{1}{2};$$
Сразу выпишем общую формулу ответа:
$$x=(-1)^n*arcsin(a)+pi*n, quad n in Z;$$
где (a=frac{1}{2});
$$x=(-1)^n*arcsin(frac{1}{2})+pi*n, quad n in Z;$$
В таком виде лучше не оставлять. Если вы можете посчитать, чему равен арксинус, то это обязательно нужно сделать.
Арксинус от (frac{1}{2}), согласно определению, это угол, синус от которого равен (frac{1}{2}). По таблице стандартных углов мы видим, что синус равен (frac{1}{2}) от угла (frac{pi}{6}):
$$arcsin(frac{1}{2})=frac{pi}{6};$$
$$x=(-1)^n*frac{pi}{6}+pi*n, quad n in Z;$$
В таком виде уже можно записывать ответ:
Ответ: (x=(-1)^n*frac{pi}{6}+pi*n, quad n in Z.)
Пример 16
$$cos(x)=-frac{sqrt{2}}{2};$$
Общий вид решения:
$$x=pmarccos(a)+2pi*n, quad n in Z;$$
где (a=-frac{sqrt{2}}{2});
$$x=pmarccos(-frac{sqrt{2}}{2})+2pi*n, quad n in Z;$$
Арккосинус от (-frac{sqrt{2}}{2}) это угол, косинус от которого будет равен (-frac{sqrt{2}}{2}). Но в таблице нет значения (-frac{sqrt{2}}{2}), зато есть (frac{sqrt{2}}{2}).
Используя свойство арккосинуса:
$$arccos(-a)=pi-arccos(a);$$
Можно записать:
$$x=pm(pi-arccos(frac{sqrt{2}}{2}))+2pi*n, quad n in Z;$$
Учитывая:
$$arccos(frac{sqrt{2}}{2})=frac{pi}{4};$$
Подставляем:
$$x=pm(pi-frac{pi}{4})+2pi*n, quad n in Z;$$
$$x=pmfrac{3pi}{4}+2pi*n, quad n in Z;$$
Ответ: (x=pmfrac{3pi}{4}+2pi*n, quad n in Z.)
Пример 17
$$tg(x)=-sqrt{3};$$
Общий вид решения:
$$x=arctg(a)+pi*n, quad n in Z;$$
где (a=-sqrt{3});
$$x=arctg(-sqrt{3})+pi*n, quad n in Z;$$
Арктангенс от (-sqrt{3}) это угол, тангенс от которого равен (-sqrt{3}). В таблице опять нет такого значения (-sqrt{3}), но есть положительное (sqrt{3}), арктангенс от которого можно посчитать:
$$arctg(sqrt{3})=frac{pi}{3};$$
Учитывая свойство арктангенса:
$$arctg(-a)=-arctg(a);$$
Подставляем в нашу формулу:
$$x=-arctg(sqrt{3})+pi*n, quad n in Z;$$
$$x=-frac{pi}{3}+pi*n, quad n in Z;$$
Ответ: (x=-frac{pi}{3}+pi*n, quad n in Z.)
Замена переменной в тригонометрических уравнениях
Замена выражения под тригонометрической функцией
Мы научились решать простейшие уравнения. И на этом строится решение всех остальных тригонометрических уравнений. Они все так или иначе сводятся к решению простейших. И один из способов – это введение замены переменной.
Вы должны были с этим регулярно сталкиваться в младших классах при решении, например, биквадратных уравнений. Все дальнейшие рассуждения предполагают, что вы знаете, что такое замена переменной. Итак, разберем пример:
Пример 18
$$sin(2x)=frac{sqrt{3}}{2};$$
Обратите внимание, что теперь у нас под синусом стоит не просто (x), а целое выражение. Давайте избавимся от него, убрав (2x) в замену: пусть (t=2x).
$$sin(t)=frac{sqrt{3}}{2};$$
Теперь наше уравнение превратилось в простейшее тригонометрическое. Решаем его относительно переменной (t) (вы можете решать при помощи единичной окружности или по готовым формулам, как вам удобнее. Я же буду просто выписывать ответ):
$$t_{1}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$t_{2}=frac{2pi}{3}+2pi*n, quad n in Z;$$
На этом решение не заканчивается. Мы нашли значения (t), а нам надо найти (x). Делаем обратную замену, вспоминая, что (t=2x):
$$2x_{1}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$2x_{2}=frac{2pi}{3}+2pi*n, quad n in Z;$$
И просто выражаем из получившихся выражений (x), для этого разделим левую и правую часть равенства на (2):
$$frac{2x_{1}}{2}=frac{frac{pi}{3}+2pi*n}{2}, quad n in Z;$$
$$frac{2x_{2}}{2}=frac{frac{2pi}{3}+2pi*n}{2}, quad n in Z;$$
$$x_{1}=frac{1}{2}*frac{pi}{3}+pi*n, quad n in Z;$$
$$x_{2}=frac{1}{2}*frac{2pi}{3}+pi*n, quad n in Z;$$
Обратите внимание, что период тоже не забываем поделить на (2).
Ответ:
$$x_{1}=frac{pi}{6}+pi*n, quad n in Z;$$
$$x_{2}=frac{pi}{3}+pi*n, quad n in Z.$$
Аналогичным образом можно решать тригонометрические уравнения с более сложным подтригонометрическим выражением:
Пример 19
$$tg(frac{2x+pi}{3})=1;$$
Под тангенсом тут стоит целая дробь, зависящая от (x). Засунем всю эту дробь в замену:
$$t=frac{2x+pi}{3};$$
Уравнение примет вид:
$$tg(t)=1;$$
Решением этого простейшего уравнения будет:
$$t=frac{pi}{4}+pi*n, quad n in Z;$$
Делаем обратную замену, вместо (t) подставляем (frac{2x+pi}{3}):
$$frac{2x+pi}{3}=frac{pi}{4}+pi*n, quad n in Z;$$
И выражаем отсюда (x). Домножим равенство на (3):
$$2x+pi=3*(frac{pi}{4}+pi*n), quad n in Z;$$
$$2x+pi=frac{3pi}{4}+3pi*n, quad n in Z;$$
Перенесем (pi) направо:
$$2x=-pi+frac{3pi}{4}+3pi*n, quad n in Z;$$
Приведем подобные слагаемые:
$$2x=-frac{pi}{4}+3pi*n, quad n in Z;$$
И разделим на (2):
$$x=-frac{pi}{8}+frac{3}{2}*pi*n, quad n in Z;$$
Ответ:
$$x=-frac{pi}{8}+frac{3}{2}*pi*n, quad n in Z;$$
Замена всей тригонометрической функции
Что делать с подтригонометрическим выражением, мы разобрались. Теперь решим пример на замену, при помощи которой тригонометрическое уравнение сводится к квадратному.
Пример 20
$$2*sin^2(x)+sin(x)-1=0;$$
Обращаем внимание на одинаковое выражение (sin(x)). Сделаем замену:
$$t=sin(x);$$
$$2t^2+t-1=0;$$
Получили обыкновенное квадратное уравнение, которое решается через дискриминант:
$$D=1-4*2*(-1)=9;$$
$$t_{1}=frac{-1+3}{4}=frac{1}{2};$$
$$t_{2}=frac{-1-3}{4}=-1;$$
Делаем обратную замену и получаем два простейших тригонометрических уравнения. Первое:
$$sin(x)=frac{1}{2};$$
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=frac{5pi}{6}+2pi*n, quad n in Z;$$
Второе:
$$sin(x)=-1;$$
$$x_{3}=frac{3pi}{2}+2pi*n, quad n in Z;$$
Записываем ответ из трех наборов решений.
Ответ:
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=frac{5pi}{6}+2pi*n, quad n in Z;$$
$$x_{3}=frac{3pi}{2}+2pi*n, quad n in Z;$$
Тригонометрические уравнения в ЕГЭ
В ЕГЭ в большинстве тригонометрических уравнений нужно уметь преобразовать исходное уравнение и сделать замену. Для того, чтобы правильно преобразовывать уравнение, необходимо хорошо знать тригонометрические формулы и помнить главное правило:
Стараться свести уравнение к виду, в котором все тригонометрические функции и выражения, от которых они берутся, одинаковы.
Другими словами, нужно сделать так, чтобы во всем уравнении везде был, например, только синус от (x).
Рассмотрим несложный реальный пример из ЕГЭ.
Пример 21
$$2cos^2(x)+sin(x)+1=0;$$
Смотрите, в уравнении сразу две тригонометрические функции и синус, и косинус. Это плохо. Нужно сделать так, чтобы была только одна из них. Тут нам поможет основное тригонометрическое тождество:
$$sin^2(x)+cos^2(x)=1;$$
$$cos^2(x)=1-sin^2(x);$$
И подставим в исходное уравнение:
$$1-sin^2(x)+sin(x)+1=0;$$
Приведем подобные слагаемые:
$$-sin^2(x)+sin(x)+2=0;$$
Теперь в уравнении везде (sin(x)), можно сделать замену:
$$t=sin(x);$$
Уравнение примет вид:
$$-t^2+t+2=0;$$
Находим корни квадратного уравнения:
$$D=9;$$
$$t_{1}=frac{-1+3}{-2}=-1;$$
$$t_{2}=frac{-1-3}{-2}=2;$$
Обратная замена:
$$sin(x)=-1;$$
$$x=frac{3pi}{2}+2pi*n, quad n in Z;$$
И второе уравнение:
$$sin(x)=2;$$
Оно не имеет решений, так как синус может принимать значения только из промежутка ([-1;1]).
Ответ:
$$x=frac{3pi}{2}+2pi*n, quad n in Z;$$
Пример 22
$$2*sin^2(pi+x)-5*cos(frac{pi}{2}+x)+2=0;$$
Этот пример уже сложнее: во-первых, под тригонометрическими функциями стоят какие-то непонятные, да еще и разные, выражения; во-вторых, в уравнении у нас и синус, и косинус, а должно быть что-то одно.
Читатель, который знаком с формулами приведения, обязательно должен был заметить, что под синусом и косинусом стоят не просто какие-то выражения, а это формулы приведения. Выпишем их отдельно и преобразуем:
$$sin(pi+x)=-sin(x);$$
$$cos(frac{pi}{2}+x)=-sin(x);$$
Подставим преобразования в исходное уравнение.
Внимание! Когда мы будем подставлять (-sin(x)) вместо (sin(pi+x)), то знак минус сгорит, так как у нас (sin(pi+x)) под квадратом. Это очень частая ошибка.
$$2*(-sin(x))^2-5*(-sin(x))+2=0;$$
$$2*sin^2(x)+5*sin(x)+2=0;$$
Применив формулы привидения, у нас чудесным образом получилось уравнение, в котором можно сделать замену:
$$t=sin(x);$$
$$2*t^2+5*t+2=0;$$
$$D=9;$$
$$t_{1}=frac{-5+3}{4}=-frac{1}{2};$$
$$t_{2}=frac{-5-3}{4}=-2;$$
Обратная замена:
$$sin(x)=-frac{1}{2};$$
$$x_{1}=-frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{6}+2pi*n, quad n in Z;$$
И второе уравнение:
$$sin(x)=-2;$$
Решений не имеет, так как (sin(x)in[-1;1]) по определению.
Ответ:
$$x_{1}=-frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{6}+2pi*n, quad n in Z;$$
Однородные тригонометрические уравнения
Мы выяснили, что для того, чтобы решить уравнение, необходимо привести все к одинаковым тригонометрическим функциям от одинаковых аргументов. Но иногда сделать это затруднительно. Например, как вы будете решать вот такое уравнение:
Пример 23
$$sin(x)+cos(x)=0;$$
Нет такой удобной формулы, по которой можно превратить синус в косинус или наоборот. Хотя, конечно, можно воспользоваться основным тригонометрическим тождеством и выразить оттуда синус через косинус:
$$sin^2(x)+cos^2(x)=1;$$
$$sin^2(x)=1-cos^2(x);$$
$$sin(x)=pmsqrt{1-cos^2(x)};$$
Подставив это выражение вместо синуса в исходное уравнение, мы получим в уравнении одни косинусы, но уравнение станет иррациональным (то есть с корнем). Его можно решить, но это достаточно сложно. И так никто не делает.
Оптимальным решением здесь будет поделить исходное уравнение на синус или косинус, давайте поделим на косинус:
$$frac{sin(x)+cos(x)}{cos(x)}=frac{0}{cos(x)};$$
$$frac{sin(x)}{cos(x)}+frac{cos(x)}{cos(x)}=0;$$
$$tg(x)+1=0;$$
$$tg(x)=-1;$$
$$x=-frac{pi}{4}+pi*n, quad n in Z;$$
Ответ:
$$x=-frac{pi}{4}+pi*n, quad n in Z;$$
Рассмотрим еще один пример:
Пример 24
$$sin(x)+sqrt{3}*cos(x)=0;$$
Аналогично предыдущему примеру поделим все уравнение на (sin(x)):
$$1+sqrt{3}*frac{cos(x)}{sin(x)}=0;$$
$$1+sqrt{3}*ctg(x)=0;$$
$$sqrt{3}*ctg(x)=-1;$$
$$ctg(x)=-frac{1}{sqrt{3}};$$
$$x=frac{pi}{3}+pi*n, quad n in Z;$$
Ответ:
$$x=frac{pi}{3}+pi*n, quad n in Z;$$
Мы рассмотрели два примера так называемых однородных уравнений первой степени. Рассмотрим пример на однородное уравнение второй степени.
Пример 25
$$3sin^2(x)+sin(x)*cos(x)=2cos^2(x);$$
Здесь тоже будем применять деление, только в этот раз будем делить каждое слагаемое на (cos^2(x)) (можно поделить и на (sin^2(x)), это не имеет значения):
$$3frac{sin^2(x)}{cos^2(x)}+frac{sin(x)*cos(x)}{sin^2(x)}=frac{2cos^2(x)}{cos^2(x)};$$
$$3tg^2(x)+tg(x)=2;$$
Теперь можно сделать замену (t=tg(x)):
$$3t^2+t=2;$$
$$3t^2+t-2=0;$$
$$D=1+24=25;$$
$$t_{1}=frac{-1-5}{6}=-1;$$
$$t_{2}=frac{-1+5}{6}=frac{2}{3};$$
Обратная замена:
Первое уравнение:
$$tg(x)=-1;$$
$$x=-frac{pi}{4}+pi*n, quad n in Z;$$
Второе уравнение:
$$tg(x)=frac{2}{3};$$
$$x=arctg(frac{2}{3})+pi*n, quad n in Z;$$
Ответ:
$$x=-frac{pi}{4}+pi*n, quad n in Z;$$
$$x=arctg(frac{2}{3})+pi*n, quad n in Z;$$
Есть нюанс, на котором школьники часто сыпятся. Освоив метод деления, ученик начинает пытаться решить тригонометрические уравнения только через него и на экзамене, решив вроде все правильно, получает 0 баллов.
Оказывается, что не всякое уравнение можно разделить на выражение зависящее от (x). Посмотрите пример №26, это убережет вас от подобных ошибок на экзамене.
Пример 26
$$sin^2(x)+sin(x)=0;$$
Разделим уравнение на (sin(x)):
$$sin(x)+1=0;$$
$$sin(x)=-1;$$
$$x=frac{3pi}{2}+2pi*n, quad n in Z;$$
И тут, кажется, можно записывать ответ, но это неверное решение уравнения, так решать нельзя. Достаточно легко заметить, что (sin(x)=0) тоже будет являться решением исходного уравнения. Подставьте вместо (sin(x)) ноль и получите верное равенство. А в нашем решении такого ответа нет, значит где-то по дороге мы потеряли корни. А потеряли мы их именно в тот момент, когда сделали деление.
Запомните важное правило! Делить уравнение можно только тогда, когда выражение, на которое вы делите, равное нулю не будет корнем исходного уравнения.
В нашем случае мы делим на (sin(x)), но (sin(x)=0) является решением, поэтому делить нельзя.
Чтобы все-таки решить это уравнение правильно, нужно воспользоваться вынесением общего множителя за скобки.
Вынесение общего множителя в тригонометрических уравнениях
Еще один распространенный на ЕГЭ тип тригонометрических уравнений, в которых необходимо вынести общий множитель.
Пример 27
$$sin(2x)-2sin^2(x)=0;$$
В этом уравнении только одна тригонометрическая функция — (sin(x)). Но под синусами стоят разные выражения. Поэтому избавимся от двойного угла под синусом при помощи формулы синуса двойного угла:
$$sin(2x)=2sin(x)*cos(x);$$
Уравнение примет вид:
$$2sin(x)*cos(x)-2sin^2(x)=0;$$
Замечаем общий множитель (2*sin(x)), вынесем его за скобки:
$$2*sin(x)*(cos(x)-sin(x))=0;$$
Произведение равно нулю, когда хотя бы один из множителей равен нулю. Уравнение разбивается на два:
Либо:
$$2sin(x)=0;$$
$$sin(x)=0;$$
$$x_{1}=0+2pi*n=2pi*n, quad n in Z;$$
$$x_{2}=pi+2pi*n, quad n in Z;$$
(Кстати, эти два решения можно объединить в одно: (x=0+pi*n=pi*n, quad n in Z;))
Либо второе уравнение:
$$cos(x)-sin(x)=0;$$
Это уравнение решается при помощи деления. Разделим левую и правую часть уравнения на (cos(x)):
