Как найти знаменатель бесконечной геометрической прогрессии формула

Числовая последовательность

Если ты уже читал тему «Арифметическая прогрессия» ты можешь смело пропускать этот блок и переходить к самой сути.

Если нет, то советую ознакомиться, чтобы иметь общее представление о том, что такое прогрессия в целом и с чем ее едят.

Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)).

Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.

Число с номером ( displaystyle n) называетмя ( displaystyle n)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).

В нашем случае:

Самые распространенные виды прогрессии это арифметическая и геометрическая. В этой теме мы поговорим о втором виде – геометрической прогрессии.

Ограничения геометрической прогрессии

Первый член {( displaystyle {{b}_{1}})} не равен ( displaystyle 0) и ( displaystyle mathbf{q}text{ }ne text{ }0).

Эти ограничения не случайны!

Допустим, что их нет, и первый член прогрессии все же равен ( displaystyle 0), а q равно, хм.. пусть ( displaystyle 2), тогда получается:

( displaystyle {{b}_{1}}=0)

( displaystyle {{b}_{1}}=0cdot 2=0…) и так далее.

Согласись, что это уже никакая не прогрессия.

Как ты понимаешь, те же самые результаты мы получим, если ( displaystyle {{b}_{1}}) будет каким-либо числом, отличным от нуля, а ( displaystyle q=0).

В этих случаях прогрессии просто не будет, так как весь числовой ряд будут либо все нули, либо одно число, а все остальные нули.

Теперь поговорим поподробнее о знаменателе геометрической прогрессии, то есть о ( displaystyle q).

Знаменатель геометрической прогрессии

Повторим: ( displaystyle q) – это число, во сколько раз изменяется каждый последующий член геометрической прогрессии.

Как ты думаешь, каким может быть ( displaystyle q)? Правильно, положительным и отрицательным, но не нулем (мы говорили об этом чуть выше).

Допустим, что ( displaystyle q) у нас положительное. Пусть в нашем случае ( displaystyle q=3), а ( displaystyle {{b}_{1}}=4).

Чему равен второй член ( displaystyle {{b}_{2}}) и ( displaystyle {{b}_{3}})? Ты без труда ответишь, что:

( displaystyle {{b}_{2}}=4cdot 3=12)

( displaystyle {{b}_{3}}=12cdot 3=36)

Все верно. Соответственно, если ( displaystyle q>0), то все последующие члены прогрессии имеют одинаковый знак – они положительны.

А что если ( displaystyle q) отрицательное? Например, ( displaystyle q=-3), а ( displaystyle {{b}_{1}}=4). Чему равен второй член ( displaystyle {{b}_{2}}) и ( displaystyle {{b}_{3}})?

Это уже совсем другая история

( displaystyle {{b}_{2}}=4cdot -3=-12)

( displaystyle {{b}_{3}}=-12cdot left( -3 right)=36)

Попробуй посчитать ( displaystyle 4) член данной прогрессии. Сколько у тебя получилось? У меня ( displaystyle -108).

Таким образом, если ( displaystyle q<0), то знаки членов геометрической прогрессии чередуются.

То есть, если ты увидишь прогрессию, с чередующимися знаками у ее членов, значит ее знаменатель на ( displaystyle 100%) отрицательный.

Это знание может помочь тебе проверять себя при решении задач на эту тему.

Теперь немного потренируемся:

Пример 1. Попробуй определить, какие числовые последовательности являются геометрической прогрессией, а какие арифметической:

  • ( displaystyle 3;text{ }6;text{ }12;text{ }24;text{ }48;text{ }56ldots )
  • ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
  • ( displaystyle -99;text{ }33;text{ }-11ldots )
  • ( displaystyle 5;text{ }7;text{ }9;text{ }11;text{ }13ldots ) 
  • ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots ) 
  • ( displaystyle 64;text{ }16;text{ }4;text{ }1ldots ) 
  • ( displaystyle 2;text{ }4;text{ }8;text{ }18ldots )

Разобрался? Сравним наши ответы:

  • Геометрическая прогрессия – 3, 6.
  • Арифметическая прогрессия – 2, 4.
  • Не является ни арифметической, ни геометрической прогрессиями — 1, 5, 7.

