Написать уравнение окружности
Рассмотрим некоторые примеры, в которых требуется написать уравнение окружности по заданным условиям.
1) Написать уравнение окружности с центром в точке K(5;-1) и радиусом 7.
Уравнение окружности с центром в точке (a;b) и радиусом R имеет вид:
Так как центр окружности — точка K(5; -1), то a=5, b=-1.Подставляем эти данные в уравнение окружности:
2) Напишите уравнение окружности с центром в точке A (8;-3) проходящей через точку C(3;-6).
Так как центр окружности — точка A(8; -3), то a=8, b=-3.
Остаётся найти радиус. Он равен расстоянию от центра окружности до точки, лежащей на окружности, то есть в данном случае радиус окружности равен расстоянию между точками A и C.
Следовательно, уравнение данной окружности
3) Составить уравнение окружности, диаметром которой является отрезок AB, если A (-4; -9), B(6;5).
Центром окружности является середина диаметра, в нашем случае — середина отрезка AB. По формулам координат середины отрезка
Центр окружности — точка O(1;-2). Значит, a=1, b=-2.
Радиус можно найти как расстояние от центра окружности до любой из точек A или B окружности. Например,
Таким образом, уравнение окружности с диаметром AB —
4) Написать уравнение окружности, проходящей через три точки: A(4; -5), B(8; 3) C(-8; 11).
Так как точки A, B C принадлежат окружности, то их координаты удовлетворяют уравнению окружности. Подставив координаты точек в уравнение
получаем систему уравнений:
Поскольку правые части уравнений равны, левые также равны. Приравняв правые части 1-го и 2-го уравнений получим
Приравняем правые части 2-го и 3-го уравнений:
на -1 и сложив результат почленно с уравнением
получаем a=-2, b=3. Подставив этот результат в первое уравнение системы:
Следовательно, уравнение окружности, проходящей через три данные точки —
5) Написать уравнение окружности, описанной около треугольника ABC с вершинами в точках A(2; 6), B(1; 5) C(8; -2).
Решение аналогично решению задания 4. В результате получим уравнение
Уравнение с двумя переменными и его график. Уравнение окружности
п.1. Понятие уравнения с двумя переменными
Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, (mathrm) – гипербола.
Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.
Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = (mathrm<frac1x>) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).
п.2. Обобщенные правила преобразования графика уравнения
Пусть F(x; y) = 0 – исходный график некоторой функции
Симметричное отображение относительно оси OY
Симметричное отображение относительно оси OX
Центральная симметрия относительно начала координат
Параллельный перенос графика на a единиц вправо
Параллельный перенос графика на a единиц влево
Параллельный перенос графика на b единиц вниз
Параллельный перенос графика на b единиц вверх
Сжатие графика к оси OY в a раз
Сжатие графика к оси OX в b раз
F(x; by) = 0
0 Например:
Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ mathrm <(x-2)^2+(y-1)^2=9>$$
п.4. Примеры
Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: ( mathrm<7>=-frac<2> + 2 > ) – это прямая
б) xy + 4 = 0
Выразим y из уравнения: ( mathrm> ) – это гипербола
в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом ( mathrm=2> )
г) x 2 + 5y – 2 = 0
Выразим y из уравнения: ( mathrm<5>> ) – это парабола
Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
( mathrm<5>=-frac25|x|+2> )
Строим график для ( mathrm ), а затем отражаем его относительно оси OY в левую полуплоскость.
б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.
в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.
г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).
д) (mathrm<frac<|x-1|><2>+2|y-2|=4>)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.
Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.
Уравнение окружности по заданному центру и радиусу в различных формах
Этот онлайн-калькулятор показывает уравнение окружности в стандартной, параметрической и общей формах, по заданному центру и радиусу окружности. Описание и формулы приведены под калькулятором
Уравнение окружности по заданному центру и радиусу в различных формах
Центр окружности
Уравнение окружности
Уравнение окружности — это алгебраический способ описания всех точек, лежащих на некоторой окружности. То есть если координаты точки x и y обращают уравнение окружности в равенство — эта точка принадлежит данной окружности. Существуют разные формы записи уравнения окружности:
- общее уравнение окружности
- стандартное уравнение окружности 1
- параметрическое уравнение окружности
- уравнение окружности в полярных координатах
Общее уравнение окружности
Общее уравнение окружности с центром и радиусом выглядит так:
,
где
