Как составить график уравнения 7 класс

построить график линейной функции:

a)

y=13x+1,x∈−6;3

;  b)

y=13x+1,x∈−6;3

.

Составим таблицу значений функции:

(x) (-6) (3)
(y) (-1) (2)

Построим на координатной плоскости (xOy) точки ((-6;-1)) и ((3;2)) и

проведём через них прямую.

Далее выделим отрезок, соединяющий построенные точки.

Этот отрезок и есть график линейной функции

y=13x+1,x∈−6;3

.

Точки ((-6); (-1)) и ((3); (2)) на рисунке отмечены тёмными кружочками.

рисунок 2.png

b) Во втором случае функция та же, только значения (x=-6) и (x=3) не рассматриваются, так как они не принадлежат интервалу ((-6;3)). 

Поэтому точки ((-6); (-1)) и ((3); (2)) на рисунке отмечены светлыми кружочками.

рисунок 3.png

По графику линейной функции, можно определить наибольшее и наименьшее значения линейной функции на заданном отрезке.

В случае

a)

y=13x+1,x∈−6;3

, имеем:

yнаиб

 (= 2) и

yнаим

 (= -1);

b)

y=13x+1,x∈−6;3

, концы отрезка не рассматриваются, поэтому наибольшего и наименьшего значений нет.

График линейной функции, его свойства и формулы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

  • если х = 0, то у = -2;
  • если х = 2, то у = -1;
  • если х = 4, то у = 0;
  • и т. д.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

Функция Коэффициент «k» Коэффициент «b»
y = 2x + 8 k = 2 b = 8
y = −x + 3 k = −1 b = 3
y = 1/8x − 1 k = 1/8 b = −1
y = 0,2x k = 0,2 b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.
  2. Множеством значений функции является множество всех действительных чисел.
  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
  4. Функция не имеет ни наибольшего, ни наименьшего значений.
  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
    b ≠ 0, k = 0, значит y = b — четная;
    b = 0, k ≠ 0, значит y = kx — нечетная;
    b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
    b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция.
  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
  7. График функции пересекает оси координат:
    ось абсцисс ОХ — в точке (-b/k, 0);
    ось ординат OY — в точке (0; b).
  8. x=-b/k — является нулем функции.
  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
    При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k).
  11. Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
    Если k > 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

  • если k > 0, то график наклонен вправо;
  • если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
  • если b 1 /2x + 3, y = x + 3.

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

  • график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
  • график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
  • график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

  • С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
    Координаты точки пересечения с осью OY: (0; b).
  • С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
    Координаты точки пересечения с осью OX: (- b /k; 0)

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

  • В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
    2 = -4(-3) + b
    b = -10
  • Таким образом, нам надо построить график функции y = -4x — 10
    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
    Поставим эти точки в координатной плоскости и соединим прямой:

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

  1. Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
  2. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
  3. Вычтем из второго уравнения системы первое, и получим k = 3.
    Подставим значение k в первое уравнение системы, и получим b = -2.

Линейное уравнение с двумя переменными и его график

График линейного уравнения с двумя переменными

В линейном уравнении с двумя переменными ax+by=c , a и b называют коэффициентами при переменных, c — свободным членом.

Если сравним полученное уравнение $с y = kx+ tilde b$ (см. §38 данного справочника), получаем:

Графиком $y = kx+ tilde b$ является прямая, угловой коэффициент k определяет угол наклона, слагаемое $tilde b$ – точку пересечения прямой с осью Y (см. §39 данного справочника).

Точки пересечения с осями координат:

График линейной функции ax+by=c с ненулевыми коэффициентами очень удобно чертить по двум точкам пересечения с осями координат: точка на оси X ( $frac$;0) и точка на оси Y (0; $frac$)

Равенство нулю коэффициентов при переменных:

$0x+2y = 4 Rightarrow y = 2$

График – прямая, параллельная оси Х.

$3x+0y = 3 Rightarrow x = 1$

График – прямая, параллельная оси У.

a = 0, b = 0, $c neq 0$

x, $y in Bbb R$ — любое действительное число.

График – вся координатная плоскость

График – пустое множество.