Пример 2. Найти 6-й член прогрессии

Вернемся к нашей последней прогрессии ( displaystyle q=-3), а ( displaystyle {{b}_{1}}=4) и попробуем так же как и в арифметической найти ее ( displaystyle 6) член.

Как ты уже догадываешься, есть два способа его нахождения:

1-й способ. Последовательно умножаем каждый член на ( displaystyle q).

  • ( displaystyle {{b}_{1}}=4)
  • ( displaystyle {{b}_{2}}=4cdot left( -3 right)=-12)
  • ( displaystyle {{b}_{3}}=-12cdot left( -3 right)=36)
  • ( displaystyle {{b}_{4}}=36cdot left( -3 right)=-108)
  • ( displaystyle {{b}_{5}}=-108cdot left( -3 right)=324)
  • ( displaystyle {{b}_{6}}=324cdot left( -3 right)=-972)

Итак, ( displaystyle 6)-ой член описанной геометрической прогрессии равен ( displaystyle -972).

2-й способ. По формуле, которая поможет найти тебе любой член геометрической прогрессии.

( displaystyle {{b}_{6}}={{b}_{1}}cdot q{{ }^{6-1}})

Если нам нужно найти значение числа прогрессии с порядковым номером, то мы умножаем первый член геометрической прогрессии ( displaystyle {{b}_{1}}) на знаменатель ( displaystyle q) в степени, которая на ( displaystyle 1) единицу меньше, чем порядковый номер искомого числа.

( displaystyle {{b}_{6}}=4cdot {{left( -3 right)}^{6-1}}=4cdot {{left( -3 right)}^{5}}=-972)

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

( displaystyle {{b}_{n}}={{b}_{1}}cdot q{{ }^{n-1}}) — уравнение членов геометрической прогрессии, где

  • n — порядковый номер члена прогрессии;
  • b1 — первый член прогрессии;
  • q — знаменатель.

Данная формула верна для всех значений — как положительных, так и отрицательных.

Как найти член геометрической прогрессии, зная два соседних. Формула в общем виде:

( displaystyle {{b}_{n}}=sqrt{{{b}_{n+1}}cdot {{b}_{n-1}}} ), при ( displaystyle n>2)

Не забывай про условие при ( displaystyle n>2)?

Подумай, почему оно важно, например, попробуй самостоятельно просчитать ( displaystyle {{b}_{n}} ), при ( displaystyle n=1). Что получится в этом случае?

Правильно, полная глупость так как формула выглядит так:

( displaystyle {{b}_{1}}=sqrt{{{b}_{1+1}}cdot {{b}_{1-1}}} )

Соответственно, не забывай это ограничение.

Возьмем, к примеру, простую геометрическую прогрессию, в которой нам известны ( displaystyle {{b}_{2}}=6) и ( displaystyle {{b}_{4}}=54).

И посчитаем, чему же равно ( displaystyle {{b}_{3}})

( displaystyle {{b}_{3}}=sqrt{6cdot 54}=sqrt{324}=…)

Правильный ответ – ( displaystyle {{b}_{3}}=pm 18)!

Теперь, когда ты усвоил основные моменты и вывел формулу на свойство геометрической прогрессии, найди ( displaystyle {{b}_{n}} ), зная ( displaystyle {{b}_{n+1}}) и ( displaystyle {{b}_{n-1}})

  • ( displaystyle {{b}_{n+1}}=4), ( displaystyle {{b}_{n-1}}=36)
  • ( displaystyle {{b}_{n+1}}=-3), ( displaystyle {{b}_{n-1}}=-12)
  • ( displaystyle {{b}_{n+1}}=-2), ( displaystyle {{b}_{n-1}}=-32)

Сравни полученные ответы с правильными:

  • ( displaystyle {{b}_{n}}=pm 12 )
  • ( displaystyle {{b}_{n}}=pm 6 )
  • ( displaystyle {{b}_{n}}=pm 8 )

Как найти равноудаленные члены геометрической прогрессии

Как ты думаешь, а если нам были бы даны не соседние с искомым числом значения членов геометрической прогрессии, а равноудаленные от него.