В таком виде довольно сложно судить о свойствах заданной этим уравнением окружности, а именно, о координатах центра и радиусе. Но эту форму достаточно легко привести к стандартной форме (ниже), которая гораздо нагляднее.
Стандартное уравнение окружности
Стандартное уравнение окружности с центром и радиусом выглядит так:
Переход от общей формы к стандартной заключается в применении метода выделения полного квадрата. Получив стандартную форму, можно легко узнать координаты центра и радиус. Подробнее можно посмотреть здесь — Метод выделения полного квадрата и здесь — Нахождение центра и радиуса окружности по общему уравнению окружности.
Параметрическое уравнение окружности
Параметрическое уравнение окружности с центром и радиусом выглядит так:
Уравнение называется «параметрическим», потому что и x и y зависят от «параметра» тета. Это переменная, которая может принимать любые значения (но конечно это должно быть одно и то же значение в обоих уравнениях). Для параметрического уравнения используется определение синуса и косинуса в прямоугольном треугольнике построенном на радиусе и перпендикуляров от точки на окружности до координатных осей.
Уравнение окружности в полярных координатах
Для записи уравнения окружности в полярных координатах требуются полярные координаты центра окружности по отношению к началу координат. Если полярные координаты центра окружности — это , то полярные координаты точки окружности должны удовлетворять следующему уравнению:
,
где a — радиус окружности.
Так, во всяком случае, его называют в англоязычной литературе. Насчет русского термина я не уверен, по-моему эту форму рассматривают просто как еще один способ записи общего уравнения окружности, тем более что переход от общего уравнения к стандартному довольно простой. ↩
http://reshator.com/sprav/algebra/9-klass/uravnenie-s-dvumya-peremennymi-i-ego-grafik-uravnenie-okruzhnosti/
http://planetcalc.ru/8115/
п.1. Понятие уравнения с двумя переменными
Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x2 + 2x – 1 – парабола, (mathrm{y=frac1x}) – гипербола.
Если записать такое выражение: x2(x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.
Все записанные выражения являются уравнениями с двумя переменными.
В общем случае их принято записывать в виде F(x; y) = 0.
Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x2 + 2x – y – 1 = 0 – парабола
F(x; y) = (mathrm{frac1x}) – y = 0 – гипербола
F(x; y)=x2(x + y) + y – 1 = 0 – некоторая кривая (график — ниже).
п.2. Обобщенные правила преобразования графика уравнения
Пусть F(x; y) = 0 – исходный график некоторой функции
F(–x; y) = 0
Симметричное отображение относительно оси OY
F(x; –y) = 0
Симметричное отображение относительно оси OX
F(–x; –y) = 0
Центральная симметрия относительно начала координат
F(x – a; y) = 0
a > 0
Параллельный перенос графика на a единиц вправо
F(x + a; y) = 0
a > 0
Параллельный перенос графика на a единиц влево
F(x; y – b) = 0
b > 0
Параллельный перенос графика на b единиц вниз
F(x; y + b) = 0
b > 0
Параллельный перенос графика на b единиц вверх
F(ax; y) = 0
a > 1
Сжатие графика к оси OY в a раз
F(ax; y) = 0
0 < a < 1
Растяжение графика от оси OY в $frac{1}{a}$ раз
F(x; by) = 0
b > 1
Сжатие графика к оси OX в b раз
F(x; by) = 0
0 < b < 1
Растяжение графика от оси OX в (mathrm{frac{1}{b}}) раз
F(|x|; y) = 0
Зеркальное отображение в левой полуплоскости части графика begin{gather*} left{ begin{array}{ l } mathrm{F(x;y)=0} & \ mathrm{xgt y} & end{array}right. , end{gather*}расположенного в правой полуплоскости.
F(x; |y|) = 0
Зеркальное отображение в нижней полуплоскости части графика begin{gather*} left{ begin{array}{ l } mathrm{F(x;y)=0} & \ mathrm{ygt y} & end{array}right. , end{gather*}расположенного в верхней полуплоскости.
п.3. Уравнение окружности
Окружность с центром в точке O($x_0, y_0$) и радиусом R в прямоугольной системе координат задаётся уравнением: $$ mathrm{(x-x_0)^2+(y-y_0)^2=R^2} $$
Например:
Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ mathrm{(x-2)^2+(y-1)^2=9} $$
п.4. Примеры
Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: ( mathrm{y=frac{-2x+14}{7}=-frac{2}{x} + 2 } ) – это прямая
б) xy + 4 = 0
Выразим y из уравнения: ( mathrm{y=frac{-4}{x}} ) – это гипербола
в) ( x+ 2)2 + y2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом ( mathrm{R=sqrt{4}=2} )
г) x2 + 5y – 2 = 0
Выразим y из уравнения: ( mathrm{y=frac{-x^2+2}{5}} ) – это парабола
Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
( mathrm{y=frac{-2|x|+10}{5}=-frac25|x|+2} )
Строим график для ( mathrm{xgt 0: y=-frac25 x+2} ), а затем отражаем его относительно оси OY в левую полуплоскость.
б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.
в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.
г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).
д) (mathrm{frac{|x-1|}{2}+2|y-2|=4})