Взаимное расположение графиков двух уравнений

$$ a_1 x+b_1 y = c_1 и a_2 x+b_2 y = c_2 $$

Урок алгебры по теме «График уравнения с двумя переменными». 7-й класс

Разделы: Математика

Класс: 7

Цели:

  • сформировать у учеников представление о графике линейного уравнения с двумя переменными;
  • научить учеников строить графики таких уравнений.
  • Тип урока: объяснение нового материала

    Оборудование: мультимедиа проектор, презентация к уроку.

    Ход урока

    1. Мотивация учебной деятельности (Слайд 1 (cм. презентацию))

    Чем больше я знаю,
    Тем больше умею.
    Кто ничего не замечает,
    Тот ничего не изучает.
    Кто ничего не изучает,
    Тот вечно хнычет и скучает. (Роман Сеф).

    Учитель: Посмотрите на слайд. Как вы понимаете эти слова? Как мы можем отнести их к сегодняшнему уроку?

    2. Актуализация и пробное учебное действие.

    Учитель: Сегодня вам самим предстоит открыть новые знания. Прежде, чем совершать открытие, давайте проверим себя, готовы ли мы совершить его, всё ли было усвоено на уроках, имеются ли слабые места.

    Каждый этап урока мы будем оценивать в листах контроля (Приложение 1). Они лежат у вас на столах. Если работал хорошо, то +, если были затруднения +-, если ни чего не получалось -.

    Какие из приведенных ниже уравнений являются линейными? (Слайд 2)

    Ответ: 3х – у = 14 Почему? Обоснуйте.

    Дайте определение линейного уравнения с двумя переменными. (Линейным уравнением с двумя переменными называется уравнение вида

    ах + ву = с, где х и у — переменные а, в, с — некоторые числа)

    Вместо точек поставьте числа так, чтоб полученная пара чисел являлась решением данного уравнения (Слайд 3)

    Что называется решением уравнения с двумя переменными? (Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство)

    Выберите точку, которая принадлежит графику уравнения (Слайд 4):

    А(-1; -2), В(2; 1), С(4; -4), D(11; -2).

    А теперь давайте вспомним построение точек на координатной плоскости (Слайд 5). Запишите буквы которым соответствуют данные координаты.

    Возьмите лист контроля и оцените свою работу на этом этапе урока.

    Я предлагаю вам выполнить следующее задание в рабочих тетрадях.

    Построите графики функций в одной системе координат (Слайд 6)

    Время закончилось, начинаем проверять. (Слайд 7)

    Где возникли затруднения?

    Почему? (потому что мы не умеем строить такие графики)

    А если мы не умеем строить такие графики, то какую поставим перед собой цель?

    (Научиться строить график линейного уравнения с двумя неизвестными)

    Какова же тема урока? (График линейного уравнения с двумя переменными (Слайд 8))

    А кто построил график в задании 4?

    Возьмите лист контроля и оцените свою работу на этом этапе урока.

    3. Постановка проблемы

    Как вы думаете, как мы будем строить график этого уравнения? (выслушать детей)

    Итак, подведём итог: (Слайд 9)

    Выразим переменную у через х

    Формулой у=-1,5х+3 задается линейная функция, графиком которой служит прямая.

    Уравнения 3х+2у=6 и у=-1,5х+3 равносильны, то эта прямая является и графиком уравнения 3х+2у=6

    А теперь построим график уравнения предложенного в №4 на доске (начертить заранее систему координат на доске).

    Так что же является графиком линейного уравнения с двумя переменными? (ответы детей) (Слайд 9)

    Составим алгоритм построения графика линейного уравнения с двумя неизвестными

    1. Выразим у через х
    2. Выясним, что является графиком данного уравнения
    3. Построим график данного уравнения

    4. Первичное закрепление

    5. Самостоятельная работа с проверкой (Слайд 11 – 14)

    Возьмите лист контроля и оцените свою работу на этом этапе урока.

    Рефлексия. Возьмите лист контроля и оцените свою работу на этом этапе урока (смайлик).

    Домашнее задание п.41, № 1046, №1048(в, г)

    источники:

    http://reshator.com/sprav/algebra/7-klass/linejnoe-uravnenie-s-dvumya-peremennymi-i-ego-grafik/

    http://urok.1sept.ru/articles/630446

    Линейное уравнение с двумя переменными и его график

    1. График линейного уравнения с двумя переменными
    2. Примеры

    График линейного уравнения с двумя переменными

    В линейном уравнении с двумя переменными ax+by=c , a и b называют коэффициентами при переменных, c — свободным членом.