Например, нам необходимо найти ( displaystyle {{b}_{3}} ), а даны ( displaystyle {{b}_{1}} ) и ( displaystyle {{b}_{5}} ). Можем ли мы в этом случае использовать выведенную нами формулу?

Да! Формула работает не только при соседствующих с искомым членах геометрической прогрессии, но и с равноудаленными от искомого членами.

И она приобретает вид:

( displaystyle {{b}_{n}}=sqrt{{{b}_{n+k}}cdot {{b}_{n-k}}} ), при ( displaystyle k<n, kin N)

То есть, если в первом случае мы говорили, что ( displaystyle k=1), то сейчас мы говорим, что ( displaystyle k) может быть равен любому натуральному числу, которое меньше ( displaystyle n).

Главное, чтобы ( displaystyle k) был одинаков для обоих заданных чисел.

Потренируйся на конкретных примерах, только будь предельно внимателен!

Как найти неравноудаленные члены геометрической прогрессии

На самом деле это не так сложно, как кажется! Давай с тобой распишем, из чего состоит каждое данное нам и искомое числа.

( displaystyle {{b}_{3}}={{b}_{1}}cdot {{q}^{2}} )

( displaystyle {{b}_{6}}={{b}_{5}}cdot q={{b}_{1}}cdot {{q}^{5}} )

( displaystyle {{b}_{4}}={{b}_{3}}cdot q={{b}_{1}}cdot {{q}^{3}})

Итак, у нас есть ( displaystyle {{b}_{3}}) и ( displaystyle {{b}_{6}}). Посмотрим, что с ними можно сделать?

Предлагаю разделить ( displaystyle {{b}_{6}}) на ( displaystyle {{b}_{3}}). Получаем:

( displaystyle frac{{{b}_{6}}}{{{b}_{3}}}=frac{{{b}_{1}}cdot {{q}^{5}}}{{{b}_{1}}cdot {{q}^{2}}}={{q}^{3}})

Подставляем в формулу наши данные:

( displaystyle frac{{{b}_{6}}}{{{b}_{3}}}=frac{486}{18}=27)

Следующим шагом мы можем найти ( displaystyle q) – для этого нам необходимо взять кубический корень из полученного числа.

( displaystyle {{q}^{3}}=27 Rightarrow q=sqrt[3]{27}=3)

А теперь смотрим еще раз что у нас есть. У нас есть ( displaystyle {{b}_{3}}), а найти нам необходимо ( displaystyle {{b}_{4}}), а он, в свою очередь равен:

( displaystyle {{b}_{4}}={{b}_{3}}cdot q)

Все необходимые данные для подсчета мы нашли. Подставляем в формулу:

( displaystyle {{b}_{4}}=18cdot 3=54)

Наш ответ: ( displaystyle 54).

Попробуй решить еще одну такую же задачу самостоятельно:

Дано: ( displaystyle {{b}_{3}}=18), ( displaystyle {{b}_{5}}=648)
Найти: ( displaystyle {{b}_{2}})

Сколько у тебя получилось? У меня:

Получим:

( displaystyle {{S}_{n}}q={{b}_{1}}q+{{b}_{2}}q+{{b}_{3}}q+…+{{b}_{n-2}}q+{{b}_{n-1}}q+{{b}_{n}}q)

Посмотри внимательно: что общего в последних двух формулах? Правильно, общие члены, например ( displaystyle {{b}_{2}}={{b}_{1}}q) и так далее, кроме первого и последнего члена. Давай попробуем вычесть из 2-го уравнения 1-ое.

Что у тебя получилось?

