Как составить уравнение с данными корнями
КВАДРАТНЫЙ ТРЕХЧЛЕН III
§ 55. Составление квадратного уравнения по заданным корням
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
где а — любое отличное от нуля действительное число. С другой стороны, как было показано в § 54, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
Ответ. Корни 1 и —2 имеют все квадратные уравнения вида
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
411. Составить квадратное уравнение, корнями которого были бы числа:
а) 2 и — 3; б) — 1 и — 5; в) 1 /4 и 1 /6; г) — 1 /2 и — 1 /3 .
412. Составить квадратное уравнение с целыми коэффициентами так, чтобы его корни были равны:
413. Составить квадратное уравнение с целыми коэффициентами, корни которого равны 5 /7 и — 1 /2, а сумма всех коэффициентов равна 36.
414. Могут ли корнями квадратного уравнения с натуральными коэффициентами быть числа 6 /5 и — 1 /7?
415. Составить квадратное уравнение с целыми коэффициентами, если известно, что один из его корней равен:
Составление квадратного трехчлена по его корням
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Класс : 8 «Б» Предмет : Алгебра Дата : _______
Урок № 64 Тема : « Составление квадратного трехчлена по его корням»
Цели урока : научить составлять квадратный трехчлена по его корням .
Обучающая: повторить понятие квадратного трехчлена и его корней; формировать умение составлять квадратный трехчлена по его корням .
Развивающая: развитие логического мышления, познавательных интересов.
Воспитательная: воспитание организованности, дисциплинированности , аккуратности, усидчивости .
Тип урока: урок изучения нового материала и первичного закрепления
Методы и приемы: словесный, наглядный, практический.
Материально-техническое обеспечение: дидактический материал.
Организаци онный момент
Первичное усвоение новой учебной информации
Осознание и осмысление
Информация о домашнем задании
Подведение итогов урока
І . Организаци онный момент
— Здравствуйте ребята, тема сегодняшнего урока: « Составление квадратного трехчлена по его корням » .
Цели данного урока: научится составлять квадратный трехчлена по его корням.
Приветствие, проверка готовности учащихся к уроку, сообщение тем ы и цели урока и требований к уроку.
ІІ. Актуализация знаний
— Давайте вспомним пройденный материал
Разложите на множители выражение:
а) Х 2 — 9; б) Х 2 – 9Х;
Найдите корень уравнения:
а) Х 2 — 9 = 0; б) Х 2 – 9Х = 0; в) Х 2 – 6Х + 9 = 0
Ребята отвечают на вопросы учителя.
ІІІ. Первичное усвоение новой учебной информации
§ 54 . Разложение квадратного трехчлена на линейные множители
В этом параграфе мы рассмотрим следующий вопрос: в каком случае квадратный трехчлен ax 2 + bx + c можно представить в виде произведения
1. Предположим, что данный квадратный трехчлен ax 2 + bx + c представим в виде
Следовательно, дискриминант квадратного трехчлена ax 2 + bx + c должен быть неотрицательным.
2. Обратно, предположим, что дискриминант D = b 2 — 4 ас квадратного трехчлена ax 2 + bx + c неотрицателен. Тогда этот трехчлен имеет действительные корни x 1 и x 2 . Используя теорему Виета, получаем:
где x 1 и x 2 — корни трехчлена ax 2 + bx + c . Коэффициент а можно отнести к любому из двух линейных множителей, например,
Но это означает, что в рассматриваемом случае квадратный трехчлен ax 2 + bx + c представим в виде произведения двух линейных множителей с действительными коэффициентами.
Объединяя результаты, полученные в пунктах 1 и 2, мы приходим к следующей теореме.
Теорема. Квадратный трехчлен ax 2 + bx + c тогда и тoлько тогда можно представить в виде произведения двух линейных множителей с действительными коэффициентами,
когда дискриминант этого квадратного трехчлена неотрицателен (то есть когда этот трехчлен имеет действительные корни) .
Пример 1 . Разложить на линейные множители 6 x 2 — х —1.
Поэтому по формуле (2)
Пример 2 . Разложить на линейные множители x 2 + х + 1. Дискриминант этого квадратного трехчлена отрицателен:
D = 1 2 — 4•1•1 = — 3
Поэтому данный квадратный трехчлен на линейные множители с действительными коэффициентами не раскладывается.
Разложить на линейные множители следующие выражения (№ 403 — 406):
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x 1 и x 2 . Очевидно, что в качестве искомого уравнения можно выбрать уравнение
где а — любое отличное от нуля действительное число. С другой стороны, как было показано в § 54, каждое квадратное уравнение с корнями x 1 и x 2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x 1 и x 2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
Ответ. Корни 1 и —2 имеют все квадратные уравнения вида
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
1. Составить квадратное уравнение, корнями которого были бы числа:
а) 2 и — 3; б) — 1 и — 5; в) 1 / 4 и 1 / 6 ; г) — 1 / 2 и — 1 / 3 .
2. Составить квадратное уравнение с целыми коэффициентами так, чтобы его корни были равны:
3. Составить квадратное уравнение с целыми коэффициентами, корни которого равны 5 / 7 и — 1 / 2 , а сумма всех коэффициентов равна 36.
Решение: (х-5/7)(х-1/2)=0 х 2 -17/14х+5/14=0 14х 2 -17х+5=0 14+17+5=36
4. Могут ли корнями квадратного уравнения с натуральными коэффициентами быть числа 6 / 5 и — 1 / 7 ?
Решение: (х-6/5)(х+1/7)=0 35х 2 -37х-6=0 (да)
5. Составить квадратное уравнение с целыми коэффициентами, если известно, что один из его корней равен:
Второй корень будет сопряжён первому, т. е. x 1 = √3−5; x 2 = −√3−5.
Ищем квадратное уравнение в виде x² + ax + b = 0,
тогда по теореме Виета a = −( x1 +x2) = −2•(−5) = 10, b = x1•x2 = (−5)²−(√3)² = 22.
ОТВЕТ: x²+10x+22 = 0.
Решить №3,№5 на стр.97-98 проверь себя, дополнительно №242 (1,2).
VI .Информация о домашнем задании
№ 228, №234+ Повторить пройденную тему§12.
VII .Подведение итогов урока
Давайте теперь подведем итоги урока :
Учитель благодарит за урок и объявляет оценки.
Краткое описание документа:
Урок № 64 Тема: « Составление квадратного трехчлена по его корням»
Цели урока : научить составлять квадратный трехчлена по его корням .
Обучающая: повторить понятие квадратного трехчлена и его корней; формировать умение составлять квадратный трехчлена по его корням .
Развивающая: развитие логического мышления, познавательных интересов.
Воспитательная: воспитание организованности, дисциплинированности , аккуратности, усидчивости .
Тип урока: урок изучения нового материала и первичного закрепления
Методы и приемы: словесный, наглядный, практический.
Материально-техническое обеспечение: дидактический материал.
I. Организаци онный момент
II. Актуализация знаний
III. Первичное усвоение новой учебной информации
IV. Осознание и осмысление
VI. Информация о домашнем задании
VII. Подведение итогов урока
І . Организаци онный момент
— Здравствуйте ребята, тема сегодняшнего урока: « Составление квадратного трехчлена по его корням » .
Цели данного урока: научится составлять квадратный трехчлена по его корням.
Приветствие, проверка готовности учащихся к уроку, сообщение тем ы и цели урока и требований к уроку.
ІІ. Актуализация знаний
— Давайте вспомним пройденный материал
— Разложите на множители выражение:
— а) Х2- 9; б) Х2 – 9Х;
— Найдите корень уравнения:
— а) Х2- 9 = 0; б) Х2 – 9Х = 0; в) Х2 – 6Х + 9 = 0
Ребята отвечают на вопросы учителя.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 925 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 684 человека из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 309 человек из 69 регионов
Ищем педагогов в команду «Инфоурок»
Дистанционные курсы для педагогов
«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»
Свидетельство и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 576 070 материалов в базе
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Другие материалы
- 02.03.2015
- 546
- 0
- 02.03.2015
- 5382
- 199
- 02.03.2015
- 2266
- 36
- 02.03.2015
- 506
- 0
- 02.03.2015
- 2142
- 1
- 01.03.2015
- 510
- 0
- 01.03.2015
- 505
- 0
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 02.03.2015 3361
- DOCX 30.3 кбайт
- 2 скачивания
- Оцените материал:
Настоящий материал опубликован пользователем Бондаренко Ирина Казимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 7 лет и 1 месяц
- Подписчики: 0
- Всего просмотров: 8806
- Всего материалов: 2
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Инфоурок стал резидентом Сколково
Время чтения: 2 минуты
Полный перевод школ на дистанционное обучение не планируется
Время чтения: 1 минута
В Курганской области дистанционный режим для школьников продлили до конца февраля
Время чтения: 1 минута
В Ленобласти школьники 5-11-х классов вернутся к очному обучению с 21 февраля
Время чтения: 1 минута
Приемная кампания в вузах начнется 20 июня
Время чтения: 1 минута
Тринадцатилетняя школьница из Индии разработала приложение против буллинга
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Квадратные уравнения в математике с примерами решения и образцами выполнения
Равенство 
В этом уравнении 
Квадратное уравнение есть уравнение 2-й степени. При b = 0 и с = 0 оно принимает вид 
Уравнения 
Уравнение 
Если все члены уравнения 
в котором
Напомним, что решением или корнем уравнения называется такое число, при подстановке которого вместо неизвестного уравнение обращается в верное равенство. Например, числа 3 и —3 являются корнями уравнения
Числа 3 и 5 являются корнями уравнения
Числа 
Решить уравнение с одним неизвестным — значит найти все его корни (или убедиться в их отсутствии).
Решение неполных квадратных уравнений
1. Уравнения вида
Уравнение 




2. Уравнение вида
Уравнение 
Если одновременно а > 0 и с > 0 или одновременно а
решений ие имеет, так как квадрат действительного числа не может равняться отрицательному числу 

действительных корней ие имеют:
Если же одновременно а>0 и с 0, то 


т. е. два корня:
(Мы здесь воспользовались тем, что уравнение, например, 


Уравнение 


3. Уравнения вида
Уравнение 
Но уравнение 


Следовательно, и равносильное уравнение 
Обратим внимание на то, что один из двух корней уравнения вида 
Примеры:
Уравнение 

Уравнение 
Решение полного квадратного уравнения
1. Для решения уравнения
преобразуем его левую часть путем выделения полного квадрата (см. стр. 107):
Теперь мы можем заменить уравнение
равносильным ему уравнением
Так как 
Теперь рассмотрим в отдельности три возможных случая.
Случай 1.
В этом случае преобразованное уравнение, а следовательно, и первоначальное не может иметь действительных корней, так как квадрат действительного числа 
Случай 2.
а потому
Преобразованное уравнение, а следовательно, и первоначальное будет иметь одно решение:
один корень 
Случай 3.
будет равно либо
Следовательно, первоначальное уравнение будет иметь два решения:
Оба эти решения можно записать так:
Выражение 
Из формулы (I) видно, что корни квадратного уравнения определяются дробью, знаменателем которой служит удвоенный коэффициент высшего члена, а числителем—коэффициент при неизвестном первой степени, взятый с противоположным знаком, плюс-минус квадратный корень из дискриминанта.
Мы видели, что один корень квадратного уравнения
определяется по формуле
а другой—по формуле
В том случае, когда 
В том же случае, когда 
Наконец, в том случае, когда 
Таким образом, квадратное уравнение всегда имеет два корня: либо действительных различных, либо действительных одинаковых, либо мнимых различных. Например, уравнение 












Уравнение 
Поясним происхождение понятия кратного корня. Уравнение
можно представить в виде
Приравнивая нулю каждый множитель, содержащий неизвестное, получим q корней, каждый из которых равен 3, т. е. число 3 окажется корнем кратности q. Корень, кратность которого равна единице, называется простым.
Уточнение определения о равносильности уравнений
Теперь, когда мы ввели понятие о кратности корней уравнения, нам необходимо уточнить определение о равносильности уравнений, данное ранее (стр. 185).
Если всякий корень кратности q одного уравнения являете я корнем той же кратности другого уравнения и наоборот, то такие уравнения называются равносильными.
не равносильны. (Для первого уравнения единица является двукратным корнем, а для второго лишь простым.) Уравнения
не равносильны. (Для первого уравнения число 7 является трехкратным корнем, а для второго лишь двукратным.)
Примеры квадратных уравнений:
Значит,
Уравнение действительных корней не имеет.
Примеры задач, приводимых к квадратному уравнению
Задача:
В квартире проектируются две комнаты одинаковой ширины (рис. 74). Длину первой комнаты хотят сделать в 
Найти ширину этих комнат, если их общая площадь должна быть равной 56,7 кв. м.
Обозначим ширину комнат, выраженную в метрах, буквой х.
Тогда площадь первой комнаты будет равна 

или
Оба эти числа удовлетворяют уравнению, составленному по условиям задачи. Но самой задаче удовлетворяет лишь первый корень, так как ширина комнаты отрицательной быть не может.
Итак, искомая ширина равна 4,2 м.
Задача:
Пароход должен был пройти расстояние 48 км с определенной средней скоростью. Но по некоторым причинам он шел первую половину пути со скоростью, на 2 км в час меньшей, и вторую половину со скоростью, на 2 км большей, чем ему полагалось. Таким образом, пароход затратил на весь путь 5 час. На сколько минут опоздал пароход?
Пусть средняя скорость парохода должна была быть х км в час. На прохождение первой половины пути пароход затратил 

Получилось дробное уравнение. Преобразуем его к виду целого уравнения. Для этого умножим обе части уравнения на общий знаменатель 
Числа 10 и 
Но мы еще не можем быть уверены в том, что они являются и корнями первоначального уравнения
так как во время преобразований мы умножили левую и правую части уравнения (1) на выражение 
Проверка показывает, что оба эти числа удовлетворяют и первоначальному уравнению.
Действительно, оба равенства
оказываются верными. Итак, числа 10 и 
Но из них только число 10. удовлетворяет условиям самой задачи, так как в этой задаче скорость отрицательной быть не может. Значит, средняя скорость парохода была равной 10 км в час.
Теперь выясним, насколько же минут опоздал пароход с прибытием к месту назначения. Поскольку все расстояние было равно 48 км, а средняя скорость, с которой он должен был пройти это расстояние, составляла 10 км/час, на весь путь он должен был затратить 
Квадратное уравнение вида ax2+kx+c=0
Квадратное уравнение вида
Применяя к уравнению 
Этой формулой следует пользоваться лишь тогда, когда коэффициент при неизвестном 1-й степени четный.
За дискриминант квадратного уравнения 
Примеры:
Приведенное квадратное уравнение
Применяя к уравнению 
В том случае, когда р — четное, т. е. 
что можно записать и так:
Последнюю формулу следует применять в тех случаях, когда в приведенном уравнении коэффициент при неизвестном 1-й степени четный.
Примеры:
Свойства корней квадратного уравнения
Корни уравнения 


Итак, 
2. Полученный результат можно записать и в таком виде:
Для уравнения 
Итак, в приведенном квадратном уравнении сумма корней равна коэффициенту при неизвестном первой степени, взятому с противоположным знаком, а произведение — свободному члену:
3. Полученные результаты можно сформулировать и иначе: в приведенном квадратном уравнении коэффициент при неизвестном первой степени равен взятой с противоположным знаком сумме корней, т. е.
а свободный клен равен произведению корней, т. е.
Корень многочлена
- Корнем многочлена (целой рациональной функции)
называется всякое число, которое, будучи подставлено в этот многочлен вместо буквы х, обращает значение многочлена в нуль. Например, числа 1; —2; 5 суть корни многочлена
2. Совокупность корней многочлена
это то же самое, что и совокупность корней уравнения
3. Буква х, входящая в многочлен 

обозначает, собой величину неизвестную, могущую принимать лишь такие значения, которые удовлетворяют этому уравнению. Корнями многочлена
будут как раз корни уравнения
можно находить путем решения уравнения
Разложение на множители многочлена
Разложение на множители многочлена
Теорема:
Многочлен 
где 

