Получить уравнение прямой, проходящей через две точки помогут созданные нами калькуляторы. Предлагаем найти каноническое и параметрическое уравнение прямой, а также уравнение прямой с угловым коэффициентом как на плоскости, так и в пространстве.
Прямая — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.
Уравнения прямой, проходящей через две точки могут быть следующих видов:
- каноническое уравнение,
- параметрическое уравнение,
- общее уравнение прямой,
- уравнение прямой с угловым коэффициентом,
- уравнение прямой в полярных координатах и другие.
Для получения уравнений введите координаты двух точек прямой. Онлайн-калькулятор найдет уравнения и выдаст результат с подробным решением.
Каноническое уравнение прямой на плоскости
{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}
xa и ya — координаты первой точки A,
xb и yb — координаты второй точки B
Параметрическое уравнение прямой на плоскости
{begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases}}
xa, ya — координаты точки, лежащей на прямой,
{l;m} — координаты направляющего вектора прямой,
t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.
Каноническое уравнение прямой в пространстве
{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a} = dfrac{z-z_a}{z_b-z_a}}
xa, ya и za — координаты первой точки A,
xb, yb и zb — координаты второй точки B
Параметрическое уравнение прямой в пространстве
{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a \ z=n cdot t + z_a end{cases} }
xa, ya и za — координаты точки, лежащей на прямой,
{l;m;n} — координаты направляющего вектора прямой,
t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.
Пример нахождения уравнения прямой, проходящей через две точки
Найдем уравнения прямой, проходящей через точки A(1,2) и B(3,8).
Каноническое уравнение прямой
Каноническое уравнение прямой, проходящей через две точки имеет вид {dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}
Подставим в формулу координаты точек A и B: {dfrac{x-1}{3-1} = dfrac{y-2}{8-2}}
Получаем каноническое уравнение прямой: {dfrac{x-1}{2} = dfrac{y-2}{4}}
Уравнение прямой с угловым коэффициентом
Из канонического уравнения получаем уравнение прямой с угловым коэффициентом: {y=3x-1}
Параметрическое уравнение прямой
Параметрическое уравнение прямой имеет вид:
{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases} }
где {x_a, y_b} — координаты точки, лежащей на прямой, {{l;m}} — координаты направляющего вектора прямой, t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении. В качестве координат используем координаты точки {A(x_a, y_b)}.
Найдем координаты направляющего вектора:
overline{AB} = {x_b — x_a; y_b — y_a} = {3-1; 8-2} = {2; 6}
Получаем параметрическое уравнение:
begin{cases} x=2 t + 1 \ y=6 t + 2 end{cases}
Используем калькулятор для проверки полученного ответа.
Прямая имеет несколько видов задающих ее уравнений. Рассмотрим некоторые из них и разберем примеры.
Здесь будет калькулятор
Уравнение прямой с угловым коэффициентом
y=kx+by=kx+b,
где kk — угловой коэффициент, а bb — свободный коэффициент.
Уравнения данного вида составляются следующим образом по формуле:
y−y0=k(x−x0)y-y_0=k(x-x_0),
где (x0;y0)(x_0; y_0) — координаты любой точки, лежащей на данной прямой.
Составить уравнение прямой, если координаты точки, принадлежащей данной прямой, таковы: x0=1,y0=2x_0=1, y_0=2. Угловой коэффициент принять равным 11.
Решение
Подставляем значения в формулу:
y−y0=k(x−x0)y-y_0=k(x-x_0)
y−2=1⋅(x−1)y-2=1cdot(x-1)
Приводим подобные слагаемые:
y=x+1y=x+1
Ответ
y=x+1y=x+1
Общее уравнение прямой
Для приведения прямой к такому виду из предыдущего вида достаточно просто перенести все слагаемые в одну часть. Возьмем уравнение прямой из предыдущей задачи y=x+1y=x+1. Тогда общее уравнение этой прямой запишется в виде:
y−x−1=0y-x-1=0
Уравнение прямой по двум точкам
Если в задаче даны координаты двух точек и необходимо составить уравнение прямой, то это делается при помощи такой формулы:
x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2},
где (x1;y1),(x2;y2)(x_1; y_1), (x_2; y_2) — координаты двух точек, через которые проходит данная прямая.
Найти уравнение прямой, если координаты точек имеют значения: (2;3)(2;3) и (4;−1)(4;-1).
Решение
x1=2x_1=2
y1=3y_1=3
x2=4x_2=4
y2=−1y_2=-1
x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2}
x−42−4=y−(−1)3−(−1)frac{x-4}{2-4}=frac{y-(-1)}{3-(-1)}
x−4−2=y+14frac{x-4}{-2}=frac{y+1}{4}
x−4=−y−12x-4=frac{-y-1}{2}
y+1=2⋅(4−x)y+1=2cdot(4-x)
y=8−2x−1y=8-2x-1
y=−2x+7y=-2x+7
Ответ
y=−2x+7y=-2x+7
Уравнение прямой при помощи точки и вектора нормали
(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,
где (x0;y0)(x_0; y_0) — координаты точки, лежащей на данной прямой, а (n1;n2)(n_1; n_2) — координаты вектора нормали к этой прямой.