( displaystyle {{S}_{n}}q-{{S}_{n}}={{b}_{n}}q-{{b}_{1}})

Теперь вырази ( displaystyle {{b}_{n}}) через формулу члена геометрической прогрессии и подставь полученное выражение в нашу последнюю формулу:

( displaystyle {{S}_{n}}q-{{S}_{n}}={{b}_{1}}{{q}^{n-1}}q-{{b}_{1}}={{b}_{1}}{{q}^{n}}-{{b}_{1}})

Сгруппируй выражение. У тебя должно получиться:

( displaystyle {{S}_{n}}(q-1)={{b}_{1}}({{q}^{n}}-1))

Все, что осталось сделать – выразить ( displaystyle {{S}_{n}}):

( displaystyle {{S}_{n}}=frac{{{b}_{1}}({{q}^{n}}-1)}{q-1}) или ( displaystyle {{S}_{n}}=frac{{{b}_{1}}(1-{{q}^{n}})}{1-q})

Соответственно, в этом случае ( displaystyle qne 1).

А что если ( displaystyle q=1)? Какая формула работает тогда? Представь себе геометрическую прогрессию при ( displaystyle q=1). Что она из себя представляет?

Правильно ряд одинаковых чисел, соответственно формула будет выглядеть следующим образом:

( displaystyle {{S}_{n}}=n{{b}_{1}})

Для начала запишем какую-нибудь геометрическую прогрессию, состоящую из ( displaystyle 5) членов.

Допустим, ( displaystyle {{b}_{1}}=1), а ( displaystyle q=frac{1}{2}), тогда:

  • ( displaystyle {{b}_{2}}=1cdot frac{1}{2}=frac{1}{2})
  • ( displaystyle {{b}_{3}}=frac{1}{2}cdot frac{1}{2}=frac{1}{4})
  • ( displaystyle {{b}_{4}}=frac{1}{4}cdot frac{1}{2}=frac{1}{8})
  • ( displaystyle {{b}_{5}}=frac{1}{8}cdot frac{1}{2}=frac{1}{16})

Мы видим, что каждый последующий член меньше предыдущего в ( displaystyle frac{1}{2}) раза, но будет ли какое-либо число ( displaystyle {{b}_{n}}=0)?

Ты сразу же ответишь – «нет». Вот поэтому и бесконечно убывающая – убывает, убывает, а нулем никогда не становится.

Чтобы четко понять, как это выглядит визуально, давай попробуем нарисовать график нашей прогрессии. Итак, для нашего случая формула ( displaystyle {{b}_{n}}={{b}_{1}}cdot q{{ }^{n-1}}) приобретает следующий вид:

( displaystyle {{b}_{n}}=1cdot {{left( frac{1}{2} right)}^{n-1}}={{left( frac{1}{2} right)}^{n-1}})

На графиках нам привычно строить зависимость ( displaystyle x) от ( displaystyle y), поэтому:

( displaystyle {{b}_{n}}=y(x)),
( displaystyle {{left( frac{1}{2} right)}^{n-1}}={{left( frac{1}{2} right)}^{x-1}})

Суть выражения не изменилась.

В первой записи у нас была показана зависимость значения члена геометрической прогрессии от его порядкового номера.

А во второй записи – мы просто приняли значение члена геометрической прогрессии за ( displaystyle y), а порядковый номер обозначили не как ( displaystyle n), а как ( displaystyle x).

Все, что осталось сделать – построить график. Посмотрим, что у тебя получилось. Вот какой график получился у меня:

Видишь?

Функция убывает, стремится к нулю, но никогда его не пересечет, поэтому она бесконечно убывающая.

Отметим на графике наши точки, а заодно и то, что обозначает координата ( displaystyle x) и ( displaystyle y):

Попробуй схематично изобразить график геометрической прогрессии при ( displaystyle q=2), если первый ее член также равен ( displaystyle 1).

Проанализируй, в чем разница с нашим предыдущим графиком?

Справился? Вот какой график получился у меня:

Сумма членов бесконечно убывающей геометрической прогрессии

Итак, для начала посмотрим еще раз на вот этот рисунок бесконечно убывающей геометрической прогрессии из нашего примера:

А теперь посмотрим на формулу суммы геометрической прогрессии, выведенную чуть ранее:

( displaystyle {{S}_{n}}=frac{{{b}_{1}}({{q}^{n}}-1)}{q-1}) или ( displaystyle {{S}_{n}}=frac{{{b}_{1}}(1-{{q}^{n}})}{1-q})

К чему у нас стремится ( displaystyle {{q}^{n}})? Правильно, на графике видно, что оно стремится к нулю.