$$frac{cos(x)-sin(x)}{cos(x)}=frac{0}{cos(x)};$$
$$1-frac{sin(x)}{cos(x)}=0;$$
$$1-tg(x)=0;$$
$$tg(x)=1;$$
$$x=frac{pi}{4}+pi*n, quad n in Z;$$
Ответ:
$$x_{1}=pi*n, quad n in Z;$$
$$x_{2}=frac{pi}{4}+pi*n, quad n in Z;$$
Пример 28
$$2cos(frac{pi}{2}-x)=tg(x);$$
Сразу замечаем формулу приведения под косинусом:
$$cos(frac{pi}{2}-x)=sin(x);$$
Подставляем в исходное уравнение
$$2sin(x)=tg(x);$$
Распишем тангенс по определению:
$$tg(x)=frac{sin(x)}{cos(x)};$$
$$2sin(x)=frac{sin(x)}{cos(x)};$$
$$2sin(x)-frac{sin(x)}{cos(x)}=0;$$
И здесь тоже будет общий множитель (sin(x)):
$$sin(x)*(2-frac{1}{cos(x)})=0;$$
Произведение равно нулю, когда хотя бы один из множителей равен нулю:
Первый множитель:
$$sin(x)=0;$$
$$x_{1}=0+pi*n=pi*n, quad n in Z;$$
Второй множитель:
$$2-frac{1}{cos(x)}=0;$$
Приведем к общему знаменателю:
$$frac{2cos(x)}{cos(x)}-frac{1}{cos(x)}=0;$$
$$frac{2cos(x)-1}{cos(x)}=0;$$
Дробь равна нулю, когда числитель равен нулю – избавляемся от знаменателя:
$$2cos(x)-1=0;$$
$$2cos(x)=1;$$
$$cos(x)=frac{1}{2};$$
$$x_{2}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$x_{3}=-frac{pi}{3}+2pi*n, quad n in Z;$$
Ответ:
$$x_{1}=pi*n, quad n in Z;$$
$$x_{2}=frac{pi}{3}+2pi*n, quad n in Z;$$
$$x_{3}=-frac{pi}{3}+2pi*n, quad n in Z;$$
Метод группировки в тригонометрических уравнениях
Рассмотрим еще уравнение, которое было на ЕГЭ 2015 года на метод группировки. Тоже нужно обязательно это знать. Сам метод, если кто не знает, сводится, по сути, к вынесению общего множителя за скобки, только немного сложнее.
Пример 29
$$sin(2x)+sqrt{2}sin(x)=2cos(x)+sqrt{2};$$
Избавляемся от двойного угла:
$$2*sin(x)cos(x)+sqrt{2}sin(x)=2cos(x)+sqrt{2};$$
И перенесем все в левую часть:
$$2*sin(x)cos(x)+sqrt{2}sin(x)-2cos(x)-sqrt{2}=0;$$
У нас 4 слагаемых, сгруппируем их попарно: 1-е со 2-м, а 3-е с 4-м, и вынесем в каждой паре общий множитель:
$$sin(x)(2cos(x)+sqrt{2})-1(2cos(x)+sqrt{2})=0;$$
У 3-го и 4-го слагаемых я вынес за скобки (-1).
Теперь обратите внимание, что в скобках получились идентичные выражения, то есть эти скобки абсолютно одинаковые. Вынесем эту общую скобку за скобку!
$$(2cos(x)+sqrt{2})(sin(x)-1)=0;$$
Вот мы и сгруппировали, теперь приравниваем каждый множитель к нулю:
Первый множитель:
$$2cos(x)+sqrt{2}=0;$$
$$cos(x)=frac{-sqrt{2}}{2};$$
$$x_{1}=frac{3pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{3pi}{4}+2pi*n, quad n in Z;$$
Второй множитель:
$$sin(x)-1=0;$$
$$sin(x)=1;$$
$$x_{3}=frac{pi}{2}+2pi*n, quad n in Z;$$
Ответ:
$$x_{1}=frac{3pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{3pi}{4}+2pi*n, quad n in Z;$$
$$x_{3}=frac{pi}{2}+2pi*n, quad n in Z;$$
ОДЗ в тригонометрических уравнениях
С областью допустимых значений мы сталкиваемся в уравнениях и неравенствах, в которых есть знаменатели, корни и логарифмы.
Тригонометрические уравнения не исключение, в них тоже встречается все вышеперечисленное. И в этом случае мы вынуждены не забывать про ограничения и выписывать ОДЗ перед тем, как решать.
Пример 30
$$frac{2sin^2(x)-sin(x)}{2cos(x)-sqrt{3}}=0;$$
В этом уравнении есть знаменатель, при некоторых значениях (x) он может быть равен (0), а тогда у нас будет деление на 0, что запрещено правилами математики. Поэтому надо исключить такие значения (x). Посмотрим, при каких (x) знаменатель равен (0):
$$2cos(x)-sqrt{3}=0;$$
$$cos(x)=frac{sqrt{3}}{2};$$
$$x_{1}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{pi}{6}+2pi*n, quad n in Z;$$
Мы получили значения, которые (x) не может принимать, так как возникает деление на (0). Другими словами, мы нашли ОДЗ.
Теперь решим исходное уравнение:
$$frac{2sin^2(x)-sin(x)}{2cos(x)-sqrt{3}}=0;$$
Дробь равна (0), когда числитель равен (0). Избавляемся от знаменателя и приравниваем числитель к (0):
$$2sin^2(x)-sin(x)=0;$$
Вынесем общий множитель:
$$sin(x)(2sin(x)-1)=0;$$
Произведение равно нулю, когда хотя бы один из множителей равен нулю.
Первый:
$$sin(x)=0;$$
$$x_{1}==pi*n, quad n in Z;$$
Второй множитель:
$$2sin(x)-1=0;$$
$$sin(x)=frac{1}{2};$$
$$x_{2}=frac{pi}{6}+2pi*n, quad n in Z;$$
$$x_{3}=frac{5pi}{6}+2pi*n, quad n in Z;$$
Получилось три набора решений, но не все они подходят. Вспоминаем про ОДЗ и видим, что решение (x_{2}=frac{pi}{6}+2pi*n, quad n in Z;) не удовлетворяет ОДЗ, так как при этих значениях (x) возникает деление на (0). Исключаем его из ответа.
Ответ:
$$x_{1}=pi*n, quad n in Z;$$
$$x_{3}=frac{5pi}{6}+2pi*n, quad n in Z;$$
Пример 31
$$frac{sin(2x)}{cos(frac{pi}{2}+x)}=sqrt{3};$$
Найдем ОДЗ:
$$cos(frac{pi}{2}+x)=0;$$
Сделаем замену, пусть (t=frac{pi}{2}+x):
$$cos(t)=0;$$
$$t=frac{pi}{2}+pi*n, quad n in Z;$$
Обратная замена:
$$frac{pi}{2}+x=frac{pi}{2}+pi*n, quad n in Z;$$
$$x=pi*n, quad n in Z;$$
Это и будет наше ОДЗ, (x) не может принимать значения (pi*n, quad n in Z), так как при этих (x) будет деление на (0).
А теперь приступим непосредственно к решению исходного уравнения:
$$frac{sin(2x)}{cos(frac{pi}{2}+x)}=sqrt{3};$$
Используем формулы приведения, чтобы упростить знаменатель. И формулу двойного угла в числителе:
$$frac{2sin(x)*cos(x)}{-sin(x)}=sqrt{3};$$
$$-2cos(x)=sqrt{3};$$
$$cos(x)=-frac{sqrt{3}}{2};$$
$$x_{1}=frac{5pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{6}+2pi*n, quad n in Z;$$
Смотрим на ОДЗ и видим, что оба набора решения нам подходят, пересечения с ОДЗ не случилось. Записываем ответ:
Ответ:
$$x_{1}=frac{5pi}{6}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{5pi}{6}+2pi*n, quad n in Z;$$
Пример 32
$$(tg^2(x)-1)*sqrt{13cos(x)}=0;$$
В этом уравнении есть квадратный корень, а значит подкоренное выражение не может быть меньше нуля, невозможно взять корень из отрицательного числа. ОДЗ будет выглядеть:
$$13cos(x)ge0;$$
$$cos(x)ge0;$$
Получили тригонометрическое неравенство, которое мы решать еще не умеем. Более того, в школах часто совсем не проходят тему тригонометрических неравенств. Поэтому постараемся решить исходя из логики при помощи единичной окружности.
Если посмотреть на рисунок, то видно, что косинус будет положительным от углов, лежащих в правой половине окружности. Закрашенная часть круга удовлетворяет ОДЗ, а не закрашенная – нет. Запомним это и начнем решать исходное уравнение:
$$(tg^2(x)-1)*sqrt{13cos(x)}=0;$$
Из произведения двух множителей получаем два уравнения. Первое:
$$tg^2(x)-1=0;$$
$$tg(x)=pm1;$$
Обратите внимание на (pm), из-за квадрата будет два решения. Будьте осторожны!
$$tg(x)=1;$$
$$x_{1}=frac{pi}{4}+pi*n, quad n in Z;$$
$$tg(x)=-1;$$
$$x_{2}=-frac{pi}{4}+pi*n, quad n in Z;$$
Второе уравнение:
$$sqrt{13cos(x)}=0;$$
$$13cos(x)=0;$$
$$cos(x)=0;$$
$$x_{3}=frac{pi}{2}+pi*n, quad n in Z;$$
Помним, что нам еще как-то надо проверить, подходят ли получившиеся корни под ОДЗ. На старом рисунке отметим наши корни. Все точки, которые попадают в левую часть окружности, не удовлетворяют ОДЗ, а в правой части – удовлетворяют.
Ответ:
$$x_{1}=frac{pi}{4}+2pi*n, quad n in Z;$$
$$x_{2}=-frac{pi}{4}+2pi*n, quad n in Z;$$
$$x_{3}=frac{pi}{2}+pi*n, quad n in Z;$$
Обратите внимание, что в ответе период стал (2pi*n), а не (pi*n), как у нас получалось при решении. Это связано с тем, что период (pi*n) покрывает на окружности две точки: из левой полуокружности, которая нам не подходит по ОДЗ, и из правой, которая подходит. А раз нам подходит только одна правая точка, то период будет (2pi*n).
Разные типы тригонометрических уравнений
Подведем важные итоги. Существует три основных метода решения тригонометрических уравнений: замена переменной, вынесение общего множителя (группировка), и деление (однородные уравнения).
Во избежание ошибок, я бы всегда стремился решать либо через замену, либо через вынесение общего множителя. А деление использовать, когда у вас не получается решить другими способами. Это убережет от ошибок, описанных в конце главы про однородные уравнения.
Порешаем разные полезные нестандартные уравнения, которые могут встретиться на ЕГЭ.
Пример 32
$$4cos^4(x)-4cos^2(x)+1=0;$$
Уравнение с четвертой степенью, но пугаться не надо. Это биквадратное уравнение, которое мы решим при помощи простой замены:
$$t=cos^2(x);$$
$$4t^2-4t+1=0;$$
Перед вами формула сокращенного умножения – полный квадрат:
$$(2t-1)^2=0;$$
$$t=frac{1}{2};$$
Обратная замена:
$$cos^2(x)=frac{1}{2};$$
Перед нами еще одно квадратное уравнение. Чтобы такое решить, перенесем все в левую часть и разложим по формуле разности квадратов:
$$cos^2(x)-frac{1}{2}=0;$$
$$(cos(x)-sqrt{frac{1}{2}})(cos(x)-sqrt{frac{1}{2}})=0;$$
Произведение равно нулю, когда один из множителей равен нулю. Первый множитель:
$$cos(x)-sqrt{frac{1}{2}}=0;$$
$$cos(x)=sqrt{frac{1}{2}};$$
$$cos(x)=frac{1}{sqrt{2}};$$
$$x_{1,2}=pmfrac{pi}{4}+2pi*n, quad n in Z;$$
Второй множитель:
$$cos(x)+sqrt{frac{1}{2}}=0;$$
$$cos(x)=-sqrt{frac{1}{2}};$$
$$cos(x)=-frac{1}{sqrt{2}};$$
$$x_{3,4}=pmfrac{3pi}{4}+2pi*n, quad n in Z;$$
Ответ:
$$x_{1,2}=pmfrac{pi}{4}+2pi*n, quad n in Z;$$
$$x_{3,4}=pmfrac{3pi}{4}+2pi*n, quad n in Z;$$
Пример 33
$$sqrt{3}sin(2x)+3cos(2x)=0;$$
Обратите внимание, что тут обе тригонометрические функции берутся от (2x). В предыдущих примерах мы всегда избавлялись от (2x) и старались преобразовать так, чтоб аргумент был просто (x).
Но, оказывается, так делать необязательно. Так как тут аргумент везде (2x), то будем решать с ним. Нам, на самом деле, не важно, какой у вас аргумент, главное, чтобы он был одинаковый у всех тригонометрических функций, входящих в уравнение.
Разделим исходное уравнение на (cos(2x)), при этом убедимся, что (cos(2x)=0) не будет являться решением. Так как (sin(2x)) и (cos(2x)) одновременно при одинаковых значениях (x) не могут равняться нулю, то (cos(2x)=0) не является решением уравнения и можно спокойно делить:
$$sqrt{3}tg(2x)+3=0;$$
$$tg(2x)=frac{-3}{sqrt{3}};$$
$$tg(2x)=-sqrt{3};$$
$$2x=-frac{pi}{3}+pi*n, quad n in Z;$$
$$x=-frac{pi}{6}+frac{pi*n}{2}, quad n in Z;$$
Ответ:
$$x=-frac{pi}{6}+frac{pi*n}{2}, quad n in Z;$$
Как пользоваться формулами приведения? Правило лошади, единичная окружность и формулы суммы и разности для нахождения формул приведения.
Как пользоваться тригонометрической окружностью? Синус, косинус, тангнес и котангнес на единичной окружности. Свойства симметрии. Перевод градусов в радианы.
Разбираем тригонометрию с нуля. Синус, косинус, тангенс и котангенс в прямоугольном треугольнике. Таблица стандартных углов и свойства тригонометрических функций.
Как решать показательные неравенства. Общий алгоритм решения. Замена переменной. Однородные степенные неравенства.
Как решать неравенства с логарифмами. Общий алгоритм решения. Замена переменной. Переменное основание в логарифмических неравенствах. Сужение ОДЗ.
Подробный разбор метода координат в стереометрии. Формулы расстояния и угла между скрещивающимися прямыми. Уравнение плоскости. Координаты вектора. Расстояние от точки до плоскости. Угол между плоскостями. Выбор системы координат.
Как решать уравнения со степенями. Разбираем основные методы и способы решения простейших показательных уравнений.
Урок по теме логарифмы и их свойства. Разбираемся, что такое логарифм и какие у него свойства. Научимся считать выражения, содержащие логарифмы. И рассмотри несколько возможных заданий №4 из ЕГЭ по профильной математике.
Цикл уроков про степени и логарифмы и их свойства. Учимся решать показательные и логарифмические уравнения и неравенства. Задания №9 и №15 ЕГЭ по профильной математике.
Индивидуальные занятия с репетитором для учеников 6-11 классов. Для каждого ученика я составляю индивидуальную программу обучения. Стараюсь заинтересовать ребенка предметом, чтобы он с удовольствием занимался математикой и физикой.
Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.
Содержание статьи:
- 1 Простейшие тригонометрические уравнения
- 2 Формулы корней тригонометрических уравнений в таблице
- 3 Методы решения тригонометрических уравнений
- 3.1 Алгебраический метод.
- 3.2 Разложение на множители.
- 3.3 Приведение к однородному уравнению
- 3.4 Переход к половинному углу
- 3.5 Введение вспомогательного угла
- 3.6 Дробно-рациональные тригонометрические уравнения
Простейшие тригонометрические уравнения
Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.
1. Уравнение `sin x=a`.
При `|a|>1` не имеет решений.
При `|a| leq 1` имеет бесконечное число решений.
Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`
Таблица арксинусов
2. Уравнение `cos x=a`
При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.
При `|a| leq 1` имеет бесконечное множество решений.
Формула корней: `x=pm arccos a + 2pi n, n in Z`
Таблица арккосинусов
Частные случаи для синуса и косинуса в графиках.
3. Уравнение `tg x=a`
Имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arctg a + pi n, n in Z`
Таблица арктангенсов
4. Уравнение `ctg x=a`
Также имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arcctg a + pi n, n in Z`
Таблица арккотангенсов
Формулы корней тригонометрических уравнений в таблице
Для синуса:


Методы решения тригонометрических уравнений
Решение любого тригонометрического уравнения состоит из двух этапов:
- с помощью тригонометрических формул преобразовать его до простейшего;
- решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.
Рассмотрим на примерах основные методы решения.
Алгебраический метод.
В этом методе делается замена переменной и ее подстановка в равенство.
Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`
Решение. Используя формулы приведения, имеем:
`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,
делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,
находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:
1. `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.
2. `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Разложение на множители.
Пример. Решить уравнение: `sin x+cos x=1`.
Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:
`sin x — 2sin^2 x/2=0`,
`2sin x/2 cos x/2-2sin^2 x/2=0`,
`2sin x/2 (cos x/2-sin x/2)=0`,
- `sin x/2 =0`, `x/2 =pi n`, `x_1=2pi n`.
- `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.
Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.
Приведение к однородному уравнению
Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:
`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).
Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.
Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.
Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:
`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,
`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`
`sin^2 x+sin x cos x — 2 cos^2 x=0`.
Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:
`frac {sin^2 x}{cos^2 x}+frac{sin x cos x}{cos^2 x} — frac{2 cos^2 x}{cos^2 x}=0`
`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:
- `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
- `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.
Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.
Переход к половинному углу
Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.
Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`
`4 tg^2 x/2 — 11 tg x/2 +6=0`
Применив описанный выше алгебраический метод, получим:
- `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
- `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Введение вспомогательного угла
В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:
`frac a{sqrt {a^2+b^2}} sin x +` `frac b{sqrt {a^2+b^2}} cos x =` `frac c{sqrt {a^2+b^2}}`.
Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a{sqrt {a^2+b^2}}=cos varphi`, ` frac b{sqrt {a^2+b^2}} =sin varphi`, `frac c{sqrt {a^2+b^2}}=C`, тогда:
`cos varphi sin x + sin varphi cos x =C`.
Подробнее рассмотрим на следующем примере:
Пример. Решить уравнение: `3 sin x+4 cos x=2`.
Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:
`frac {3 sin x} {sqrt {3^2+4^2}}+` `frac{4 cos x}{sqrt {3^2+4^2}}=` `frac 2{sqrt {3^2+4^2}}`
`3/5 sin x+4/5 cos x=2/5`.
Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:
`cos varphi sin x+sin varphi cos x=2/5`
Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:
`sin (x+varphi)=2/5`,
`x+varphi=(-1)^n arcsin 2/5+ pi n`, `n in Z`,
`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Дробно-рациональные тригонометрические уравнения
Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.
Пример. Решить уравнение. `frac {sin x}{1+cos x}=1-cos x`.
Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:
`frac {sin x}{1+cos x}=` `frac {(1-cos x)(1+cos x)}{1+cos x}`
`frac {sin x}{1+cos x}=` `frac {1-cos^2 x}{1+cos x}`
`frac {sin x}{1+cos x}=` `frac {sin^2 x}{1+cos x}`
`frac {sin x}{1+cos x}-` `frac {sin^2 x}{1+cos x}=0`
`frac {sin x-sin^2 x}{1+cos x}=0`
Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.
Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.
- `sin x=0`, `x=pi n`, `n in Z`
- `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.
Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.
Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.
Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!
Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.
Материалы по теме:
- Формулы квадратного и кубического уравнения
- Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами (конкретный пример)
- Решение уравнений
- Производная функции (конкретные примеры).
Загрузка…
Привет, самый лучший ученик во Вселенной!
Сегодня мы с тобой изучим, как решать одну из разновидностей уравнений – тригонометрические. Мы решим 39(!) примеров, от самых простых, до самых сложных.
И станем на шаг ближе к заветной цели – сдать ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!
Поехали!
Тригонометрические уравнения — коротко о главном
Тригонометрическое уравнение – это уравнение, в котором неизвестная находится строго под знаком тригонометрической функции.
Существует два способа решения тригонометрических уравнений:
Первый способ – с использованием формул.
Второй способ – через тригонометрическую окружность.
Тригонометрическая окружность позволяет измерять углы, находить их синусы, косинусы и прочее.
Чтобы уметь решать тригонометрические уравнения необходимо знать как минимум следующее:
- что такое синус, косинус, тангенс, котангенс;
- какие знаки принимает та или иная тригонометрическая функция в разных четвертях тригонометрической окружности;
- какие из этих функций нечётные, а какие – чётные;
- знание значений тригонометрических функций в основных углах 1 четверти.
Если ты что-то не знаешь, повтори следующие разделы:
- Синус, косинус, тангенс и котангенс угла и числа
- Тригонометрическая окружность
- Формулы тригонометрии
Этого будет вполне достаточно. Если это по ходу моего повествования окажется не так, то не сердись, придётся вспомнить что-нибудь ещё, не упомянутое здесь.
Простейшие тригонометрические уравнения
Что же это такое, как ты думаешь? Является ли, например, уравнение
( displaystyle frac{2}{2{x}-11}=frac{1}{3})
тригонометрическим?
Ты и сам прекрасно понимаешь, что нет! Потому что ни одной тригонометрической функции ( displaystyle left( sin x,cos x,tg x,ctg x right)) в нём и в помине нет!
А что насчёт вот такого уравнения?
( displaystyle sin2x+3x=2)
И опять ответ отрицательный!
Это так называемое уравнение смешанного типа.
Оно содержит как тригонометрическую составляющую, так и линейную (( displaystyle 3x)).
Некоторые типы подобных уравнений мы будем с тобой решать в следующих раздела этой статьи.
Но вернёмся к вопросу: «Что же такое тригонометрические уравнения?»
Тригонометрические уравнения –это уравнения, в которых неизвестная находится строго под знаком тригонометрической функции!
Например:
- ( displaystyle 6co{{s}^{2}}x+5sin{x}-7=0)
- ( displaystyle sinpi sqrt{x}=-1)
- ( displaystyle frac{3}{5}sinx+frac{4}{5}cosx=1) и т.д.
Однако для начала мы не будем решать сложные и иногда неприступные тригонометрические уравнения, а ограничимся самыми простыми уравнениями вида:
- ( displaystyle sinfleft( x right)=a)
- ( displaystyle cosfleft( x right)=a)
- ( displaystyle tgfleft( x right)=a)
- ( displaystyle ctgfleft( x right)=a)
Где ( displaystyle a) – некоторое постоянное число.
Например: ( displaystyle 0,5;~1;~-1;pi ; ~1-sqrt{3};~1000) и т. д.
( displaystyle fleft( x right)) – некоторая функция, зависящая от искомой переменной ( displaystyle x), например ( displaystyle fleft( x right)=x,~fleft( x right)=2-x,~fleft( x right)=frac{pi x}{7}) и т. д.
Такие уравнения называются простейшими!
Основная цель решения ЛЮБОГО тригонометрического уравнения – это свести его к виду простейшего!
Для этого, как правило, используют аппарат, который я описал в разделе «Формулы тригонометрии«
Так что очень важно, я бы даже сказал, жизненно необходимо научиться решать простейшие уравнения, ибо они – фундамент для решения сложных примеров.
Как часто тригонометрические уравнения встречаются на ЕГЭ?
Тригонометрические уравнения могут встретиться до четырех раз в заданиях ЕГЭ. Это может быть:
- Задача №5 (простейшее тригонометрическое уравнение – встречается время от времени);
- Задача №10 (задача с прикладным содержанием, которая включает в себя решение тригонометрического уравнения – встречается изредка);
- Задача №12 (она на производную, но в конечном счёте сводится к решению простейшего тригонометрического уравнения – ЧАСТО ВСТРЕЧАЕТСЯ В ЕГЭ)
- Задача №13 – даёт 2 первичных балла – (решение тригонометрического уравнения средней или высокой сложности – ОЧЕНЬ ЧАСТО, ПРАКТИЧЕСКИ ВСЕГДА!)
Так что, как ты понимаешь, при некоторых раскладах, навык решения данного вида уравнений может добавить в твою копилку аж 5 первичных баллов из 32!
Два способа решения тригонометрических уравнений – через формулы и по кругу
В принципе, я не могу сказать, что легче: держать в голове, как строится круг, или помнить 4 формулы.
Тут решать тебе самому, однако я всё же предпочитаю решать данные уравнения через формулы, поэтому здесь я буду описывать именно этот метод.
Вначале мы начнём с «самых простейших» из простейших уравнений вида:
- ( displaystyle text{sinx}=text{a}),
- ( displaystyle text{cosx}=text{a}),
- ( displaystyle text{tgx}=text{a}),
- ( displaystyle text{ctgx}=text{a}).
Я хочу сразу оговориться вот о чем, будь внимателен:
Уравнения вида: ( displaystyle sinfleft( x right)=a), ( displaystyle cosfleft( x right)=a) имеют смысл только тогда, когда ( displaystyle -1le text{a}le 1)
Уравнения вида: ( displaystyle text{tgx}=text{a}), ( displaystyle text{ctgx}=text{a}) имеют смысл уже при всех значениях ( displaystyle text{a}).
То есть, тебе не надо знать вообще никаких формул, чтобы спокойно ответить, что уравнения, например:
( displaystyle sinx=1000)
( displaystyle cosleft( 3{x}-sinleft( x right) right)=2)
( displaystyle sinleft( 2{{x}^{2}}-2x+1 right)=-3)
Корней не имеют!!!
Почему?
Потому что они «не попадают» в промежуток от минус единицы до плюс единицы.
Ещё раз скажу: внимательно обдумай эти слова, они уберегут тебя от многих глупых ошибок!!!
Для остальных же случаев тригонометрические формулы такие как в этой таблице.
| ( displaystyle A) | ( displaystyle a) | ( displaystyle -1) | ( displaystyle 0) | ( displaystyle 1) |
|---|---|---|---|---|
| ( displaystyle sin x=A) | ( displaystyle {{left( -1 right)}^{n}}arcsin alpha +pi n) | ( displaystyle -frac{pi }{2}+2pi n) | ( displaystyle pi n) | ( displaystyle frac{pi }{2}+2pi n) |
| ( displaystyle cos x=A) | ( displaystyle pm arccos alpha +2pi n) | ( displaystyle pi +2pi n) | ( displaystyle frac{pi }{2}+pi n) | ( displaystyle 2pi n) |
| ( displaystyle tgx=A) | ( displaystyle arctgalpha +pi n) | ( displaystyle -frac{pi }{4}+pi n) | ( displaystyle pi n) | ( displaystyle frac{pi }{4}+pi n) |
| ( displaystyle ctgx=A) | ( displaystyle arcctgalpha +pi n) | ( displaystyle frac{3pi }{4}+pi n) | ( displaystyle frac{pi }{2}+pi n) | ( displaystyle frac{pi }{4}+pi n) |
На самом деле в этой таблице данных немного больше, чем нужно.
Тебе нужно лишь запомнить первые два её столбца, другие столбцы – частные случаи решения тригонометрических уравнений.
Я, допустим, никогда не утруждаю себя их запоминанием, а вывожу ответ из основных формул.
Глядя на таблицу, не возникло ли у тебя пары вопросов?
У меня бы возникли вот какие:
Что такое ( displaystyle n) и что такое, например ( displaystyle arcsinalpha ~left( arccosalpha ,~arctgalpha ,~arcctgalpha right))?
Отвечаю на все по порядку:
( displaystyle n) – это любое целое число ( displaystyle left( 0,text{ }1,text{ }-1,text{ }2,text{ }-2,text{ }ldots .text{ } right)).
В чем уникальная особенность тригонометрических уравнений перед всеми остальными, которые ты изучал?
ОНИ ИМЕЮТ БЕСКОНЕЧНОЕ КОЛИЧЕСТВО КОРНЕЙ!!!
И число ( displaystyle n) и служит для обозначения этой «бесконечности».
Конечно, вместо ( displaystyle n) можно писать любую другую букву, только не забывай добавить в ответе: ( displaystyle nin Z) – что означает, что ( displaystyle n) – есть любое целое число.
Теперь насчёт арксинуса и других «арок». Вообще, так записываются обратные тригонометрические функции и понимать, скажем, ( displaystyle arcsinalpha ) надо как «угол, синус которого равен ( displaystyle alpha )«
- ( displaystyle arcsinalpha)– угол, синус которого равен ( displaystyle alpha)
- ( displaystyle arccosalpha)– угол, косинус которого равен ( displaystyle alpha)
- ( displaystyle alpha)( displaystyle arctgalpha)– угол, тангенс которого равен ( displaystyle alpha)
- ( displaystyle alpha)( displaystyle arcctgalpha) – угол, котангенс которого равен ( displaystyle alpha)
Например,
- ( displaystyle arcsin left( 0 right)=0,)
- ( displaystyle arccos left( frac{sqrt{2}}{2} right)=frac{pi }{4},)
- ( displaystyle arctgleft( 1 right)=frac{pi }{4},)
- ( displaystyle arcsin left( 0,5 right)=frac{pi }{6},)
- ( displaystyle arccos left( frac{sqrt{3}}{2} right)=frac{pi }{6},)
- ( displaystyle arctgleft( sqrt{3} right)=frac{pi }{3})
то есть,
Алгоритм вычисления арксинусов и других «арок»
- Смотрим на то, что стоит под «аркой» – какое там число
- Смотрим, какая у нас «арка» – для синуса ли, или для косинуса, тангенса или котангенса
- Смотрим, чему равен угол (1 четверти), для которого синус, косинус, тангенс, котангенс равен числу, стоящему под аркой
- Записываем ответ
Вот простой пример вычисления аркосинуса:
( displaystyle arccos left( frac{sqrt{3}}{2} right))
Решение:
- Под аркой число ( displaystyle frac{sqrt{3}}{2})
- Арка для функции – косинус!
- Косинус какого угла равен ( displaystyle frac{sqrt{3}}{2})? Угла ( displaystyle frac{pi }{6}) (или ( displaystyle 30) градусов!)
- Тогда ( displaystyle arccos left( frac{sqrt{3}}{2} right)=frac{pi }{6})
Сам посчитай:
- ( displaystyle arctgleft( frac{1}{sqrt{3}} right))
- ( displaystyle arcsin left( frac{sqrt{3}}{2} right))
Ответы:
( displaystyle frac{pi }{6}) и ( displaystyle frac{pi }{3}).
Если «арка» берется от отрицательного числа?
Всё ли я сказал про «арки»? Почти что да! Остался вот какой момент.
Что делать, если «арка» берётся от отрицательного числа?
Лезть в таблицу – как бы не так! Для арок выполняются следующие формулы:
- ( displaystyle text{arcsin}left( -alpha right)=-text{arcsin}alpha )
- ( displaystyle text{arctg}left( -alpha right)=-text{arctg}alpha )
И внимание!!!
- ( displaystyle text{arcctg}left( -alpha right)=text{ }!!pi!!text{ }-text{arcctg}alpha )
- ( displaystyle text{arccos}left( -alpha right)=text{ }!!pi!!text{ }-text{arccos}alpha )
Чтобы запомнить, ориентируемся на обычные тригонометрические функции: грубо говоря, синус и тангенс мы смотрим на тригонометрической окружности по вертикальной оси, а косинус и котангенс – по горизонтальной.
Соответственно, для арксинуса и арктангенса выбираем две четверти по вертикали: первую и четвёртую (минусик выносится из аргумента и ставится перед функцией), а для арккосинуса и арккотангенса – по горизонтали: первую и вторую.
В первой и второй четвертях аргумент уже не может быть отрицательным, поэтому и получаются формулы не совсем похожими.
Ну всё, теперь мы можем приступать к решению простейших уравнений!
Решение 11-ти простейших тригонометрических уравнений
Уравнение 1. ( displaystyle sinleft( x right)=0,5)
Запишу по определению:
( displaystyle x={{left( -1 right)}^{n}}arcsin left( 0,5 right)+pi n,~nin Z)
Всё готово, осталось только упростить, посчитав значение арксинуса.
Уравнение 2. ( displaystyle sinleft( x right)=-frac{sqrt{3}}{2})
Снова по определению:
Тогда запишу
( displaystyle x={{left( -1 right)}^{n}}arcsin left( -frac{sqrt{3}}{2} right)+pi n,~nin Z)
Так оставлять нельзя! Вначале вынесу «минус» из арксинуса!
Уравнение 3. ( displaystyle sinleft( x right)=frac{pi }{2})
Пример-ловушка! Невнимательный ученик бы записал ответ в лоб:
( displaystyle x={{left( -1 right)}^{n}}arcsin left( frac{pi }{2} right)+pi n,~nin Z)
Или того хуже:
( displaystyle x={{left( -1 right)}^{n}}cdot 1+pi n,~nin Z)
Так как ( displaystyle sin left( frac{pi }{2} right)=1)
Но ты же внимательно читал мои пространные рассуждения, не так ли? И ты ведь не напишешь такую чушь? И ты понял, в чем здесь подвох?
А подвох вот в чем:
Уравнение 4. ( displaystyle sinleft( x right)=-0,1)
По определению:
( displaystyle x={{left( -1 right)}^{n}}arcsin left( -0,1 right)+pi n,~nin Z)
Или вынесем минус (как в примере 2):
( displaystyle x={{left( -1 right)}^{n+1}}arcsin left( 0,1 right)+pi n,~nin Z)
На этом стоп! Такого числа как 0,1 нет в таблице значений тригонометрических функций, поэтому оставим всё как есть:
Ответ: ( displaystyle x={{left( -1 right)}^{n+1}}arcsin left( 0,1 right)+pi n,~nin Z)
Уравнение 5. ( displaystyle cosleft( x right)=1)
И снова по определению (теперь для уравнения другого вида)
( displaystyle x=pm arccos1+2pi n,~nin Z)
Чему равен угол, косинус которого равен ( displaystyle 1)?
Этот угол равен( displaystyle 0)!
( displaystyle x=pm 0+2pi n,~nin Z)
Тогда нет смысла прибавлять или вычитать ноль, всё равно это ноль.
( displaystyle x=2pi n,~nin Z)
Получили формулу, которая есть в таблице решений тригонометрических уравнений!
Ответ: ( displaystyle x=2pi n,~nin Z)
Уравнение 6. ( displaystyle cosleft( x right)=-frac{1}{sqrt{2}})
По определению:
( displaystyle x=pm arccos left( -frac{1}{sqrt{2}} right)+2pi n,~nin Z)
Прежде всего вынесем «минус» по правилам для арккосинуса:
( displaystyle x=pm left( pi -arccos left( frac{1}{sqrt{2}} right) right)+2pi n,~nin Z)
Вот так и никак иначе выносится минус, запомни это!
Теперь арккосинус.
Не во всех таблицах есть значение ( displaystyle frac{1}{sqrt{2}}), но во всех есть ( displaystyle frac{sqrt{2}}{2})!!!
А теперь, внимание, ловкость рук и никакого мошенничества!
Уравнение 7. ( displaystyle cosleft( x right)=frac{pi }{4})
( displaystyle cosleft( x right)=frac{pi }{4})
Ещё один пример-обманка! Хотя данное уравнение решения имеет, ибо:
( displaystyle frac{pi }{4}=frac{3,14}{4}<1)
Тогда по определению:
( displaystyle x=pm arccos left( frac{pi }{4} right)+2pi n,~nin Z)
Но из этого никак не следует, что ( displaystyle arccos left( frac{text{ }!!pi!!text{ }}{4} right)=frac{sqrt{2}}{2})!!!!!!
Запомни, арккосинус – это угол, его аргумент (начинка) – это число, а выход – угол!!!
Ты когда-нибудь встречал в своей практике такой странный угол как ( displaystyle frac{sqrt{2}}{2})?!
Вот и я нет. Поэтому оставим как есть!
Ответ: ( displaystyle x=pm arccos left( frac{pi }{4} right)+2pi n,~nin Z)
Уравнение 8. ( displaystyle cosleft( x right)=-sqrt{2})
Всё просто: ( displaystyle -sqrt{2}<-1)
… и решений данное уравнение не имеет.
Уравнение 9. ( displaystyle tgleft( x right)=sqrt{2})
Запишем по определению:
( displaystyle x=arctgsqrt{2}+pi n,~nin Z)
( displaystyle arctgsqrt{2}) – не табличное значение, поэтому ответ сохраняем неизменным.
Обрати внимание, что в отличие от уравнений с синусом и косинусом, здесь мне не уже важно, какое у меня число стоит в правой части уравнения.
Уравнение 10. ( displaystyle ctgleft( x right)=-sqrt{3})
Снова по определению:
( displaystyle x=arсctgleft( -sqrt{3} right)+pi n,~nin Z)
Без проблем выносим минус из арккотангенса:
Уравнение 11. ( displaystyle ctgleft( x right)=1)
По формуле: ( displaystyle x=arcctg1+pi n,~nin Z).
Котангенс какого угла равен ( displaystyle 1)?
Это угол ( displaystyle frac{pi }{4}).
Ответ: ( displaystyle x=frac{pi }{4}+pi n,~nin Z).