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.
Пример 3. Постройте график уравнения:
а) x2 + y2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x2 + 4x + 4) + (y2 – 6y + 9) – 9 = 0
(x + 2)2 + (y – 3)2 = 32 – уравнение окружности с центром (–2; 3), радиусом 3.
б) (mathrm{x^2+y^2-x+8y+15frac14=0})
Выделим полные квадраты:
(mathrm{left(x^2-x+frac14right)+(y^2+8y+16)-1=0})
(mathrm{left(x-frac12right)^2+(y+4)^2=1}) – уравнение окружности с центром (mathrm{left(frac12; -4right)}), радиусом 1
Каждое уравнение с
двумя переменными х и у определяет некоторое множество пар (х; у) значений
переменных, которые являются решениями этого уравнения, т. е. задаёт некоторое
отношение между значениями переменной х и значениями
переменной у. График отношения, заданного уравнением с двумя
переменными, или, короче, график уравнения с двумя переменными, есть, как
известно, множество точек плоскости, координаты которых служат решениями
уравнения. Мы знаем, что графиком уравнения вида ax + by = c,
где a ≠ 0 или b ≠ 0,
служит прямая линия, график уравнения вида
y = ax2 +
bx + c (a ≠ 0)
парабола, график
уравнения вида
xy = k
гипербола.
На рисунку
изображён график уравнения
х2 + 9у2
= 81.
Кривая такого вида
называется эллипсом.
Графиком уравнения
(x – a)2 +
(y – b)2 =
r2
является окружность на координатной плоскости хОу с центром в точке О’(a; b) и радиусом
r (r
> 0).
Уравнением фигуры
на плоскости в декартовых координатах
называется уравнение с двумя переменными
х и у, которые будут координатами любой точки фигуры. И наоборот:
любые два числа, которые будут решением этого уравнения, будут координатами некоторой
точки фигуры.
Составим уравнение окружности
с центром в точке А0(а; b) и радиусом R.
Возьмём произвольную
точку А(х; у) на окружности. Расстояние от неё до
центра А0 равно R. Квадрат расстояния от точки А до А0 равен:
(х – a)2
+ (у – b)2.
Таким образом, координаты х, у каждой точки А окружности будут корнями уравнения:
(х – a)2
+ (у – b)2 = R2.
Наоборот: любая
точка А, координаты которой будут решениями уравнения, принадлежат окружности, так как расстояние
от неё до точки А0 равно R. Отсюда вытекает, что это уравнение будет уравнением окружности
с центром А0 и радиусом
R.
Обратите внимание, что
когда центром окружности будет начало координат, то уравнение окружности имеет
вид:
х2 + у2 = R2.
ПРИМЕР:
Какая геометрическая фигура задано уравнением ?
х2 + у2
+ ах + bу + с = 0.
РЕШЕНИЕ:
видим, что искомая фигура – окружность с центром
ПРИМЕР:
Построить график уравнения:
х2 + у2
= 16.
Перепишем уравнение в виде
(х – 0)2 + (у – 0)2 = 42.
Графиком этого уравнения является окружность с центром в
точке О(0;
0) и
радиусом 4.
ПРИМЕР:
Построить график уравнения:
(х – 1)2 + (у – 2)2 = 9.
Перепишем уравнение в виде
(х – 1)2 + (у – 2)2 = 32.
Графиком этого уравнения является окружность с центром в
точке (1;
2) и
радиусом 3.
ПРИМЕР:
Построить график уравнения:
х2 + у2
+ 4х = 0.
Перепишем уравнение в виде
х2 +
4х + 4 + у2 = 4,
(х + 2)2 + у2
= 4,
(х – (–2))2 + (у – 0)2 = 22,
Графиком этого уравнения является окружность с центром в
точке (–2;
0) и
радиусом 2.
От графиков функций
необходимо отличать графики уравнений.
ПРИМЕР:
На координатной плоскости изображена окружность радиусом r = 5 с центром в начале координат. Уравнение этой окружности:
х2 + у2
= 25.
Можно сказать и так: графиком уравнения
х2 + у2
= 25
будет окружность, изображённая на рисунку.
А можно график уравнения
х2 + у2
= 25
считать графиком некоторой функции ? Нет. Если переменные х и у связаны соотношением
х2 + у2
= 25,
то одному значению
х = 3 соответствует два
разных значения переменной у: 4 и –4.
А соотношение между переменными х и у только тогда считается функцией, когда каждому
значению х из области определения соответствует одно
значение у.
График уравнения только тогда будет графиком некоторой функции, если каждая
прямая, параллельная оси у, пересекает
его не больше чем в одной точке.
ПРИМЕР:
Изображённые на рисунке полуокружности – графики функций
Их объединение – вся окружность – график не функции, а уравнения
у2 = 25 – х2, или
у2 +
х2 = 25.
Задания к уроку 27
Содержание:
Окружность:
Определение: Кривой второго порядка называется линия, описываемая уравнением
Замечание: Если коэффициенты
При определенных значениях параметров, входящих в это уравнение, оно дает канонические у равнения окружности, эллипса (не путать с овалом), гиперболы и параболы. Рассмотрим эти кривые второго порядка в указанной последовательности.
Определение: Окружностью называется геометрическое место точек равноудаленных от выделенной точки 
Получим уравнение окружности (Рис. 27). Пусть точка М(х;у) лежит на окружности:
Рис. 27. Вывод уравнения окружности.
Из рисунка видно, что по теореме Пифагора 
Рис. 28. Окружность.
Если 