Докажем теорему двумя способами.
Способ 1. Обозначим корни многочлена 



что и требовалось доказать.
Выражения 




Замечание:
Если 







Примеры:
1) Корни многочлена 

2) Корни многочлена 

3) Корни многочлена 
Составление квадратного уравнения по его корням
Способ 1. Пусть 
Примеры:
1) Если корни уравнения 3 и 5, то само уравнение будет:
2) Если корни 
3) Если корни 
Способ 2. Если корни уравнения 
Этот способ мы можем применить к составлению уравнений любых степеней.
Пусть корни уравнения 3; 5 и 10, тогда само уравнение будет:
Пусть корни уравнения — 1; —2; —3; —4. Тогда само уравнение будет:
Условие, при котором трехчлен представляет точный квадрат линейной функции
Условие, при котором трехчлен 
Но правая часть этого тождества будет точным квадратом тогда и только тогда, когда
В этом случае мы получаем, что
Итак, трехчлен 2-й степени будет точным квадратом линейной функции с действительными коэффициентами тогда и только тогда, когда его дискриминант равен нулю, а коэффициент при высшем члене положителен.
Уравнения с числовыми коэффициентами, приводимые к квадратным
Биквадратное уравнение
Целое уравнение, содержащее только четвертую, вторую и нулевую степени неизвестного, называется биквадратным.
Общий вид биквадратного уравнения таков:
Решим несколько биквадратных уравнений с числовыми коэффициентами.
Примеры:
1.Найти все корни уравнения
Примем 

Принимая сначала 


Итак, первоначальное уравнение имеет четыре корня:
2. Найти все действительные корни уравнения
Положив 

Отсюда, во-первых, 

Итак, данное биквадратное уравнение имеет лишь два действительных корня: 3 и —3.
3. Показать, что уравнение 

Уравнения 
Уравнения, являющиеся квадратными относительно выражения, содержащего неизвестное
есть квадратное уравнение относительно z. Уравнение
есть квадратное уравнение относительно
Примеры:
Полагая 











2. Найти действительные корни уравнения
Перепишем уравнение в виде:
Полагая 
Принимая сначала 
Принимая затем 
Последнее уравнение действительных корней не имеет. Поэтому первоначальное уравнение имеет лишь два действительных корня:
Возвратные уравнения 3-й и 4-й степени
Общий вид возвратного уравнения 3-й степени таков:
Общий вид возвратного уравнения 4-й степени таков:
1. Решим возвратное уравнение 3-й степени:
Разложим левую часть уравнения на множители. Для этого перепишем уравнение в виде:
Последнее уравнение удовлетворяется и тогда, когда х+1 =0, и тогда, когда 
Решая уравнение х+1 =0, получим, что х = —1.
Решая уравнение 
Итак, первоначальное уравнение имеет три корня:
2. Решим возвратное уравнение 4-й степени:
В этом уравнении х не может равняться нулю. Поэтому мы можем разделить все члены данного уравнения на 
Полагая 
Принимая все это во внимание, получим следующее уравнение с неизвестным у:
Отсюда найдем два значения неизвестного у, а именно: у = 6 и у = 4. Принимая сначала 

Принимая затем 

Итак, первоначальное уравнение имеет четыре корня:
Вопрос о решении разобранных в этой главе типов уравнений будет рассмотрен полнее во второй части курса.
Теорема Виета
Теорема Виета:
Если квадратное уравнение 

















Многие простые квадратные уравнения могут быть решены с помощью теоремы Виета без вычисления корней по основной формуле.
Этот материал взят со страницы решения задач по математике:
Возможно вам будут полезны эти страницы:
Квадратные уравнения и уравнения, приводящиеся к квадратным
Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.
Целые алгебраические уравнения и их классификация
Уравнение с одним неизвестным называется целым алгебраическим, если обе его части являются целыми алгебраическими выражениями от неизвестного. Например, уравнения
не являются целыми алгебраическими. Первое из них содержит в знаменателе выражение х + 2 зависящее от неизвестного х. Такого рода уравнения называются дробными алгебраическими. Второе содержит выражение x + 1, зависящее от неизвестного х, под знаком корня. Такие уравнения называются иррациональными.
Важнейшими из алгебраических уравнений являются целые алгебраические. Это обусловлено тем, что решение дробных и иррациональных уравнений может быть сведено к решению целых (с некоторыми приемами такого сведения мы познакомимся в § 16, 17 этой главы).
Обратимся теперь к классификации целых уравнений. Прежде всего напомним, что два уравнения называются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения является решением первого.
В первой части книги было установлено, что если к обеим частям уравнения добавить любой многочлен от неизвестного, то каждое решение исходного уравнения будет решением преобразованного, и обратно, каждое решение преобразованного уравнения будет решением исходного, так что преобразованное уравнение будет равносильно исходному.
В силу этого любое целое алгебраическое уравнение может быть преобразовано в равносильное, в одной части которого находится многочлен от неизвестного, не содержащий подобных членов, а в другой части нуль. Для этого достаточно «перенести все члены уравнения в одну часть», т. е. добавить к обеим частям уравнения выражение, противоположное одной из его частей, а затем раскрыть скобки и привести подобные члены.
и, после раскрытия скобок и приведения подобных членов, в
Степень многочлена, получающегося в одной части уравнения после указанных преобразований, называется степенью исходного уравнения.
есть уравнение второй степени, уравнение
есть уравнение третьей степени и т. д.
Неполные квадратные уравнения
Уравнение второй степени называется иначе квадратным уравнением. Любое квадратное уравнение, после перенесения всех его членов в одну часть и приведения подобных членов, приводится к виду
где x — неизвестное, а, b, с —коэффициенты, причем 
Квадратное уравнение называется неполным, если хотя бы один из его коэффициентов равен нулю. Так как старший коэффициент равняться нулю не может, в неполном уравнении должен обращаться в нуль средний коэффициент или свободный член или оба вместе, так что неполное квадратное уравнение может иметь один из следующих трех видов:
Уравнение 



Уравнение 
Здесь могут представиться два случая (если исключить разобранный выше случай c = 0). Если а и с имеют одинаковые знаки, то уравнение не имеет решений, ибо квадрат действительного числа не может равняться отрицательному числу 


Неполное квадратное уравнение последнего вида 
Для того чтобы произведение равнялось нулю, необходимо и достаточно, чтобы хотя бы один из множителей равнялся нулю. Приравнивая к нулю первый множитель, получим одно решение 
Итак, мы рассмотрели все виды неполного квадратного уравнения. Формулируем результаты:
I. 
II. 

HI. 



Приведенное квадратное уравнение
Решение полного квадратного уравнения мы начнем со случая, когда старший коэффициент равен единице. В этом случае уравнение называется приведенным. Общее квадратное уравнение легко преобразуется в равносильное ему, приведенное посредством деления
обеих частей уравнения на старший коэффициент.
Для решения приведенного уравнения
в общем виде применим прием выделения полного квадрата суммы, который применяется при разложении квадратного трехчлена на множители.
Рассмотрим 



Это последнее уравнение равносильно исходному, так как его левая часть тождественно равна левой части исходного уравнения.
Далее, перенесем последние два члена в правую часть уравнения с противоположными знаками. Получим новое уравнение
равносильное предыдущему. Теперь могут представиться три случая.
Случай 1.
следовательно и исходное, не может иметь решений, ибо квадрат действительного числа 
Случай 2. 
уравнение будет удовлетворяться только при 

Случай 3. 
Таким образом, в этом случае уравнение имеет два решения:
Оба эти решения удобно записать в виде одной формулы:
Корень приведенного квадратного уравнения равен половине среднего коэффициента, взятого с противоположным знаком, плюс или минус квадратный корень из квадрата этой половины без свободного члена.
Итак, при решении приведенного квадратного уравнения могут представиться три случая:
Случай 1. 
Случай 2. 
Случай 3. 
Очевидно, что при решении квадратного уравнения нет
необходимости заранее исследовать, который из трех случаев имеет место.
Можно сразу записать решение по формуле, и результат сам покажет, который из случаев имеет место.
Именно, если имеет место первый случай 

вычисленные по формуле, сливаются в один 
Формулу (1) для решения приведенного квадратного уравнения иногда удобно применять в несколько преобразованной форме следующим образом. Очевидно, что
и, следовательно, согласно формуле (1),
Формула (2) иногда оказывается удобнее формулы (1), например, если р и q целые числа и р нечетное число или если коэффициенты р и q являются буквенными выражениями. Если же р и q целые числа и р четное число, то формула (1) удобнее.
Запоминать формулу (2) нет необходимости, так как она
непосредственно получается из формулы для решения общего квадратного уравнения, которая будет выведена в следующем параграфе.
Рассмотрим несколько примеров.
Пример:
Решение:
Пример:
Решение:
Пример:
Решение:
Уравнение не имеет действительных решений.
Пример:
Решение:
Это уравнение не приведенное. Оно равносильно приведенному
которое получается из исходного посредством деления обеих его частей на 2. Решая это последнее уравнение, получим
Замечание:
Из вывода формулы для решения квадратного уравнения следует, что числа
если только они имеют смысл, действительно являются корнями квадратного уравнения 
Общее квадратное уравнение
Для решения общего квадратного уравнения достаточно его привести, т. е. преобразовать, к приведенному, разделив обе его части на старший коэффициент, и затем воспользоваться формулой для корней приведенного уравнения. Именно так был решен последний пример в предыдущем параграфе.
Однако целесообразно провести эти преобразования в общем виде и получить формулу, позволяющую решить общее квадратное уравнение без предварительного приведения.
Итак, пусть дано уравнение 
к которому можно применить результаты предыдущего параграфа.
Положив 
Если уравнение 

Итак, в том случае, когда уравнение 
Так же, как в случае приведенного уравнения, при решении общего квадратного уравнения нет необходимости заранее проверять, существует решение или нет. Именно, уравнение 
Действительно, решение не существует в том и только в том случае, если
отличается только положительным множителем 

Выражение 
Если дискриминант отрицателен, то, как мы видели, уравнение не имеет действительных корней. Из формулы (3) следует, что если дискриминант положителен, то уравнение имеет два различных действительных корня, если же дискриминант равен нулю, то оба корня сливаются в один:
Формула (3) читается так: корень квадратного уравнения равен дроби, знаменателем которой является удвоенный старший коэффициент, а числителем — средний коэффициент, взятый с противоположным знаком, плюс или минус квадратный корень из дискриминанта.
Если удобно принять b = 2k (например, если b есть целое четное число), формула (3) может быть еще немного упрощена. В этом случае уравнение имеет вид
Итак, в том случае, когда уравнение 
Так же, как в случае приведенного уравнения, при решении общего квадратного уравнения нет необходимости заранее проверять, существует решение или нет. Именно, уравнение 
Действительно, решение не существует в том и только в том случае, если
отличается только положительным множителем 



Выражение 
Если дискриминант отрицателен, то, как мы видели, уравнение не имеет действительных корней. Из формулы (3) следует, что если дискриминант положителен, то уравнение имеет два различных действительных корня, если же. дискриминант равен нулю, то оба корня сливаются в один:
Формула (3) читается так: корень квадратного уравнения равен дроби, знаменателем которой является удвоенный старший коэффициент, а числителем — средний коэффициент, взятый с противоположным знаком, плюс или минус квадратный корень из дискриминанта.
Если удобно принять b = 2k (например, если b есть целое четное число), формула (3) может быть еще немного упрощена. В этом случае уравнение имеет вид
Согласно формуле (3),
Итак, уравнение 
Пример:
Решение:
Замечание:
Введение иррациональных чисел не является последним этапом в расширении понятия числа. Дальше вводятся еще так называемые комплексные числа, после введения которых действие извлечения квадратного корня из отрицательного числа оказывается осуществимым. После введения комплексных чисел мы будем вправе считать, что и в случае отрицательного дискриминанта квадратное уравнение имеет корни, но эти корни не являются действительными числами.
Замечание:
Формула (3) пригодна, конечно, и для решения неполных квадратных уравнений. Например, для уравнения 
в соответствии с прежним результатом *)
Замечание:
Иногда нужно рассматривать уравнение первой степени как частный случай квадратного, в котором старший коэффициент равен нулю. Это целесообразно, например, если некоторая задача, поставленная в общем виде, приводит к квадратному уравнению, в котором, в зависимости от численных данных задачи, коэффициенты изменяются и, в частности, старший коэффициент может принимать значение, равное нулю.
*) Строго говоря, 


применима при 
При а = 0 формула (5) дает
Если в этом результате взять верхний знак, получим
т. е. мы действительно получаем корень уравнения первой степени bх+c=0. Нижний знак приводит к бессмысленному результату, так как знаменатель обращается в 0.
Формула (5) оказывается удобной при приближенном решении квадратного уравнения в случае, если старший коэффициент очень мал по сравнению с остальными коэффициентами.
Задачи, приводящиеся к квадратным уравнениям
Квадратные уравнения, так же как уравнения первой степени, оказываются полезными при решении многих задач. Заметим, что если задача приводится к решению квадратного уравнения, обычные приемы и правила арифметики оказываются бессильными для решения такой задачи, в то время как задачи, приводящиеся к уравнениям первой степени, по большей части могут быть решены и средствами арифметики.
При решении задачи, сводящейся к квадратному уравнению, необходимо, после того как уравнение составлено и решено, производить проверку полученных корней по смыслу задачи. При этом часто оказывается, что из двух полученных корней отвечает смыслу задачи лишь один.
Задача:
Дети поехали на лодке и поднялись на веслах на 6 км от пристани против течения реки. Затем они ловили рыбу, останавливаясь в разных местах. Через 3 часа они оказались в 2 км ниже первой остановки и, окончив ловлю, пошли на веслах обратно к пристани. Всего они пробыли на лодке 5 часов. Какова скорость лодки в стоячей воде, если известно, что скорость течения реки равна 2 км/час.
Решение:
Обозначим скорость лодки в стоячей воде (в км/час) через х. Тогда скорость лодки при. движении против течения реки равна х — 2 км/час, при движении по течению равна х+2 км/час.
Дети гребли против течения реки 6 км, на это они затратили 

Уравнение составлено. Умножим обе его части на общий знаменатель 
После очевидных преобразований мы получим
Оба корня удовлетворяют уравнению (1), что легко проверяется подстановкой их в это уравнение. Однако по смыслу задачи подходит только первый корень
Задача:
Периметр прямоугольника равен 20 см. Площадь этого прямоугольника равна 25 см ² . Определить стороны прямоугольника.
Решение:
Обозначим длину основания прямоугольника через х см. Тогда высота прямоугольника равна 10 — х см, ибо сумма длин основания и высоты равна полупериметру. Следовательно, площадь прямоугольника равна
По условию задачи
Уравнение имеет единственный корень х = 5, и он подходит по смыслу задачи.
Задача:
Сторона квадрата ABCD равна 10 см. От его вершин в направлении обхода по часовой стрелке (рис. 42) отложены равные отрезки А а, В b, С с, D d, и точки а, b, с, d соединены прямыми. Площадь квадрата abcd равна 40 см. Определить длину отрезка А а.
Решение:
Обозначим длину отрезка А а через х см. Тогда длина каждого из отрезков а В, b С, c D, d A равна 10 — х см. Треугольники aBb, cDd, будучи приложены по гипотенузам, составляют прямоугольник со сторонами х и 10—х см и, следовательно, сумма их площадей равна x (10 — х)см ² — Точно так же сумма площадей треугольников aAd и bСс равна x (10 — х) см ². Но
Это уравнение действительных решений не имеет. Следовательно, и задача не имеет решения.
Ответ. Задача не имеет решения.
Проведем теперь исследование последней задачи, выяснив, как следует изменить условие задачи, чтобы подобная задача имела решение. При этом будет вскрыта причина, в силу которой данная задача не имеет решения. С этой целью поставим задачу в общем виде, заменив все численные данные буквами. Итак, пусть сторона квадрата ABCD равна 1 см и площадь квадрата abcd равна s см ² .
Рассуждая таким же образом, как при численных данных, мы получим для х = А а уравнение
Решая по формуле (4), получим
Для того чтобы уравнение, к которому свелось решение задачи, имело действительные решения, необходимо и достаточно, чтобы число 