Ну как, материал не кажется тебе слишком сложным? Я надеюсь, что нет. Теперь давай порешаем для закрепления чуть более сложные задачки.
Решение 3-х более сложных уравнений
Уравнение 12. Найдите корни уравнения: ( displaystyle cosfrac{8pi x}{6}=frac{sqrt{3}}{2}). В ответе запишите наибольший отрицательный корень.
Логика простая: будем поступать так, как поступали раньше не взирая на то, что теперь у тригонометрических функций стал более сложный аргумент!
Если бы мы решали уравнение вида:
( displaystyle cost=frac{sqrt{3}}{2})
То мы бы записали вот такой ответ:
( displaystyle t=pm arccosfrac{sqrt{3}}{2}+2pi n,~nin Z)
Или (так как ( displaystyle arccosfrac{sqrt{3}}{2}=frac{pi }{6}))
( displaystyle t=pm frac{pi }{6}+2pi n,~nin Z)
Но теперь в роли ( displaystyle t) у нас выступаем вот такое выражение: ( displaystyle t=frac{8pi x}{6})
Тогда можно записать:
( displaystyle frac{8pi x}{6}=pm frac{pi }{6}+2pi n)
Наша с тобою цель – сделать так, чтобы слева стоял просто ( displaystyle x), без всяких «примесей»!
Давай постепенно от них избавляться!
Вначале уберём знаменатель при ( displaystyle x): для этого домножим наше равенство на ( displaystyle 6):
( displaystyle frac{6cdot 8pi x}{6}=6cdot left( pm frac{pi }{6}+2pi n right))
( displaystyle 8pi x=pm frac{6pi }{6}+12pi n)
( displaystyle 8pi x=pm pi +12pi n)
Теперь избавимся от ( displaystyle pi ), разделив на него обе части:
( displaystyle 8x=pm 1+12n)
Теперь избавимся от восьмёрки:
( displaystyle frac{8x}{8}=pm frac{1}{8}+frac{12n}{8})
( displaystyle x=pm frac{1}{8}+frac{3n}{2})
Полученное выражение можно расписать как 2 серии решений (по аналогии с квадратным уравнением, где мы либо прибавляем, либо вычитаем дискриминант)
( displaystyle x=frac{1}{8}+frac{3n}{2})
или
( displaystyle x=-frac{1}{8}+frac{3n}{2})
Нам нужно найти наибольший отрицательный корень! Ясно, что надо перебирать ( displaystyle n).
Рассмотрим вначале первую серию:
Уравнение 13. Найдите корни уравнения: ( displaystyle cosfrac{pi left( {x}-7 right)}{3}=frac{1}{2}). В ответ запишите наибольший отрицательный корень.
Опять решаем, не взирая на сложный аргумент косинуса:
( displaystyle frac{pi left( {x}-7 right)}{3}=pm arccosfrac{1}{2}+2pi n,~nin Z)
( displaystyle frac{pi left( {x}-7 right)}{3}=pm frac{pi }{3}+2pi n,~nin Z)
Теперь снова выражаем ( displaystyle x) слева:
Умножаем обе стороны на ( displaystyle 3)
( displaystyle frac{3pi left( {x}-7 right)}{3}=pm frac{3pi }{3}+2cdot 3pi n,~nin Z)
( displaystyle pi left( {x}-7 right)=pm pi +6pi n,~nin Z)
Делим обе стороны на ( displaystyle pi)
( displaystyle frac{pi left( {x}-7 right)}{pi }=pm frac{pi }{pi }+frac{6pi n}{pi },~nin Z)
( displaystyle ~{x}-7=pm 1+6n,~nin Z)
Всё, что осталось, – это перенести ( displaystyle 7) вправо, изменив её знак с минуса на плюс.
( displaystyle x=7pm 1+6n,~nin Z)
У нас опять получается 2 серии корней, одна с ( displaystyle +1), а другая с ( displaystyle -1).
( displaystyle x=8+6n,~nin Z)
или
( displaystyle x=6+6n,~nin Z)
Нам нужно найти наибольший отрицательный корень. Рассмотрим первую серию:
Уравнение 14. Решите уравнение ( displaystyle tgfrac{pi x}{4}=-1). В ответе напишите наибольший отрицательный корень.
Решаем, не взирая на сложный аргумент тангенса.
Вот, вроде бы ничего сложного, не так ли?
( displaystyle frac{pi x}{4}=arctgleft( -1 right)+pi n)
( displaystyle frac{pi x}{4}=-arctgleft( 1 right)+pi n)
( displaystyle frac{pi x}{4}=-frac{pi }{4}+pi n)
Как и раньше, выражаем ( displaystyle x) в левой части:
( displaystyle frac{4pi x}{4}=-frac{4pi }{4}+4pi n)
( displaystyle pi x=-pi +4pi n)
( displaystyle frac{pi x}{pi }=-frac{pi }{pi }+frac{4pi n}{pi })
( displaystyle x=-1+4n)
Ну вот и замечательно, здесь вообще всего одна серия корней! Опять найдём наибольший отрицательный.
Ясно, что он получается, если положить ( displaystyle n=0). И корень этот равен ( displaystyle -1).
Ответ: ( displaystyle -1)
Теперь попробуй самостоятельно решить следующие задачи.
Решение 3-х примеров для самостоятельной работы
- Решите уравнение ( displaystyle sinfrac{pi x}{3}=0,5). В ответе напишите наименьший положительный корень.
- Решите уравнение ( displaystyle tgfrac{pi left( {x}-6 right)}{6}=frac{1}{sqrt{3}}). В ответе напишите наименьший положительный корень.
- Решите уравнение ( displaystyle sinfrac{pi left( 2{x}-3 right)}{6}=-0,5). В ответе напишите наименьший положительный корень.
Готов? Проверяем. Я не буду подробно описывать весь алгоритм решения, мне кажется, ему и так уделено достаточно внимания выше.
Ну что же, теперь ты умеешь решать простейшие тригонометрические уравнения! Сверься с решениями и ответами:
Ну что, всё правильно? Ох уж эти гадкие синусы, с ними всегда какие-то беды!
Эти знания помогут тебе решать многие задачи, с которыми ты столкнёшься в экзамене.
Если же ты претендуешь на оценку «5», то тебе просто необходимо перейти к чтению статьи для среднего уровня, которая будет посвящена решению более сложных тригонометрических уравнений.
СРЕДНИЙ УРОВЕНЬ СЛОЖНОСТИ
В этой части статьи я опишу решение тригонометрических уравнений более сложного типа и объясню, как производить отбор их корней. Здесь я буду опираться на следующие темы:
- Тригонометрические уравнения для начального уровня (см. выше)
- Формулы тригонометрии
Рекомендую тебе прежде ознакомиться с ними, прежде чем приступать к чтению и разбору этого чтива. Итак, все готово? Прекрасно. Тогда вперед.
Более сложные тригонометрические уравнения – это основа задач повышенной сложности. В них требуется как решить само уравнение в общем виде, так и найти корни этого уравнения, принадлежащие некоторому заданному промежутку.
Решение тригонометрических уравнений сводится к двум подзадачам:
- Решение уравнения
- Отбор корней
Следует отметить, что второе требуется не всегда, но все же в большинстве примеров требуется производить отбор. А если же он не требуется, то тебе скорее можно посочувствовать – это значит, что уравнение достаточно сложное само по себе.
Мой опыт разбора задач повышенной сложности показывает, что они как правило делятся на вот такие 4 категории.
Четыре категории задач повышенной сложности
- Уравнения, сводящиеся к разложению на множители.
- Уравнения, сводящиеся к виду ( displaystyle tgx=a).
- Уравнения, решаемые заменой переменной.
- Уравнения, требующие дополнительного отбора корней из-за иррациональности или знаменателя.
Говоря по-простому: если тебе попалось одно из уравнений первых трех типов, то считай, что тебе повезло. Для них как правило дополнительно нужно подобрать корни, принадлежащие некоторому промежутку.
Если же тебе попалось уравнение 4 типа, то тебе повезло меньше: с ним нужно повозиться подольше и повнимательнее, зато довольно часто в нем не требуется дополнительно отбирать корни.
Тем не менее данный тип уравнений я буду разбирать в разделе для продвинутых, а эту посвящу решению уравнений первых трех типов.
Уравнения, сводящихся к разложению на множители
Самое важное, что тебе нужно помнить, чтобы решать уравнения этого типа, это:
- Формулы приведения
- Синус, косинус двойного угла
Как показывает практика, как правило, этих знаний достаточно. Давай обратимся к примерам.
Уравнения, сводящиеся к разложению с помощью синуса двойного угла:
Уравнение 18. Решите уравнение ( displaystyle sin2x=text{sin}left( frac{pi }{2}+x right)). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -frac{7pi }{2},-frac{5pi }{2} right])
Здесь, как я и обещал, работают формулы приведения:
( displaystyle sin left( frac{pi }{2}+x right)=cosx)
Тогда мое уравнение примет вот такой вид:
( displaystyle sin2x=cosx)
Что дальше? А дальше обещанный мною второй пункт программы – синус двойного угла:
( displaystyle sin2x=2sinxcosx)
Тогда мое уравнение примет следующую форму:
( displaystyle 2sinxcosx=cosx)
Недальновидный ученик мог бы сказать: а теперь я сокращу обе части на ( displaystyle cosx), получаю простейшее уравнение ( displaystyle 2sinx=1) и радуюсь жизни! И будет горько заблуждаться!
Запомни!
Никогда нельзя сокращать обе части тригонометрического уравнения на функцию, содержащую неизвестную! Таки образом ты теряешь корни!
Так что же делать? Да все просто, переносить все в одну сторону и выносить общий множитель:
( displaystyle 2sinxcosx-cosx=0)
( displaystyle cosxleft( 2sinx-1 right)=0)
Ну вот, на множители разложили, ура! Теперь решаем:
( displaystyle cosx=0) или ( displaystyle 2sinx=1)
Первое уравнение имеет корни:
( displaystyle x=frac{pi }{2}+pi n).
А второе:
( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n)
На этом первая часть задачи решена. Теперь нужно отобрать корни.
Уравнения, сводящиеся к разложению на множители с помощью формул приведения
Уравнение 19. Решите уравнение ( displaystyle 2si{{n}^{2}}x=cos left( frac{3pi }{2}-x right)). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -frac{5pi }{2},-pi right]).
Решение:
Опять пресловутые формулы приведения:
( displaystyle cos left( frac{3pi }{2}-x right)=-sinx)
( displaystyle 2si{{n}^{2}}x=-sinx)
Опять не вздумай сокращать!
( displaystyle 2si{{n}^{2}}x+sinx=0)
( displaystyle sinxleft( 2sinx+1 right)=0)
Откуда:
( displaystyle sinx=0) или ( displaystyle 2sinx+1=0,~sinx=-frac{1}{2})
Первое уравнение имеет корни:
( displaystyle x=pi n)
А второе:
( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n)
Теперь снова поиск корней.
Уравнение 20. Решите уравнение ( displaystyle sqrt{2}sin left( frac{3pi }{2}-x right)cdot sinx=cosx)
Найдите все корни этого уравнения, принадлежащие промежутку ( displaystyle left[ frac{pi }{2},frac{3pi }{2} right]).
И снова формула приведения:
( displaystyle ~sin left( frac{3pi }{2}-x right)=-cosx)
( displaystyle -sqrt{2}cosxsinx=cosx)
( displaystyle -sqrt{2}cosxsinx-cosx=0)