    Если хотя бы один из коэффициентов при переменных не равен нулю, графиком линейного уравнения с двумя переменными является прямая.

    Действительно:

    $$ ax+by = c iff y = — frac{a}{b} x+ frac{c}{b} $$

    Если сравним полученное уравнение $с y = kx+ tilde b$ (см. §38 данного справочника), получаем:

    $$ k = -frac{a}{b} , tilde b = frac{c}{b}$$

    Графиком $y = kx+ tilde b$ является прямая, угловой коэффициент k определяет угол наклона, слагаемое $tilde b$ – точку пересечения прямой с осью Y (см. §39 данного справочника).

    Точки пересечения с осями координат:

    ${left{ begin{array}{c} x = 0 \ y = frac{c}{b}end{array} right.}, {left{ begin{array}{c} x = frac{c}{a} \ y = 0end{array} right.}$

    График линейного уравнения с двумя переменными

    Внимание!

    График линейной функции ax+by=c с ненулевыми коэффициентами очень удобно чертить по двум точкам пересечения с осями координат: точка на оси X ( $frac{c}{a}$;0) и точка на оси Y (0; $frac{c}{b}$)

    Равенство нулю коэффициентов при переменных:

    $a = 0,b neq 0$

    $a neq 0, b = 0$

    $0x+2y = 4 Rightarrow y = 2$

    График – прямая, параллельная оси Х.

    График – прямая, параллельная оси Х.

    $3x+0y = 3 Rightarrow x = 1$

    График – прямая, параллельная оси У.

    График – прямая, параллельная оси У.

    a = 0, b = 0, c = 0

    a = 0, b = 0, $c neq 0$

    0x+0y = 0

    x, $y in Bbb R$ — любое действительное число.

    График – вся координатная плоскость

    0x+0y = 5

    Решений нет.

    График – пустое множество.

    Взаимное расположение графиков двух уравнений

    $$ a_1 x+b_1 y = c_1 и a_2 x+b_2 y = c_2 $$

    $ frac{a_1}{a_2} neq frac{b_1}{b_2} $

    $ frac{a_1}{a_2} = frac{b_1}{b_2} neq frac{c_1}{c_2} $

    $ frac{a_1}{a_2} = frac{b_1}{b_2} = frac{c_1}{c_2} $

    Прямые пересекаются

    Прямые пересекаются

    Прямые параллельны

    Прямые параллельны

    Прямые совпадают

    Прямые совпадают

    Примеры

    Пример 1. Постройте график линейного уравнения по двум точкам пересечения с осями.

    Пример 2. Постройте в одной координатной плоскости графики, найдите точку пересечения:

    а) x+2y = 4 и x-2y = 4

    Точка пересечения (4;0)

    Пример 2.a

    б) x+y = 4 и x-y = -1

    Точка пересечения (1,5;2,5)

    Пример 1.б

    Описание презентации по отдельным слайдам:

    • Презентация по алгебре в 7 классе

Алгоритм построения графика линейной функц...

      1 слайд

      Презентация по алгебре в 7 классе

      Алгоритм построения графика линейной функции

      Учитель: Перескокова В. М.
      МБОУ Орловский УВК
      Республика Крым

    • Алгоритм построения графика линейной функции1.Составить таблицу
2.Начертить к...

      2 слайд

      Алгоритм построения графика линейной функции
      1.Составить таблицу
      2.Начертить координатную плоскость
      3.Отметить на ней точки
      4. Через точки провести прямую

    • Пример.


Построить график функции 
у=2х+4

      3 слайд

      Пример.

      Построить график функции
      у=2х+4

    • 1.Составим таблицу для функции у=2х+4

      4 слайд

      1.Составим таблицу для функции у=2х+4

    • Чертим координатную плоскость

      5 слайд

      Чертим координатную плоскость

    • Отмечаем на координатной плоскости точки

      6 слайд

      Отмечаем на координатной плоскости точки

    • Через точки проведем прямуюУ=2х+4

      7 слайд

      Через точки проведем прямую
      У=2х+4

    § 9 ЛИНЕЙНАЯ ФУНКЦИЯ И ЕЁ ГРАФИК

    1. Преобразование уравнения ах + by + с = 0 к виду у = kx + m

    Алгоритм построения графика уравнения ах + by + с = 0, который мы сформулировали в § 8, при всей его чёткости и определённости математикам не очень нравится. Обычно они выдвигают претензии к первым двум шагам алгоритма. Зачем, говорят они, дважды решать уравнение относительно переменной у: сначала ах1 + by + с = 0, затем ах2 + by + с = 0? Не лучше ли сразу выразить у из уравнения ах + by + с = 0, тогда легче будет проводить вычисления (и, главное, быстрее)? Давайте проверим.