Пример:
Составить уравнение окружности, центр которой совпадает с точкой М (2; 1), прямая линия 
Решение:
Радиус окружности равен расстоянию от центра окружности точки М (2; 1) до прямой l, т.е.
В уравнении окружности 
Пример:
Составить уравнение окружности, касающейся двух параллельных прямых 
Решение:
Прежде всего определим, на какой из прямых 





а радиус окружности 








Найдем координаты точки B, которая является пересечением прямых 




Для вычисления координат точки О применим формулы деления отрезка пополам (О): 




Таким образом, уравнение искомой окружности имеет вид:
Окружность в высшей математике
Рассмотрим уравнение
которое получается из уравнения (I), если положить 

Если в формулу, выражающую расстояние между двумя точками, подставить 










Пример:
Найдем уравнение окружности с центром в точке 
Решение:
Полагая


Разрешим это уравнение относительно 
и
Первое из этих уравнений есть уравнение верхней половины окружности, второе—нижней.
Центральный угол. Градусная мера дуги
Дуга окружности. Если отметить на окружности точки 






Центральный угол. Угол, вершина которого находится в центре окружности, называется центральным углом. Дугу окружности можно измерять в градусах. Градусная мера дуги равна градусной мере соответствующего центрального угла:
Сумма всех центральных углов окружности, не имеющих общую внутреннюю точку, равна
Дуги окружности и их величины
Пример: 


Конгруэнтные дуги
В окружности конгруэнтным центральным углам соответствуют конгруэнтные дуги и наоборот.
Если
Если
Длина дуги
Какую часть составляет центральный угол от всей окружности, такую же часть длина дуги составляет от длины всей окружности.
Длина дуги в 

Длина дуги, соответствующей центральному углу с градусной мерой 

Длина дуги выражается единицами измерения длины (мм, см, м, и т.д.)
Пример №1
Длина окружности равна 72 см. Найдите длину дуги, соответствующей центральному углу 
Решение:
Так как центральный угол 

Пример №2
Найдите длину дуги, соответствующей центральному углу 
Решение: подставляя значения 
Окружность и хорда
Теорема о конгруэнтных хордах
Теорема 1. Хорды, стягивающие конгруэнтные дуги окружности, конгруэнтны.
Обратная теорема 1. Дуги, стягиваемые конгруэнтными хордами окружности, конгруэнтны.
1)Если 
2)Если
Доказательство теоремы 1:
Теорема о серединном перпендикуляре хорд
Теорема 2.
Диаметр, перпендикулярный хорде, делит хорду и соответствующую дугу пополам.
Если
Доказательство теоремы 2.
Дано: 
Докажите:
Начертите радиусы 

Следствие 1. Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и ее дугу пополам.
Следствие 2. Центр окружности расположен на серединном перпендикуляре хорды. Серединный перпендикуляр хорды проходит через центр окружности.
Пример: Найдите расстояние от центра до хорды длиной 30 единиц в окружности радиусом 17 единиц. Если 


Теорема о хордах, находящихся на одинаковом расстоянии от центра окружности
Теорема 3.
Конгруэнтные хорды окружности находятся на одинаковом расстоянии от центра окружности.
Если 
Обратная теорема 3. Хорды, находящиеся на одинаковом расстоянии от центра окружности, конгруэнтны.
Доказательство теоремы 3
Дано: Окружность с центром
Докажите:
Доказательство (текстовое): Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и стягивающую ее дугу пополам. 












Задача. Хорды 



Решение: Так как хорды 









Так как
Угол, вписанный в окружность
Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется углом вписанным в окружность. Дуга, соответствующая углу, вписанному в окружность, называется дугой, на которую опирается этот угол.



Угол, вписанный в окружность:
Теорема 1. Градусная мера угла, вписанного в окружность, равна половине градусной меры дуги, на которую он опирается.
Доказательство (текстовое): 










Следствие 1. Угол, вписанный в окружность, равен половине соответствующего центрального угла.
Следствие 2. Угол, вписанный в окружность и опирающийся на диаметр (полуокружность), является прямым углом.
Конгруэнтные углы, вписанные в окружность
Следствие 3. Вписанные углы, опирающиеся на одну и ту же дугу, конгруэнтны. 

Следствие 4. Вписанные углы, опирающиеся на конгруэнтные дуги, конгруэнтны. Если 

Касательная к окружности
Касательная. Признак касательной
Прямая, имеющая одну общую точку с окружностью, называется касательной. Теорема 1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Прямая 

Прямая, касающаяся обеих окружностей, называется общей касательной этих окружностей. Окружности, касаясь друг друга изнутри или извне, могут иметь общую касательную в одной точке. Также окружности могут касаться одной касательной в разных точках.
Две окружности могут иметь несколько общих касательных или вообще не иметь общих касательных.
Доказательство теоремы 1. Если прямая 









Свойства касательных, проведенных к окружности из одной точки
Теорема 2. Отрезки касательных к окружности, проведенных из одной точки, конгруэнтны, и центр окружности находится на биссектрисе угла, образованного касательными.




Углы, образованные секущими и касательными
Прямая, имеющая две общие точки с окружностью, называется секущей окружности.
Углы между двумя секущими
Вершина угла находится внутри окружности
Теорема. Если вершина угла, образованного двумя секущими, находится внутри окружности, то градусная мера угла равна полусумме величин дуг на которые опирается этот угол и угол вертикальный данному.
Углы между касательной и секущей
Вершина угла находится на окружности
Теорема. Если вершина угла, образованного касательной и секущей, находится на окружности, то градусная мера угла равна половине градусной меры дуги, на которую он опирается.
Углы, образованные касательной и секущей
Вершина угла находится вне окружности
Теорема 1.
Градусная мера угла, образованного секущей и касательной, двумя касательными, двумя секущими окружности (если вершина угла находится вне окружности), равна половине разности градусных мер дуг, находящихся между сторонами угла.
Отрезки секущих и касательных
Длина отрезков, секущих окружность
Теорема 1. При пересечении двух хорд, произведение отрезков одной хорды, полученных точкой пересечения, равно произведению отрезков второй хорды.