( displaystyle sqrt{2}cosxsinx+cosx=0)
( displaystyle cosxleft( sqrt{2}sinx+1 right)=0)
( displaystyle cosx=0) или ( displaystyle sqrt{2}sinx+1=0)
( displaystyle sinx=-frac{1}{sqrt{2}})
Первая серия корней:
( displaystyle x=frac{pi }{2}+pi n).
Вторая серия корней:
Уравнение 20. Решите уравнение ( displaystyle 2sin2x=4cosx-sinx+1)
Укажите корни уравнения, принадлежащие отрезку ( displaystyle left[ -5pi ,-4pi right])
Довольно хитрая группировка на множители (применю формулу синуса двойного угла):
( displaystyle 2cdot 2sinxcosx=4cosx-sinx+1)
( displaystyle 4sinxcosx-4cosx+sinx-1=0)
( displaystyle 4cosxleft( sinx-1 right)+left( sinx-1 right)=0)
( displaystyle left( 4cosx+1 right)left( sinx-1 right)=0)
тогда ( displaystyle 4cosx+1=0) или ( displaystyle left( sinx-1 right)=0)
( displaystyle cosx=-frac{1}{4}) или ( displaystyle sinx=1)
( displaystyle x=pm left( pi -arccosfrac{1}{4} right)+2pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{2}+pi n)
Это общее решение. Теперь надо отбирать корни. Беда в том, что мы не можем сказать точное значение угла, косинус которого равен одной четверти. Поэтому я не могу просто так избавиться от арккосинуса – вот такая досада!
Что я могу сделать?
Я могу прикинуть, что так как ( displaystyle frac{1}{4}<0,5), то ( displaystyle arccosfrac{1}{4}>frac{pi }{3}).
( displaystyle frac{pi }{2}>arccosfrac{1}{4}>frac{pi }{3})
Составим таблицу: промежуток: ( displaystyle left[ -5pi ;~-4pi right])
Уравнение 21. Решите уравнение ( displaystyle sin2x-2sqrt{3}si{{n}^{2}}x+4cosx-4sqrt{3}sinx=0). Найдите все корни этого уравнения, принадлежащие промежутку ( displaystyle ~left[ -frac{pi }{2},pi right]).
Уравнение пугающего вида. Однако решается довольно просто путем применения формулы синуса двойного угла:
( displaystyle 2sinxcosx-2sqrt{3}si{{n}^{2}}x+4cosx-4sqrt{3}sinx=0)
Сократим на 2:
( displaystyle sinxcosx-sqrt{3}si{{n}^{2}}x+2cosx-2sqrt{3}sinx=0)
Сгруппируем первое слагаемое со вторым и третье с четвертым и вынесем общие множители:
( displaystyle sinxleft( cosx-sqrt{3}sinx right)+2left( cosx-sqrt{3}sinx right)=0)
( displaystyle left( sinx+2 right)left( cosx-sqrt{3}sinx right)=0)
( displaystyle sinx+2=0) или ( displaystyle cosx-sqrt{3}sinx=0)
Ясно, что первое уравнение корней не имеет, а теперь рассмотрим второе:
( displaystyle cosx-sqrt{3}sinx=0)
Вообще я собирался чуть позже остановиться на решении таких уравнений, но раз уж подвернулось, то делать нечего, надо решать…
Уравнения, сводящиеся к виду tgx=a
Ну вот, теперь самое время переходить ко второй порции уравнений, тем более, что я уже и так проболтался в чем состоит решение тригонометрических уравнений нового типа.
Но не лишним будет повторить, что уравнение вида
( displaystyle text{acosx}+text{bsinx}=0text{ }!!~!!text{ }left( text{a},text{b}ne 0 right))
Решается делением обеих частей на косинус:
( displaystyle text{a}frac{text{cosx}}{text{cosx}}+text{b}frac{text{sinx}}{text{cosx}}=0)
( displaystyle text{a}+text{btgx}=0)
( displaystyle text{tgx}=-frac{text{a}}{text{b}})
Таким образом, решить уравнение вида
( displaystyle text{acosx}+text{bsinx}=0 )
все равно, что решить
( displaystyle text{tgx}=-frac{text{a}}{text{b}})
Мы только что рассмотрели, как это происходит на практике. Однако давай решим еще и вот такие примеры.
Разбор 3-х примеров для закрепления материала
Уравнение 22. Решите уравнение ( displaystyle sinx+si{{n}^{2}}frac{x}{2}=co{{s}^{2}}frac{x}{2}). Укажите корни уравнения, принадлежащие отрезку ( displaystyle left[ -2pi ,-frac{pi }{2} right]).
Решение:
Ну совсем простое. Перенесем ( displaystyle si{{n}^{2}}frac{x}{2}) вправо и применим формулу косинуса двойного угла:
( displaystyle sinx=co{{s}^{2}}frac{x}{2}-si{{n}^{2}}frac{x}{2})
( displaystyle sinx=cosx)
Ага! Уравнение вида:
( displaystyle acosx+bsinx=0).
Делю обе части на ( displaystyle cosx)
( displaystyle frac{sinx}{cosx}=frac{cosx}{cosx})
( displaystyle tgx=1)
( displaystyle x=frac{pi }{4}+pi n)
Делаем отсев корней:
Уравнение 23. Решите уравнение ( displaystyle cosx={{left( cosfrac{x}{2}-sinfrac{x}{2} right)}^{2}}-1). Укажите корни уравнения, принадлежащие промежутку ( displaystyle left[ frac{pi }{2},2pi right]).
Все тоже довольно тривиально: раскроем скобки справа:
( displaystyle cosx=co{{s}^{2}}frac{x}{2}-2sinfrac{x}{2}cosfrac{x}{2}+si{{n}^{2}}frac{x}{2}-1)
Основное тригонометрическое тождество:
( displaystyle co{{s}^{2}}frac{x}{2}+si{{n}^{2}}frac{x}{2}=1)
Синус двойного угла:
( displaystyle 2sinfrac{x}{2}cosfrac{x}{2}=sinx)
Окончательно получим:
Уравнение 24. Решите уравнение ( displaystyle sqrt{3}sin2x+3cos2x=0). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ frac{3pi }{2},3pi right]).
Уравнение решается сразу же, достаточно поделить обе части на ( displaystyle cos2x):
( displaystyle sqrt{3}tg2x+3=0)
( displaystyle sqrt{3}tg2x=-3)
( displaystyle tg2x=-frac{3}{sqrt{3}})
( displaystyle 2x=-frac{pi }{3}+pi n)
( displaystyle x=-frac{pi }{6}+frac{pi n}{2})
Отсев корней:
| ( displaystyle n) | ( displaystyle x=-frac{pi }{6}+frac{pi n}{2}) |
|---|---|
| ( displaystyle 3) | ( displaystyle -frac{pi }{6}+frac{3pi }{2}) — маленький недолет на ( displaystyle frac{pi }{6}) |
| ( displaystyle 4) | ( displaystyle -frac{pi }{6}+2pi =frac{11pi }{6}) — попал! |
| ( displaystyle 5) | ( displaystyle -frac{pi }{6}+frac{5pi }{2}=frac{7pi }{3}) — снова в яблочко! |
| ( displaystyle 6) | ( displaystyle -frac{pi }{6}+3pi =frac{17pi }{6}) — и снова удача на нашей стороне! |
| ( displaystyle 7) | ( displaystyle -frac{pi }{12}+frac{7pi }{2}) — на сей раз уже перелет! |
Ответ: ( displaystyle frac{11pi }{6};frac{14pi }{6};frac{17pi }{6}).
Так или иначе, нам еще предстоит встретиться с уравнениями того вида, которые мы только что разобрали. Однако нам еще рано закругляться: остался еще один «пласт» уравнений, которые мы не разобрали. Итак:
Решение тригонометрических уравнений заменой переменной
Здесь все прозрачно: смотрим пристально на уравнение, максимально его упрощаем, делаем замену, решаем, делаем обратную замену!
На словах все очень легко. Давай посмотрим на деле:
Уравнение 25. Решить уравнение: ( displaystyle 4co{{s}^{4}}x-4co{{s}^{2}}x+1=0). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -2pi ,-pi right]).
Ну что же, здесь замена сама напрашивается к нам в руки!
( displaystyle t=co{{s}^{2}}x)
Тогда наше уравнение превратится вот в такое:
Уравнение 26. Решите уравнение ( displaystyle 6si{{n}^{2}}x+sin2x=2). Укажите корни данного уравнения, принадлежащие промежутку ( displaystyle left[ frac{3pi }{2},frac{5pi }{2} right]).
Решение:
Здесь замена сразу не видна, более того, она не очень очевидна. Давай вначале подумаем: а что мы можем сделать?
Можем, например, представить
( displaystyle sin2x=2sinxcosx)
А заодно и
( displaystyle 2=2si{{n}^{2}}x+2co{{s}^{2}}x)
Тогда мое уравнение примет вид:
( displaystyle 6si{{n}^{2}}x+2sinxcosx=2si{{n}^{2}}x+2co{{s}^{2}}x)
( displaystyle 4si{{n}^{2}}x+2sinxcosx-2co{{s}^{2}}x=0)
( displaystyle 2si{{n}^{2}}x+sinxcosx-co{{s}^{2}}x=0)
А теперь внимание, фокус:
Давай разделим обе части уравнения на ( displaystyle co{{s}^{2}}x):
( displaystyle 2frac{si{{n}^{2}}x}{co{{s}^{2}}x}+frac{sinxcosx}{co{{s}^{2}}x}-frac{co{{s}^{2}}x}{co{{s}^{2}}x}=0)
( displaystyle 2t{{g}^{2}}x+tgx-1=0)
Внезапно мы с тобой получили квадратное уравнение относительно ( displaystyle tgx)!
Сделаем замену ( displaystyle t=tgx), тогда получим:
( displaystyle 2{{t}^{2}}+t-1=0)
Уравнение имеет следующие корни:
( displaystyle {{t}_{1}}=-1,{{t}_{2}}=frac{1}{2})
Отсюда:
( displaystyle tgx=-1).
( displaystyle x=-frac{pi }{4}+pi n)
Или
( displaystyle tgx=frac{1}{2}).
( displaystyle x=arctgfrac{1}{2}+pi n)
Неприятная вторая серия корней, но ничего не поделаешь!
Производим отбор корней на промежутке ( displaystyle left[ frac{3pi }{2},frac{5pi }{2} right]).
Нам также нужно учитывать, что:
Уравнение 27. Решите уравнение ( displaystyle frac{1}{t{{g}^{2}}x}+frac{3}{sinx}+3=0). Найдите все корни этого уравнения, принадлежащие промежутку ( displaystyle left[ 2pi ,frac{7pi }{2} right]).
Решение:
Здесь нужно держать ухо востро: у нас появились знаменатели, которые могут быть нулевыми! Поэтому надо быть особо внимательными к корням!
Прежде всего, мне нужно преобразовать уравнение так, чтобы я мог сделать подходящую замену. Я не могу придумать сейчас ничего лучше, чем переписать тангенс через синус и косинус:
( displaystyle t{{g}^{2}}x=frac{si{{n}^{2}}x}{co{{s}^{2}}x})
( displaystyle frac{co{{s}^{2}}x}{si{{n}^{2}}x}+frac{3}{sinx}+3=0)
Теперь я перейду от косинуса к синусу по основному тригонометрическому тождеству:
( displaystyle frac{1-si{{n}^{2}}x}{si{{n}^{2}}x}+frac{3}{sinx}+3=0)
И, наконец, приведу все к общему знаменателю:
( displaystyle frac{1-si{{n}^{2}}x}{si{{n}^{2}}x}+frac{3sinx}{si{{n}^{2}}x}+frac{3si{{n}^{2}}x}{si{{n}^{2}}x}=0)
( displaystyle frac{1-si{{n}^{2}}x+3sinx+3si{{n}^{2}}x}{si{{n}^{2}}x}=0)
( displaystyle frac{2si{{n}^{2}}x+3sinx+1}{si{{n}^{2}}x}=0)
Теперь я могу перейти к уравнению:
( displaystyle 2si{{n}^{2}}x+3sinx+1=0)
Но при ( displaystyle si{{n}^{2}}xne 0) (то есть при ( displaystyle xne pi n)).
Теперь все готово для замены: ( displaystyle t=sin x)
Уравнение 28. Решите уравнение ( displaystyle 4si{{n}^{2}}x+8sin left( frac{3pi }{2}+x right)+1=0)
Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -3pi ,-frac{3pi }{2} right]).
Работаем по формулам приведения:
( displaystyle sin left( frac{3pi }{2}+x right)=-cosx)
Подставляем в уравнение:
( displaystyle 4si{{n}^{2}}x+8left( -cosx right)+1=0)
Перепишем все через косинусы, чтобы удобнее было делать замену:
( displaystyle 4left( 1-co{{s}^{2}}x right)-8cosx+1=0)