    Рассмотрим сначала уравнение Зх — 2у + 6 = 0 (см. пример 2 из § 8), т. е. 2у = Зх + 6.

    Умножив обе части уравнения на ½ получим …

    Впрочем, тот же результат мы получили бы, если обе части исходного уравнения почленно разделили на 2. Обычно предпочитают в подобных случаях говорить не об умножении, а о почленном делении обеих частей уравнения на одно и то же число.

    Придавая х конкретные значения, легко вычислить соответствующие значения у. Например, при х = 0 получаем у = 3; при х = -2 имеем у = 0; при х = 2 имеем у = 6; при х = 4 получаем у = 9. Видите, как легко и быстро найдены точки (0; 3), (-2; 0), (2; 6) и (4; 9), которые были выделены в примере 2 из § 8.

    Точно так же уравнение 5х — 2у = 0 (см. пример 4 из § 8) можно было преобразовать к виду 2у = 5х и, далее, у = 2,5х; нетрудно найти точки (0; 0) и (2; 5), удовлетворяющие этому уравнению. Наконец, уравнение Зх + 2у — 16 = 0 из того же примера можно было преобразовать к виду 2у = 16 — Зх и, далее, у — 8 — -х.

    Из этого уравнения можно найти решения (0; 8) и (2; 5), которые ему удовлетворяют.

    Рассмотрим теперь указанные преобразования в общем виде.

    Случаи, когда в уравнении ах + by + с = 0 коэффициенты а и b равны нулю, мы рассмотрели в § 8. Там же мы отметили, что в случае, когда а Ф О, b = 0, графиком уравнения является прямая, параллельная оси у.

    Рассмотрим случай, когда b ≠  0. Имеем ах + by + с = 0; (1) bу = -ах – с;

    Введя обозначения … получаем у = kx + m.

    Таким образом, линейное уравнение (1) с двумя переменными х и у в случае, когда b ≠ 0, можно преобразовать к виду у = kx + m (2) где k, m — числа (коэффициенты).

    Это частный вид линейного уравнения. Зная, чему равен х, по правилу у = kx + m всегда можно найти, чему равен у. Будем называть уравнение (2) линейной функцией.

    С помощью уравнения (2) легко, указав конкретное значение х, вычислить соответствующее значение у. Пусть, например, у = 2х + 3. Тогда:

    если х = 0, то у = 3;
    если х = 1, то у = 5;
    если х = -1, то у = 1;
    если х = 3, то у = 9 и т. д.

    Обычно эти результаты оформляют в виде таблицы:

    Значения у из второй строки таблицы называют значениями линейной функции у = 2х + 3 соответственно в точках х = 0, х = 1, х = -1, х = 3.

    В уравнении (1) переменные хну равноправны, а в уравнении (2) — нет: конкретные значения мы придаём одной из них — переменной х, тогда как значение переменной у зависит от выбранного значения переменной х. Поэтому обычно говорят, что х — независимая переменная (или аргумент), у — зависимая переменная.

    Частным случаем теоремы 1 из § 8 является следующая теорема.

    ТЕОРЕМА 2. Графиком линейной функции у = kx + m является прямая.

    ПРИМЕР 1. Построить график линейной функции у = 2х + 3.

    Решение: Составим таблицу:

    х I 0 I 1
    У I 3 I 5

    Построим на координатной плоскости хОу точки (0; 3) и (1; 5) и проведём через них прямую. Это и есть график линейной функции у = 2х + 3 (рис. 34).

    Замечание. В русском языке часто один и тот же объект называют по-разному, например: «дом», «здание», «сооружение», «коттедж», «особняк», «барак», «хибара», «избушка». В математическом языке ситуация примерно та же. Скажем, равенство с двумя переменными у = kx + m, где k, m — конкретные числа, можно назвать линейной функцией, можно назвать линейным уравнением с двумя переменными х и у (или с двумя неизвестными x и у), можно назвать формулой, можно назвать соотношением, связывающим х и у, можно, наконец, назвать зависимостью между хну. Это неважно, главное — понимать, что во всех случаях речь идёт о математической модели у = kx + m.