Составить уравнение прямой, если координаты нормального вектора — (1;−5)(1;-5), а точка, через которую проходит данная прямая имеет координаты (7;8)(7;8).
Решение
x0=7x_0=7
y0=8y_0=8
n1=1n_1=1
n2=−5n_2=-5
(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,
(x−7)⋅1+(y−8)⋅(−5)=0(x-7)cdot 1+(y-8)cdot (-5)=0,
x−7+40−5y=0x-7+40-5y=0
x−5y=−40+7x-5y=-40+7
x−5y=−33x-5y=-33
5y=x+335y=x+33
y=x5+335y=frac{x}{5}+frac{33}{5}
Проверка
Чтобы проверить правильность решения, достаточно подставить координаты точки в данное уравнение и, если оно будет верным, то задача решена верно.
8=75+3358=frac{7}{5}+frac{33}{5}
8=88=8 — верно, ответ правильный.
Ответ
y=x5+335y=frac{x}{5}+frac{33}{5}
Прямая в пространстве
Уравнение прямой, заданной в пространстве имеет такой вид:
x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3},
где (x0;y0;z0)(x_0;y_0;z_0) — координаты точки, через которую проходит прямая, а (ν1,ν2,ν3)(nu_1,nu_2,nu_3) — координаты напрявляющего вектора данной прямой.
Написать уравнение прямой по заданной точке (1;5;−23)(1;5;-23) и вектору направления (3;11;7)(3;11;7).
Решение
x0=1x_0=1
y0=5y_0=5
z0=−23z_0=-23
ν1=3nu_1=3
ν2=11nu_2=11
ν3=7nu_3=7
x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3}
x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}
Проверка
Проверим, удовлетворяет ли это уравнение прямой точке (x0;y0;z0)(x_0;y_0;z_0). Для этого подставим в него координаты этой точки:
1−13=5−511=−23−(−23)7frac{1-1}{3}=frac{5-5}{11}=frac{-23-(-23)}{7} — верно, значит ответ правильный.
Такой вид уравнения прямой называется каноническим.
Ответ
x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}
Тест по теме “Составление уравнения прямой”
☰
Уравнение прямой, проходящей через заданные точки
Если даны конкретные точки, например, A(4; 10) и B(1; 2), то уравнение можно найти, решая систему уравнений.
Если A и B имеют различные первые координаты (абсциссы), то прямая, на которой лежат эти точки, не параллельна оси ординат и описывается уравнением y = kx + b. Далее составляют систему уравнений и решают ее. Например:
| 10 = 4k + b,
| 2 = k + b.
b = 2 – k
10 = 4k + 2 – k
8 = 3k
k = 8/3
b = 2 – 8/3 = –2/3
и уравнение прямой имеет вид .
Однако можно вывести в общем виде уравнение прямой, выраженное через координаты A(x1; y1) и B(x2; y2), если x1 ≠ x2.
| y1 = kx1 + b,
| y2 = kx2 + b.
b = y2 – kx2
y1 = kx1 + y2 – kx2
y1 – y2 = kx1 – kx2
y1 – y2 = k(x1 – x2)
Зная b и k, можно теперь получить уравнение в общем виде:
Выполнив алгебраические преобразования, это уравнение можно привести к более простому виду:
Получить уравнение прямой по двум точкам бывает необходимо, когда мы решаем задачи, связанные с анализом различных фигур на плоскости. В этом случае бывает полезно знать уравнение прямой, проходящей через две точки. Например, составляя такое уравнение мы уже знаем – как проходит прямая, с какие углом наклона к осям координат и можем рассчитать расположение прямой по отношению к другим прямым или к фигурам.
Составляем уравнение прямой по двум точкам
Итак, пусть нам даны две точки и
. Наша прямая проходит через две эти точки, давайте получим уравнение этой прямой. Уравнение пучка прямых, проходящих через точку с координатами
имеет вид:
То есть если прямая проходит через две точки и
она – одна из этого пучка прямых, проходящих через точку
и эта прямая имеет определенный коэффициент
. Значит, координаты точки
должны удовлетворять уравнению (1), то есть
.
Находим из (2) :
и подставим в уравнение (1):
.
Преобразовывая уравнение (3) получим:
Это и есть уравнение прямой, проходящей через две точки
и
.
Примечание: если точки и
лежат на прямой, которая параллельна оси
или оси
, то уравнение прямой будет иметь вид
или
соответственно.
Зная координаты любых двух точек прямой, мы всегда сможем определить угловой коэффициент прямой:
Геометрический вывод уравнения прямой
Действительно, давайте нарисуем прямую в системе координат и отметим на прямой две точки
и
, координаты которых известны
и
и отметим на этой прямой произвольную точку
.
Из подобия треугольников и
находим:
Из рисунка видно, что:
,
Таким образом, получаем уравнение прямой по двум точкам:
Задача
Составим уравнение прямой, проходящей через две точки и
.
Решение: Имеем ,
,
,
. Подставим эти значения в уравнение прямой, проходящей через две заданные точки:
Умножим левую и правую части уравнения на 5, получим:
– получившееся уравнение прямой.
Давайте сделаем проверку – если мы все решили правильно, то при подстановке координат точек и
мы получим верное равенство. Итак, подставим сначала координаты точки
:
Теперь координаты точки :
Значит, уравнение прямой мы нашли верно.
Ответ:
Условие прохождения прямой через три заданные точки
Если нам в задаче нужно убедиться, что три точки с заданными координатами лежат на одной прямой, можно рассуждать так:
- Если две точки с заданными координатами образуют прямую, то их координаты удовлетворяют уравнению прямой, проходящей через две точки.
- Если третья точка также лежит на этой прямой, то и ее координаты будут удовлетворять этому уравнению.
Таким образом, если нам даны три точки ,
и
, лежащие на одной прямой, то их координаты будут удовлетворять условию:
Теперь вы легко сможете составить уравнение прямой по двум точкам, а также найти угловой коэффициент прямой и проверить – принадлежит ли третья точка этой прямой.
Загрузить PDF
Загрузить PDF
В тригонометрии есть задачи, в которых нужно найти уравнение прямой. При этом даны либо координаты одной точки и угловой коэффициент, либо координаты двух точек, которые лежат на прямой. В любом случае найти уравнение прямой довольно легко, если использовать соответствующие формулы.
-
1
Подставьте значение углового коэффициента «k» в альтернативное уравнение прямой y-y1 = k(x-x1). С помощью этого уравнения, в котором присутствуют координаты точки, которая лежит на прямой, можно найти координаты точки пересечения прямой с осью Oy. Данное значение углового коэффициента «k» подставьте вместо «k» в уравнении y-y1= k(x-x1).[1]
- Например, угловой коэффициент k = 2, тогда уравнение запишется так: y-y1= 2 (x-x1).
-
2
Вместо x1 и y1 подставьте координаты данной точки, чтобы записать окончательное уравнение прямой.[2]
- Например, если дана точка с координатами (4,3), уравнение запишется так: y-3 = 2(x-4).
-
3
Изолируйте «y», чтобы записать уравнение прямой в конечном виде. Чтобы раскрыть скобки, примените свойство дистрибутивности, а затем следуйте определенному порядку выполнения математических операций.
- Раскрыв скобки, вы получите: y-3 = 2x-8.
- Теперь прибавьте 3 к каждой стороне уравнения, чтобы изолировать «y».
- Окончательное уравнение прямой, которая проходит через точку с координатами (4, 3) и имеет угловой коэффициент 2, запишется так: y = 2x-5.
Реклама
-
1
Вычислите угловой коэффициент по формуле k = (y2-y1)/(x2-x1). Вам будут даны две пары координат; каждая пара координат записывается так: (x, y). Первую пару координат обозначьте как (x1, y1), а вторую как (x2, y2). Подставьте числа в формулу k = (y2-y1)/(x2-x1) и вычислите угловой коэффициент k.[3]
- Например, даны две точки с координатами (3,
и (7, 12). Тогда формула запишется так: k = (12-8)/(7-3) = 4/4 = 1. В этом примере угловой коэффициент k = 1.
- Например, даны две точки с координатами (3,
-
2
Подставьте найденное значение углового коэффициента k в стандартное уравнение прямой. Уравнение прямой имеет следующий вид: y = kx + b, где k — угловой коэффициент, b — координата «y» точки пересечения прямой с осью Oy. В уравнение прямой подставьте найденное значение углового коэффициента вместо «k».[4]
- В нашем примере уравнение прямой запишется так: y = 1x + b или y = x + b.
-
3
Вместо «x» и «y» подставьте координаты одной из данных точек, чтобы найти «b». Координаты подставьте в уравнение прямой — вместо «х» подставьте координату «х», а вместо «y» координату «y».[5]
- В нашем примере возьмем точку с координатами (3, 8). Тогда уравнение прямой запишется так: 8 = 1(3) + b.
- Используйте координаты одной из двух данных точек, но никогда не смешивайте координаты сразу двух точек.
-
4
Вычислите «b». Сделайте это, когда в уравнение прямой подставите значения «k», «х» и «у». Изолируйте «b» на одной стороне уравнения, следуя определенному порядку выполнения математических операций.[6]
- В нашем примере уравнение приняло вид 8 = 1(3) + b. Умножьте 1 на 3 и получите 8 = 3 + b. Теперь вычтите 3 из каждой стороны уравнения, чтобы изолировать «b». Вы получите 5 = b, или b = 5.
-
5
Подставьте найденные значения «k» и «b» в уравнение прямой, чтобы записать его в окончательном виде.
- В нашем примере уравнение прямой, которая проходит через точки с координатами (3,
и (7, 12), запишется так: y = 1x + 5 или просто y = x + 5.
Реклама
- В нашем примере уравнение прямой, которая проходит через точки с координатами (3,
Об этой статье
Эту страницу просматривали 31 354 раза.


и (7, 12). Тогда формула запишется так: k = (12-8)/(7-3) = 4/4 = 1. В этом примере угловой коэффициент k = 1.