Однако даже если уравнение имеет решение, задача может решений не иметь, если корни не подходят по смыслу задачи. В нашей задаче корень х будет подходить по смыслу задачи в том и только в том случае, если так как точка а должна находиться между точками А и В. Очевидно, если корень
удовлетворяет поставленному требованию, то ему удовлетворяет и второй корень
так как 


Таким образом, для выяснения условия существования решения задачи остается установить, когда 

Для выполнения неравенства 

Итак, задача имеет решение в том и только в том случае, если 
Связь между коэффициентами и корнями квадратного уравнения
Рассмотрим сначала приведенное квадратное уравнение
Его корни 
Но во многих приложениях квадратных уравнений часто возникает необходимость выразить коэффициенты квадратного уравнения через его корни. Соответствующие выражения проще всего вывести, сложив и перемножив корни. Сделаем это:
Итак, средний коэффициент приведенного квадратного уравнения равен сумме его корней, взятой с обратным знаком. Свободный член приведенного квадратного уравнения равен произведению его корней.
Выведенные формулы называются формулами Виета *).
Теперь легко вывести соотношение между коэффициентами и корнями для общего квадратного уравнения. Общее квадратное уравнение 
В силу формул Виета имеем
Итак, средний коэффициент общего квадратного уравнения равен произведению старшего коэффициента на сумму корней, взятую с обратным знаком; свободный член общего квадратного уравнения равен произведению старшего коэффициента на произведение корней.
*) Виет—французский математик. Родился в 1540 г., умер в 1603 г.
Разложение квадратного трехчлена на множители
Квадратным трехчленом называется многочлен вида
с данными коэффициентами а, b, с, причем а ≠ 0. Коэффициенты а, b, с называются соответственно старшим коэффициентом, средним коэффициентом и свободным членом квадратного трехчлена. Квадратный трехчлен называется приведенным, если его старший коэффициент равен единице. Корнями квадратного трехчлена называются те значения буквы х, при которых трехчлен обращается в нуль. Иными словами, корнями трехчлена 
Пусть 

Теперь не представляет труда разложить трехчлен на множители. Действительно,
где 
Замечание:
Эта формула применима, конечно, только в случае, если трехчлен 

которые при подстановке вместо х обращают в нуль множители правой части, являлись бы корнями трехчлена 
Для общего квадратного трехчлена имеем:
где 
Составление квадратного уравнения по данным корням
Пусть даны два числа 
Очевидно, что в качестве такого уравнения можно взять
или, после раскрытия скобок,
Действительно, если вместо x подставить 

Из формулы Виета следует, что составленное уравнение является единственным решением поставленной задачи. Действительно, если уравнение 


т. е. оно совпадает с составленным выше.
Итак, существует единственное приведенное квадратное уравнение, имеющее своими корнями данные числа 

Примеры и приложения
Рассмотрим несколько примеров на применение результатов § 6—8.
Пример:
Составить приведенное квадратное уравнение, корнями которого являются квадраты корней уравнения
Мы дадим два решения этого примера.
Первое решение. Уравнение 



Второе решение. Пусть 



Мы пришли к тому же ответу, но при значительно меньших вычислениях.
Ответ.
Пример:
Решить систему уравнений
Решение:
Составим вспомогательное квадратное уравнение, корнями которого являются х и у. Так как сумма и произведение чисел х и у нам известны, это уравнение составляется по формулам Виета, именно, оно есть
Решая его, получим 
Ответ.
Рассмотренный в последнем примере прием применяется к любой системе уравнений вида
Пример:
Решить систему уравнений
Решение:
Составим вспомогательное квадратное уравнение, корнями которого являются х и —у. Так как сумма этих двух чисел равна 7, а произведение x( —у) равно —xy = — 44, вспомогательное уравнение есть
Решив его, получим 
Ответ.
Рассмотренный в последнем примере прием может быть применен к любой системе уравнений вида
В случае, если вспомогательное уравнение при решении системы
не имеет действительных корней, то и сама система действительных решений не имеет.
Исследование корней квадратного уравнения по коэффициенту и дискриминанту
При выводе формулы для решения квадратного уравнения мы выяснили, что значение дискриминанта 

Формулы Виета дают дополнительные сведения о корнях квадратного уравнения. Мы ограничимся рассмотрением приведенного квадратного уравнения.
Начнем исследование с рассмотрения уравнения, свободный член которого q отрицателен. В этом случае дискриминант 


Результаты проведенного исследования можно объединить в следующую таблицу, в которую мы включаем для полноты и очевидные результаты при q = 0.
Случай 1. q 0. Отрицательный корень по абсолютной величине больше положительного.
b) р = 0. Корни равны по абсолютной величине.
c) р 0. Один корень равен нулю, другой отрицателен.
b) p = 0. Оба корня равны нулю.
a) 
b) 
c) 
Биквадратные уравнения
называется биквадратным уравнением. Решение биквадратного уравнения легко сводится к решению квадратного уравнения с последующим извлечением квадратного корня.
Для этого достаточно принять за новую неизвестную 
биквадратное уравнение относительно х является квадратным относительно у. Решив это квадратное уравнение, мы получим, вообще говоря, два значения для у. Извлекая из этих значений квадратные корни (со знаками + и -), если это возможно, мы получим искомые корни биквадратного уравнения.
Пример:
Решение:
Положим 

Решая его, получим
Итак, для 
Таким образом, данное биквадратное уравнение имеет четыре корня:
Решение примера можно оформить по-другому, не вводя новой буквы. Именно, записать данное уравнение в виде
Для биквадратного уравнения число действительных корней вдвое больше числа положительных корней вспомогательного квадратного уравнения
Некоторые уравнения, сводящиеся к квадратным посредством введения нового неизвестного
Способ упрощения уравнения посредством введения нового неизвестного применим не только к биквадратным уравнениям. Решение весьма многих уравнений может быть упрощено при помощи этого приема. Однако невозможно дать какие-либо исчерпывающие общие указания относительно того, когда этот прием может быть применен с успехом. Поэтому мы ограничимся лишь рассмотрением нескольких примеров.
Пример:
Решение:
Это уравнение принадлежит к числу иррациональных уравнений, так как в нем неизвестное х входит под знаком квадратного корня. Посредством введения нового неизвестного оно легко сводится к квадратному уравнению.
Действительно, положим 

Итак, 


Ответ. х = 9.
Пример:
Решение:
Данное уравнение есть уравнение четвертой степени — после раскрытия скобок и приведения подобных членов в левой части окажется многочлен четвертой степени относительно неизвестного х. Решение уравнений четвертой степени в общем виде весьма сложно. Однако решение данного выше уравнения не представляет никакого труда.
Введем новое неизвестное: 
Решая его получим
первом случае имеем
втором случае получаем
Итак, данное уравнение имеет четыре решения:
Ответ.
Подстановка 
Некоторые уравнения четвертой степени можно привести к такому виду посредством несложного преобразования левой части.
Пример:
Решение:
Это уравнение легко приводится к виду, подобному разобранному в предыдущем примере. Действительно, преобразуем левую часть уравнения, выделив из третьего члена такое слагаемое, которое вместе с первыми двумя образует квадрат суммы. За такое слагаемое нужно взять 
Уравнение приводится к виду
Положив 
Первое из этих уравнений дает 
Ответ.
Указанный в этом параграфе прием можно применить, конечно, не к любому уравнению четвертой степени. Но в каждом частном случае легко проверяется, возможно ли применение этого приема или нет.
Возвратные уравнения
Уравнение четвертой степени
называется возвратным, если отношение свободного члена к старшему коэффициенту равно квадрату отношения коэффициентов при х и при 
Возвратные уравнения легко решаются посредством специального введения нового неизвестного. Покажем это на примере.
Пример:
Решение:
Это уравнение возвратное, так как здесь
Прием заключается в следующем. Объединим первое слагаемое с последним, второе с предпоследним и поделим обе части уравнения на 
Введем новое неизвестное 
Принимая это во внимание получим следующее уравнение относительно y
Решив его, получим
Возвращаясь к неизвестному х, мы получим относительно него два уравнения:
Умножив обе части уравнений на х, получим квадратные уравнения
Решив их, получим
Ответ.
Указанный в приведенном примере прием применим к любому возвратному уравнению.
Действительно, пусть уравнение
Обозначим отношение 


Теперь ясно, что подстановка 
Частным случаем возвратных уравнений являются так называемые симметрические уравнения 
применяют подстановку 

Второй способ решения биквадратного уравнения
При решении биквадратного уравнения 

Это последнее уравнение после подстановки 
Описанный прием особенно удобен в том случае, когда q является квадратом рационального числа.
Пример:
Решение:
Разделив обе части уравнения на 
Положим 
Для у получаем уравнение
Теперь для х получаем два уравнения:
После умножения на х получим
Интересно отметить, что, решая обычным образом, мы получим решение в совершенно другой, более сложной форме:
Но на самом деле оба ответа, конечно, совпадают.
точно таким же образом легко убедимся, что
Ответ.
Совпадение в приведенном примере результатов двух способов решения биквадратного уравнения наводит на мысль о возможности упрощения в некоторых случаях иррациональных выражений вида 
Действительно, пусть 

Раскрывая скобки и перенося все члены в одну часть, получим биквадратное уравнение
Решив его по второму способу, получим для х новое выражение, которое будет проще исходного, если 

Пример:
Упростить выражение
Решение:
Здесь 

Пусть 
Далее, так как х положительно, то 
Для х получаем такое уравнение:
Из этих двух значений искомым является 
при возведении в квадрат дает
Ответ.
Преобразование уравнений
Как было сказано выше, два уравнения называются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго является решением первого. В первой части книги были выяснены два типа преобразований, переводящих данное уравнение в равносильное:
- Если к обеим частям уравнения прибавить одно и то же число или один и тот же многочлен относительно неизвестного, то полученное в результате этого новое уравнение равносильно исходному.
- Если обе части уравнения умножить или разделить на какое-нибудь число, отличное от нуля, то полученное в результате этого уравнение равносильно исходному (ч. I, гл. VII, § 1).
Однако во многих случаях при решении уравнений приходится производить такие преобразования, после которых полученное уравнение не равносильно исходному, но является только его следствием. Дадим точное определение этого понятия в применении к уравнениям.
Определение. Если все решения уравнения А —В являются также решениями уравнения C—D, то второе уравнение называется следствием первого.
Смысл этого термина легко понять. Пусть А, В, Си D — данные алгебраические выражения от неизвестного лг. Допустим, что уравнение C — D есть следствие уравнения А = В. Это значит, что всякое значение буквы х, при котором удовлетворяется уравнение А = В, удовлетворяет и уравнению C — D. Иными словами, если А = В (т. е. х таково, что численные значения выражений А и В равны), то C = D. Таким образом, здесь слово «следствие» употребляется в том же смысле, что и в повседневной жизни.
Очевидно, что равносильность двух уравнений означает, что каждое из них является следствием другого. Понятия равносильности и следствия без всякого изменения переносятся на уравнения и системы уравнений с несколькими неизвестными.
Рассмотрим несколько примеров, разъясняющих смысл введенных определений.
Уравнение 

Часто можно убедиться в том, что одно уравнение является следствием другого, не решая последнее. В том же примере это можно сделать, например, таким рассуждением: «Если х — 2=1, то 

Теперь сформулируем и докажем несколько теорем, обосновывающих некоторые преобразования данного уравнения в новое, являющееся следствием данного (или равносильного данному). Для полноты изложения поместим и две сформулированные выше теоремы из первой части книги.
Теорема:
Если к обеим частям уравнения добавить одно и то же число или один и тот же многочлен, то получится уравнение, равносильное исходному.
Доказательство:
Пусть данное уравнение есть А = В, где А и В— алгебраические выражения от х, и пусть С есть число или многочлен, зависящий от х.
Если 

Обратно, если 

Итак, каждое решение уравнения А = В оказывается решением уравнения A+С= B+С и, обратно, каждое решение уравнения А+ С= В+ С есть решение уравнения А = В. Уравнения А =В и А+С=В+С действительно равносильны.
Короче, все рассуждения можно провести так. Если (при некотором значении x) А = В, то (при том же значении x) А+С=В+С. Обратно, если (при некотором значении х) А—С—В—С, то (при том же значении х) А = В.
Замечание. В этой теореме существенно, что С есть число или многочлен. Если С есть дробное выражение, то теорема может оказаться неверной — может случиться, что решение уравнения А = В при подстановке в уравнение А+С=В+С дает бессмысленное равенство, если знаменатель С обращается в нуль. Например, уравнения
не равносильны: первое из них имеет корень х = 2, второе — корней не имеет.
Теорема:
Если обе части уравнения умножить на одно и то же число, отличное от нуля, то в результате этого преобразования получится уравнение, равносильное исходному.
Доказательство:
Пусть А = В есть данное уравнение, а 
Теорема:
Если обе части уравнения умножить на один и тот же многочлен, то в результате этого преобразования получится уравнение, являющееся следствием исходного.
Доказательство:
Пусть А = В данное уравнение, С — данный многочлен от неизвестного х. Тогда, если (при каком-либо значении х) А = В, то (при том же значении x) АС=ВС. Таким образом, каждое решение уравнения А = В является решением уравнения АС—ВС.
Следовательно, уравнение АС—ВС есть следствие уравнения А — В, что и требовалось доказать.
Замечание:
Уравнение АС=ВС есть следствие уравнения А = В, но оно не обязано быть ему равносильным. Действительно, из АС=ВС следует А = В, только если 
Например, умножая обе части уравнения х—3 = 0 на многочлен х — 2, мы получим новое уравнение (х—3)(x — 2) = 0, которое, кроме корня исходного уравнения x = 3, имеет еще корень х — 2.
Замечание:
В формулировке теоремы существенно, что С является многочленом. Если С есть дробное выражение, содержащее неизвестное в знаменателе, то преобразованное уравнение может не быть следствием исходного, если хотя бы один из корней исходного уравнения обращает в нуль знаменатель С. Например, умножив обе части уравнения
на выражение 
не являющееся следствием исходного.
Теорема:
Если обе части исходного уравнения возвести в степень с одним и тем же показателем, то полученное в результате этого преобразования уравнение будет следствием исходного.
Доказательство:
Пусть А = В — данное уравнение. Тогда если А = В (при некотором значении неизвестного х), то 
Следовательно, уравнение 
Замечание:
Так же, как в теореме 3, здесь нельзя утверждать равносильность. Действительно, если 