    2. Линейные функции как математические модели реальных ситуаций

    Многие реальные ситуации описываются математическими моделями, представляющими собой линейные функции. Приведём примеры.

    Первая ситуация. На складе было 500 т угля. Ежедневно стали подвозить по 30 т угля. Сколько угля будет на складе через 2, 4, 10 дней?

    Если пройдёт х дней, то количество у угля на складе (в тоннах) выразится формулой у = 500 + ЗОх. Таким образом, линейная функция у = ЗОх + 500 есть математическая модель ситуации.

    Теперь нетрудно установить, что:

    • при х = 2 имеем у = 560 (в уравнение у = ЗОх + 500 подставили х = 2 и получили у = 560);
    • при х = 4 имеем у = 620;
    • при х = 10 имеем у = 800.

    Вторая ситуация. На складе было 500 т угля. Ежедневно стали увозить по 30 т угля. Сколько угля будет на складе через 2, 4, 10 дней?

    Здесь математической моделью ситуации является линейная функция у = 500 — ЗОх. С помощью этой модели нетрудно ответить на вопрос задачи:

    • если х = 2, то у = 440 (в уравнение у = 500 — ЗОх подставили х = 2 и получили у = 440);
    • если х = 4, то у = 380;
    • если х = 10, то у = 200.

    Третья ситуация. Турист проехал на автобусе 15 км от пункта А до пункта В, а затем продолжил движение в том же направлении, но уже пешком, со скоростью 4 км/ч. На каком расстоянии от пункта А будет турист через 2 ч, через 4 ч, через 5 ч ходьбы?

    Математической моделью ситуации является линейная функция у = 15 + 4х, где х — время ходьбы (в часах), у — расстояние от А (в километрах). С помощью этой модели отвечаем на вопрос задачи:

    • если х = 2, то у = 23 (в уравнение у = 15 + 4х подставили х = 2 и получили у = 23);
    • если х = 4, то у = 31;
    • если х = 6, то у = 39.

    Итак, в каждой из рассмотренных ситуаций математической моделью служит линейная функция. Но (внимание!), строго говоря, все три составленные модели не совсем точны, они не учитывают тех ограничений на переменную, которые вытекают из смысла задачи. Ведь ясно, что в первой ситуации независимая переменная х может принимать только значения 1, 2, 3, …, поскольку х — число дней. Следовательно, уточнённая математическая модель первой ситуации выглядит так:

    у = 500 + ЗОх, где х — натуральное число.

    Вторую ситуацию необходимо уточнить условием у > 0. Это значит, что независимая переменная х, обозначающая, как и в первой ситуации, число дней, может принимать только значения 1, 2, 3, …, 16. Действительно, если х = 16, то по формуле у = 500 — ЗОх находим у = 500 — 30 • 16 = 20. Значит, уже на 17-й день вывезти со склада 30 т угля не удастся, поскольку на складе к этому дню останется всего 20 т и процесс вывоза угля придётся прекратить. Следовательно, уточнённая математическая модель второй ситуации выглядит так:

    у = 500 — ЗОх, у > 0 или у = 500 — ЗОх, где х = 1, 2, 3, …, 16.

    В третьей ситуации независимая переменная х теоретически может принять любое неотрицательное значение (х = 0, х = 2, х = 3,5 и т. д.), но практически турист не может шагать с постоянной скоростью без сна и отдыха сколько угодно времени. Значит, нам нужно было принять разумные ограничения для х, скажем, 0 < х < 6 (т.е. турист идёт не более 6 ч).

    Напомним, что геометрической моделью нестрогого двойного неравенства 0 < х < 6 служит отрезок [0; 6] координатной прямой (рис. 35). Значит, уточнённая модель третьей ситуации выглядит так: у = 15 + 4х, где х принадлежит отрезку [0; 6].

    Условимся вместо фразы «х принадлежит множеству X» писать х е X (читают: «элемент х принадлежит множеству X», е — знак принадлежности). Как видите, наше знакомство с математическим языком постоянно продолжается. Множество натуральных чисел обычно обозначают буквой N. Значит, вместо фразы «х — натуральное число» мы можем использовать соотношение х е N.

    Если линейную функцию у = kx + m надо рассматривать не при всех значениях х, а лишь для значений х из некоторого числового множества X, то пишут у = kx + m, х ∈ Х.