( displaystyle -4co{{s}^{2}}x-8cosx+5=0)
( displaystyle 4co{{s}^{2}}x+8cosx-5=0)
Теперь легко сделать замену:
( displaystyle t=cosx)
( displaystyle 4{{t}^{2}}+8t-5=0)
( displaystyle {{t}_{1}}=-frac{5}{2},{{t}_{2}}=frac{1}{2})
Ясно, что ( displaystyle {{t}_{1}}=-frac{5}{2}) — посторонний корень, так как уравнение ( displaystyle cosx=-frac{5}{2}) решений не имеет.
Уравнение 30. Решите уравнение ( displaystyle t{{g}^{2}}x+left( 1+sqrt{3} right)tgx+sqrt{3}=0)
Укажите корни этого уравнения, принадлежащие отрезку ( displaystyle left[ frac{5pi }{2},4pi right]).
Здесь замена видна сразу: ( displaystyle t=tgx)
( displaystyle {{t}^{2}}+left( 1+sqrt{3} right)t+sqrt{3}=0)
( displaystyle {{t}_{1}}=-1,~{{t}_{2}}=-sqrt{3})
Тогда ( displaystyle tgx=-1) или ( displaystyle tgx=-sqrt{3})
( displaystyle x=-frac{pi }{4}+pi n)
или
( displaystyle x=-frac{pi }{3}+pi n)
Отбор корней на промежутке ( displaystyle left[ frac{5pi }{2},4pi right]):
( displaystyle n)
( displaystyle x=-frac{pi }{4}+pi n)
( displaystyle x=-frac{pi }{3}+pi n)
( displaystyle 3)
( displaystyle x=frac{11pi }{4}) — подходит!
( displaystyle x=frac{8pi }{3}) — подходит!
( displaystyle 4)
( displaystyle x=frac{15pi }{4}) — подходит!
( displaystyle x=frac{11pi }{3}) — подходит!
( displaystyle 5)
( displaystyle x=frac{19pi }{4}) — много!
( displaystyle x=frac{14pi }{3}) — тоже много!
Ответ: ( displaystyle frac{11pi }{4}; frac{8pi }{3}; frac{15pi }{4}; frac{11pi }{3})
Ну вот, теперь все! Но решение тригонометрических уравнений на этом не заканчивается, за бортом у нас остались самые сложные случаи: когда в уравнениях присутствует иррациональность или разного рода «сложные знаменатели».
Как решать подобные задания мы рассмотрим далее в разделе для продвинутого уровня.
ПРОДВИНУТЫЙ УРОВЕНЬ СЛОЖНОСТИ
Уравнения, требующие дополнительного отбора корней из-за иррациональности и знаменателя
В дополнение к рассмотренным в предыдущих двух статьях тригонометрическим уравнениям, рассмотрим еще один класс уравнений, которые требуют еще более внимательного анализа.
Данные тригонометрические примеры содержат либо иррациональность, либо знаменатель, что делает их анализ более сложным.
Тем не менее ты вполне можешь столкнуться с данными уравнениями на ЕГЭ (и получить за них максимальное количество баллов!).
Однако нет худа без добра: для таких уравнений уже, как правило, не ставится вопрос о том, какие из его корней принадлежат заданному промежутку.
Давай не будем ходить вокруг да около, а сразу тригонометрические примеры.
Уравниние 31. Решить уравнение ( displaystyle frac{2si{{n}^{2}}x+sinx}{2cosx-sqrt{3}}=0~) и найти те корни, которые принадлежат отрезку ( displaystyle left[ -frac{3pi }{2},0 right]).
Решение:
У нас появляется знаменатель, который не должен быть равен нулю! Тогда решить данное уравнение – это все равно, что решить систему
( displaystyle left{ begin{array}{l}2si{{n}^{2}}x+sinx=0\2cosx-sqrt{3}ne 0end{array} right.)
Решим каждое из уравнений:
( displaystyle 2si{{n}^{2}}x+sinx=0)
( displaystyle sinxleft( 2sinx+1 right)=0)
( displaystyle sinx=0) или ( displaystyle sinx=-frac{1}{2})
( displaystyle x=pi n) или ( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n)
А теперь второе:
( displaystyle 2cosx-sqrt{3}ne 0)
( displaystyle xne pm frac{pi }{6}+2pi n)
или ( displaystyle xne frac{pi }{6}+2pi n), ( displaystyle xne -frac{pi }{6}+2pi n)
Теперь давай посмотрим на серию:
Уравнение 32. Решите уравнение: ( displaystyle left( sinx-frac{sqrt{3}}{2} right)sqrt{3{{x}^{2}}-7x+4}=0)
Решение:
Ну хотя бы не надо отбирать корни и то хорошо! Давай вначале решим уравнение, не взирая на иррациональность:
( displaystyle sinx=frac{sqrt{3}}{2})
( displaystyle x={{left( -1 right)}^{n}}frac{pi }{3}+pi n)
( displaystyle 3{{x}^{2}}-7x+4=0)
( displaystyle {{x}_{1}}=1,{{x}_{2}}=frac{4}{3})
И что, это все? Нет, увы, так было бы слишком просто! Надо помнить, что под корнем могут стоять только неотрицательные числа. Тогда:
( displaystyle 3{{x}^{2}}-7x+4ge 0)
Решение этого неравенства:
Уравнение 33. ( displaystyle left( 2{{x}^{2}}-5x+2 right)sqrt{cosx-sqrt{3}sinx}=0)
Как и раньше: вначале решим каждое отдельно, а потом подумаем, что же мы наделали.
( displaystyle 2{{x}^{2}}-5x+2=0)
( displaystyle {{x}_{1}}=2,~{{x}_{2}}=0,5)
Теперь второе уравнение:
( displaystyle cosx-sqrt{3}sinx=0)
( displaystyle tgx=frac{1}{sqrt{3}})
( displaystyle x=frac{pi }{6}+pi n)
Теперь самое сложное – выяснить, не получаются ли отрицательные значения под арифметическим корнем, если мы подставим туда корни из первого уравнения:
( displaystyle cos2-sqrt{3}sin2)
Число ( displaystyle 2) надо понимать как ( displaystyle 2) радианы.
Так как ( displaystyle 1) радиана – это примерно ( displaystyle 57) градусов, то ( displaystyle 2) радианы – порядка ( displaystyle 114) градусов. Это угол второй четверти.
Косинус второй четверти имеет какой знак? Минус. А синус? Плюс. Так что можно сказать про выражение
( displaystyle cos2-sqrt{3}sin2)?
Оно меньше нуля!
( displaystyle cos2-sqrt{3}sin2<0)
А значит ( displaystyle 2) – не является корнем уравнения.
Теперь черед ( displaystyle frac{1}{2}).
( displaystyle cosfrac{1}{2}-sqrt{3}sinfrac{1}{2})
Сравним это число с нулем.
Уравнение 34. ( displaystyle left( 4co{{s}^{2}}x-4cosx-3 right)sqrt{-6sinx}=0)
Решение:
( displaystyle 4co{{s}^{2}}x-4cosx-3=0)
( displaystyle t=cosx)
( displaystyle 4{{t}^{2}}-4t-3=0)
( displaystyle {{t}_{1}}=-0,5;{{t}_{2}}=1,5) – корень ( displaystyle {{t}_{2}}) не годится, ввиду ограниченности косинуса
( displaystyle cosx=-0,5)
( displaystyle x=pm frac{2pi }{3}+2pi n)
Теперь второе:
Уравнение 35. ( displaystyle frac{cos2x+sinx}{sqrt{text{sin}left( x-frac{pi }{4} right)}}=0)
Ну, ничего не поделаешь – поступаем так, как и раньше.
( displaystyle cos2x+sinx=0)
( displaystyle 1-2si{{n}^{2}}x+sinx=0)
( displaystyle 2si{{n}^{2}}x-sinx-1=0)
( displaystyle t=sinx)
( displaystyle 2{{t}^{2}}-t-1=0)
( displaystyle {{t}_{1}}=-0,5,{{t}_{2}}=1)
( displaystyle sinx=-0,5) или ( displaystyle sinx=1)
( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{2}+pi n)
Теперь работаем со знаменателем:
( displaystyle text{sin}left( x-frac{pi }{4} right)ge 0)
Я не хочу решать тригонометрическое неравенство, а потому поступлю хитро: возьму и подставлю в неравенство мои серии корней:
Уравнение 36. ( displaystyle sqrt{9-{{x}^{2}}}cosx=0)
Первое уравнение: ( displaystyle 9-{{x}^{2}}=0)
( displaystyle x=3) или ( displaystyle x=-3)
ОДЗ корня:
( displaystyle 9-{{x}^{2}}ge 0)
( displaystyle xin left[ -3;3 right])
Второе уравнение:
Уравнение 37. ( displaystyle frac{2si{{n}^{2}}x-sinx}{2cosx-sqrt{3}}=0)
( displaystyle 2si{{n}^{2}}x-sinx=0)
( displaystyle sinxleft( 2sinx-1 right)=0)
( displaystyle sinx=0) или ( displaystyle sinx=0,5)
( displaystyle x=pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n)
Но ( displaystyle 2cosx-sqrt{3}ne 0)
( displaystyle cosxne frac{sqrt{3}}{2})
( displaystyle xne pm frac{pi }{6}+2pi n)
Рассмотрим ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n).
Если ( displaystyle n) – четное, то
( displaystyle x=frac{pi }{6}+2pi k) – не подходит!
Если ( displaystyle n) – нечетное, ( displaystyle n=2k+1):
( displaystyle x=-frac{pi }{6}+2pi k+pi =frac{5pi }{6}+2pi k) – подходит!
Значит, наше уравнение имеет такие серии корней:
( displaystyle x=pi n) или ( displaystyle x=frac{5pi }{6}+2pi n)
Отбор корней на промежутке ( displaystyle left[ frac{3pi }{2},3pi right]):
| ( displaystyle n) | ( displaystyle 1) | ( displaystyle 2) | ( displaystyle 3) |
|---|---|---|---|
| ( displaystyle x=pi n) | ( displaystyle pi )— не подходит | ( displaystyle 2pi ) – подходит | ( displaystyle 3pi ) – подходит |
| ( displaystyle x=frac{5pi }{6}+2pi n) | ( displaystyle frac{5pi }{6}+2pi =frac{17pi }{6}) – подходит | ( displaystyle frac{5pi }{6}+4pi ) – много | много |
Ответ: ( displaystyle 3pi ), ( displaystyle 2pi ), ( displaystyle frac{17pi }{6}).
Уравнение 38. ( displaystyle left( 2co{{s}^{2}}x-cosx right)sqrt{-11tgx}=0)
( displaystyle 2co{{s}^{2}}x-cosx=0)
( displaystyle cosxleft( 2cosx-1 right)=0)
( displaystyle cosx=0~)или ( displaystyle 2cosx-1=0)
Так как ( displaystyle tgx=frac{sinx}{cosx}), то при ( displaystyle cosx=0~) тангенс не определен. Тут же отбрасываем эту серию корней!
( displaystyle 2cosx-1=0)
( displaystyle cosx=0,5)
( displaystyle x=pm frac{pi }{3}+2pi n)
Вторая часть:
( displaystyle -11tgx=0)
( displaystyle x=pi n)
В то же время по ОДЗ требуется, чтобы
( displaystyle tgxle 0)
Проверяем найденные в первом уравнении корни:
( displaystyle tgleft( pm frac{pi }{3}+2pi n right)le 0)
Если знак ( displaystyle +):
( displaystyle tgleft( frac{pi }{3}+2pi n right)le 0)
( displaystyle frac{pi }{3}+2pi n) – углы первой четверти, где тангенс положительный. Не подходит!
Если знак ( displaystyle —):
( displaystyle tgleft( -frac{pi }{3}+2pi n right)le 0)
( displaystyle -frac{pi }{3}+2pi n) – угол четвертой четверти. Там тангенс отрицательный. Подходит. Записываем ответ:
Ответ: ( displaystyle x=pi n), ( displaystyle x=-frac{pi }{3}+2pi n).
Мы вместе разобрали в этой статье сложные тригонометрические примеры, но тебе стоит прорешать уравнения самому.
Подготовка к ЕГЭ на 90+
Алексей Шевчук — ведущий мини-групп
математика, информатика, физика
+7 (905) 541-39-06 — WhatsApp/Телеграм для записи
alexei.shevchuk@youclever.org — email для записи
- тысячи учеников, поступивших в лучшие ВУЗы страны
- автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
- закончил МФТИ, преподавал на малом физтехе;
- репетиторский стаж — c 2003 года;
- в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
- отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».





