То есть при ( displaystyle nto infty ), ( displaystyle {{q}^{n}}) будет почти равно ( displaystyle 0), соответственно, при вычислении выражения ( displaystyle 1-{{q}^{n}}) мы получим почти ( displaystyle 1).

В связи с этим, мы считаем, что при подсчете суммы бесконечно убывающей геометрической прогрессии, данной скобкой можно пренебречь, так как она будет равна ( displaystyle 1).

История возникновения геометрической прогрессии

Еще в древности итальянский математик Леонардо из Пизы (более известный под именем Фибоначчи) занимался решением практических нужд торговли.

Перед монахом стояла задача определить, с помощью какого наименьшего количества гирь можно взвесить товар?

В своих трудах Фибоначчи доказывает, что оптимальной является такая система гирь: ( displaystyle 1,text{ }2,text{ }4,text{ }8,text{ }16…)

Это одна из первых ситуаций, в которой людям пришлось столкнуться с геометрической прогрессией, о которой ты уже наверное слышал и имеешь хотя бы общее понятие.

Как только полностью разберешься в теме, подумай, почему такая система является оптимальной?

В настоящее время, в жизненной практике, геометрическая прогрессия проявляется при вложении денежных средств в банк под сложные проценты, или при оценке скорости распространения гриппа (или коронавируса), или при… создании финансовых пирамид!

Интересно? Давай разбираться.

Как быстро Вася заразит весь класс гриппом

Ученик 5 А класса Вася, заболел гриппом, но продолжает ходить в школу. Каждый день Вася заражает двух человек, которые, в свою очередь, заражают еще двух человек и так далее. Всего в классе ( displaystyle 31) человек.

Через сколько дней гриппом будет болеть весь класс?

Решение:

Итак, первый член геометрической прогрессии это Вася, то есть ( displaystyle 1) человек. ( displaystyle 2)-ой член геометрической прогрессии, это те два человека, которых он заразил в первый день своего прихода.

Общая сумма членов прогрессии равна количеству учащихся 5А.

Соответственно, мы говорим о прогрессии, в которой:

( displaystyle begin{array}{l}{{b}_{1}}=1\q=2\{{S}_{n}}=31end{array})

Подставим наши данные в формулу суммы членов геометрической прогрессии:

( displaystyle {{S}_{n}}=frac{{{b}_{1}}({{q}^{n}}-1)}{q-1})

( displaystyle 31=frac{1({{2}^{n}}-1)}{2-1}={{2}^{n}}-1)

( displaystyle begin{array}{l}{{2}^{n}}=31+1\{{2}^{n}}=32\{{2}^{n}}={{2}^{5}}\n=5end{array})

Весь класс заболеет за ( displaystyle 5) дней. Не веришь формулам и числам? Попробуй изобразить «заражение» учеников самостоятельно. Получилось?

Посчитай самостоятельно, за сколько дней ученики заболели бы гриппом, если каждый заражал бы по ( displaystyle 3) человека, а в классе училось ( displaystyle 26) человек.

Какое значение у тебя получилось? У меня получилось, что все начали болеть спустя ( displaystyle 3) дня.

Как ты видишь, подобная задача и рисунок к ней напоминает пирамиду, в которой каждый последующий «приводит» новых людей. Однако, рано или поздно настает такой момент, когда последние не могут никого привлечь.

В нашем случае, если представить, что класс изолирован, ( displaystyle 16) человек из ( displaystyle 31) замыкают цепочку (( displaystyle 51,6%)).

Таким образом, если бы ( displaystyle 31) человек были вовлечены в финансовую пирамиду, в которой деньги давались в случае, если ты приведешь двух других участников, то ( displaystyle 16) человек (( displaystyle {{b}_{5}}={{b}_{1}}{{q}^{4}}) или в общем случае ( displaystyle {{b}_{n}}={{b}_{1}}{{q}^{n}})) не привели бы никого, соответственно, потеряли бы все, что вложили в эту финансовую аферу.