    А теперь запишем более точные математические модели для рассмотренных выше трёх ситуаций.

    • Первая ситуация: у = 500 + ЗОх, х е N.
    • Вторая ситуация: у = 500 — ЗОх, х е {1, 2, 3, …, 16}.
    • Третья ситуация: у = 15 + 4х, х е [0; 6].

    3. Построение графика линейной функции на заданном промежутке

    Построить график линейной функции:

    Решение: а) Составим таблицу для линейной функции у = -2х + 1:

    х | -3 |  2
    y I  7 I -3

    Построим на координатной плоскости хОу точки (-3; 7) и (2; -3) и проведём через них прямую линию. Это график уравнения у = -2х + 1. Далее выделим отрезок, соединяющий построенные точки (рис. 36). Этот отрезок и есть график линейной функции у = -2х + 1, где х е [-3; 2].

    Обычно говорят, что мы построили график линейной функции у = -2х + 1 на отрезке [-3; 2].

    б) Чем отличается этот пример от предыдущего? Линейная функция та же (у = -2х + 1), значит, и графиком её служит та же прямая. Но — будьте внимательны! — на этот раз х е (-3; 2), т. е. значения х = -3 и х = 2 не рассматриваются, они не принадлежат интервалу (-3; 2). Как мы отмечали концы интервала на координатной прямой? Светлыми кружочками (рис. 39), об этом мы говорили в § 5. Точно так же и точки (-3; 7) и (2; -3) придётся отметить на чертеже светлыми кружочками. Это будет напоминать нам о том, что берутся лишь те точки прямой у = -2х + 1, которые лежат между точками, отмеченными кружочками (рис. 37). Впрочем, иногда в таких случаях используют не светлые кружочки, а стрелки (рис. 38). Это непринципиально: главное — понимать, о чём идёт речь.

    ПРИМЕР 3. На координатной прямой отмечены точки А(-4), В(-3). Найти наибольшее и наименьшее значения линейной функции у = х/2 + 4 на отрезке [0; 6].

    Решение: Составим таблицу для линейной функции. Построим на координатной плоскости хОу точки (0; 4) и (6; 7) и проведём через них прямую — график линейной функции

    Нам нужно рассмотреть эту линейную функцию не целиком, а на отрезке [0; 6], т. е. для х е [0; 6]. Соответствующий отрезок графика выделен на чертеже. Обратим внимание, что самая большая ордината у точек, принадлежащих выделенной части, равна 7 — это и есть наибольшее значение линейной функции у = х/2 + 4 на отрезке [0; 6]. Обычно используют такую запись:

    Замечаем, что самая маленькая ордината у точек, принадлежащих выделенной на рисунке 40 части прямой, равна 4 — это и есть наименьшее значение линейной функции у — iх + 4 на отрезке [0; 6]. Обычно используют такую запись:

    Ответ: унаиб = 7, унаим = 4.

    ПРИМЕР 4. Найти унаиб и унаим для линейной функции у = -1,5х + 3,5:

    • а) на отрезке [1; 5];
    • б) на интервале (1; 5);
    • в) на полуинтервале [1; 5);
    • г) на луче [0; +оо);
    • д) на луче (~°°; 3].

    Решение

    Составим таблицу для линейной функции. Построим на координатной плоскости хОу точки (1; 2) и (5; -4) и проведём через них прямую (рис. 41—45). Выделим на построенной прямой часть, соответствующую значениям х из отрезка [1; 5] (рис. 41), из интервала (1; 5) (рис. 42), из полуинтервала [1; 5) (рис. 43), из луча [0; +°°) (рис. 44), из луча (~°°; 3] (рис. 45).

    а) С помощью рисунка 41 нетрудно сделать вывод, что унаиб = 2 (этого значения линейная функция достигает при х = 1), а унаим = -4 (этого значения линейная функция достигает при х = 5).

    б) В отличие от предыдущего случая, оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, из рассмотрения исключены (рис. 42). Среди остальных точек графика нет ни точки с наименьшей ординатой, ни точки с наибольшей ординатой. Значит, ни наибольшего, ни наименьшего значений на заданном интервале у данной линейной функции нет.

    в) С помощью рисунка 43 заключаем, что унаиб  2 (как и в первом случае), а наименьшего значения у линейной функции нет (как и во втором случае).