или
уравнение
не имеет корней, так как множеством значений функции
является промежуток
Например, уравнения
не имеют корней.
















































































































































































































возрастает (убывает) на некотором промежутке, то она имеет обратную функцию на этом промежутке, которая возрастает, если
возрастает, и убывает, если
убывает.











обратимой на всей области определения: для этого достаточно выяснить, имеет ли уравнение
единственный корень относительно переменной
Если нет, то попытаться выделить промежуток, где существует обратная функция (например, это может быть промежуток, где функция
возрастает или убывает).
выразить
через 
а функцию — через 

























































































то
то
Тогда
По определению арктангенса получаем
Таким образом,
а это и означает, что 










































































































имеем
— корней нет, поскольку 
имеем 








имеем
тогда
имеем
тогда











тогда
имеем
тогда 
















имеем
тогда
имеем
тогда












































































получаем
— верное равенство, таким образом,
— корень.
получаем 






























данное уравнения имеет корень
Функция
возрастает при
(как было показано выше, она возрастает на множестве
а функция
убывает на промежутке
Таким образом, данное уравнение
имеет единственный корень 
данное уравнение имеет корень
Функция
возрастает при
а функция
убывает на этом промежутке. Поэтому данное уравнение
при
имеет единственный корень 

































(на ОДЗ уравнения (1)) использование формул
и 




то получим уравнение 
















































то есть
то получаем уравнение
которое не имеет корней.
то есть
то получаем 
































































относительно данных чисел 





находились в этом промежутке, достаточно выполнения условии —
находился в промежутке
а второй справа от 1 (или в точке 1), достаточно выполнения условии 
находился в промежутке
а второй слева от-1 (или в точке -1), достаточно выполнения условий