Теорема 2. Если из точки 




Теорема 3. Если из точки 



Уравнение окружности
Используя формулу расстояния между двумя точками, можно написать уравнение окружности с радиусом 






Уравнение окружности с центром в начале координат и радиусом 
Например, уравнение окружности с центром в начале координат 
По формуле расстояния между центром окружности 




Например, уравнение окружности с центром в точке 
Пример №3
Постройте на координатной плоскости окружность, заданную уравнением
Решение: Напишем уравнение в виде 
Отметим 4 точки, находящиеся на расстоянии 5 единиц от начала координат. Например, 
Пример №4
Точка 
Решение: Записав координаты точки 


Пример №5
Найдем центр и радиус окружности, заданной уравнением
Решение:
Центр окружности точка 
Пример №6
Мобильные телефоны работают с помощью передачи сигналов посредством спутников из одной передающей станции в другую. Компания мобильного оператора старается расположить передающую станцию так, чтобы обслуживать больше пользователей. Представим, что три больших города находятся в точках 
Решение: Сначала соединим эти точки и найдем точку пересечения серединных перпендикуляров сторон полученного треугольника. Эта точка 
Уравнение окружности:
Заметка. Определив линейные уравнения, соответствующие серединным перпендикулярам, можно найти координаты центра окружности решением системы уравнений.
Координаты точек, находящихся на окружности, и тригонометрические отношения
Если точка 




Для координат точки 






Синусы смежных углов равны, а косинусы взаимно противоположны.
Из этих формул при 
С помощью формул, приведенных выше, вычисление синуса, косинуса, тангенса для тупого угла можно свести к вычислению синуса, косинуса, тангенса острого угла, соответственно.
Сектор и сегмент
Сектор часть круга, ограниченная центральным углом, образованным двумя радиусами и соответствующей этому углу дугой. Площадь сектора, соответствующего центральному углу, составляет ту часть площади круга, которую составляет центральный угол от полного угла.
Например, часть круга, соответствующая центральному углу 



Площадь сектора
Площадь сектора:
Площадь сегмента:
Указание: При нахождении площади сегмента, соответствующего большей дуге, к площади соответствующего сектора прибавляется площадь
- Эллипс
- Гипербола
- Парабола
- Многогранник
- Сфера в геометрии
- Шар в геометрии
- Правильные многогранники в геометрии
- Многогранники
Рассмотрим некоторые примеры, в которых требуется написать уравнение окружности по заданным условиям.
1) Написать уравнение окружности с центром в точке K(5;-1) и радиусом 7.
Решение:
Уравнение окружности с центром в точке (a;b) и радиусом R имеет вид:
Так как центр окружности — точка K(5; -1), то a=5, b=-1.Подставляем эти данные в уравнение окружности:
2) Напишите уравнение окружности с центром в точке A (8;-3) проходящей через точку C(3;-6).
Решение:
Так как центр окружности — точка A(8; -3), то a=8, b=-3.
Остаётся найти радиус. Он равен расстоянию от центра окружности до точки, лежащей на окружности, то есть в данном случае радиус окружности равен расстоянию между точками A и C.
Следовательно, уравнение данной окружности
3) Составить уравнение окружности, диаметром которой является отрезок AB, если A (-4; -9), B(6;5).
Решение:
Центром окружности является середина диаметра, в нашем случае — середина отрезка AB. По формулам координат середины отрезка
Центр окружности — точка O(1;-2). Значит, a=1, b=-2.
Радиус можно найти как расстояние от центра окружности до любой из точек A или B окружности. Например,
Таким образом, уравнение окружности с диаметром AB —
4) Написать уравнение окружности, проходящей через три точки: A(4; -5), B(8; 3) C(-8; 11).
Решение:
Так как точки A, B C принадлежат окружности, то их координаты удовлетворяют уравнению окружности. Подставив координаты точек в уравнение
получаем систему уравнений:
Поскольку правые части уравнений равны, левые также равны. Приравняв правые части 1-го и 2-го уравнений получим
Приравняем правые части 2-го и 3-го уравнений:
Умножив уравнение
на -1 и сложив результат почленно с уравнением
получаем a=-2, b=3. Подставив этот результат в первое уравнение системы:
получаем R²=100.
Следовательно, уравнение окружности, проходящей через три данные точки —
5) Написать уравнение окружности, описанной около треугольника ABC с вершинами в точках A(2; 6), B(1; 5) C(8; -2).
Решение аналогично решению задания 4. В результате получим уравнение









































































































































![Rendered by QuickLaTeX.com [left{ begin{array}{l} {(4 - a)^2} + {( - 5 - b)^2} = {R^2}\ {(8 - a)^2} + {(3 - b)^2} = {R^2}\ {( - 8 - a)^2} + {(11 - b)^2} = {R^2} end{array} right.]](https://www.treugolniki.ru/wp-content/ql-cache/quicklatex.com-1b6af6ba9c2f16e2223e654fc885b160_l3.png)