Все, что было сказано выше, относится к убывающей или возрастающей геометрической прогрессии, но, как ты помнишь, у нас есть особый вид – бесконечно убывающая геометрическая прогрессия.

Как же считать сумму ее членов? И почему у данного вида прогрессии есть определенные особенности? Давай разбираться вместе.

Легенда о Сете, создателе шахмат

Узнав, что она изобретена одним из его подданных, царь решил лично наградить его. Он вызвал изобретателя к себе и приказал просить у него все, что он пожелает, пообещав исполнить даже самое искусное желание.

Сета попросил время на размышления, а когда на другой день Сета явился к царю, он удивил царя беспримерной скромностью своей просьбы. Он попросил выдать за первую клетку шахматной доски ( displaystyle 1) пшеничное зерно, за вторую ( displaystyle 2) пшеничных зерна, за третью ( displaystyle -4), за четвертую ( displaystyle -8) и т.д.

Царь разгневался, и прогнал Сета, сказав, что просьба слуги недостойна царской щедрости, но пообещал, что слуга получит свои зерна за все ( displaystyle 64) клетки доски.

А теперь вопрос: используя формулу суммы членов геометрической прогрессии, посчитай, сколько зерен должен получить Сета?

Начнем рассуждать.

Так как по условию за первую клетку шахматной доски Сета попросил ( displaystyle 1) пшеничное зерно, за вторую ( displaystyle 2), за третью ( displaystyle -4), за четвертую ( displaystyle -8) и т.д., то мы видим, что в задаче речь идет о геометрической прогрессии.

Чему равно ( displaystyle q) в этом случае? Правильно.

( displaystyle q=frac{2}{1}=frac{4}{2}=frac{8}{4}=2)

Всего клеток шахматной доски ( displaystyle 64). Соответственно, ( displaystyle n=64).

Все данные у нас есть, осталось только подставить в формулу и посчитать.

( displaystyle {{S}_{n}}=frac{1({{2}^{64}}-1)}{2-1}={{2}^{64}}-1)

Чтобы представить хотя бы приблизительно «масштабы» данного числа, преобразуем ( displaystyle {{2}^{64}}), используя свойства степени:

( displaystyle {{2}^{64}}={{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{4}})

Раскроем далее значения ( displaystyle {{2}^{10}}) и ( displaystyle {{2}^{4}}). Как ты знаешь, ( displaystyle {{2}^{10}}=1024), а ( displaystyle {{2}^{4}}=64).

Подставим данное значение в предыдущее выражение:

( displaystyle {{2}^{64}}=1024cdot 1024cdot 1024cdot 1024cdot 1024cdot 1024cdot 64)

Конечно, если ты хочешь, то можешь взять калькулятор и посчитать, что за число в итоге у тебя получится, а если нет, придется поверить мне на слово: итоговым значением выражения будет ( displaystyle 18~ 446~ 744~ 073~ 709~ 551~ 615).

То есть:

( displaystyle 18) квинтильонов ( displaystyle 446) квадрильонов ( displaystyle 744) триллиона ( displaystyle 73) миллиарда ( displaystyle 709) миллионов ( displaystyle 551) тысяч ( displaystyle 615).

Фух) Если желаете представить себе огромность этого числа, то прикиньте, какой величины амбар потребовался бы для вмещения всего количества зерна.

При высоте амбара ( displaystyle 4) м и ширине ( displaystyle 10) м длина его должна была бы простираться на ( displaystyle 300text{ }000text{ }000) км, — т.е. вдвое дальше, чем от Земли до Солнца.

Если бы царь был бы силен в математике, то он мог бы предложить самому ученому отсчитывать зерна, ведь чтобы отсчитать миллион зерен, ему бы понадобилось не менее ( displaystyle 10) суток неустанного счета, а учитывая, что необходимо отсчитать ( displaystyle 18) квинтильонов, зерна пришлось бы отсчитывать всю жизнь.