    г) унаиб = 3,5 (этого значения линейная функция достигает при х = 0), а унаим не существует (рис. 44).

    д) унаим = -1 (этого значения линейная функция достигает при х — 3), а унаиб не существует (рис. 45).

    4. Свойства линейной функции

    ПРИМЕР 5. Построить график линейной функции у = 2х — 6. С помощью графика ответить на следующие вопросы:
    а) при каком значении х будет у = 0;
    б) при каких значениях х будет у > 0;
    в) при каких значениях х будет у < 0?

    Решение: Составим таблицу для линейной функции у = 2х — 6:

    Через точки (0; -6) и (3; 0) проведём прямую — график линейной функции у = 2х — 6 (рис. 46).

    • а) у = 0 при х = 3. График пересекает ось х в точке х = 3, это и есть точка с ординатой у — 0.
    • б) у > 0 при х > 3. В самом деле, если х > 3, то соответствующая часть прямой расположена выше оси х, значит, ординаты соответствующих точек прямой положительны.
    • в) у < 0 при х < 3. В самом деле, если х < 3, то соответствующая часть прямой расположена ниже оси х, значит, ординаты соответствующих точек прямой отрицательны.

    Обратите внимание, что в этом примере мы с помощью графика решили:

    • а) уравнение 2х — 6 = 0 (получили х = 3);
    • б) неравенство 2х — 6 > 0 (получили х > 3);
    • в) неравенство 2х — 6 < 0 (получили х < 3).

    Рассмотрим график линейной функции, изображённый на рисунке 47, а. Если двигаться по этому графику слева направо, то ординаты точек графика всё время увеличиваются, мы как бы «поднимаемся в горку». В таких случаях математики употребляют термин возрастание и говорят так: если к > 0, то линейная функция у = kx + m возрастает.

    Рассмотрим график линейной функции, изображённый на рисунке 47, б. Если двигаться по этому графику слева направо, то ординаты точек графика всё время уменьшаются, мы как бы «спускаемся с горки». В таких случаях математики употребляют термин убывание и говорят так: если k < 0, то линейная функция у = kx + m убывает.

    ПРИМЕР 6. На рисунке 48 изображён график движения автомобиля между пунктами 1 и 2. По оси t отмечено время (в часах), по оси S — расстояние до пункта 1. Требуется охарактеризовать весь процесс движения словами.

    Решение: Точка А соответствует началу движения. До пункта 2 автомобиль доехал за 1 1/3 ч — об этом можно судить по абсциссе точки D. Пройденное расстояние равно 50 км — об этом можно судить по ординате точки D. Значит, можно вычислить скорость движения автомобиля: v = 50 : 4/3 = 37,5 км/ч.

    На участке графика DE ордината постоянна, т. е. расстояние от пункта 1 не менялось. Это значит, что автомобиль не двигался (стоял в пункте 2). Причём он стоял в промежутке от 1^ ч до 2-| ч (это абсциссы точек D и Е). Остановка длилась, таким образом, 1 ч 20 мин.

    На обратный путь после остановки автомобиль потратил столько же времени, сколько на путь от 1 до 2, значит обратно он ехал с той же скоростью.

    Вопросы для самопроверки

    1. Что такое линейная функция?
    2. Что является графиком линейной функции?
    3. Сколько точек достаточно взять для построения графика линейной функции?
    4. Опишите процесс построения графика линейной функции у = 2х + 3, где х е [0; 2]. Что изменится, если х е (0; 2)?
    5. Дана линейная функция у = kx + m, х е X, где X — некоторый числовой промежуток. Что такое унаим, унаиб?
    6. Дано: у = 2х + 3, х е [0; +оо). Найдите, если возможно, унаим, унаиб. Что изменится, если х е (0; +оо)? если х е (—оо; 0]? если X € (-оо; 0)?
    7. Как с помощью графика линейной функции у = kx + m, где k Ф 0, решить: а) уравнение kx + m = 0; б) неравенство kx + m > 0; в) неравенство kx + m < 0?
    8. В каком случае линейная функция возрастает, а в каком — убывает? Как об этом можно судить по графику линейной функции?

    Понравилась статья? Поделить с друзьями:

    Не пропустите также:

  • Как найти ту самую единственную девушку
  • Экран ноутбука ушел вправо как исправить
  • Как найти на клавиатуре скриншот
  • Как найти амплитуду напряжения в сети
  • Как найти игрока доты по нику

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии