- Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
- Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
- Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.
Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.
Решение неполных квадратных уравнений
Как мы уже знаем, есть три вида неполных квадратных уравнений:
- ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
- ax 2 + c = 0, при b = 0;
- ax 2 + bx = 0, при c = 0.
Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.
Как решить уравнение ax 2 = 0
Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.
Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.
Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.
Пример 1. Решить −6x 2 = 0.
- Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
- По шагам решение выглядит так:
Как решить уравнение ax 2 + с = 0
Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.
Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.
Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:
- перенесем c в правую часть: ax 2 = — c,
- разделим обе части на a: x 2 = — c/а.
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.
Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.
Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:
- не имеет корней при — c/а 0.
| В двух словах |
|---|
Пример 1. Найти решение уравнения 8x 2 + 5 = 0.
-
Перенесем свободный член в правую часть:
Разделим обе части на 8:
Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.
Как решить уравнение ax 2 + bx = 0
Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.
Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:
Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.
Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.
Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:
Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0
0,5x = 0,125,
х = 0,125/0,5
Ответ: х = 0 и х = 0,25.
Как разложить квадратное уравнение
С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:
Формула разложения квадратного трехчлена
Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).
Дискриминант: формула корней квадратного уравнения
Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:
где D = b 2 − 4ac — дискриминант квадратного уравнения.
Эта запись означает:
Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.
Алгоритм решения квадратных уравнений по формулам корней
Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.
В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.
Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:
- вычислить его значение дискриминанта по формуле D = b 2 −4ac;
- если дискриминант отрицательный, зафиксировать, что действительных корней нет;
- если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
- если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней
Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!
Примеры решения квадратных уравнений
Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.
Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.
- Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
- Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
- Найдем корень
Ответ: единственный корень 3,5.
Пример 2. Решить уравнение 54 — 6x 2 = 0.
-
Произведем равносильные преобразования. Умножим обе части на −1
Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую
Ответ: два корня 3 и — 3.
Пример 3. Решить уравнение x 2 — х = 0.
-
Преобразуем уравнение так, чтобы появились множители
Ответ: два корня 0 и 1.
Пример 4. Решить уравнение x 2 — 10 = 39.
-
Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую
Ответ: два корня 7 и −7.
Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.
-
Найдем дискриминант по формуле
D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112
Ответ: корней нет.
В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.
Формула корней для четных вторых коэффициентов
Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.
Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:
2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>
Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:
где D1 = n 2 — ac.
Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.
Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:
- вычислить D1= n 2 — ac;
- если D1 0, значит можно найти два действительных корня по формуле
Формула Виета
Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:
Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.
Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:
Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.
Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.
Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:
Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>
Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>
Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>
Результат проделанных вычислений в том, что мы убедились в справедливости выражения:
Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:
Обратная теорема Виета
Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.
Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.
Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.
-
Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>
Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.
Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.
Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:
Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>
Упрощаем вид квадратных уравнений
Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.
Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.
Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.
Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.
Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.
А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения
умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.
Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.
Связь между корнями и коэффициентами
Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:
Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.
Например, можно применить формулы из теоремы Виета:
Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.
Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:
Теорема Виета
Приведенное квадратное уравнение и его корни
Приведенным квадратным уравнением называется уравнение вида:
Для корней $x_1$ и $x_2$ приведенного квадратного уравнения (при $D ge 0$) справедливо следующее:
$$ x_1+x_2 = -b, quad x_1 x_2 = c $$
$$ x_1 = -6, x_2 = 1, quad x_1+x_2 = -5, quad x_1 x_2 = -6 $$
Теорема Виета
Для корней $x_1$ и $x_2$ квадратного уравнения $ax^2+bx+c = 0$ (при $D ge 0$) справедливо следующее:
$$ ax^2+bx+c = a(x-x_1 )(x-x_2 ) $$
$$ 2x^2+5x-3 = 2 left(x-frac<1> <2>right)(x+3) $$
$$ x_1 = frac<1><2>, x_2=-3, quad x_1+x_2=-frac<5><2>, quad x_1 x_2 = — frac<3> <2>$$
Примеры
Пример 1. Составьте квадратное уравнение по его корням:
Искомое уравнение: $x^2-3x-10 = 0$
Искомое уравнение: $x^2-3,5x-2 = 0$
$$ left(x-frac<1> <3>right) left(x-frac<1> <2>right) = x^2- left(frac<1><3>+frac<1> <2>right)x+frac<1> <3>cdot frac<1> <2>= x^2-frac<5> <6>x+frac<1> <6>$$
Искомое уравнение: $x^2-frac<5> <6>x+frac<1> <6>= 0 или 6x^2-5x+1 = 0$
$г) frac<3><5>$ — один корень
$$ left(x-frac<3> <5>right)^2 = x^2-2 cdot frac<3> <5>x+ left(frac<3> <5>right)^2 = x^2-frac<6> <5>x+frac<9><25>$$
Искомое уравнение: $x^2-frac<6> <5>x+ frac<9> <25>= 0$ или $25x^2-30x+9 = 0$
Пример 2. Один из корней уравнения $x^2+bx-21 = 0$ равен 3. Найдите другой корень и коэффициент b.
По теореме Виета можем записать:
Получаем: второй корень равен -7, уравнение имеет вид $x^2+4x-21 = 0$.
Ответ: $x_2$ = -7, b = 4
Пример 3. Один из корней уравнения $x^2+3x+c = 0$ равен 12. Найдите другой корень и коэффициент c.
По теореме Виета можем записать:
$$ <left< begin x_2+12 = -3 \ 12x_2 = c end right.> Rightarrow <left< begin x_2 = -15 \ c = 12 cdot (-15) = -180 end right.> $$
Получаем: второй корень равен -15, уравнение имеет вид $x^2+3x-180 = 0$.
Ответ: $x_2$ = -15, c = -180
Пример 4*. Дано уравнение $x^2+5x-7 = 0$ с корнями $x_1$ и $x_2$.
Не решая его, постройте уравнение:
а) с корнями $y_1 = frac<1>, y_2 = frac<1>$
По теореме Виета для корней исходного уравнения получаем:
Для корней искомого уравнения можем записать:
$$ y^2-frac<5> <7>y-frac<1> <7>= 0 iff 7y^2-5y-1 = 0 $$
б) с корнями $y_1 = frac ,y_2 = frac $
Для корней искомого уравнения можем записать:
$$ y^2+frac<39> <7>y+1 = 0 iff 7y^2+39y+7 = 0 $$
Составьте приведённое квадратное уравнение, если известны его корни: а) 1 и 5; б) -2 и 3; в) 4 и 6; г) -3 и -6; д) 0,5 и 4; е) 1,2 и -5; ж) 1 и -1; з) 5 и 5. Например
Ваш ответ
решение вопроса
Похожие вопросы
- Все категории
- экономические 43,401
- гуманитарные 33,632
- юридические 17,905
- школьный раздел 607,977
- разное 16,854
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
http://reshator.com/sprav/algebra/8-klass/teorema-vieta/
http://www.soloby.ru/544036/%D1%81%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D1%8C%D1%82%D0%B5-%D0%BF%D1%80%D0%B8%D0%B2%D0%B5%D0%B4%D1%91%D0%BD%D0%BD%D0%BE%D0%B5-%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B5-%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B8%D0%B7%D0%B2%D0%B5%D1%81%D1%82%D0%BD%D1%8B-%D0%BD%D0%B0%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80
Равенство 
В этом уравнении 
Квадратное уравнение есть уравнение 2-й степени. При b = 0 и с = 0 оно принимает вид 
Уравнения 
Уравнение 
Если все члены уравнения 

в котором
Напомним, что решением или корнем уравнения называется такое число, при подстановке которого вместо неизвестного уравнение обращается в верное равенство. Например, числа 3 и —3 являются корнями уравнения

Числа 3 и 5 являются корнями уравнения

Числа 

Решить уравнение с одним неизвестным — значит найти все его корни (или убедиться в их отсутствии).
Решение неполных квадратных уравнений
1. Уравнения вида
Уравнение 




2. Уравнение вида
Уравнение 

Если одновременно а > 0 и с > 0 или одновременно а < 0 и с < 0, то уравнение

решений ие имеет, так как квадрат действительного числа не может равняться отрицательному числу 


действительных корней ие имеют:
Если же одновременно а>0 и с<0 или а<0 и с>0, то 


т. е. два корня:
(Мы здесь воспользовались тем, что уравнение, например, 


Уравнение 


3. Уравнения вида
Уравнение 

Но уравнение 


Следовательно, и равносильное уравнение 
Обратим внимание на то, что один из двух корней уравнения вида 
Примеры:
Уравнение 

Уравнение 
Решение полного квадратного уравнения
1. Для решения уравнения

преобразуем его левую часть путем выделения полного квадрата (см. стр. 107):

Теперь мы можем заменить уравнение

равносильным ему уравнением

Так как 

или

Теперь рассмотрим в отдельности три возможных случая.
Случай 1.
В этом случае преобразованное уравнение, а следовательно, и первоначальное не может иметь действительных корней, так как квадрат действительного числа 

Случай 2.
В этом случае

а потому
Преобразованное уравнение, а следовательно, и первоначальное будет иметь одно решение:
один корень 
Случай 3.
В этом случае

будет равно либо

Следовательно, первоначальное уравнение будет иметь два решения:

Оба эти решения можно записать так:

Выражение 
Из формулы (I) видно, что корни квадратного уравнения определяются дробью, знаменателем которой служит удвоенный коэффициент высшего члена, а числителем—коэффициент при неизвестном первой степени, взятый с противоположным знаком, плюс-минус квадратный корень из дискриминанта.
Мы видели, что один корень квадратного уравнения

определяется по формуле

а другой—по формуле

В том случае, когда 
В том же случае, когда 
Наконец, в том случае, когда 
Таким образом, квадратное уравнение всегда имеет два корня: либо действительных различных, либо действительных одинаковых, либо мнимых различных. Например, уравнение 













Уравнение 
Поясним происхождение понятия кратного корня. Уравнение

можно представить в виде

Приравнивая нулю каждый множитель, содержащий неизвестное, получим q корней, каждый из которых равен 3, т. е. число 3 окажется корнем кратности q. Корень, кратность которого равна единице, называется простым.
Уточнение определения о равносильности уравнений
Теперь, когда мы ввели понятие о кратности корней уравнения, нам необходимо уточнить определение о равносильности уравнений, данное ранее (стр. 185).
Если всякий корень кратности q одного уравнения являете я корнем той же кратности другого уравнения и наоборот, то такие уравнения называются равносильными.
Уравнения

не равносильны. (Для первого уравнения единица является двукратным корнем, а для второго лишь простым.) Уравнения

не равносильны. (Для первого уравнения число 7 является трехкратным корнем, а для второго лишь двукратным.)
Примеры квадратных уравнений:
Значит,
Уравнение действительных корней не имеет.
Примеры задач, приводимых к квадратному уравнению
Задача:
В квартире проектируются две комнаты одинаковой ширины (рис. 74). Длину первой комнаты хотят сделать в 

Найти ширину этих комнат, если их общая площадь должна быть равной 56,7 кв. м.
Обозначим ширину комнат, выраженную в метрах, буквой х.
Тогда площадь первой комнаты будет равна 

или
Отсюда

или последовательно

Значит,

Оба эти числа удовлетворяют уравнению, составленному по условиям задачи. Но самой задаче удовлетворяет лишь первый корень, так как ширина комнаты отрицательной быть не может.
Итак, искомая ширина равна 4,2 м.
Задача:
Пароход должен был пройти расстояние 48 км с определенной средней скоростью. Но по некоторым причинам он шел первую половину пути со скоростью, на 2 км в час меньшей, и вторую половину со скоростью, на 2 км большей, чем ему полагалось. Таким образом, пароход затратил на весь путь 5 час. На сколько минут опоздал пароход?
Пусть средняя скорость парохода должна была быть х км в час. На прохождение первой половины пути пароход затратил 

По условию

Получилось дробное уравнение. Преобразуем его к виду целого уравнения. Для этого умножим обе части уравнения на общий знаменатель 

или

или

Отсюда

Итак

Числа 10 и 

Но мы еще не можем быть уверены в том, что они являются и корнями первоначального уравнения

так как во время преобразований мы умножили левую и правую части уравнения (1) на выражение 
Проверка показывает, что оба эти числа удовлетворяют и первоначальному уравнению.
Действительно, оба равенства

оказываются верными. Итак, числа 10 и 

Но из них только число 10. удовлетворяет условиям самой задачи, так как в этой задаче скорость отрицательной быть не может. Значит, средняя скорость парохода была равной 10 км в час.
Теперь выясним, насколько же минут опоздал пароход с прибытием к месту назначения. Поскольку все расстояние было равно 48 км, а средняя скорость, с которой он должен был пройти это расстояние, составляла 10 км/час, на весь путь он должен был затратить 
Квадратное уравнение вида ax2+kx+c=0
Квадратное уравнение вида
Применяя к уравнению 

или

наконец,

Этой формулой следует пользоваться лишь тогда, когда коэффициент при неизвестном 1-й степени четный.
За дискриминант квадратного уравнения 
Примеры:
Приведенное квадратное уравнение
Применяя к уравнению 

В том случае, когда р — четное, т. е. 

или

что можно записать и так:

Последнюю формулу следует применять в тех случаях, когда в приведенном уравнении коэффициент при неизвестном 1-й степени четный.
Примеры:

Свойства корней квадратного уравнения
Корни уравнения 



Очевидно, что

Итак, 

2. Полученный результат можно записать и в таком виде:

Для уравнения 

Итак, в приведенном квадратном уравнении сумма корней равна коэффициенту при неизвестном первой степени, взятому с противоположным знаком, а произведение — свободному члену:

3. Полученные результаты можно сформулировать и иначе: в приведенном квадратном уравнении коэффициент при неизвестном первой степени равен взятой с противоположным знаком сумме корней, т. е.

а свободный клен равен произведению корней, т. е.

Корень многочлена
- Корнем многочлена (целой рациональной функции)

называется всякое число, которое, будучи подставлено в этот многочлен вместо буквы х, обращает значение многочлена в нуль. Например, числа 1; —2; 5 суть корни многочлена

2. Совокупность корней многочлена

это то же самое, что и совокупность корней уравнения

3. Буква х, входящая в многочлен 


обозначает, собой величину неизвестную, могущую принимать лишь такие значения, которые удовлетворяют этому уравнению. Корнями многочлена

будут как раз корни уравнения

и наоборот.
Корни многочлена

можно находить путем решения уравнения

Разложение на множители многочлена
Разложение на множители многочлена
Теорема:
Многочлен 

где 

Докажем теорему двумя способами.
Способ 1. Обозначим корни многочлена 



Поэтому
что и требовалось доказать.
Способ 2.

Выражения 




Замечание:
Если 







Примеры:
1) Корни многочлена 


2) Корни многочлена 


3) Корни многочлена 
Поэтому

Составление квадратного уравнения по его корням
Способ 1. Пусть 

Примеры:
1) Если корни уравнения 3 и 5, то само уравнение будет:

2) Если корни 

или

3) Если корни 

или

Способ 2. Если корни уравнения 

Этот способ мы можем применить к составлению уравнений любых степеней.
Пусть корни уравнения 3; 5 и 10, тогда само уравнение будет:

или

Пусть корни уравнения — 1; —2; —3; —4. Тогда само уравнение будет:

или

Условие, при котором трехчлен представляет точный квадрат линейной функции
Условие, при котором трехчлен 
Мы знаем, что

Но правая часть этого тождества будет точным квадратом тогда и только тогда, когда

В этом случае мы получаем, что

Итак, трехчлен 2-й степени будет точным квадратом линейной функции с действительными коэффициентами тогда и только тогда, когда его дискриминант равен нулю, а коэффициент при высшем члене положителен.
Уравнения с числовыми коэффициентами, приводимые к квадратным
Биквадратное уравнение
Целое уравнение, содержащее только четвертую, вторую и нулевую степени неизвестного, называется биквадратным.
Общий вид биквадратного уравнения таков:

Решим несколько биквадратных уравнений с числовыми коэффициентами.
Примеры:
1.Найти все корни уравнения

Примем 


Отсюда

Принимая сначала 


Итак, первоначальное уравнение имеет четыре корня:

2. Найти все действительные корни уравнения

Положив 


Отсюда, во-первых, 

Итак, данное биквадратное уравнение имеет лишь два действительных корня: 3 и —3.
3. Показать, что уравнение 


Отсюда

или

Уравнения 
Уравнения, являющиеся квадратными относительно выражения, содержащего неизвестное
Уравнение

есть квадратное уравнение относительно z. Уравнение

есть квадратное уравнение относительно
Примеры:

Полагая 










2. Найти действительные корни уравнения

Перепишем уравнение в виде:

или
Полагая 

отсюда

Принимая сначала

Принимая затем 

Последнее уравнение действительных корней не имеет. Поэтому первоначальное уравнение имеет лишь два действительных корня:

Возвратные уравнения 3-й и 4-й степени
Общий вид возвратного уравнения 3-й степени таков:
Общий вид возвратного уравнения 4-й степени таков:
1. Решим возвратное уравнение 3-й степени:

Разложим левую часть уравнения на множители. Для этого перепишем уравнение в виде:

Последнее уравнение удовлетворяется и тогда, когда х+1 =0, и тогда, когда 
Решая уравнение х+1 =0, получим, что х = —1.
Решая уравнение 

Итак, первоначальное уравнение имеет три корня:

2. Решим возвратное уравнение 4-й степени:

В этом уравнении х не может равняться нулю. Поэтому мы можем разделить все члены данного уравнения на 

Полагая 
или

Принимая все это во внимание, получим следующее уравнение с неизвестным у:

Отсюда найдем два значения неизвестного у, а именно: у = 6 и у = 4. Принимая сначала 


Принимая затем 


Итак, первоначальное уравнение имеет четыре корня:

Вопрос о решении разобранных в этой главе типов уравнений будет рассмотрен полнее во второй части курса.
Теорема Виета
Теорема Виета:
Если квадратное уравнение 
















Многие простые квадратные уравнения могут быть решены с помощью теоремы Виета без вычисления корней по основной формуле.
Этот материал взят со страницы решения задач по математике:
Решение задач по математике
Возможно вам будут полезны эти страницы:
Квадратные уравнения и уравнения, приводящиеся к квадратным
Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.
Целые алгебраические уравнения и их классификация
Уравнение с одним неизвестным называется целым алгебраическим, если обе его части являются целыми алгебраическими выражениями от неизвестного. Например, уравнения

целые алгебраические.
Уравнения же

не являются целыми алгебраическими. Первое из них содержит в знаменателе выражение х + 2 зависящее от неизвестного х. Такого рода уравнения называются дробными алгебраическими. Второе содержит выражение x + 1, зависящее от неизвестного х, под знаком корня. Такие уравнения называются иррациональными.
Важнейшими из алгебраических уравнений являются целые алгебраические. Это обусловлено тем, что решение дробных и иррациональных уравнений может быть сведено к решению целых (с некоторыми приемами такого сведения мы познакомимся в § 16, 17 этой главы).
Обратимся теперь к классификации целых уравнений. Прежде всего напомним, что два уравнения называются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения является решением первого.
В первой части книги было установлено, что если к обеим частям уравнения добавить любой многочлен от неизвестного, то каждое решение исходного уравнения будет решением преобразованного, и обратно, каждое решение преобразованного уравнения будет решением исходного, так что преобразованное уравнение будет равносильно исходному.
В силу этого любое целое алгебраическое уравнение может быть преобразовано в равносильное, в одной части которого находится многочлен от неизвестного, не содержащий подобных членов, а в другой части нуль. Для этого достаточно «перенести все члены уравнения в одну часть», т. е. добавить к обеим частям уравнения выражение, противоположное одной из его частей, а затем раскрыть скобки и привести подобные члены.
Например, уравнение

преобразуется в

и, после раскрытия скобок и приведения подобных членов, в

Степень многочлена, получающегося в одной части уравнения после указанных преобразований, называется степенью исходного уравнения.
Так, уравнение

есть уравнение второй степени, уравнение

равносильное уравнению

есть уравнение третьей степени и т. д.
Неполные квадратные уравнения
Уравнение второй степени называется иначе квадратным уравнением. Любое квадратное уравнение, после перенесения всех его членов в одну часть и приведения подобных членов, приводится к виду

где x — неизвестное, а, b, с —коэффициенты, причем 
Квадратное уравнение называется неполным, если хотя бы один из его коэффициентов равен нулю. Так как старший коэффициент равняться нулю не может, в неполном уравнении должен обращаться в нуль средний коэффициент или свободный член или оба вместе, так что неполное квадратное уравнение может иметь один из следующих трех видов:

Уравнение 



Уравнение 

Здесь могут представиться два случая (если исключить разобранный выше случай c = 0). Если а и с имеют одинаковые знаки, то уравнение не имеет решений, ибо квадрат действительного числа не может равняться отрицательному числу 



Неполное квадратное уравнение последнего вида 

Для того чтобы произведение равнялось нулю, необходимо и достаточно, чтобы хотя бы один из множителей равнялся нулю. Приравнивая к нулю первый множитель, получим одно решение 
Итак, мы рассмотрели все виды неполного квадратного уравнения. Формулируем результаты:
I. 
II. 

HI. 



Приведенное квадратное уравнение
Решение полного квадратного уравнения мы начнем со случая, когда старший коэффициент равен единице. В этом случае уравнение называется приведенным. Общее квадратное уравнение легко преобразуется в равносильное ему, приведенное посредством деления
обеих частей уравнения на старший коэффициент.
Для решения приведенного уравнения

в общем виде применим прием выделения полного квадрата суммы, который применяется при разложении квадратного трехчлена на множители.
Рассмотрим 




или

Это последнее уравнение равносильно исходному, так как его левая часть тождественно равна левой части исходного уравнения.
Далее, перенесем последние два члена в правую часть уравнения с противоположными знаками. Получим новое уравнение

равносильное предыдущему. Теперь могут представиться три случая.
Случай 1.
следовательно и исходное, не может иметь решений, ибо квадрат действительного числа 
Случай 2. 
уравнение будет удовлетворяться только при 

Случай 3. 

или

т. е. если

или

Таким образом, в этом случае уравнение имеет два решения:

Оба эти решения удобно записать в виде одной формулы:

Корень приведенного квадратного уравнения равен половине среднего коэффициента, взятого с противоположным знаком, плюс или минус квадратный корень из квадрата этой половины без свободного члена.
Итак, при решении приведенного квадратного уравнения могут представиться три случая:
Случай 1. 
Случай 2. 
Случай 3. 

Очевидно, что при решении квадратного уравнения нет
необходимости заранее исследовать, который из трех случаев имеет место.
Можно сразу записать решение по формуле, и результат сам покажет, который из случаев имеет место.
Именно, если имеет место первый случай 

вычисленные по формуле, сливаются в один 
Формулу (1) для решения приведенного квадратного уравнения иногда удобно применять в несколько преобразованной форме следующим образом. Очевидно, что

и, следовательно, согласно формуле (1),

или

Формула (2) иногда оказывается удобнее формулы (1), например, если р и q целые числа и р нечетное число или если коэффициенты р и q являются буквенными выражениями. Если же р и q целые числа и р четное число, то формула (1) удобнее.
Запоминать формулу (2) нет необходимости, так как она
непосредственно получается из формулы для решения общего квадратного уравнения, которая будет выведена в следующем параграфе.
Рассмотрим несколько примеров.
Пример:
Решить уравнение

Решение:

Пример:
Решить уравнение

Решение:

Пример:
Решить уравнение

Решение:

Уравнение не имеет действительных решений.
Пример:
Решить уравнение

Решение:
Это уравнение не приведенное. Оно равносильно приведенному

которое получается из исходного посредством деления обеих его частей на 2. Решая это последнее уравнение, получим

Замечание:
Из вывода формулы для решения квадратного уравнения следует, что числа

если только они имеют смысл, действительно являются корнями квадратного уравнения 
Общее квадратное уравнение
Для решения общего квадратного уравнения достаточно его привести, т. е. преобразовать, к приведенному, разделив обе его части на старший коэффициент, и затем воспользоваться формулой для корней приведенного уравнения. Именно так был решен последний пример в предыдущем параграфе.
Однако целесообразно провести эти преобразования в общем виде и получить формулу, позволяющую решить общее квадратное уравнение без предварительного приведения.
Итак, пусть дано уравнение 

к которому можно применить результаты предыдущего параграфа.
Положив 

Если уравнение 


Итак, в том случае, когда уравнение 

Так же, как в случае приведенного уравнения, при решении общего квадратного уравнения нет необходимости заранее проверять, существует решение или нет. Именно, уравнение 
Действительно, решение не существует в том и только в том случае, если

отрицательно. Но

отличается только положительным множителем 

Выражение 
Если дискриминант отрицателен, то, как мы видели, уравнение не имеет действительных корней. Из формулы (3) следует, что если дискриминант положителен, то уравнение имеет два различных действительных корня, если же дискриминант равен нулю, то оба корня сливаются в один:
Формула (3) читается так: корень квадратного уравнения равен дроби, знаменателем которой является удвоенный старший коэффициент, а числителем — средний коэффициент, взятый с противоположным знаком, плюс или минус квадратный корень из дискриминанта.
Если удобно принять b = 2k (например, если b есть целое четное число), формула (3) может быть еще немного упрощена. В этом случае уравнение имеет вид

Именно,
Итак, в том случае, когда уравнение 

Так же, как в случае приведенного уравнения, при решении общего квадратного уравнения нет необходимости заранее проверять, существует решение или нет. Именно, уравнение 
Действительно, решение не существует в том и только в том случае, если

отрицательно. Но

отличается только положительным множителем 



Выражение
Если дискриминант отрицателен, то, как мы видели, уравнение не имеет действительных корней. Из формулы (3) следует, что если дискриминант положителен, то уравнение имеет два различных действительных корня, если же. дискриминант равен нулю, то оба корня сливаются в один:
Формула (3) читается так: корень квадратного уравнения равен дроби, знаменателем которой является удвоенный старший коэффициент, а числителем — средний коэффициент, взятый с противоположным знаком, плюс или минус квадратный корень из дискриминанта.
Если удобно принять b = 2k (например, если b есть целое четное число), формула (3) может быть еще немного упрощена. В этом случае уравнение имеет вид

Согласно формуле (3),

Итак, уравнение 

Пример:
Решить уравнение

Решение:

Замечание:
Введение иррациональных чисел не является последним этапом в расширении понятия числа. Дальше вводятся еще так называемые комплексные числа, после введения которых действие извлечения квадратного корня из отрицательного числа оказывается осуществимым. После введения комплексных чисел мы будем вправе считать, что и в случае отрицательного дискриминанта квадратное уравнение имеет корни, но эти корни не являются действительными числами.
Замечание:
Формула (3) пригодна, конечно, и для решения неполных квадратных уравнений. Например, для уравнения 

в соответствии с прежним результатом *)
Замечание:
Иногда нужно рассматривать уравнение первой степени как частный случай квадратного, в котором старший коэффициент равен нулю. Это целесообразно, например, если некоторая задача, поставленная в общем виде, приводит к квадратному уравнению, в котором, в зависимости от численных данных задачи, коэффициенты изменяются и, в частности, старший коэффициент может принимать значение, равное нулю.
*) Строго говоря, 



Формула (3) при а = 0 дает бессмысленный результат, ибо ее знаменатель 2а обращается в нуль. Однако формулу (3) можно преобразовать так, что она окажется пригодной и для этoго случая. Мы проведем это преобразование, предположив сначала, что

Полученная формула

применима при 
При а = 0 формула (5) дает

Если в этом результате взять верхний знак, получим

т. е. мы действительно получаем корень уравнения первой степени bх+c=0. Нижний знак приводит к бессмысленному результату, так как знаменатель обращается в 0.
Формула (5) оказывается удобной при приближенном решении квадратного уравнения в случае, если старший коэффициент очень мал по сравнению с остальными коэффициентами.
Задачи, приводящиеся к квадратным уравнениям
Квадратные уравнения, так же как уравнения первой степени, оказываются полезными при решении многих задач. Заметим, что если задача приводится к решению квадратного уравнения, обычные приемы и правила арифметики оказываются бессильными для решения такой задачи, в то время как задачи, приводящиеся к уравнениям первой степени, по большей части могут быть решены и средствами арифметики.
При решении задачи, сводящейся к квадратному уравнению, необходимо, после того как уравнение составлено и решено, производить проверку полученных корней по смыслу задачи. При этом часто оказывается, что из двух полученных корней отвечает смыслу задачи лишь один.
Задача:
Дети поехали на лодке и поднялись на веслах на 6 км от пристани против течения реки. Затем они ловили рыбу, останавливаясь в разных местах. Через 3 часа они оказались в 2 км ниже первой остановки и, окончив ловлю, пошли на веслах обратно к пристани. Всего они пробыли на лодке 5 часов. Какова скорость лодки в стоячей воде, если известно, что скорость течения реки равна 2 км/час.
Решение:
Обозначим скорость лодки в стоячей воде (в км/час) через х. Тогда скорость лодки при. движении против течения реки равна х — 2 км/час, при движении по течению равна х+2 км/час.
Дети гребли против течения реки 6 км, на это они затратили 


Уравнение составлено. Умножим обе его части на общий знаменатель 

После очевидных преобразований мы получим

откуда

Оба корня удовлетворяют уравнению (1), что легко проверяется подстановкой их в это уравнение. Однако по смыслу задачи подходит только первый корень
Ответ. 6 км/час.
Задача:
Периметр прямоугольника равен 20 см. Площадь этого прямоугольника равна 25 см ² . Определить стороны прямоугольника.
Решение:
Обозначим длину основания прямоугольника через х см. Тогда высота прямоугольника равна 10 — х см, ибо сумма длин основания и высоты равна полупериметру. Следовательно, площадь прямоугольника равна

По условию задачи

отсюда

Уравнение имеет единственный корень х = 5, и он подходит по смыслу задачи.
Ответ. 5 см.
Задача:
Сторона квадрата ABCD равна 10 см. От его вершин в направлении обхода по часовой стрелке (рис. 42) отложены равные отрезки А а, В b, С с, D d, и точки а, b, с, d соединены прямыми. Площадь квадрата abcd равна 40 см. Определить длину отрезка А а.
Решение:
Обозначим длину отрезка А а через х см. Тогда длина каждого из отрезков а В, b С, c D, d A равна 10 — х см. Треугольники aBb, cDd, будучи приложены по гипотенузам, составляют прямоугольник со сторонами х и 10—х см и, следовательно, сумма их площадей равна x (10 — х)см ² — Точно так же сумма площадей треугольников aAd и bСс равна x (10 — х) см ². Но

Следовательно,

откуда

Это уравнение действительных решений не имеет. Следовательно, и задача не имеет решения.
Ответ. Задача не имеет решения.
Проведем теперь исследование последней задачи, выяснив, как следует изменить условие задачи, чтобы подобная задача имела решение. При этом будет вскрыта причина, в силу которой данная задача не имеет решения. С этой целью поставим задачу в общем виде, заменив все численные данные буквами. Итак, пусть сторона квадрата ABCD равна 1 см и площадь квадрата abcd равна s см ² .
Рассуждая таким же образом, как при численных данных, мы получим для х = А а уравнение

или

Решая по формуле (4), получим

Для того чтобы уравнение, к которому свелось решение задачи, имело действительные решения, необходимо и достаточно, чтобы число 

Однако даже если уравнение имеет решение, задача может решений не иметь, если корни не подходят по смыслу задачи. В нашей задаче корень х будет подходить по смыслу задачи в том и только в том случае, если так как точка а должна находиться между точками А и В. Очевидно, если корень

удовлетворяет поставленному требованию, то ему удовлетворяет и второй корень

так как 


Таким образом, для выяснения условия существования решения задачи остается установить, когда 

Для выполнения неравенства 

Итак, задача имеет решение в том и только в том случае, если 
Связь между коэффициентами и корнями квадратного уравнения
Рассмотрим сначала приведенное квадратное уравнение

Его корни 

Но во многих приложениях квадратных уравнений часто возникает необходимость выразить коэффициенты квадратного уравнения через его корни. Соответствующие выражения проще всего вывести, сложив и перемножив корни. Сделаем это:

Отсюда следует

Итак, средний коэффициент приведенного квадратного уравнения равен сумме его корней, взятой с обратным знаком. Свободный член приведенного квадратного уравнения равен произведению его корней.
Выведенные формулы называются формулами Виета *).
Теперь легко вывести соотношение между коэффициентами и корнями для общего квадратного уравнения. Общее квадратное уравнение 

В силу формул Виета имеем

Итак, средний коэффициент общего квадратного уравнения равен произведению старшего коэффициента на сумму корней, взятую с обратным знаком; свободный член общего квадратного уравнения равен произведению старшего коэффициента на произведение корней.
*) Виет—французский математик. Родился в 1540 г., умер в 1603 г.
Разложение квадратного трехчлена на множители
Квадратным трехчленом называется многочлен вида

с данными коэффициентами а, b, с, причем а ≠ 0. Коэффициенты а, b, с называются соответственно старшим коэффициентом, средним коэффициентом и свободным членом квадратного трехчлена. Квадратный трехчлен называется приведенным, если его старший коэффициент равен единице. Корнями квадратного трехчлена называются те значения буквы х, при которых трехчлен обращается в нуль. Иными словами, корнями трехчлена 

Пусть 


и, следовательно,

Теперь не представляет труда разложить трехчлен на множители. Действительно,

Итак,

где 
Замечание:
Эта формула применима, конечно, только в случае, если трехчлен 


то числа

которые при подстановке вместо х обращают в нуль множители правой части, являлись бы корнями трехчлена 
Для общего квадратного трехчлена имеем:

Итак,

где
Составление квадратного уравнения по данным корням
Пусть даны два числа 
Очевидно, что в качестве такого уравнения можно взять

или, после раскрытия скобок,

Действительно, если вместо x подставить 

Из формулы Виета следует, что составленное уравнение является единственным решением поставленной задачи. Действительно, если уравнение 



т. е. оно совпадает с составленным выше.
Итак, существует единственное приведенное квадратное уравнение, имеющее своими корнями данные числа 

Примеры и приложения
Рассмотрим несколько примеров на применение результатов § 6—8.
Пример:
Составить приведенное квадратное уравнение, корнями которого являются квадраты корней уравнения

Мы дадим два решения этого примера.
Первое решение. Уравнение 




Второе решение. Пусть 




Но

Следовательно,
Мы пришли к тому же ответу, но при значительно меньших вычислениях.
Ответ.
Пример:
Решить систему уравнений
Решение:
Составим вспомогательное квадратное уравнение, корнями которого являются х и у. Так как сумма и произведение чисел х и у нам известны, это уравнение составляется по формулам Виета, именно, оно есть

Решая его, получим 

Ответ.
Рассмотренный в последнем примере прием применяется к любой системе уравнений вида

Пример:
Решить систему уравнений

Решение:
Составим вспомогательное квадратное уравнение, корнями которого являются х и —у. Так как сумма этих двух чисел равна 7, а произведение x( —у) равно —xy = — 44, вспомогательное уравнение есть

Решив его, получим 

Ответ.
Рассмотренный в последнем примере прием может быть применен к любой системе уравнений вида

В случае, если вспомогательное уравнение при решении системы

не имеет действительных корней, то и сама система действительных решений не имеет.
Исследование корней квадратного уравнения по коэффициенту и дискриминанту
При выводе формулы для решения квадратного уравнения мы выяснили, что значение дискриминанта

Формулы Виета дают дополнительные сведения о корнях квадратного уравнения. Мы ограничимся рассмотрением приведенного квадратного уравнения.
Начнем исследование с рассмотрения уравнения, свободный член которого q отрицателен. В этом случае дискриминант 



Теперь предположим, что свободный член q положителен. В этом случае прежде всего необходимо посмотреть на дискриминант,, он может быть положительным, равным нулю или отрицательным. В последнем случае исследование закончено, так как уравнение не имеет действительных корней. В первых двух случаях уравнение имеет действительные корни 

Результаты проведенного исследования можно объединить в следующую таблицу, в которую мы включаем для полноты и очевидные результаты при q = 0.
Случай 1. q < 0. Два различных корня, имеющих противоположные знаки.
a) p > 0. Отрицательный корень по абсолютной величине больше положительного.
b) р = 0. Корни равны по абсолютной величине.
c) р < 0. Положительный корень больше абсолютной величины отрицательного.
Случай 2. q = 0.
а) р > 0. Один корень равен нулю, другой отрицателен.
b) p = 0. Оба корня равны нулю.
c) p < 0. Один корень равен нулю, другой положителен. Случай 3. q > 0.
a) 
b) 
c) 
Биквадратные уравнения
Уравнение вида

называется биквадратным уравнением. Решение биквадратного уравнения легко сводится к решению квадратного уравнения с последующим извлечением квадратного корня.
Для этого достаточно принять за новую неизвестную 

биквадратное уравнение относительно х является квадратным относительно у. Решив это квадратное уравнение, мы получим, вообще говоря, два значения для у. Извлекая из этих значений квадратные корни (со знаками + и -), если это возможно, мы получим искомые корни биквадратного уравнения.
Пример:
Решить уравнение

Решение:
Положим 


Решая его, получим
Итак, для 

Таким образом, данное биквадратное уравнение имеет четыре корня:

Решение примера можно оформить по-другому, не вводя новой буквы. Именно, записать данное уравнение в виде

откуда

т. е

Ответ. ±3, ±2.
Для биквадратного уравнения число действительных корней вдвое больше числа положительных корней вспомогательного квадратного уравнения
Некоторые уравнения, сводящиеся к квадратным посредством введения нового неизвестного
Способ упрощения уравнения посредством введения нового неизвестного применим не только к биквадратным уравнениям. Решение весьма многих уравнений может быть упрощено при помощи этого приема. Однако невозможно дать какие-либо исчерпывающие общие указания относительно того, когда этот прием может быть применен с успехом. Поэтому мы ограничимся лишь рассмотрением нескольких примеров.
Пример:
Решить уравнение

Решение:
Это уравнение принадлежит к числу иррациональных уравнений, так как в нем неизвестное х входит под знаком квадратного корня. Посредством введения нового неизвестного оно легко сводится к квадратному уравнению.
Действительно, положим 


откуда

Итак, 


Ответ. х = 9.
Пример:
Решить уравнение

Решение:
Данное уравнение есть уравнение четвертой степени — после раскрытия скобок и приведения подобных членов в левой части окажется многочлен четвертой степени относительно неизвестного х. Решение уравнений четвертой степени в общем виде весьма сложно. Однако решение данного выше уравнения не представляет никакого труда.
Введем новое неизвестное: 

Решая его получим

Таким образом,

первом случае имеем

откуда

втором случае получаем

откуда

Итак, данное уравнение имеет четыре решения:

Ответ.
Подстановка 

Некоторые уравнения четвертой степени можно привести к такому виду посредством несложного преобразования левой части.
Пример:
Решить уравнение

Решение:
Это уравнение легко приводится к виду, подобному разобранному в предыдущем примере. Действительно, преобразуем левую часть уравнения, выделив из третьего члена такое слагаемое, которое вместе с первыми двумя образует квадрат суммы. За такое слагаемое нужно взять 

Уравнение приводится к виду

Положив 

Следовательно,

Первое из этих уравнений дает 
Ответ.
Указанный в этом параграфе прием можно применить, конечно, не к любому уравнению четвертой степени. Но в каждом частном случае легко проверяется, возможно ли применение этого приема или нет.
Возвратные уравнения
Уравнение четвертой степени

называется возвратным, если отношение свободного члена к старшему коэффициенту равно квадрату отношения коэффициентов при х и при 

Возвратные уравнения легко решаются посредством специального введения нового неизвестного. Покажем это на примере.
Пример:
Решить уравнение

Решение:
Это уравнение возвратное, так как здесь

и следовательно,

Прием заключается в следующем. Объединим первое слагаемое с последним, второе с предпоследним и поделим обе части уравнения на 

Введем новое неизвестное 

и, следовательно,

Принимая это во внимание получим следующее уравнение относительно y

Решив его, получим
Возвращаясь к неизвестному х, мы получим относительно него два уравнения:

Умножив обе части уравнений на х, получим квадратные уравнения

Решив их, получим

Ответ.
Указанный в приведенном примере прием применим к любому возвратному уравнению.
Действительно, пусть уравнение

возвратное, т. е.

Обозначим отношение 



Теперь ясно, что подстановка 

Частным случаем возвратных уравнений являются так называемые симметрические уравнения 

применяют подстановку 

Второй способ решения биквадратного уравнения
При решении биквадратного уравнения 


Это последнее уравнение после подстановки 
Описанный прием особенно удобен в том случае, когда q является квадратом рационального числа.
Пример:
Решить уравнение

Решение:
Разделив обе части уравнения на 

Положим 

Отсюда

Для у получаем уравнение

Теперь для х получаем два уравнения:

После умножения на х получим

откуда

Интересно отметить, что, решая обычным образом, мы получим решение в совершенно другой, более сложной форме:

Но на самом деле оба ответа, конечно, совпадают.
Действительно,

и, следовательно,

точно таким же образом легко убедимся, что
Ответ.
Совпадение в приведенном примере результатов двух способов решения биквадратного уравнения наводит на мысль о возможности упрощения в некоторых случаях иррациональных выражений вида
Действительно, пусть 


Раскрывая скобки и перенося все члены в одну часть, получим биквадратное уравнение

Решив его по второму способу, получим для х новое выражение, которое будет проще исходного, если 

Пример:
Упростить выражение
Решение:
Здесь 


Пусть 

и, следовательно,

Далее, так как х положительно, то 
Для х получаем такое уравнение:

Из этих двух значений искомым является 
при возведении в квадрат дает
Ответ.
Преобразование уравнений
Как было сказано выше, два уравнения называются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго является решением первого. В первой части книги были выяснены два типа преобразований, переводящих данное уравнение в равносильное:
- Если к обеим частям уравнения прибавить одно и то же число или один и тот же многочлен относительно неизвестного, то полученное в результате этого новое уравнение равносильно исходному.
- Если обе части уравнения умножить или разделить на какое-нибудь число, отличное от нуля, то полученное в результате этого уравнение равносильно исходному (ч. I, гл. VII, § 1).
Однако во многих случаях при решении уравнений приходится производить такие преобразования, после которых полученное уравнение не равносильно исходному, но является только его следствием. Дадим точное определение этого понятия в применении к уравнениям.
Определение. Если все решения уравнения А —В являются также решениями уравнения C—D, то второе уравнение называется следствием первого.
Смысл этого термина легко понять. Пусть А, В, Си D — данные алгебраические выражения от неизвестного лг. Допустим, что уравнение C — D есть следствие уравнения А = В. Это значит, что всякое значение буквы х, при котором удовлетворяется уравнение А = В, удовлетворяет и уравнению C — D. Иными словами, если А = В (т. е. х таково, что численные значения выражений А и В равны), то C = D. Таким образом, здесь слово «следствие» употребляется в том же смысле, что и в повседневной жизни.
Очевидно, что равносильность двух уравнений означает, что каждое из них является следствием другого. Понятия равносильности и следствия без всякого изменения переносятся на уравнения и системы уравнений с несколькими неизвестными.
Рассмотрим несколько примеров, разъясняющих смысл введенных определений.
Уравнение 

Часто можно убедиться в том, что одно уравнение является следствием другого, не решая последнее. В том же примере это можно сделать, например, таким рассуждением: «Если х — 2=1, то 

Теперь сформулируем и докажем несколько теорем, обосновывающих некоторые преобразования данного уравнения в новое, являющееся следствием данного (или равносильного данному). Для полноты изложения поместим и две сформулированные выше теоремы из первой части книги.
Теорема:
Если к обеим частям уравнения добавить одно и то же число или один и тот же многочлен, то получится уравнение, равносильное исходному.
Доказательство:
Пусть данное уравнение есть А = В, где А и В— алгебраические выражения от х, и пусть С есть число или многочлен, зависящий от х.
Если 

Обратно, если 

Итак, каждое решение уравнения А = В оказывается решением уравнения A+С= B+С и, обратно, каждое решение уравнения А+ С= В+ С есть решение уравнения А = В. Уравнения А =В и А+С=В+С действительно равносильны.
Короче, все рассуждения можно провести так. Если (при некотором значении x) А = В, то (при том же значении x) А+С=В+С. Обратно, если (при некотором значении х) А—С—В—С, то (при том же значении х) А = В.
Замечание. В этой теореме существенно, что С есть число или многочлен. Если С есть дробное выражение, то теорема может оказаться неверной — может случиться, что решение уравнения А = В при подстановке в уравнение А+С=В+С дает бессмысленное равенство, если знаменатель С обращается в нуль. Например, уравнения

и

не равносильны: первое из них имеет корень х = 2, второе — корней не имеет.
Теорема:
Если обе части уравнения умножить на одно и то же число, отличное от нуля, то в результате этого преобразования получится уравнение, равносильное исходному.
Доказательство:
Пусть А = В есть данное уравнение, а 
Теорема:
Если обе части уравнения умножить на один и тот же многочлен, то в результате этого преобразования получится уравнение, являющееся следствием исходного.
Доказательство:
Пусть А = В данное уравнение, С — данный многочлен от неизвестного х. Тогда, если (при каком-либо значении х) А = В, то (при том же значении x) АС=ВС. Таким образом, каждое решение уравнения А = В является решением уравнения АС—ВС.
Следовательно, уравнение АС—ВС есть следствие уравнения А — В, что и требовалось доказать.
Замечание:
Уравнение АС=ВС есть следствие уравнения А = В, но оно не обязано быть ему равносильным. Действительно, из АС=ВС следует А = В, только если 
Например, умножая обе части уравнения х—3 = 0 на многочлен х — 2, мы получим новое уравнение (х—3)(x — 2) = 0, которое, кроме корня исходного уравнения x = 3, имеет еще корень х — 2.
Замечание:
В формулировке теоремы существенно, что С является многочленом. Если С есть дробное выражение, содержащее неизвестное в знаменателе, то преобразованное уравнение может не быть следствием исходного, если хотя бы один из корней исходного уравнения обращает в нуль знаменатель С. Например, умножив обе части уравнения

на выражение 

не являющееся следствием исходного.
Теорема:
Если обе части исходного уравнения возвести в степень с одним и тем же показателем, то полученное в результате этого преобразования уравнение будет следствием исходного.
Доказательство:
Пусть А = В — данное уравнение. Тогда если А = В (при некотором значении неизвестного х), то 
Следовательно, уравнение 
Замечание:
Так же, как в теореме 3, здесь нельзя утверждать равносильность. Действительно, если 


корень которого x = 3 мы получим уравнение

корнями которого будут

Допустим теперь, что мы имеем два уравнения, причем известно, что второе уравнение является следствием первого, и допустим, что это второе уравнение мы умеем решать, т. е. можем найти все его корни. Тогда мы можем решить и исходное уравнение, так как среди корней второго уравнения находятся все корни исходного. Но не все корни второго уравнения обязаны быть корнями исходного, среди корней второго уравнения могут встретиться числа, не являющиеся корнями исходного уравнения. Поэтому, для того чтобы решить исходное уравнение, мы должны корни второго уравнения испытать посредством подстановки их в исходное уравнение и отобрать из них те корни, которые удовлетворяют исходному уравнению,
Дробные алгебраические уравнения
Дробные уравнения, т. е. такие, в одной или обеих частях которых находятся дробные рациональные выражения, содержащие неизвестное в знаменателе, решаются посредством сведения к целым уравнениям.
Для достижения этой цели можно, например, перенести все слагаемые правой части в левую с противоположными знаками, затем посредством обычных тождественных преобразований привести левую часть к виду частного от деления двух многочленов. После этих преобразований мы получаем новое уравнение, являющееся лишь следствием исходного, но не обязательно равносильное ему.
Действительно, всякое решение исходного уравнения, очевидно, является решением» преобразованного. Обратно, всякий корень преобразованного уравнения является корнем исходного, если только обе части исходного уравнения имеют смысл при подстановке этого корня. Однако может случиться так, что обе части исходного уравнения лишены смысла при некотором значении неизвестного, а левая часть преобразованного уравнения имеет смысл и обращается в нуль. Тогда такое значение неизвестного является корнем преобразованного уравнения, но не является корнем исходного. Таким образом, преобразованное уравнение действительно является следствием исходного, но не обязательно ему равносильно, так как может иметь лишние корни. Указанное обстоятельство может иметь место, если по ходу преобразований происходит взаимное уничтожение дробных выражений или производится сокращение дробей.
Например, производя в уравнений

указанные преобразования, мы получим уравнение

и, далее,

Уравнение (3), очевидно, есть следствие уравнения (1). Проверим это обычным рассуждением.
Если (х такое, что)

то

следовательно,

Но уравнение (1) не является следствием уравнения (3), так как уравнение (3) имеет корень х = 2, а как раз при х = 2 обе части уравнения (I) не имеют смысла.
Для того чтобы еще более уяснить это обстоятельство, посмотрим, почему нельзя рассуждать следующим образом: «Если х — 2 = 0, то x+1= 3; если х + 1 = 3, то 
Таким образом, мы наметили путь, следуя которому, мы можем преобразовать любое дробное уравнение к уравнению вида 
где А и В— многочлены, причем преобразованное уравнение является следствием исходного.
Умножив обе части последнего уравнения на В, мы получим новое уравнение A = 0, которое, согласно теореме 3 § 15, является следствием предыдущего, а потому и следствием исходного уравнения. Корень уравнения A = 0 может не быть корнем уравнения 
Итак, любое дробное уравнение может быть преобразовано в целое уравнение, являющееся следствием исходного. Для этого достаточно перенести все слагаемые правой части в левую, затем посредством известных тождественных преобразований представить левую часть в виде частного от деления двух многочленов и, наконец, умножить обе части уравнения на знаменатель полученной дроби. (Это все равно, что приравнять числитель к нулю.) Если преобразованное уравнение удается решить, то среди его корней находятся все корни исходного уравнения, но могут быть и лишние корни. Их следует отбросить после испытания посредством подстановки в исходное уравнение.
Указанный путь не является единственным при решении дробных уравнений. Часто можно достигнуть цели быстрее, умножив обе части уравнения на многочлен, являющийся общим знаменателем всех дробей, находящихся в левой и правой частях исходного уравнения. Полученное таким образом целое уравнение является следствием исходного дробного, но не обязательно равносильно ему. Рассмотрим несколько примеров.
Пример:
Решить уравнение

Решение:
Способ 1. Перенесем все слагаемые правой части в левую. Получим

Выполняя сложение дробей, мы пока не будем приводить целую часть (т. е. — 1) к общему знаменателю для упрощения выкладки. Получим

Сократив дробь на х— 2, что дает 

Подставив это значение в исходное уравнение, убеждаемся, что x = 1 есть действительно его решение. Таким образом, в данном случае выполненные преобразования не внесли лишних корней.
Указанную выкладку целесообразно сопровождать следующим рассуждением. Если

то

откуда

Следовательно

Итак, если х удовлетворяет уравнению, то х—. Действительно х=1 удовлетворяет уравнению, ибо

Способ 2. Общим знаменателем всех слагаемых уравнения является 

и после очевидных преобразований

откуда

Первый корень преобразованного уравнения не является корнем исходного, ибо обе его части теряют смысл при х = 2. Второй корень удовлетворяет уравнению.
Приведенную выкладку можно обосновать так. Если

то

т. е.

откуда

Итак, если х удовлетворяет данному уравнению, то х—2 или х=1. Но в действительности из этих двух значений корнем данного уравнения является только х=1, ибо при х = 2 обе части данного уравнения не имеют смысла.
Ответ. x = 1.
В приведенном примере сокращение дроби, оказавшееся возможным при решении по первому способу, избавило нас в данном случае от «лишнего» корня х = 2. Однако бывает и так, что, хотя уравнение решается первым способом и сокращение дроби осуществляется до конца, «лишние» корни все же возникают. Это видно из следующего примера.
Пример:
Решить уравнение

Решение:
Если

то

и после преобразований

откуда получаем, сокращая на х — 2, что
и, следовательно, 4— х — 2 = 0; х = 2.
Итак, если х удовлетворяет данному уравнению, то х = 2. Но в действительности х = 2 не удовлетворяет данному уравнению, ибо обе части его теряют смысл при х = 2. Следовательно, данное уравнение решений не имеет.
Ответ. Уравнение не имеет решений.
Иррациональные уравнения
Всякое иррациональное уравнение, т. е. уравнение, в котором некоторые выражения, зависящие от неизвестного, находятся под знаком корня, может быть преобразовано в целое алгебраическое уравнение, являющееся следствием исходного.
Доказательство этого утверждения в общем виде сложно, и мы ограничимся рассмотрением некоторых частных случаев.
Пример:
Решить уравнение

Решение:
В рассматриваемое уравнение входит только один радикал. Преобразуем уравнение, оставив радикал в одной его части, а все остальные члены перенесем в другую часть. Получим

Теперь возведем обе части уравнения в квадрат, что приведет нас к новому уравнению, являющемуся следствием исходного. Это обусловлено теоремой 4 § 15 или обычным рассуждением при преобразовании уравнения:
«Если (x такое, что)

то

Решая преобразованное уравнение, получим 





удовлетворяет исходному уравнению, а корень 

Ответ. х = 1.
Пример:
Решить уравнение

Решение:
Уединив радикал, получим 


откуда

Проверяя, убеждаемся, что оба корня удовлетворяют исходному уравнению.
Ответ.
Пример:
Решить уравнение

Решение:
Здесь имеются два радикала, и избавиться от них одновременно посредством однократного возведения в квадрат не представляется возможным. Мы решим этот пример тремя способами.
Способ 1. Уединим один из радикалов, а затем возведем уравнение в квадрат
Полученное уравнение содержит уже один радикал. Уединив его, получим

Возведя в квадрат еще раз, получим

откуда

Посредством подстановки в исходное уравнение убеждаемся, что оба корня ему удовлетворяют.
Способ 2. Возведем в квадрат обе части исходного уравнения. Получим
Это уравнение содержит уже один радикал. Уединим радикал:

Теперь снова возведем в квадрат обе части уравнения. Получим 

к такому же, какое было получено при освобождении от радикалов по первому способу.
Способ 3. Введем новую неизвестную 


содержит только один радикал. Далее,

и, наконец, 
и, следовательно,
Таким образом, иногда при решении иррациональных уравнений следует комбинировать способ возведения в степень со способом введения новой неизвестной.
Ответ.
Пример:
Решить уравнение
Решение:
Способ 1. Представим уравнение в виде

и возведем обе его части в куб. При этом формулу куба разности двух чисел возьмем в следующем виде:

Получим

Далее,

Кроме того, если х удовлетворяет исходному уравнению (а именно, в этом предположении мы и ведем преобразования, так как мы хотим построить уравнение, являющееся следствием исходного), то

Итак, преобразованное уравнение есть

Решая его, получим 
Способ 2. Положим 




Ответ.
Пример:
Решить уравнение

Решение:
Решение этого примера по образцу второго примера затруднительно, так как в результате последовательного» уединения радикалов и возведения в степень получится уравнение четвертой степени, которое можно решить способом введения нового неизвестного, но не очень просто. Лучше сразу ввести новое неизвестное, положив
Тогда

Таким образом, относительно новой неизвестной уравнение имеет вид

Освободившись от радикала, получим

Оба корня удовлетворяют уравнению.
Далее, вспоминая, что 

Первое уравнение имеет корни 
Все четыре корня удовлетворяют исходному уравнению, в чем легко убедиться посредством их подстановки в него.
Ответ.
Из рассмотренных примеров мы видим, что при решении иррациональных уравнений следует пользоваться методом уничтожения радикалов посредством возведения в степень или комбинацией его со способом введения нового неизвестного. В каждом частном случае следует, раньше чем приступить к выкладке, вдуматься в строение уравнения и составить план решения.
В заключение приводим еще один прием, который, несмотря на его искусственность, иногда оказывается полезным.
Пример:
Решить уравнение

Решение:
Умножим обе части уравнения на
Получим

откуда

Складывая с исходным уравнением, получим

Однако подстановка в исходное уравнение дает, что 
Ответ. Уравнение не имеет решений.
Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат
Как составить двумя способами приведённое квадратное уравнение, если известны его корни?…
Добро пожаловать на сайт Ответы онлайн, где вы можете задавать вопросы и получать ответы от других членов сообщества.
…
Все категории
- Фотография и видеосъемка
- Знания
- Другое
- Гороскопы, магия, гадания
- Общество и политика
- Образование
- Путешествия и туризм
- Искусство и культура
- Города и страны
- Строительство и ремонт
- Работа и карьера
- Спорт
- Стиль и красота
- Юридическая консультация
- Компьютеры и интернет
- Товары и услуги
- Темы для взрослых
- Семья и дом
- Животные и растения
- Еда и кулинария
- Здоровье и медицина
- Авто и мото
- Бизнес и финансы
- Философия, непознанное
- Досуг и развлечения
- Знакомства, любовь, отношения
- Наука и техника
7
Как составить двумя способами приведённое квадратное уравнение, если известны его корни? С примером пожалуйста.
1 ответ:
0
0
1.по разложению на множители
(x-x1)*(х-х2)=0
х²-х(х1+х2)+х1*х2=0
х1=-3 х2=5
(х+3)(х-5)=0
х²-2х-15=0
2.по теореме Виета
х²+px+q=0
p=-(x1+x2)
q=x1*x2
x1=4 x2=5
p=-(4+5)=-9
q=4*5=20
x²-9x+20=0
Читайте также
3х+12+х= -4
решение внутри
Ответ 2
из второго можно выразить у=1+5х
подставляем во второе:
2(1+5х)-15х=3
2+10х-15х=3
-5х=1
х=-1/5
находим игрек:у=1+5×(-1/5)=0
=52^2+2×52×38+38^2=(52+38)^2=90^2=8100
Надеюсь все правильно <span>(◕‿◕) </span>
Смотрите также:
-
Применив свойство логорифмов,преобразуйте выражения log a M/N где М>0, N>0. Log a^a M^a где M>0 , a € R
15·1 ответ
-
Найдите общую точку касательных к графику y= x^2-4x+3, одна из которых касается графика в точке с абсциссой 3, другая в точке с
8·1 ответ
-
Найдите значение выражения.0,3+8,3 делённая на 8,6
13·1 ответ
-
ПОМОГИТЕ РЕШИТЬ 6 И 7 НОМЕР ПОЖАЛУЙСТА СРОЧНО НУЖНО
15·1 ответ
-
Первую половину пути от деревни до города фермер прошёл со скоростью 4 км/ч, а вторую — с 6 км/м. На обратном же пути первую пол
13·1 ответ
-
Найти значение алгебраического выражения: 2)2а+3b при а=3, b= -2; a= -1.4 b= -3.1
6·1 ответ
-
Мастер по плану должен был изготовить 150 деталей.Однако он выполнил план на 110%.Сколько всего деталей изготовил мастер ОПИШИТ
7·1 ответ
-
Выполните умножение 2) (n-m)(n+m) 4) (3-c)(3+c) 6) (a-7)(a+7)
(a-2/9)(a+2/9) 10) (0,4+m)(0,4-m) 12) (d-2,2)(d+2,2)
7·1 ответ
-
Корень из 26. Спасибо заранее!!!
6·1 ответ
-
А в 9 степени делить на а в третьей степени
6·1 ответ
На чтение 7 мин. Просмотров 4k.
Наблюдательность и способность к анализу позволяет сделать величайшие открытия. Так французский математик Франсуа Виет открыл закономерность, связывающую корни квадратного уравнения и его коэффициенты.
В курсе алгебры 8 класса изучается теорема Виета. Основное применение этой теоремы — упрощение вычисления корней приведенного квадратного уравнения.
В этой статье мы дадим определение теоремы Виета, докажем ее, покажем применение теоремы при решении квадратных уравнений, а также рассмотрим теорему обратную теореме Виета.
Квадратное уравнение и его корни
Давайте вспомним, как решается обычное квадратное уравнение. Сначала мы определяем его дискриминант по формуле: , затем мы сравниваем дискриминант с нулем:
- Если
, то уравнение имеет два разных корня, которые определяются по формулам:
и
- Если
, то имеем два, совпадающих друг с другом корня:
.
- Если
, то уравнение не имеет действительных корней.
Давайте запишем уравнение и решим его.
Разделим левую и правую части на 2, получим приведенное квадратное уравнение:
Определим дискриминант: . Дискриминант больше нуля, значит, решением будут два корня:
и
.
Сумма этих корней , а произведение
. То есть сумма этих корней равна второму коэффициенту приведенного уравнения, взятому с противоположным знаком, а произведение равно свободному члену.
Проанализировав множество приведенных уравнений и сумм и произведений их корней, французский математик Франсуа Виет (1540—1603) открыл эту закономерность и доказал, что она справедлива для всех приведенных уравнений. Эту закономерность он назвал теоремой, которую мы теперь знаем, как теорему Виета. Она была доказана в 1591 году.
Теорема Виета и ее доказательство
Теорема. Если и
корни уравнения
, то
, а
.
Доказательство:
Используя формулу корней приведенного квадратного уравнения, запишем их сумму и произведение:
Что и требовалось доказать.
Теорема (обратная теореме Виета)
Если числа и
такие, что их сумма равна
, а их произведение равно
, то они являются корнями уравнения
.
Доказательство.
Если , а
, то заменим
и
в уравнении:
Если ,
— корни уравнения, то, подставив в уравнение
сначала
, потом
, мы должны получить верное равенство.
То есть, мы доказали, что — корень уравнения.
Подставим теперь :
Итак, доказано, что — корень уравнения
.
Теорема доказана.
Примеры применения теоремы Виета
Рассмотрим примеры, в которых целесообразно применение теоремы Виета.
Пример 1
Напишите приведенное квадратное уравнение, корнями которого являются числа 25 и 2.
Решение:
Приведенное квадратное уравнение имеет вид:
По теореме Виета имеем:
Тогда:
Искомое уравнение будет иметь вид:
Ответ: .
Пример 2
Решите уравнение, применяя теорему Виета.
Решение:
По теореме корни уравнения удовлетворяют системе:
Подбирая, получим:
,
.
Действительно, подставим данные корни по очереди в исходное уравнение, и проверим правильность решения.
Корни уравнения найдены верно.
Ответ: ,
.
Пример 3
Требуется найти корни уравнения .
Решение:
Решать будем через теорему Виета, так как уравнение приведенное — старший коэффициент .

Корнями уравнения будут числа и
. Они удовлетворяют системе. Сделаем проверку:
Ответ: и
.
Совет 1. Если вы делаете выбор в пользу применения теоремы Виета, то обязательно делайте проверку, так как на этапе подбора корней очень часто совершаются ошибки.
Совет 2. Если вы не можете подобрать корни, используя теорему Виета, то вы всегда можете решить уравнение, используя формулы для корней квадратного уравнения.
Пример 4
Найдите сумму и произведение корней уравнения:
Решение:
Сумму и произведение корней найдем по формулам Виета ,
.
Ответ: ,
.
Пример 5
Составьте квадратное уравнение, корнями которого являются числа и
.
Решение:
Связь между корнями уравнения и его коэффициентами устанавливает теорема Виета.
, тогда
.
Определим :
Тогда уравнение будет иметь вид: .
Ответ: .










































































(a-2/9)(a+2/9) 10) (0,4+m)(0,4-m) 12) (d-2,2)(d+2,2)