корень которого x = 3 мы получим уравнение
корнями которого будут
Допустим теперь, что мы имеем два уравнения, причем известно, что второе уравнение является следствием первого, и допустим, что это второе уравнение мы умеем решать, т. е. можем найти все его корни. Тогда мы можем решить и исходное уравнение, так как среди корней второго уравнения находятся все корни исходного. Но не все корни второго уравнения обязаны быть корнями исходного, среди корней второго уравнения могут встретиться числа, не являющиеся корнями исходного уравнения. Поэтому, для того чтобы решить исходное уравнение, мы должны корни второго уравнения испытать посредством подстановки их в исходное уравнение и отобрать из них те корни, которые удовлетворяют исходному уравнению,
Дробные алгебраические уравнения
Дробные уравнения, т. е. такие, в одной или обеих частях которых находятся дробные рациональные выражения, содержащие неизвестное в знаменателе, решаются посредством сведения к целым уравнениям.
Для достижения этой цели можно, например, перенести все слагаемые правой части в левую с противоположными знаками, затем посредством обычных тождественных преобразований привести левую часть к виду частного от деления двух многочленов. После этих преобразований мы получаем новое уравнение, являющееся лишь следствием исходного, но не обязательно равносильное ему.
Действительно, всякое решение исходного уравнения, очевидно, является решением» преобразованного. Обратно, всякий корень преобразованного уравнения является корнем исходного, если только обе части исходного уравнения имеют смысл при подстановке этого корня. Однако может случиться так, что обе части исходного уравнения лишены смысла при некотором значении неизвестного, а левая часть преобразованного уравнения имеет смысл и обращается в нуль. Тогда такое значение неизвестного является корнем преобразованного уравнения, но не является корнем исходного. Таким образом, преобразованное уравнение действительно является следствием исходного, но не обязательно ему равносильно, так как может иметь лишние корни. Указанное обстоятельство может иметь место, если по ходу преобразований происходит взаимное уничтожение дробных выражений или производится сокращение дробей.
Например, производя в уравнений
указанные преобразования, мы получим уравнение
Уравнение (3), очевидно, есть следствие уравнения (1). Проверим это обычным рассуждением.
Если (х такое, что)
Но уравнение (1) не является следствием уравнения (3), так как уравнение (3) имеет корень х = 2, а как раз при х = 2 обе части уравнения (I) не имеют смысла.
Для того чтобы еще более уяснить это обстоятельство, посмотрим, почему нельзя рассуждать следующим образом: «Если х — 2 = 0, то x+1= 3; если х + 1 = 3, то 
Таким образом, мы наметили путь, следуя которому, мы можем преобразовать любое дробное уравнение к уравнению вида
где А и В— многочлены, причем преобразованное уравнение является следствием исходного.
Умножив обе части последнего уравнения на В, мы получим новое уравнение A = 0, которое, согласно теореме 3 § 15, является следствием предыдущего, а потому и следствием исходного уравнения. Корень уравнения A = 0 может не быть корнем уравнения 
Итак, любое дробное уравнение может быть преобразовано в целое уравнение, являющееся следствием исходного. Для этого достаточно перенести все слагаемые правой части в левую, затем посредством известных тождественных преобразований представить левую часть в виде частного от деления двух многочленов и, наконец, умножить обе части уравнения на знаменатель полученной дроби. (Это все равно, что приравнять числитель к нулю.) Если преобразованное уравнение удается решить, то среди его корней находятся все корни исходного уравнения, но могут быть и лишние корни. Их следует отбросить после испытания посредством подстановки в исходное уравнение.
Указанный путь не является единственным при решении дробных уравнений. Часто можно достигнуть цели быстрее, умножив обе части уравнения на многочлен, являющийся общим знаменателем всех дробей, находящихся в левой и правой частях исходного уравнения. Полученное таким образом целое уравнение является следствием исходного дробного, но не обязательно равносильно ему. Рассмотрим несколько примеров.
Пример:
Решение:
Способ 1. Перенесем все слагаемые правой части в левую. Получим
Выполняя сложение дробей, мы пока не будем приводить целую часть (т. е. — 1) к общему знаменателю для упрощения выкладки. Получим
Сократив дробь на х— 2, что дает 

Подставив это значение в исходное уравнение, убеждаемся, что x = 1 есть действительно его решение. Таким образом, в данном случае выполненные преобразования не внесли лишних корней.
Указанную выкладку целесообразно сопровождать следующим рассуждением. Если
Итак, если х удовлетворяет уравнению, то х—. Действительно х=1 удовлетворяет уравнению, ибо
Способ 2. Общим знаменателем всех слагаемых уравнения является 
и после очевидных преобразований
Первый корень преобразованного уравнения не является корнем исходного, ибо обе его части теряют смысл при х = 2. Второй корень удовлетворяет уравнению.
Приведенную выкладку можно обосновать так. Если
Итак, если х удовлетворяет данному уравнению, то х—2 или х=1. Но в действительности из этих двух значений корнем данного уравнения является только х=1, ибо при х = 2 обе части данного уравнения не имеют смысла.
В приведенном примере сокращение дроби, оказавшееся возможным при решении по первому способу, избавило нас в данном случае от «лишнего» корня х = 2. Однако бывает и так, что, хотя уравнение решается первым способом и сокращение дроби осуществляется до конца, «лишние» корни все же возникают. Это видно из следующего примера.
Пример:
Решение:
и после преобразований
откуда получаем, сокращая на х — 2, что
и, следовательно, 4— х — 2 = 0; х = 2.
Итак, если х удовлетворяет данному уравнению, то х = 2. Но в действительности х = 2 не удовлетворяет данному уравнению, ибо обе части его теряют смысл при х = 2. Следовательно, данное уравнение решений не имеет.
Ответ. Уравнение не имеет решений.
Иррациональные уравнения
Всякое иррациональное уравнение, т. е. уравнение, в котором некоторые выражения, зависящие от неизвестного, находятся под знаком корня, может быть преобразовано в целое алгебраическое уравнение, являющееся следствием исходного.
Доказательство этого утверждения в общем виде сложно, и мы ограничимся рассмотрением некоторых частных случаев.
Пример:
Решение:
В рассматриваемое уравнение входит только один радикал. Преобразуем уравнение, оставив радикал в одной его части, а все остальные члены перенесем в другую часть. Получим
Теперь возведем обе части уравнения в квадрат, что приведет нас к новому уравнению, являющемуся следствием исходного. Это обусловлено теоремой 4 § 15 или обычным рассуждением при преобразовании уравнения:
«Если (x такое, что)
Решая преобразованное уравнение, получим 





удовлетворяет исходному уравнению, а корень 

Пример:
Решение:
Уединив радикал, получим 

Проверяя, убеждаемся, что оба корня удовлетворяют исходному уравнению.
Ответ.
Пример:
Решение:
Здесь имеются два радикала, и избавиться от них одновременно посредством однократного возведения в квадрат не представляется возможным. Мы решим этот пример тремя способами.
Способ 1. Уединим один из радикалов, а затем возведем уравнение в квадрат
Полученное уравнение содержит уже один радикал. Уединив его, получим
Возведя в квадрат еще раз, получим
Посредством подстановки в исходное уравнение убеждаемся, что оба корня ему удовлетворяют.
Способ 2. Возведем в квадрат обе части исходного уравнения. Получим
Это уравнение содержит уже один радикал. Уединим радикал:
Теперь снова возведем в квадрат обе части уравнения. Получим 
к такому же, какое было получено при освобождении от радикалов по первому способу.
Способ 3. Введем новую неизвестную 

содержит только один радикал. Далее,
и, наконец, 
и, следовательно,
Таким образом, иногда при решении иррациональных уравнений следует комбинировать способ возведения в степень со способом введения новой неизвестной.
Ответ.
Пример:
Решение:
Способ 1. Представим уравнение в виде
и возведем обе его части в куб. При этом формулу куба разности двух чисел возьмем в следующем виде:
Кроме того, если х удовлетворяет исходному уравнению (а именно, в этом предположении мы и ведем преобразования, так как мы хотим построить уравнение, являющееся следствием исходного), то
Итак, преобразованное уравнение есть
Решая его, получим 
Способ 2. Положим 




Ответ.
Пример:
Решение:
Решение этого примера по образцу второго примера затруднительно, так как в результате последовательного» уединения радикалов и возведения в степень получится уравнение четвертой степени, которое можно решить способом введения нового неизвестного, но не очень просто. Лучше сразу ввести новое неизвестное, положив
Таким образом, относительно новой неизвестной уравнение имеет вид
Освободившись от радикала, получим
Оба корня удовлетворяют уравнению.
Далее, вспоминая, что 
Первое уравнение имеет корни 
Все четыре корня удовлетворяют исходному уравнению, в чем легко убедиться посредством их подстановки в него.
Ответ.
Из рассмотренных примеров мы видим, что при решении иррациональных уравнений следует пользоваться методом уничтожения радикалов посредством возведения в степень или комбинацией его со способом введения нового неизвестного. В каждом частном случае следует, раньше чем приступить к выкладке, вдуматься в строение уравнения и составить план решения.
В заключение приводим еще один прием, который, несмотря на его искусственность, иногда оказывается полезным.
Пример:
Решение:
Умножим обе части уравнения на
Складывая с исходным уравнением, получим
Однако подстановка в исходное уравнение дает, что 
Ответ. Уравнение не имеет решений.
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:





















































Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
http://infourok.ru/sostavlenie_kvadratnogo_trehchlena_po__ego_kornyam-417783.htm
http://lfirmal.com/kvadratnyie-uravneniya-zadachi-s-resheniem/
- Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
- Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
- Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.
Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.
Решение неполных квадратных уравнений
Как мы уже знаем, есть три вида неполных квадратных уравнений:
- ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
- ax 2 + c = 0, при b = 0;
- ax 2 + bx = 0, при c = 0.
Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.
Как решить уравнение ax 2 = 0
Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.
Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.
Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.
Пример 1. Решить −6x 2 = 0.
- Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
- По шагам решение выглядит так:
Как решить уравнение ax 2 + с = 0
Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.
Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.
Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:
- перенесем c в правую часть: ax 2 = — c,
- разделим обе части на a: x 2 = — c/а.
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.
Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.
Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:
- не имеет корней при — c/а 0.
| В двух словах |
|---|
Пример 1. Найти решение уравнения 8x 2 + 5 = 0.
- Перенесем свободный член в правую часть:
Разделим обе части на 8:
Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.
Как решить уравнение ax 2 + bx = 0
Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.
Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:
Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.
Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.
Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:
Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0
0,5x = 0,125,
х = 0,125/0,5
Ответ: х = 0 и х = 0,25.
Как разложить квадратное уравнение
С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:
Формула разложения квадратного трехчлена
Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).
Дискриминант: формула корней квадратного уравнения
Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:
где D = b 2 − 4ac — дискриминант квадратного уравнения.
Эта запись означает:
Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.
Алгоритм решения квадратных уравнений по формулам корней
Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.
В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.
Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:
- вычислить его значение дискриминанта по формуле D = b 2 −4ac;
- если дискриминант отрицательный, зафиксировать, что действительных корней нет;
- если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
- если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней
Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!
Примеры решения квадратных уравнений
Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.
Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.
- Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
- Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
- Найдем корень
Ответ: единственный корень 3,5.
Пример 2. Решить уравнение 54 — 6x 2 = 0.
- Произведем равносильные преобразования. Умножим обе части на −1
Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую
Ответ: два корня 3 и — 3.
Пример 3. Решить уравнение x 2 — х = 0.
- Преобразуем уравнение так, чтобы появились множители
Ответ: два корня 0 и 1.
Пример 4. Решить уравнение x 2 — 10 = 39.
- Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую
Ответ: два корня 7 и −7.
Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.
- Найдем дискриминант по формуле
D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112
Ответ: корней нет.
В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.
Формула корней для четных вторых коэффициентов
Рассмотрим частный случай. Формула решения корней квадратного уравнения 
Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:
2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>
Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:
где D1 = n 2 — ac.
Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.
Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:
- вычислить D1= n 2 — ac;
- если D1 0, значит можно найти два действительных корня по формуле
Формула Виета
Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:
Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.
Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:
Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.
Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.
Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:
Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>
Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>
Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>
Результат проделанных вычислений в том, что мы убедились в справедливости выражения:
Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:
Обратная теорема Виета
Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.
Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.
Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.
- Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>
Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.
Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.
Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:
Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>
Упрощаем вид квадратных уравнений
Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.
Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.
Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.
Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.
Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.
А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения
умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.
Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.
Связь между корнями и коэффициентами
Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:
Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.
Например, можно применить формулы из теоремы Виета:
Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.
Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:
источники:
http://reshator.com/sprav/algebra/8-klass/teorema-vieta/
http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya
Содержание:
Квадратные уравнения
В предыдущих классах вы уже научились составлять и решать уравнения, но лишь простейшие, к которым сводятся относительно несложные задачи. Для решения более сложных задач используют квадратные уравнения. Изучив эту тему, вы сможете решать прикладные задачи из разных отраслей знаний.
В этой главе вы узнаете, что такое:
- неполные квадратные уравнения;
- формула корней квадратного уравнения;
- теорема Виета;
- разложение квадратного трёхчлена на множители.
Неполные квадратные уравнения
Пример:
Одно из двух чисел больше другого на 6, а их произведение равно 112. Найдите эти числа.
Решение:
Обозначим меньшее искомое число буквой х. Тогда большее число равно х + 6. Их произведение — 112. Следовательно,
х(х + 6) = 112, или х2 + 6х- 112 = 0.
Это уравнение второй степени с одной переменной. Такие уравнения называют также квадратными.
Квадратным называют уравнение вида ах2 + bх + c = 0, где х — переменная, а, b, с — данные числа, причём
Числа а, b, с — коэффициенты квадратного уравнения: а — первый коэффициент, b — второй, с — свободный член.
По определению, первый коэффициент квадратного уравнения не может быть равен нулю. Если хотя бы один коэффициент (b или с) равен нулю, то квадратное уравнение называют неполным.
Неполные квадратные уравнения бывают трёх видов:
1) ах2 = 0; 2) ах2 + bх = 0; 3) ах2 + с = 0.
1. Уравнение вида ах2 = О равносильно уравнению х2 = 0, и поэтому всегда имеет только один корень х = О.
2. Уравнение вида ах2 + bх = 0 равносильно уравнению х(ах + b) = 0 и всегда имеет два корня: х1 = 0, х2 =
Пример:
Решите уравнение 5х2 + 4х = 0.
Решение:
Вынесем переменную х за скобки: х(5х + 4) = 0. Следовательно, х = О, или 5х + 4 = 0,отсюда х = -0,8. О т в е т. х1 = 0, х2 = -0,8.
3. Квадратное уравнение вида ах2 + с = О равносильно уравнению х2 = 


Пример:
Решите уравнение 4х2 -3 = 0.
Решение:
Преобразуем данное уравнение: 4х2 = 3, 






Хотите знать ещё больше?
Некоторые квадратные уравнения (полные) можно решать приведением их к неполным квадратным уравнениям. Например, по формуле квадрата двучлена, уравнение х2 — 2х + 1 = 0 можно представить в виде (х — 1)2 = 0 и решить так: (х-1)2 равно нулю лишь в том случае, если х — 1 = 0, то есть х = 1.
Таким способом можно решить любое квадратное уравнение, выразив его левую часть в виде квадрата двучлена.
Например, 
Выполним вместе!
Пример:
Решите квадратное уравнение: а) Зх2 — 6х = 0; б) 2у2 -72 = 0.
Решение:
а) Зх2 — 6х = 0; Зх(х — 2) = 0; х1 = 0; х-2 = 0; х2 = 2.
б) 2у2 -72 = 0; 2(у2 36)-0; у2— 36 — 0; y1 = 6; y2 = -6. Ответ. a) x1 = 0, х2 = 2; б)у1=6, у2 =-6.
Пример:
Решите уравнение
Решение:



При этих значениях х знаменатель не равен нулю. Следовательно, х1 = — 20, х2 = 20 — корни уравнения. О т в е т. х1 = — 20, х2 = 20 .
Формула корней квадратного уравнения
Решим уравнение х2 + 6х-112=0, которое мы составили по условию задачи.
Решение:
Если к выражению х2 + 6х прибавить 9, то получим квадрат двучлена х + 3. Поэтому данное уравнение равносильно уравнению х2 + 6х + 9-9-112=0, или (х + 3)2 = 121. Следовательно, х + 3 = 11, отсюда х = 8; или х + 3 = -11, отсюда х = -14. Ответ. х1 = 8, х2 = -14.
Такой способ решения квадратного уравнения называют способом выделения квадрата двучлена.
Решим этим способом уравнение 5х2 — 2х — 3 = 0.
Чтобы первый его член стал квадратом одночлена с целым коэффициентом, умножим обе части данного уравнения на 5: 25х2 -10х — 15=0, 25х2-2 . 5х + 1 — 1 — 15 = 0, (5х- 1)2 = 16.
Следовательно, 5х — 1 = 4, отсюда 5х = 5, х = 1; или 5х — 1 = — 4, отсюда 5х = — 3, х = — 0,6. От в е т. х1 = 1, х2 = -0,6.
Решим таким способом уравнение ах2 + bх + с = 0.
Умножим обе части уравнения на 4а (помним, что 
4а2х2 + 4ах.b + 4ас = 0,
(2ах)2 + 2 . 2ах . b + b2 — b2 + 4ас = 0,
(2ах + b)2 = b2 — 4ас.
Выражение b2 — 4ас называют дискриминантом (от латинскогоdiscriminans — различающий) данного квадратного уравнения и обозначают буквой D.
Если D < 0, то данное уравнение не имеет корней: не существует такого значения х, при котором значение выражения (2ах + b)2 было бы отрицательным.
Если D = 0, то 2ах + и = 0, отсюда х = 

или
В этом случае уравнение имеет два корня, они отличаются только знаками перед 


Это формула корней квадратного уравнения ах2 + bх + с = 0. Пользуясь ею, можно решить любое квадратное уравнение.
Пример:
Решите уравнение: а) Зх2 — 5х + 2 = 0; б) х2 + 6х + 9 = 0; в) 5х2 — х + 1 = 0.
Решение:
a) D = 25 — 24 = 1, D > 0,

б) D = 36-36 = 0,

в) D =1 — 20 = -19, D < 0. Уравнение корней не имеет.
Ответ. а)х1 = 1, х2= 
Пример:
Решите уравнение: а) 4х4 — 9х2 +5=0; б) (Зх2 — x — 3)(3х2 — х + 5) = 9.
Решение:
Такие уравнения удобно решать путём введения вспомогательной переменной.
a) 4x4 — 9x2 + 5 = 0. Пусть x2 — t, тогда x4 = t2, получим уравнение относительно переменной t: 4x2 — 9x2+ 5 = 0, D = (-9)2 — 4 .4 .5 = 81 — 80 = 1, D > 0,

Вернёмся к переменной x: l) x2 = l, xl=-l, x2=l;
2)
Уравнение вида ax4 + bx2 + c=0 называют биквадратным. б) (Зх2 — х — 3)(3х2 — х + 5) = 9. Пусть 3х2 — х = t, тогда относительно переменной t получим уравнение: (t — 3)(t + 5) = 9, t2 + 2t — 15 = 9, t2 + 2t — 24 = 0, D= 4. 4 (-24) = 4 + 96 — 100, D > 0,

1)3х2-х=-6,Зх2-х + 6-0, D = (-1)2-4. 3. 6=-71, D<0, следовательно, это уравнение корней не имеет. 2 ) Зх2 — х = 4, Зх2 — х — 4 — О, х1 = -1, х2 = 



Хотите знать ещё больше?
Формулу корней уравнения ах2 + bх + с = 0 можно записать и в таком виде:

Если второй коэффициент уравнения — чётное число, то есть уравнение имеет вид ах2 + 2kx + с = 0, то

Если первый коэффициент квадратного уравнения равен 1, то такое уравнение называют приведённым. Приведённое квадрат ное уравнение имеет вид х2 + рх + q = 0, Формула его корней:

Выведите эти формулы из основной формулы корней квадратного уравнения.
Выполним вместе!
Пример:
Приведите уравнение (х — 4)(2х + 1) = Зх(х — 1) к квадратному и найдите его корни.
Решение:
(х- 4)(2х 4-1) = Зх(х-1). Раскроем скобки и сведём подобные слагаемые: 2х2 — 8х + х — 4 = 3х2 — 3х,
Зх2 — 2х2 — 3х + 8х — х + 4 = 0, х2 +4х +4 = 0.
Решим полученное уравнение, принимая во внимание, что в его левой части — квадрат двучлена: х2 + 2 . х . 2 + 22 = (х +2)2. Следовательно, (х +2)2 — 0, отсюда х + 2 = 0, х = -2.
Ответ. х = -2.
Пример:
Решите дробное рациональное уравнение:
Решение:

D=25-4.6=1, 
Теорема Виета
Квадратное уравнение называют приведённым, если первый его коэффициент равен единице. В таблице — примеры трёх приведённых квадратных уравнений, их корни, а также суммы и произведения корней:
Сравните сумму корней каждого приведённого квадратного уравнения с его вторым коэффициентом, а произведение корней — со свободным членом.
Теорема Виета: Если приведённое квадратное уравнение имеет два корня, то их сумма равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение — свободному члену.
Доказательство. Если уравнение х2 + рх + q = 0 имеет корни х1 и х2, то их можно найти по формулам:

Сложим и перемножим эти корни:
Итак, x1 + х2 =— р, x1 . х2 = q, что и требовалось доказать. Примечание. Если р2 — 4q = 0, то уравнение х2+ рх + q = 0 имеет один корень 
Формулы (*) в этом случае дают 

Каждое квадратное уравнение вида 

Теорема (обратная теореме Виета). Если сумма m и n произведение чисел тип равны соответственно — р и q, то m и n тип — корни уравнения х2 + рх + q =0.
Доказательство. Пусть m + n =-р и m . n =q. При данных условиях уравнение х2 + рх 4 q = 0 равно сильно уравнению х2 — (m + n)х + m n = 0.
Подставим в это уравнение вместо переменной х числа m и n:
m2 — (m +n)m + mn = m2 — m2 — nm + mn= 0,
n2 — (m +n)n+ mn = n2 — mn — n2 +mn = 0.
Итак, m и n — корни данного уравнения, что и требовалось доказать. Из теоремы Виета следует: если р и q — целые числа, то целые решения уравнения х2 + рх + q= 0 — это делители числа q. Пользуясь обратной теоремой, можно проверить, является та или другая пара чисел корнями приведённого квадратного уравнения. Это даёт возможность устно решать такие уравнения.
Пример:
Решите уравнение х2 + 12х + 11 = 0.
Решение:
Если уравнение имеет целые корни, то их произведение равно 11. Это могут быть числа 1 и 11 либо — 1 и -11. Второй коэффициент уравнения положительный, поэтому корни отрицательные. Ответ. х1 = -1, х2 = -11.
Хотите знать ещё?
Теорема Виета верна не толоко для приведённого квадратного уравнения, но и для уравнений высших степеней Например, если уравнение третьей степени х3+4ах2 +bх + с = 0 имеет корни х1, х2 и х3, то
x1+x2+x3=-a
x1x2+x1x3+x2x3=b
x1x2x3 = — c.
Если такое уравнение с целыми коэффициентами имеет целые решения, то они являются делителями свободного члена.
Выполним вместе!
Пример:
Найдите сумму и произведение корней уравнения:
а) х2 + х-6 = 0; б)х2 + 2х + 3 = 0.
Решение:
а) D=1 +24 >0. Корни существуют, поэтому x1 + х2 = -1; x1 . х2 = -6;
б) D= 4-12<0. Корней не существует. Ответ. а)х1 + х2 = -1,х1 -х2 = -6; б) корней не существует.
Пример:
При каких значениях m произведение корней уравнения х2 + 8х + m — 7 = 0 равно 3?
Решение:
m-7 = 3, m = 10. Ответ. m = 10.
Пример:
Не решая уравнение х2 — 4х + 1 = 0, найдите сумму квадратов его корней.
Решение:
D = 16 — 4 > 0. Корни существуют. x1 + х2 = 4; х1 .х2 = 1;
(x1 + x2)2 = 16; x21+2x1x2+x22 =16;
х12 +2. 1+x22 =16; x21 +x22 =16-2, х21 +х22 =14.
Ответ. x21+x22=14.
Квадратный трёхчлен
Квадратным трёхчленом называют многочлен вида ах2 + bх+ с, где х — не ременная, a, b, c — данные числа, причём 
Переменную квадратного трёхчлена можно обозначить любой буквой. Примеры квадратных трёхчленов:
Если квадратный трёхчлен приравнять к нулю, то получим квадратное уравнение. Его корни и дискриминант называют соответственно корнями и дискриминантом данного квадратного трёхчлена. Например, дискриминант и корни квадратного трёхчлена 5х2 — 7х — 6 равны соответственно 169, 2 и 
Из теоремы Виета следует правило разложения квадратных трёхчленов на множители.
Если m и n — корни уравнения x2+ рх + q = 0, то х2 + рх + q = (х-m)(х — n).
Поскольку х2 + рх + q = х2 — (m -n)х 4+mn = х2 — mх — nх 4- mn = (y- m )(х — n).
Пример:
Разложите на множители трёхчлен: х2+4х- 21.
Решение:
а) Корни уравнения х2+4х- 21=0 равны 3 и -7. Поэтому
х2+ 4х — 21 =(х- 3)(х +7).
Ответ.(х- 3)(х +7).
Верна и такая теорема.
Если корни квадратного трёхчлена ах2 + bх + с равны m и n, то его можно разложить на множители:
ах2 +bх + с = а(х — m)(х — n).
Доказательство:


Поэтому
Например, если нужно разложить на множители трёхчлен Зх2+5х-2, то решаем уравнение Зх2+5х-2-0. Его дискриминант D = 25+24= 49, поэтому
Следовательно,
Ответ можно записать и так;
Зх2+ 5х 2 = (Зх 1 )(х+ 2).
Разложение квадратных трёхчленов на множители применяется при сокращении дробей, приведении их к общему знаменателю и т. д. Например, чтобы сократить дробь 
Каждый квадратный трёхчлен ах2 + bх + c можно представить в виде а(х-k)2+ р, где k и р некоторые числа. Такое преобразование называют выделением квадрата двучлена. Как выполнить подобное преобразование, покажем на примере. Чтобы выделить из квадратного трёхчлена 2х2 — 12х + 25 квадрат двучлена, сначала вынесем за скобки множитель 2:

В результате имеем: 2х2 — 12х + 25 = 2 (х — 3)2 + 7.
Выделение квадрата двучлена даёт возможность решать задачи на нахождение наибольшего или наименьшего значения квадратного трёхчлена. Например, чтобы найти, при каком значении х значение выражения 2х2 -12х + 25 наименьшее, выделим из него квадрат двучлена:
2х2— 12x+25 =2(х-3)2 + 7.
Второе слагаемое полученной суммы — число 7, а первое имеет наименьшее значение, если равно 0, то есть х=3. Следовательно, трёхчлен 2х2— 12x+25 имеет наименьшее значение 7. если х = 3.
Хотите знать ещё больше?
Если квадратный трёхчлен имеет дробные корни, го при разложении его на линейные множители желательно первый коэффициент этого трёхчлена «внести в скобки» Например:
Выполним вместе!
Пример:
Найдите значение функции
Решение:
Числитель формулы разложим на множители:
Если х = 2008, то у = 2008 — 1 = 2007. О т в е т. у = 2007.
Решение задач составлением квадратных уравнений
С помощью квадратных уравнений можно упростить решение многих задач.
Пример:
Найдите два числа, произведение и среднее арифметическое которых равны соответственно 108 и 10,5.
Решение:
Если среднее арифметическое двух чисел равно 10,5, то их сумма в 2 раза больше, то есть 21. Пусть одно из искомых чисел х, тогда другое равно 21-х.
Имеем уравнение:
х(21 — х) = 108, или х2 — 21х + 108 = 0.
Решим это уравнение: D = 212 — 4. 108 = 9,
Если х = 9, то 21 — х = 12; если х = 12, то 21 — х = 9.
Ответ. 9 и 12.
Пример:
Собственная скорость моторной лодки — 18 км/ч. Расстояние 12 км по течению реки она проходит на 9 мин быстрее, чем против течения. Найдите скорость течения реки.
Решение:
9 мин = 0,15 ч. Если скорость течения реки равна х км/ч, то скорость лодки по течению составляет (18 + х) км/ч, а против течения — (18 — х) км/ч. Расстояние 12 км по течению она проходит за 


отсюда 4(18 + х) — 4(18 — х) — 0,05(18 — х)(18 + х) = 0,
х2 + 160х — 324 = 0, D = 1602 + 4.324 = 26 896.
Задачу удовлетворяет только положительный корень. Ответ. 2 км/ч.
Пример:
На плоскости n точек расположены таким образом, что никакие три из них не лежат на одной прямей. Если любую из этих точек соединить отрезком со всеми другими, то получим 351 отрезок. Найдите число n.
Решение:
Из одной точки выходит n — 1 отрезков, из всех n данных точек — n(n — 1) отрезков. При этом каждый отрезок повторяется дважды, поскольку имеет два конца. Следовательно, всего отрезков
Имеем уравнение:
Решим это уравнение: D = 1 + 4 .702 = 2809, 
Ответ. n = 27
Хотите знать ещё больше?
В задачах кроме числовых данных иногда бывают и параметры. В этом случае решение желательно дополнить соответствующими исследованиями — указать, какие значения могут принимать параметры. Например, решим такую задачу.
Пример:
Найдите стороны равнобедренного треугольника, если известно, что две его неравные высоты равны а и b.
Решение:
Обозначим стороны треугольника буквами: АС = АВ = х, СВ = у (рис. 62).

Воспользуемся теоремой Пифагора и формулой для вычисления площади треугольника и составим систему
Вычислим из второго уравнения с, подставим его в первое и получим:
Тогда 
Следовательно,
Исследование. В полученных значениях x и у под знаком корня имеем разность 4а2 — b2, которая должна быть положительной, что возможно только при b < 2а.
Следовательно, данное решение задачи верно не при любых положительных а и b, а лишь при b < 2а.
Далее. Мы рассмотрели случай, когда на основание y и опущена высота а. Но для этих же значений а и b возможен иной вариант (рис. 63). Имеем:

В этом случае а < 2b. Ответ. Если a < 2b < 4а, то задача имеет два решения:

Если 
Если 
Выполним вместе!
Пример:
Найдите три последовательных целых числа, сумма квадратов которых равна 509.
Решение:
Пусть искомые числа: х -1, х, х + 1. Тогда имеем уравнение: (х — 1)2 + х2 + (х + 1)2 =509. Решим его.
Раскроем скобки и сведём подобные слагаемые: х2 -2х + 1+ х2+ х2+2х+1- 509=0,.
3х2-507=0, отсюда х2 =169, х1= 13, х2=- 13
= 0, отсюда х2 — 169, х, 13, х . = 13. Следовательно, два других числа: 12, 14 или -12, 14. Ответ. 12, 13, 14 или 12. -13, II.
Следовательно, два других числа: 12,14 или -12, -14.
Ответ. 12,13,14 или -12, 13, 14.
ИСТОРИЧЕСКИЕ СВЕДЕНИЯ
Квадратные уравнения простейших видов вавилонские математики умели решать ещё 4 тыс. лет тому назад. Со временем их решали также в Китае и Греции. Особое внимание квадратным уравнениям уделил Мухаммед аль-Хо-резми (IX в.). Он показал, как решать (при положительных а и b) уравнения видов х2 + ах = b, х2 + а = bх, ах + b = х2, не используя каких-либо выражений, даже числа записывал словами. Например, уравнение х2 + 21 = 10х учил решать так: «Раздели пополам корни, получится пять, и умножь это на равное ему — будет двадцать пять, и отними от этого двадцать один, то останется четыре, добудь из этого корень, будет два, и отними это от половины корней, то есть от пяти, — останется три; это и будет корень, который ты ищешь». Отрицательных корней тогда не вычисляли. Индийские учёные в решении этого вопроса пошли дальше. Они находили также отрицательные корни квадратных уравнений. Например, Бхаскара (1114 -1178), решая уравнение х2 — 45х = 250, находит два корня: 50 и 5. И только после этого делает замечание: «Второе значение в данном случае не следует брать, люди ведь не воспринимают отрицательных абстрактных чисел». Алгебраические задачи на составление уравнений индийские учёные записывали в стихотворной форме и рассматривали их как особый вид искусства. Они объясняли: «Как солнце затмевает звёзды своим светом, так и человек учёный способен затмить славу других на народных собраниях, предлагая алгебраические задачи и, тем более, решая их». Формулы корней квадратного уравнения вывел Франсуа Виет (1540—1603). Теорему, впоследствии названную его именем, учёный сформулировал так: «Если (В + В) А -А2 равно BD, то А равно В и равно В». Отрицательных корней он не рассматривал. Современные способы решения квадратных уравнений появились благодаря научным трудам Рене Декарта (1596— 1650) и Исаака Ньютона (1643—1727).
ОСНОВНОЕ В ГЛАВЕ
Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами. Числа, удовлетворяющие уравнению, — его решения (или корни). Решить уравнение означает найти все его решения либо показать, что их не существует. Два уравнения называют равносильными, если каждое из них имеет те же решения, что и другое. Уравнения, не имеющие решений, также считают равносильными друг другу. Квадратным называют уравнения вида ах2 + bх + с = 0, где х — переменная, а, b, с — данные числа, причём 



ax2 = 0 имеет единственный корень: х = 0; ах2 +bх = 0 имеет два корня: х1 = 0, х2=

Квадратное уравнение называют приведенным, если его первый коэффициент равен единице. Если уравнение х2 + рх + q = 0 имеет два корня, то
Теорема Виета Если приведённое квадратное уравнение х2 +рх + q = 0 имеет два корня, то их сумма равна р, а произведение — q.
Квадратные уравнения
- Изучив материал этого параграфа, вы научитесь решать уравнения вида
- Ознакомитесь с теоремой Виета для квадратного уравнения.
- Овладеете приемами решения уравнений, сводящихся к квадратным.
Вы умеете решать линейные уравнения, то есть уравнения вида 



Если 

Например, каждое из линейных уравнений
является уравнением первой степени. А вот линейные уравнения 
Числа 


То, что множество уравнений первой степени является подмножеством множества линейных уравнений, иллюстрирует схема на рисунке 34.
Вы также умеете решать некоторые уравнения, содержащие переменную во второй степени. Например, готовясь к изучению новой темы, вы решили уравнения 

Определение: Квадратным уравнением называют уравнение вида 


Числа 




Например, квадратное уравнение 
Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.
Например, 
Поскольку в квадратном уравнении 


Если в квадратном уравнении 


Существует три вида неполных квадратных уравнений.
- При
имеем:
- При
и
имеем:
- При
и
имеем:
Решим неполные квадратные уравнения каждого вида.
- Поскольку
то уравнение
имеет единственный корень
- Уравнение
представим в виде
Это уравнение имеет два корня
и
один из которых равен нулю, а другой является корнем уравнения первой степени
Отсюда
и
- Уравнение
представим в виде
Поскольку
то возможны два случая:
или
Очевидно, что в первом случае уравнение корней не имеет. Во втором случае уравнение имеет два корня:
и
Обобщим полученные результаты:
Пример:
Решите уравнение
Решение:
При 

или 

При 


Ответ: 2.
Формула корней квадратного уравнения
Зная коэффициенты 


Выведем формулу, позволяющую по коэффициентам 


Имеем:

Поскольку 
Выделим в левой части этого уравнения квадрат двучлена:

Существование корней уравнения (2) и их количество зависят от знака значения выражения 



Теперь уравнение (2) можно записать так:

Возможны три случая:
1. Если 


Вывод: если 
2. Если 
Отсюда
Вывод: если 
3. Если 
Отсюда 


Вывод: если 

Применяют также краткую форму записи:
Эту запись называют формулой корней квадратного уравнения
Полученную формулу можно применять и в случае, когда 
При решении квадратных уравнений удобно руководствоваться следующим алгоритмом:
Если второй коэффициент квадратного уравнения представить в виде 
Рассмотрим квадратное уравнение 


Если 
то есть

Пример:
Решите уравнение:
Решение:
1) Для данного уравнения
Дискриминант уравнения
Следовательно,
Ответ:
2) Имеем:
Следовательно, данное уравнение имеет один корень:
Заметим, что данное уравнение можно решить другим способом. Умножив обе части уравнения на —2, получаем:
Отсюда
Ответ: 2.
3)
Уравнение имеет два корня:
Ответ можно записать одним из двух способов:

4) 
Ответ: корней нет.
5) Представим данное уравнение в виде 
Ответ:
Пример:
Решите уравнение:
Решение:
1) Имеем:
При 

корни —8 и 2, однако корень —8 не удовлетворяет условию
При 

Ответ: —2; 2.
2) Поскольку 



Уравнение 
Ответ: 12.
3) Данное уравнение равносильно системе 
Ответ:
Пример:
При каком значении 
Решение:
1) Данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю. Имеем:
Ответ: 
2) При 

При 
Имеем: 

Ответ: 

Несколько поколений учителей математики приобретали педагогический опыт, а их учащиеся углубляли свои знания, пользуясь чудесной книгой «Квадратные уравнения» блестящего украинского педагога и математика Николая Андреевича Чайковского. Н. А. Чайковский оставил значительное научное и педагогическое наследие. Его труды известны далеко за пределами Украины.
Теорема Виета
Готовясь к изучению этого пункта, вы выполнили упражнения 677, 678. Возможно, эти упражнения подсказали вам, каким образом сумма и произведение корней квадратного уравнения связаны с его коэффициентами.
Теорема: (теорема Виета). Если 


Доказательство: Условием теоремы предусмотрено, что данное квадратное уравнение имеет корни. Поэтому его дискриминант 
Пусть 
Имеем:
Пусть 

Следствие. Если 


Иными словами, сумма корней приведенного квадратного уривнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
Теорема: (обратная теореме Виета). Если числа 



Доказательство: Рассмотрим квадратное уравнение 
Французский математик, по профессии юрист. В 1591 г. ввел буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений, благодаря чему стало возможным выражать свойства уравнений и их корни общими формулами. Среди своих открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений.
Согласно условию теоремы это уравнение можно записать так: 
Подставим в левую часть этого уравнения вместо 


Таким образом, числа 

Следствие. Если числа 



Это следствие позволяет решать некоторые квадратные уравнения устно, не используя формулу корней квадратного уравнения.
Пример:
Найдите сумму и произведение корней уравнения
Решение:
Выясним, имеет ли данное уравнение корни. Имеем: 

Тогда по теореме Виета
Пример:
Найдите коэффициенты 


Решение:
По теореме Виета
Пример:
Составьте квадратное уравнение с целыми коэффициентами, корни которого равны: 1) 4 и 


Решение:
1) Пусть 
Тогда 



2) Пусть 
Тогда
Следовательно, 


Пример:
Известно, что 


Решение:
По теореме Виета
Тогда имеем:
Ответ:
Пример:
Число 4 является корнем уравнения 
Решение:
Пусть 




Ответ:
Пример:
Составьте квадратное уравнение, корни которого на 4 больше соответствующих корней уравнения
Решение:
Пусть 



По условию
По теореме Виета
Тогда имеем:
Следовательно, по теореме, обратной теореме Виета, искомым является уравнение
Ответ:
Квадратный трехчлен
Определение: Квадратным трехчленом называют многочлен вида 



Приведем примеры многочленов, являющихся квадратными трехчленами:
Заметим, что левая часть квадратного уравнения 
Определение: Корнем квадратного трехчлена называют значение переменной, при котором значение квадратного трехчлена равно нулю.
Например, число 2 является корнем квадратного трехчлена
Чтобы найти корни квадратного трехчлена 
Значение выражения 
Если 


Рассмотрим квадратный трехчлен 
Имеем:
О таком тождественном преобразовании говорят, что квадратный трехчлен 

Связь между корнями квадратного трехчлена и линейными множителями, на которые он раскладывается, устанавливает следующая теорема.
Теорема: Если дискриминант квадратного трехчлена 
где 

Доказательство: Поскольку числа 


Тогда
Замечание. Если дискриминант квадратного трехчлена равен нулю, то считают, что квадратный трехчлен имеет два равных корня, то есть 
Теорема:. Если дискриминант квадратного трехчлена отрицательный, то данный трехчлен нельзя разложить на линейные множители.
Доказательство: Предположим, что квадратный трехчлен 



Пример:
Разложите на множители квадратный трехчлен:
Решение:
1) Найдем корни данного трехчлена:
Следовательно,
2) Решим уравнение 
Следовательно,
3) Решим уравнение 

Пример:
Сократите дробь
Решение:
Разложим на множители квадратный трехчлен, являющийся числителем данной дроби. Решив уравнение 
Теперь можно записать:
Тогда получаем:
Ответ:
Пример:
При каком значении 

Решение:
Поскольку разложение данного трехчлена на множители должно содержать множитель 
Ответ:
Решение уравнений, приводимых к квадратным уравнениям
Пример:
Решите уравнение
Решение.
Пусть 





Решая это уравнение, находим:
Поскольку 
Отсюда
Ответ можно записать двумя способами: 
Определение: Уравнение вида 




Заменой 

Метод замены переменной можно использовать не только при решении биквадратных уравнений.
Пример:
Решите уравнение
Решение:
Выполним замену 
Отсюда
Теперь надо решить следующие два уравнения:



Отсюда
Ответ: 0; 1.
Пример:
Решите уравнение
Решение:
Пусть 

Отсюда
Получаем два уравнения:
Поскольку 
Ответ: корней нет.
Пример:
Решите уравнение
Решение:
Данное уравнение равносильно системе
Отсюда
Ответ: —3.
Пример:
Решите уравнение
Решение:
Имеем:
Следовательно, данное уравнение равносильно системе
Отсюда
Ответ: 7.
Решение уравнений методом замены переменной
В п. 22 вы ознакомились с решением уравнений методом замены переменной. Рассмотрим еще несколько примеров, иллюстрирующих эффективность этого метода.
Пример:
Решите уравнение
Решение:
Пусть 


Отсюда
Теперь решение исходного уравнения сводится к решению двух уравнений
Решите эти уравнения самостоятельно.
Ответ: —3; —1; 2; 6.
Пример:
Решите уравнение
Решение:
Преобразуем это уравнение:
Пусть 
Отсюда
Следовательно, 
Решив эти два квадратных уравнения, получаем ответ.
Ответ:
Пример:
Решите уравнение
Решение:
С помощью проверки легко убедиться, что число 0 не является корнем данного уравнения. Тогда, разделив обе части данного уравнения на 
Отсюда
Произведем замену: 


С учетом замены получаем два уравнения:
Решите эти уравнения самостоятельно.
Ответ:
Пример:
Решите уравнение
Решение:
Пусть 
Отсюда
Такая замена позволяет переписать исходное уравнение следующим образом:
Отсюда
Следовательно, 
Решите эти уравнения самостоятельно.
Ответ:
Пример:
Решите уравнение
Решение:
С помощью проверки можно убедиться, что число 0 не является корнем данного уравнения. Следовательно, можно разделить обе части уравнения на 
Замена 
Завершите решение самостоятельно.
Ответ:
Может возникнуть вопрос: почему при решении примеров 1—5 мы не пытались упростить уравнения с помощью тождественных преобразований?
Дело в том, что после тождественных преобразований нам пришлось бы решать уравнение вида 





В общем случае для решения уравнений третьей и четвертой степеней необходимо знать формулы нахождения их корней. С историей открытия этих формул вы можете ознакомиться в следующем рассказе.
Секретное оружие Сципиона дель Ферро
Вы легко решите каждое из следующих уравнений третьей степени:
Все они являются частными случаями уравнения вида





Первым изобрел способ решения уравнения вида 


После смерти дель Ферро его ученик Фиоре, владея секретной формулой, вызвал на математический поединок талантливого математика-самоучку Никколо Тарталья. За несколько дней до турнира Тарталья сам вывел формулу корней уравнения третьей степени. Диспут, на котором Тарталья одержал убедительную победу, состоялся 20 февраля 1535 года.
Впервые секретная формула была опубликована в книге известного итальянского ученого Джероламо Кардан о «Великое искусство». В этой работе также описан метод решения уравнения четвертой степени, открытый Людовико Феррари (1522—1565).
В XVTI-XVIII вв. усилия многих ведущих математиков были сосредоточены на поиске формулы для решения уравнений пятой степени. Получению результата способствовали работы итальянского математика Паоло Руффини (1765-1822) и норвежского математика Нильса Хенрика Абеля. Сам результат оказался абсолютно неожиданным: было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения пятой и более высоких степеней через коэффициенты уравнения, используя лишь четыре арифметических действия и действие извлечения корня.
Рациональные уравнения как математические модели реальных ситуаций
В п. 7 вы уже ознакомились с задачами, в которых рациональные уравнения служили математическими моделями реальных ситуаций. Теперь, когда вы научились решать квадратные уравнения, можно существенно расширить круг рассматриваемых задач.
Пример:
Из пункта 

Решение:
Пусть скорость велосипедиста равна 




то есть на 
Решим это уравнение:
Решив квадратное уравнение системы, получим 
Корень —30 не удовлетворяет условию задачи. Следовательно, скорость велосипедиста равна 12 км/ч, а скорость грузовика составляет: 12 + 18 = 30 (км/ч).
Ответ: 12 км/ч, 30 км/ч.
Пример:
Одна бригада работала на ремонте дороги 7 ч, после чего к ней присоединилась вторая бригада. Через 2 ч их совместной работы ремонт был завершен. За сколько часов может отремонтировать дорогу каждая бригада, работая самостоятельно, если первой для этого требуется на 4 ч больше, чем второй?
Решение:
Пусть первая бригада может самостоятельно отремонтировать дорогу за 





Полученное уравнение имеет два корня: 

Следовательно, первая бригада может отремонтировать дорогу за 12 ч, а вторая — за 8 ч.
Ответ: 12 ч, 8 ч.
Пример:
Водный раствор соли содержал 120 г воды. После того как в раствор добавили 10 г соли, его концентрация увеличилась на 5 %. Сколько граммов соли содержал раствор первоначально?
Решение:
Пусть исходный раствор содержал 

После того как к раствору добавили 10 г соли, ее масса
в растворе составила 




Полученное уравнение имеет два корня: 

Следовательно, раствор содержал первоначально 30 г соли.
Ответ: 30 г.
ГЛАВНОЕ В ПАРАГРАФЕ 3
Уравнение первой степени
Уравнение вида 




Квадратное уравнение
Уравнение вида 




Приведенное квадратное уравнение
Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.
Неполное квадратное уравнение
Если в квадратном уравнении 


Решение неполного квадратного уравнения
Дискриминант квадратного уравнения
Для уравнения вида 


Решение квадратного уравнения
Если 
Если 
Если 


Теорема Виета:
Если 

то
Теорема, обратная теореме Виета
Если числа 



Квадратный трехчлен
Многочлен вида 




Разложение квадратного трехчлена на множители
Если дискриминант квадратного трехчлена 

Биквадратное уравнение
Уравнение вида 




——
Квадратные уравнения
В этом разделе вы научитесь:
- решать квадратные уравнения различными способами;
- применять квадратные уравнения для решения задач;
- по каким формулам находят площади треугольников и четырёхугольников;
- применять формулы площадей при решении задач;
- находить площадь сложных фигур, разделяя их на простые геометрические фигуры.
Квадратные уравнения широко применяются в строительстве, финансах и дизайне.
На практике также, широко применяются формулы для вычисления площадей.
Это интересно!
Великий учёный Востока аль — Хорезми в своём труде «Китаб мухтасаб ал-джабр и ва-л-мукабала», что в переводе означает «Книга о восполнении и противопоставлении» показал различные способы решения квадратных уравнений. Одним из них является метод подбора. Хорезми выбирал число и подставлял его в уравнение вместо неизвестного. После чего, становилось понятно, является ли данное число корнем уравнения.
Например,
Квадратные уравнения
Уравнение вида 






Например, в уравнении
Если квадратное уравнение с обеих сторон разделить на 





Неполные квадратные уравнения
Если в квадратном уравнении 


Уравнения, 

1) Решение уравнений вида 


Пример 1. Разделим обе части уравнения
2) Решение уравнений вида 




Пример 2. Для решения уравнении 
3) Решение уравнений вида
Запишем уравнение 
Если 

Пример 3. Решим уравнение
Решение квадратного уравнения методом разложения на множители
Решение уравнения 
Для разложения левой части уравнения 






Пример 1. 





Пример 2. 





Пример 3. 
Корни уравнения
Пример 4. 
Корни уравнения
Решение уравнения вида 
Для разложения левой части уравнения 


Пример 1. Запишем уравнение 
Числа 

Тогда 
Пример 2. Решим уравнение 




Пример 3. В трёхчлене 

Метод выделения полного квадрата
Для выделения полного квадрата из двухчленах 
Это правило одинаково как для положительных, так и для отрицательных 



Пример 2. Для решения уравнения 

Решение квадратного уравнения графическим методом
Графический метод
Запишем уравнение 



Пример:
Графики пересекаются в двух точках. Абсциссы точек пересечения равны — 3 и 1. При проверке убеждаемся, что обе точки являются корнями уравнения.
Пример:
Для построения прямой 
Абсцисса точки касания прямой и параболы равна 1. Уравнение удовлетворяется при единственном значении неизвестного:
Пример:
Графики не имеют точек пересечения. Это говорит о том, что данное уравнение не имеет действительных корней.
Обе части квадратного уравнения 

Калькулятор для построения графиков
Используя онлайн калькуляторы для построения графиков можно построить различные графики. На рисунке представлены графики функций 
Решить квадратное уравнение также можно при помощи графического калькулятора, построив в одной системе координат параболу и прямую
На рисунке корни уравнение 

Формула для нахождения корней квадратного уравнения
Мы уже научились находить корни квадратного уравнения методом разложения на множители и методом выделения полного квадрата. Для нахождения корней любого квадратного уравнения 
При 
Если в формуле для нахождения корней квадратного уравнения принять 
Наличие корней квадратного уравнения зависит от знака 
1) Если 
2) Если 
3) Если 
Пример:
В уравнении 

В уравнении 


Если второй коэффициент квадратного уравнения является четным числом (т.е. 




Пример:
Решим уравнение
Теорема Виета
Решим приведённое квадратное уравнение: 

Внимание! Если сложить найденные корни, то получим число противоположное коэффициенту при 


Теорема: В приведённом квадратном уравнении сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение, равно свободному члену
Доказательство: Известно, что 

Таким образом, для уравнения 







Найдём корни квадратного уравнения 
Таким образом корнями уравнения являются числа 4 и 5.
Теорема, обратная теореме Виета
Обратная теорема. Если сумма чисел 


Эту теорему можно записать так: любые числа 
Доказательство. На самом деле, если принять, что 



Пример:
Составим квадратное уравнение, если известно, что числа 



Решение задач при помощи квадратных уравнений
Задача. Один из катетов прямоугольного треугольника на 2 см больше другого и на 2 см меньше гипотенузы. Найдите периметр треугольника.
1 этап — составление уравнения
Обозначим длину одного из катетов через 

2 этап — решение уравнения. Согласно теореме Пифагора получим уравнение
3 этап — решение уравнения. Преобразуем уравнение 
4 этап — анализ результата.
Решению задачи соответствует корень 



- Заказать решение задач по высшей математике
Квадратные уравнения
Квадратные уравнения. Неполные квадратные уравнения
В математике, физике, экономике, практической деятельности человека встречаются задачи, математическими моделями которых являются уравнения, содержащие переменную во второй степени.
Пример №256
Длина земельного участка на 15 м больше ширины, а площадь равна 
Решение:
Пусть 



Такое уравнение называют квадратным.
Квадратным уравнением называют уравнение вида 


Например, уравнения 
Числа 



В уравнении 




Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным. Уравнение 

Если в квадратном уравнении 


Например, неполным квадратным уравнением, в котором 




Таким образом, неполные квадратные уравнения бывают трех видов:
Рассмотрим решение каждого из них.
1.Уравнение вида
Так как 

Следовательно, уравнение имеет единственный корень:
2.Уравнение вида
Имеем 




Если 
Пример №257
Решите уравнение:
Решение:
Ответ. 
3. Уравнение вида
Разложим левую часть уравнения на множители и решим полученное уравнение 
Значит, уравнение имеет два корня:
Пример №258
Решите уравнение
Решение:
Имеем:
Таким образом,
Ответ.
Систематизируем данные о решениях неполного квадратного уравнения в виде схемы:
Формула корней квадратного уравнения
Рассмотрим полное квадратное уравнение 

Умножим левую и правую части уравнения на 
Далее прибавим к обеим частям уравнения
Так как 
Выражение 
Слово дискриминант происходит от латинского различающий. Дискриминант обозначают буквой
Учитывая, что 

Рассмотрим все возможные случаи в зависимости от значения
(при делении на 
Следовательно, если 

Коротко это можно записать так:
Получили формулу корней квадратного уравнения.
2) 

Таким образом, если 





3) 



Систематизируем данные о решениях квадратного уравнения с помощью схемы:
Пример №259
Решите уравнение:
Решение:
Ответ:
Пример №260
Решите уравнение
Решение:
Умножим левую и правую части уравнения на 

Так как 
Ответ.
Неполные квадратные уравнения и некоторые виды полных квадратных уравнений (например, вида 
Много внимания квадратным уравнениям уделял арабский математик Мухаммед ал-Хорезми (IX в.). Он нашел, как решить уравнения вида 


Формулы, связывающие между собой корни квадратного уравнения и его коэффициенты, были найдены французским математиком Франсуа Виетом в 1591 году. Он пришел к следующему выводу (в современных обозначениях): «Корнями уравнения 
После публикации трудов нидерландского математика А. Жирара (1595-1632), а также француза Р. Декарта (1596-1650) и англичанина И. Ньютона (1643-1727) формула корней квадратного уравнения приобрела современный вид.
Теорема Виета
Рассмотрим несколько приведенных квадратных уравнений, имеющих два различных корня. Внесем в таблицу следующие данные о них: само уравнение, его корни 

Обратим внимание, что сумма корней каждого из уравнений таблицы равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение корней равно свободному члену. Это свойство выполняется для любого приведенного квадратного уравнения, имеющего корни.
Приведенное квадратное уравнение в общем виде обычно записывают так:
Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней — свободному члену.
Доказательство: Пусть 



Если 

Найдем сумму и произведение корней:
Следовательно, 
Эту теорему называют теоремой Виета — в честь выдающегося французского математика Франсуа Виета, который открыл это свойство. Его можно сформулировать следующим образом:
Если 

Два последних равенства, показывающих связь между корнями и коэффициентами приведенного квадратного уравнения, называют формулами Виста.
Используя теорему Виета, можно записать соответствующие формулы и для корней любого неприведенного квадратного уравнения
Так как 

Тогда по теореме Виета:
Если 

Пример №261
Не решая уравнения 
Решение:
Найдем дискриминант уравнения, чтобы убедиться, что корни существуют: 

По теореме Виета:
Ответ.
Если в уравнении 


Пример №262
Найдите подбором корни уравнения
Решение:
Пусть 


Ответ. 1; -4.
Пример №263
Один из корней уравнения 

Решение:
Пусть 



Ответ.
Пример №264
Пусть 

Решение:
По теореме Виета:
Тогда: 1)
Ответ.
Справедливо и утверждение, обратное теореме Виета.
Теорема (обратная теореме Виета). Если числа 


Доказательство: По условию 

Проверим, является ли число 


Следовательно, 
Аналогично подставим в левую часть уравнения вместо переменной 



Таким образом, 

Пример №265
Составьте приведенное квадратное уравнение, корнями которого являются числа -5 и 2.
Решение:
Искомое квадратное уравнение имеет вид 
Таким образом, 
Ответ,
Квадратное уравнение как математическая модель текстовых и прикладных задач
В 7 классе мы уже знакомились с задачами, которые можно решить с помощью линейных уравнений или систем линейных уравнений. Для решения прикладной задачи сначала создают ее математическую модель, то есть записывают зависимость между известными и неизвестными величинами с помощью математических понятий, отношений, формул, уравнений и т. п. Математической моделью многих задач в математике, физике, технике, практической деятельности человека может быть не только линейное уравнение или система линейных уравнений, но и квадратное уравнение.
Рассмотрим несколько примеров.
Пример №266
Разность кубов двух натуральных чисел равна 279. Найдите эти числа, если одно из них на 3 больше другого.
Решение:
Пусть меньшее из этих чисел равно 

Упростим левую часть уравнения.
Получим: 


Ответ. 4; 7.
Пример №267
В кинотеатре количество мест в ряду на 6 больше количества рядов. Сколько рядов в кинотеатре, если мест в нем 432?
Решение:
Пусть в кинотеатре 

Имеем уравнение:
Перепишем уравнение в виде 
По смыслу задачи значение 

Ответ. 18 рядов.
Пример №268
У выпуклого многоугольника 54 диагонали. Найдите, сколько у него вершин.
Решение:
Пусть у многоугольника 



Получим уравнение: 


Ответ. 12.
Пример №269
Тело подбросили вертикально вверх со скоростью 



Решение:
По условию: 

Оба корня являются решением задачи, так как на высоте 15 м тело окажется дважды: сначала при движении вверх (это произойдет через 1 с), а во второй раз — при падении (это произойдет через 3 с).
Ответ. 1 с, 3 с.
Пример №270
В 9 часов утра из базового лагеря в восточном направлении отправилась группа туристов со скоростью 

Решение:
За первый час первая группа туристов преодолеет 5 км: 
Пусть расстояние в 17 км между группами будет через 



Из 


Учитывая, что 
Следовательно, расстояние 17 км между группами туристов будет в 12 часов.
Ответ. В 12 часов.
В результате хозяйственной деятельности человека возникли прикладные задачи, решением которых люди занимаются уже на протяжении нескольких тысячелетий. Самые древние из известных нам письменных памятников, содержащих правила нахождения площадей и объемов, были составлены в Египте и Вавилоне приблизительно 4 тыс. лет назад. Около 2,5 тыс. лет назад греки переняли геометрические знания египтян и вавилонян и стали развивать теоретическую (чистую) математику.
Также в древние времена математики использовали математические модели, в частности и для геометрических построений (метод подобия фигур).
Современное понятие математической модели в качестве описания некоторого реального процесса языком математики стали использовать в середине XX в. в связи с развитием кибернетики — науки об общих законах получения, хранения, передачи и обработки информации. А раздел современной математики, изучающий математическое моделирование реальных процессов, даже выделили в отдельную науку — прикладную математику.
Существенный вклад в развитие прикладной математики был сделан нашими выдающимися земляками — математиками М.П. Кравчуком и М.В. Остроградским.
Развитие кибернетики связывают с именем академика Виктора Михайловича Глушкова — выдающегося математика, доктора физико-математических наук, профессора. В 1953 г. он возглавил лабораторию вычислительной техники Института математики, стал ее мозговым и энергетическим центром. На базе этой лаборатории в 1957 г. был создан Вычислительный центр, а в 1962 г. -Институт кибернетики который и возглавил В.М. Глушков. Лаборатория известна тем, что в 1951 г. в ней создали первую в Евразии Малую электронную счетную машину, а уже в Вычислительном центре завершили работу по созданию первой большой электронно-вычислительной машины. Сегодня Институт кибернетики носит имя В.М. Глушкова и является, в частности, разработчиком прикладных информационных технологий для решения неотложных практических задач, возникающих при моделировании экономических процессов, проектировании объектов теплоэнергетики, решении проблем экологии и защиты окружающей среды.
Квадратный трехчлен. Разложение квадратного трехчлена на линейные множители
Выражения 
Квадратным трехчленом называют многочлен вида 

Например, выражение 
Пример №271
Рассмотрим квадратный трехчлен 


Корнем квадратного трехчлена называют значение переменной, при котором значение трехчлена обращается в нуль.
Чтобы найти корни квадратного трехчлена 
Пример №272
Найдите корни квадратного трехчлена
Решение:
Решим уравнение 


Ответ.
Квадратный трехчлен, как и квадратное уравнение, может иметь два различных корня, один корень (то есть два равных корня) или не иметь корней. Это зависит от знака дискриминанта квадратного уравнения 
Если 


Если корни квадратного трехчлена известны, то его можно разложить на линейные множители, то есть на множители, являющиеся многочленами первой степени.
Теорема (о разложении квадратного трехчлена на множители). Если 

Доказательство: Если 

Для доказательства теоремы раскроем скобки в правой части равенства:
Таким образом, 
Если же квадратный трехчлен не имеет корней, то на линейные множители его разложить нельзя.
Пример №273
Разложите на множители квадратный трехчлен:
Решение:
1) Корни трехчлена 


2) Квадратное уравнение 

3) Квадратное уравнение 

Нетрудно заметить, что если квадратный трехчлен имеет два равных корня, то он представляет собой квадрат двучлена или произведение некоторого числа на квадрат двучлена.
Пример №274
Сократите дробь
Решение:
Числа 1 и -0,5 — корни квадратного трехчлена 

Ответ.
При решении некоторых задач, связанных с квадратным трехчленом 

Пример №275
Выделите из трехчлена 
Решение:
Вынесем за скобки множитель 2:
Воспользовавшись формулой квадрата суммы двух чисел 



Ответ.
Пример №276
Дан квадратный трехчлен 

Решение:
Выделим из трехчлена квадрат двучлена:
Выражение 




Таким образом, квадратный трехчлен 
Ответ. 16 при
Решение уравнений, сводящихся к квадратным
Дробные рациональные уравнения
Решение дробных рациональных уравнений часто сводится к решению квадратных уравнений. Вспомним один из методов решения дробного рационального уравнения
Пример №277
Решите уравнение
Решение:
Чтобы найти область допустимых значений переменной и общий знаменатель, разложим на множители знаменатели дробей в уравнении:
Умножим обе части уравнения на общий знаменатель дробей — выражение 

откуда
Ответ. 3.
Метод разложения многочлена на множители
Некоторые уравнения, правая часть которых равна нулю, можно решить с помощью разложения левой части на множители.
Пример №278
Решите уравнение
Решение:
Вынесем в левой части уравнения общий множитель 
Таким образом, уравнение 
Ответ. 0; 3; -5.
Биквадратные уравнения
Уравнение вида 



Такой метод решения называют методом введения новой переменной или методом замены переменной.
Пример №279
Решите уравнение
Решение:
Сделаем замену 

Вернемся к переменной
Таким образом, корни исходного уравнения — числа 2 и -2.
Ответ. 2; -2.
Метод замены переменной
Не только биквадратные, но и некоторые другие виды уравнений можно решить, используя замену переменной.
Пример №280
Решите уравнение
Решение:
Если мы раскроем скобки в левой части уравнения, получим уравнение четвертой степени, которое не всегда возможно решить методами школьной математики. Поэтому скобки раскрывать не будем. Заметим, что в обеих скобках выражения, содержащие 




Возвращаемся к переменной
Таким образом, корнями исходного уравнения являются числа
Ответ.
Пример №281
Решите уравнение
Решение:
Раскроем скобки в каждой части уравнения:
Заметим, что выражения, содержащие переменную 

Найдем его корни:
Вернемся к переменной
Таким образом, исходное уравнение имеет три корня:
Ответ.
Решение задач с помощью дробных рациональных уравнений
Дробные рациональные уравнения также могут служить математическими моделями текстовых задач.
Пример №282
Из одного города в другой, расстояние между которыми 560 км, одновременно выехали легковой и грузовой автомобили. Скорость легкового была на 
Решение:
Пусть скорость грузового автомобиля 
Так как значение величины 

У него два корня: 

Ответ.
Пример №283
Мастер и его ученик, работая вместе, могут выполнить задание за 8 ч. За сколько часов может выполнить это задание самостоятельно каждый из них, если мастеру на это нужно на 12 ч меньше, чем его ученику?
Решение:
Пусть мастеру для самостоятельного выполнения задания нужно 





откуда
Второй корень не соответствует смыслу задачи, так как является отрицательным.
Таким образом, мастер, работая отдельно, может выполнить задание за 12 ч, а его ученик — за
Условие этой задачи, как и предыдущей, можно также систематизировать в виде таблицы:
Ответ. 12 ч и 24 ч.
Обратите внимание, что условия большинства задач на движение или работу можно систематизировать в виде таблицы, что поможет избежать громоздких текстовых записей.
«Желаю тебе стать вторым Остроградским…»
Михаил Васильевич Остроградский родился 12 сентября 1801 года в д. Пашенная Полтавской губернии (в настоящее время деревня Пашеновка). Предки Михаила Васильевича служили в казацком войске, участвовали во многих боях, не раз проявляли военную доблесть и героизм. По-видимому, именно поэтому в детстве Михаил Васильевич так мечтал стать военным. Но ему суждено было стать всемирно известным ученым.
В детстве Михаил обладал исключительной наблюдательностью и увлекался измерениями. Учился он в пансионе при Полтавской гимназии, потом в этой гимназии. Закончив ее, стал свободным слушателем Харьковского университета, а в дальнейшем и его студентом. После окончания университета с отличием в августе 1820 года, менее чем через год (в апреле 1821 года) получил степень кандидата наук за исследования в прикладной математике. В 1822 году Остроградский уезжает в Париж, чтобы усовершенствовать М.В. Остроградский свое математическое образование, и становится слушателем университета в Сорбонне.
Именно там он публикует свои первые научные труды, становится известным ученым и заслуживает уважение французских математиков. За неимением средств Михаил Васильевич вынужден был покинуть Париж, преодолев пешком зимой 1828 года путь от Парижа до Петербурга.
Научные круги Петербурга встретили молодого ученого с радостью и надеждой. Его авторитет среди петербургских деятелей науки был высоким и незыблемым. В том же 1828 году Остроградский начинает преподавательскую деятельность в Морском кадетском корпусе Петербурга, его избирают адъюнктом Петербургской академии наук. А с 1830 года преподает еще в четырех высших учебных заведениях Петербурга. В 1834 году Остроградский был избран членом Американской академии наук, в 1841 году — членом Туринской академии, в 1853 — членом Римской академии Линчей и в 1856 году -членом-корреспондентом Парижской академии наук.
Лекции Остроградского посещали не только студенты, но и преподаватели, профессура, известные математики. Всем нравилась его система преподавания предмета — широта темы, но при этом выразительность и сжатость изложения, а также его остроумие. На лекциях он украшал свою речь словами, пословицами и поговорками. Поэтому студенты вспоминали его лекции с восторгом.
Любимым писателем Остроградского был Т.Г. Шевченко, с которым он был лично знаком и значительную часть произведений которого, зная наизусть, охотно декламировал. В 1858 году, когда Тарас Григорьевич возвращался из ссылки на родину через Петербург, Михаил Васильевич предложил Кобзарю остановится в его петербургской квартире.
Вернувшись из ссылки, Шевченко писал в «Дневнике»: «Великий математик принял меня с распростертыми объятиями, как земляка и как надолго выехавшего члена семьи».
Михаил Васильевич был выдающимся, оригинальным, всесторонне одаренным человеком. Его ценили не только за ум, но и за независимость, демократизм, скромность, искренность и простоту, за уважение к людям труда. Находясь на вершине славы, отмеченный за свои научные труды во всей Европе, Остроградский был прост в общении и не любил говорить о своих заслугах.
И какие бы проблемы не решал ученый (занимался он алгеброй, прикладной математикой, теорией чисел, теорией вероятностей, механикой и т. п.), все его научные труды отличаются глубиной мысли и оригинальностью, в них неизменно присутствует широта его взглядов, умение углубиться в суть проблемы, систематизировать и обобщить.
На всю жизнь Михаил Васильевич сохранил любовь к родной Земле и родному языку. Почти ежегодно летом он выезжал с целью погрузиться в полное спокойствие и полюбоваться замечательными пейзажами. Летом 1861 года Остроградский, пребывая на родине, заболел и 1 января 1862 года умер.
За свою почти 40-летнюю научную деятельность Михаил Васильевич написал свыше 50 трудов из разных отраслей математики: математического анализа, аналитической и небесной механики, математической физики, теории вероятностей. Свои педагогические взгляды М.В. Остроградский изложил в учебниках по элементарной и высшей математике.
Именем М.В. Остроградского назван Кременчугский национальный университет.
И хотя почти всю свою жизнь Михаил Остроградский занимался наукой, он был широко известен своим соотечественникам. Авторитет и популярность М.В. Остроградского были настолько значимыми, что родители, отдавая ребенка на учебу, желали ему «стать вторым Остроградским».
Сведения из курса математики 5-6 классов и алгебры 7 класса
Десятичные дроби
Сложение и вычитание десятичных дробей выполняют поразрядно, записывая их одна под другой так, чтобы запятая размещалась под запятой.
Примеры:
Чтобы перемножить две десятичные дроби, надо выполнить умножение, не обращая внимания на запятые, а потом в произведении отделить занятой справа налево столько цифр, сколько их после занятой в обоих множителях вместе.
Примеры:
Чтобы разделить десятичную дробь на натуральное число, надо выполнить деление, не обращая внимания на запятую, но после окончания деления целой части делимого нужно в частном поставить занятую.
Примеры:
Чтобы разделить десятичную дробь на десятичную, нужно в делимом и делителе перенести запятую на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число.
Пример:
Обычные дроби
Частное от деления числа 




Основное свойство дроби: значение дроби не изменится, если ее числитель и знаменатель умножить или разделить на одно и то же натуральное число.
Примеры:




Дроби с одинаковыми знаменателями складывают и вычитают по формулам:
Примеры:
Чтобы сложить или вычесть дроби с разными знаменателями, их сначала приводят к общему знаменателю, а затем выполняют действие по правилу сложения или вычитания дробей с одинаковыми знаменателями.
Примеры:
На следующих примерах показано, как выполнить сложение и вычитание смешанных чисел.
Примеры:
Чтобы умножить две дроби, нужно перемножить их числители и их знаменатели и первый результат записать числителем произведения, а второй — знаменателем:
Примеры:
Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю:
Примеры:
Положительные и отрицательные числа
Модулем числа называют расстояние от начала отсчета до точки, изображающей это число на координатной прямой.
Модуль положительного числа и числа нуль — само это число, а модуль отрицательного — противоположное ему число:
Примеры:

Пример:
Чтобы сложить два числа с разными знаками, нужно из большего модуля слагаемых вычесть меньший модуль и перед полученным результатом записать знак слагаемого с большим модулем.
Примеры:
Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число, противоположное вычитаемому:
Примеры:
Произведение двух чисел с одинаковыми знаками равно произведению их модулей. Произведение двух чисел с разными знаками равно произведению их модулей, взятому со знаком «-».
Примеры:
Частное двух чисел с одинаковыми знаками равно частному от деления их модулей. Частное двух чисел с разными знаками равно частному от деления их модулей, взятому со знаком «-».
Примеры:
Уравнение
Корнем, или решением, уравнения называют число, обращающее уравнение в правильное числовое равенство.
Примеры:
1) Число 3 является корнем уравнения 
2) Число -2 не является корнем уравнения 
Решить уравнение — значит найти все его корни или доказать, что корней нет.
Два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и уравнения, не имеющие корней.
Примеры:
1) Уравнения 
2) Уравнения 
Для решения уравнений используют следующие свойства:
1) если в любой части уравнения раскрыть скобки или привести подобные слагаемые, получим уравнение, равносильное данному;
2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, получим уравнение, равносильное данному;
3) если обе части уравнения
Уравнение вида 


Решение линейного уравнения представим в виде схемы:
Примеры:
В большинстве случаев уравнения последовательными преобразованиями приводят к линейному уравнению, равносильному данному.
Примеры:




Ответ.
Умножим обе части уравнения на наименьшее общее кратное знаменателей дробей — число 6:
Дальше решаем, как в предыдущем примере:
Ответ. Любое число.
Степень с натуральным показателем
Степенью числа 




Примеры:
Свойства степени с натуральным показателем
Примеры:
Используя свойства степени с натуральным показателем, можем существенно упростить вычисления.
Одночлен
Целые выражения — числа, переменные, их степени и произведения называют одночленами.
Например 

Если одночлен содержит только один числовой множитель, записанный первым, и содержит степени разных переменных, то такой одночлен называют одночленом стандартного вида.
Например, 

Этот одночлен можно привести к одночлену стандартного вида:
Умножение одночленов
Примеры:
Возведение одночлена в степень
Примеры:
Многочлен
Многочленом называют сумму одночленов. Многочлен, являющийся суммой одночленов стандартного вида, среди которых нет подобных слагаемых, называют многочленом стандартного вида.
Многочлен 
Сложение и вычитание многочленов
Умножение одночлена на многочлен
Умножение многочлена на многочлен
Формулы сокращенного умножения
Разложение многочленов на множители
Вынесение общего множителя за скобки
Способ группировки
Использование формул сокращенного умножения
Примеры:
Функция
Если каждому значению независимой переменной соответствует единственное значение зависимой переменной, то такую зависимость называют функциональной зависимостью, или функцией.
Переменную 

Все значения, которые принимает независимая переменная (аргумент), образуют область определения функции; все значения, которые принимает зависимая переменная (функция), образуют область значений функции.
Линейной называют функцию, которую можно задать формулой вида 

Графиком любой линейной функции является прямая. Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки на координатной плоскости и провести через них прямую.
Пример:
Построим график функции
Составим таблицу для любых двух значений аргумента:
Отметим на координатной плоскости полученные точки и проведем через них прямую (рис. 20).
Пример:
Построим график функции 




Системы линейных уравнений с двумя переменными
Если нужно найти общее решение двух (или более) уравнений, то говорят, что эти уравнения образуют систему уравнений.
Пример:

Решением системы уравнений с двумя переменными называют пару значений переменных, при которых каждое уравнение обращается в верное числовое равенство.
Пара чисел 
Пара чисел 

Решить систему уравнений — значит найти все ее решения или доказать, что решений нет.
Решение системы двух линейных уравнений с двумя переменными способом подстановки Решить систему уравнений 
Решение системы двух линейных уравнении с двумя переменными способом сложения
Решить систему уравнений
- Неравенства
- Числовые последовательности
- Предел числовой последовательности
- Предел и непрерывность числовой функции одной переменной
- Разложение многочленов на множители
- Системы линейных уравнений с двумя переменными
- Рациональные выражения
- Квадратные корни
Пусть задано квадратное уравнение $ax^2+bx+c=0$, где коэффициенты
$a$,
$b$ и
$c$ — в общем случае являются комплексными.
Его решение находим с помощью дискриминанта
$$D=b^{2}-4 a c$$
тогда
$$x_{1,2}=frac{-b pm sqrt{D}}{2 a}$$
В общем случае и дискриминант, и корни уравнения являются
комплексными числами.
Пример
Задание. Составить квадратное уравнение, которое имеет корни
$z_{1}=1-i$ и
$z_{2}=4-5i$. Решить его.
Решение. Известно, что если
$z_1$, $z_2$ — корни квадратного уравнения
$z^2+bz+c=0$, то указанное уравнение можно записать в виде
$(z-z_1)(z-z_2)=0$. А тогда, учитывая этот факт, имеем, что
искомое уравнение можно записать следующим образом:
$$(z-(1-i))(z-(4-5 i))=0$$
Раскрываем скобки и выполняем операции над комплексными числами:
$$z^{2}-(4-5 i) z-(1-i) z+(1-i)(4-5 i)=0$$
$$z^{2}+z(-4+5 i-1+i)+4-5 i-4 i+5 i^{2}=0$$
$z^{2}+(-5+6 i) z-(1+9 i)=0$ — искомое квадратное уравнение.
Решим полученное уравнение. Найдем дискриминант:
$$D=(-5+6 i)^{2}-4 cdot 1 cdot(-(1+9 i))=-11-60 i+4+36 i=$$
$$=-7-24 i$$
Так как при извлечении корня из комплексного числа в
результате получится комплексное число, то корень из
дискриминанта будем искать в виде $sqrt{D}=a+b i$. То есть
$$sqrt{-7-24 i}=a+b i Rightarrow-7-24 i=(a+b i)^{2} Rightarrow$$
$$Rightarrow-7-24 i=a^{2}+2 a b i-b^{2}$$
Используя тот факт, что два комплексных числа будут равными, если равны их действительные и мнимые части соответственно,
получим систему для нахождения неизвестных значений $a$ и
$b$:
$$left{begin{array}{l}a^{2}-b^{2}=-7 \ 2 a b=-24end{array}right.$$
решив которую, имеем, что $a_1=3$,
$b_1=-4$ или $a_2=-3$, $b_2=4$. Рассматривая любую из
полученных пар, например, первую, получаем, что
$sqrt{D}=3-4 i$, а тогда
$$z_{1}=frac{-(-5+6 i)+(3-4 i)}{2 cdot 1}=4-5 i$$
$$z_{2}=frac{-(-5+6 i)-(3-4 i)}{2 cdot 1}=1-i$$
Ответ. $z^{2}+(-5+6 i) z-(1+9 i)=0$
Читать дальше: элементарные функции комплексного аргумента.

236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Составьте квадратное уравнение по его корням 5 и 3
По теореме Виета сумма корней квадратного уравнения равна коэффициенту при x с обратным знаком, то есть:
Также, по теореме Виета произведение корней квадратного уравнения равно свободному члену, то есть:
По условию x₁ = 5 и x₂ = 3.
Следовательно, квадратное уравнение с корнями x₁ = 5 и x₂ = 3 имеет вид:
Нам нужно составить квадратное уравнение по его корням. Корни равны 5 и 3.
Решать задание будем по алгоритму
- вспомним определение полного квадратного уравнения и приведенного квадратного уравнения;
- вспомним теорему Виета;
- найдем коэффициента уравнения, используя теорему Виета;
- запишем уравнение;
- сделаем проверку — решим полученное уравнение.
Определение квадратного уравнения и теорема Виета
Квадратным уравнением называется уравнение вида ax ^2 + bx + c = 0;
где a, b — коэффициенты, а с — свободный член. Так же обязательно должно выполняться условие, что коэффициента a не равен нулю (a ≠ 0).
Если в уравнении ax^2 + bx + c = 0, коэффициент a = 1, то уравнение называется полным приведенное квадратное уравнение.
Мы в ответе получим уравнение с коэффициентом а = 1, то есть приведенное квадратное уравнение.
Теорема Виета для приведенного квадратного уравнения.
Сумма корней уравнения равна коэффициенту b с противоположным знаком.
А произведение корней уравнения равно свободному члену уравнения с.
Находим коэффициенты для нашего уравнения
Корни уравнения имеют значения x1 = 5; x2 = 3.
При условии, что уравнение приведенное, то есть а = 1, находим коэффициенты b и c.
Как составить квадратное уравнение по его корням
КВАДРАТНЫЙ ТРЕХЧЛЕН III
§ 55. Составление квадратного уравнения по заданным корням
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, как было показано в § 54, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
Ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
ах 2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
х 2 + х — 2 = 0.
Упражнения
411. Составить квадратное уравнение, корнями которого были бы числа:
а) 2 и — 3; б) — 1 и — 5; в) 1 /4 и 1 /6; г) — 1 /2 и — 1 /3 .
412. Составить квадратное уравнение с целыми коэффициентами так, чтобы его корни были равны:
413. Составить квадратное уравнение с целыми коэффициентами, корни которого равны 5 /7 и — 1 /2, а сумма всех коэффициентов равна 36.
414. Могут ли корнями квадратного уравнения с натуральными коэффициентами быть числа 6 /5 и — 1 /7?
415. Составить квадратное уравнение с целыми коэффициентами, если известно, что один из его корней равен:
Теорема Виета
Приведенным квадратным уравнением называется уравнение вида:
Для корней $x_1$ и $x_2$ приведенного квадратного уравнения (при $D ge 0$) справедливо следующее:
$$ x_1+x_2 = -b, quad x_1 x_2 = c $$
$$ x_1 = -6, x_2 = 1, quad x_1+x_2 = -5, quad x_1 x_2 = -6 $$
Теорема Виета
Для корней $x_1$ и $x_2$ квадратного уравнения $ax^2+bx+c = 0$ (при $D ge 0$) справедливо следующее:
$$ ax^2+bx+c = a(x-x_1 )(x-x_2 ) $$
$$ 2x^2+5x-3 = 2 left(x-frac right)(x+3) $$
$$ x_1 = frac, x_2=-3, quad x_1+x_2=-frac, quad x_1 x_2 = — frac $$
Примеры
Пример 1. Составьте квадратное уравнение по его корням:
Искомое уравнение: $x^2-3x-10 = 0$
Искомое уравнение: $x^2-3,5x-2 = 0$
$$ left(x-frac right) left(x-frac right) = x^2- left(frac+frac right)x+frac cdot frac = x^2-frac x+frac $$
Искомое уравнение: $x^2-frac x+frac = 0 или 6x^2-5x+1 = 0$
$г) frac$ — один корень
$$ left(x-frac right)^2 = x^2-2 cdot frac x+ left(frac right)^2 = x^2-frac x+frac$$
Искомое уравнение: $x^2-frac x+ frac = 0$ или $25x^2-30x+9 = 0$
Пример 2. Один из корней уравнения $x^2+bx-21 = 0$ равен 3. Найдите другой корень и коэффициент b.
По теореме Виета можем записать:
Получаем: второй корень равен -7, уравнение имеет вид $x^2+4x-21 = 0$.
Ответ: $x_2$ = -7, b = 4
Пример 3. Один из корней уравнения $x^2+3x+c = 0$ равен 12. Найдите другой корень и коэффициент c.
По теореме Виета можем записать:
$$ x_2+12 = -3 \ 12x_2 = c end right.> Rightarrow x_2 = -15 \ c = 12 cdot (-15) = -180 end right.> $$

















































































































































































































































































































































































































































































имеем: 
и
имеем: 
и
имеем: 
то уравнение
имеет единственный корень 
представим в виде
Это уравнение имеет два корня
и
один из которых равен нулю, а другой является корнем уравнения первой степени
Отсюда
и 
представим в виде
Поскольку
то возможны два случая:
или
Очевидно, что в первом случае уравнение корней не имеет. Во втором случае уравнение имеет два корня:
и








































































































































































































































































































































































































































