Задачи на вычисление сложных процентов

Ты наверняка слышал о так называемой формуле сложных процентов. Понимаешь ли ты, что она значит? Если нет, давай разбираться, так как осознав сам процесс, ты сразу поймешь, причем здесь геометрическая прогрессия.

Все мы ходим в банк и знаем, что существуют разные условия по вкладам: это и срок, и дополнительное обслуживание, и процент с двумя различными способами его начисления – простым и сложным.

С простыми процентами все более или менее понятно: проценты начисляются один раз в конце срока вклада.

То есть, если мы говорим о том, что мы кладем 100 рублей на год под ( displaystyle 10%), то ( displaystyle 10%) зачислятся только в конце года.

Соответственно, к окончанию вклада мы получим ( displaystyle 110) рублей.

Сложные проценты — это такой вариант, при котором происходит капитализация процентов, т.е. их причисление к сумме вклада и последующий расчет дохода не от первоначальной, а от накопленной суммы вклада.

Капитализация происходит не постоянно, а с некоторой периодичностью. Как правило, такие периоды равны и чаще всего банки используют месяц, квартал или год.

Допустим, что мы кладем все те же ( displaystyle 100) рублей по ( displaystyle 10%) годовых, но с ежемесячной капитализацией вклада. Что у нас получается?

( displaystyle 1) месяц — ( displaystyle 100cdot left( 1+frac{10}{100cdot 12} right))

Все ли тебе здесь понятно? Если нет, давай разбираться поэтапно.

Мы принесли в банк ( displaystyle 100) рублей. К концу месяца у нас на счете должна появиться сумма, состоящая из наших ( displaystyle 100) рублей плюс процентов по ним, то есть:

( displaystyle 100+100cdot x%) 

Согласен?

Мы можем вынести ( displaystyle 100) за скобку и тогда мы получим:

( displaystyle 100+100cdot x%=100cdot left( 1+x% right))

Согласись, эта формула уже больше похожа на написанную нами в начале. Осталось разобраться с процентами

В условии задачи нам сказано про ( displaystyle 10%) годовых. Как ты знаешь, мы не умножаем ( displaystyle 100) на ( displaystyle 10) – мы переводим проценты в десятичные дроби, то есть:

( displaystyle 10%=frac{10}{100})

Верно? Сейчас ты спросишь, а откуда взялось число ( displaystyle 12)? Очень просто!

Повторюсь: в условии задачи сказано про ГОДОВЫЕ проценты, начисление которых происходит ЕЖЕМЕСЯЧНО.

Как ты знаешь, в году ( displaystyle 12) месяцев, соответственно, банк будет начислять нам в месяц ( displaystyle 12) часть от годовых процентов:

( displaystyle 10% ежегодно =frac{10}{100cdot 12} ежемесячно)

Осознал? А теперь попробуй написать, как будет выглядеть эта часть формулы, если я скажу, что проценты начисляются ежедневно.

Справился? Давай сравним результаты:

( displaystyle 10% ежегодно =frac{10}{100cdot 365} ежедневно)

Молодец!

Вернемся к нашей задаче: напиши, сколько будет начислено на наш счет на второй месяц, с учетом, что проценты начисляются на накопленную сумму вклада.

Вот, что получилось у меня:

( displaystyle 100cdot left( 1+frac{10}{100cdot 12} right)cdot left( 1+frac{10}{100cdot 12} right))

Я думаю, что ты уже заметил закономерность и увидел во всем этом геометрическую прогрессию.

Напиши, чему будет равен ее ( displaystyle 12) член, или, иными словами, какую сумму денежных средств мы получим в конце ( displaystyle 12) месяца.

Сделал? Проверяем!

Еще один тип задач на сложные проценты (о прибыли)

Компания «Звезда» начала инвестировать в отрасль в 2000 году, имея капитал ( displaystyle 5000) долларов. Каждый год, начиная с 2001 года, она получает прибыль, которая составляет ( displaystyle 100%) от капитала предыдущего года.

Сколько прибыли получит компания «Звезда» по окончанию 2003 года, если прибыль из оборота не изымалась?

Думаю, ты уже знаешь, как и что считать, но на всякий случай распишу подробно:

( displaystyle {{b}_{1}}=5000) — капитал компании «Звезда» в 2000 году.
( displaystyle {{b}_{2}}=5000cdot left( 1+frac{100%}{100} right)=5000cdot left( 1+1 right)=5000cdot 2=10000) — капитал компании «Звезда» в 2001 году.
( displaystyle {{b}_{3}}=5000cdot left( 1+frac{100%}{100} right)cdot left( 1+frac{100%}{100} right)=5000cdot 4=20000) — капитал компании «Звезда» в 2002 году.
( displaystyle {{b}_{4}}=5000cdot left( 1+frac{100%}{100} right)cdot left( 1+frac{100%}{100} right)cdot left( 1+frac{100%}{100} right)=5000cdot 8=40000) — капитал компании «Звезда» в 2003 году.

Либо мы можем написать кратко:

( displaystyle {{b}_{n}}={{b}_{1}}cdot q{{ }^{n-1}})

Для нашего случая:

( displaystyle {{b}_{1}}=5000)

( displaystyle n=4) — 2000 год, 2001 год, 2002 год и 2003 год.
( displaystyle q =2) — увеличивается на 100%, то есть в 2 раза.

Соответственно:

( displaystyle {{b}_{2003 года}}=5000cdot 2{{ }^{4-1}}=5000cdot {{2}^{3}}=5000cdot 8=40000) рублей

Заметь, в данной задаче у нас нет деления ни на ( displaystyle 12), ни на ( displaystyle 365), так как процент дан ЕЖЕГОДНЫЙ и начисляется он ЕЖЕГОДНО.

То есть, читая задачу на сложные проценты, обрати внимание, какой процент дан, и в какой период он начисляется, и только потом приступай к вычислениям.

Теперь ты знаешь о геометрической прогрессии все.

Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике

Экономические задачи на вклады очень часто требуют знания геометрической прогрессии.

Эти задачи требуют также очень подробного и чёткого описания решения.

По сути, мы составляем математическую модель какой-то жизненной ситуации (например, связанной с банковскими вкладами или кредитами), и важно научиться ничего не пропускать при описании этой модели: описывать словами все введённые обозначения, обосновывать уравнения, которые мы записываем, и всё в таком духе.

Если не написать эти объяснения, вы гарантированно получите 0 баллов даже за правильно найденный ответ!

В этом видео мы узнаем, как работают вклады, научимся решать и, главное, правильно оформлять решение таких задач.

ЕГЭ №17. Экономическая задача. Вклады

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Формула знаменателя геометрической прогрессии

Пусть B=left{ {b}_{1},{b}_{2},...,{b}_{n},... right} – геометрическая прогрессия, {b}_{n}n-ый член прогрессии, тогда знаменатель этой прогрессии можно вычислить по формуле:

    [  q=frac{{b}_{n+1}}{{b}_{n}}]

Если разность геометрической прогрессии q>1, то прогрессия будет возрастающей, если же |q|<1, то прогрессия – убывающая.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Определение

Геометрическая прогрессия — числовая последовательность, в которой каждый следующий член отличается от предыдущего в определенное количество раз. Частное двух соседних элементов геометрической прогрессии постоянно.

Формула n-ого члена геометрической прогрессии

    [b_2=b_1 cdot q]

    [b_3=b_2 cdot q=b_1 cdot q cdot q=b_1 cdot q^2]

    [ldots]

    [b_n=b_1cdot q^{n-1}]

Пример 1. Найдите знаменатель геометрической прогрессии, если третий элемент геометрической прогрессии равен 28, а 6-ый — 224.

Решение.

Третий элемент прогрессии равен b_3=b_1 cdot q^2, а шестой элемент прогрессии — b_{6}=b_1 cdot q^5. Сложим данные равенства.

Получим:

    [frac{b_{6}}{b_3}=frac{q^5}{q^2};]

    [q=sqrt[3]{frac{224}{28}};]

    [q=sqrt[3]{8};]

    [q=2.]

Ответ: 2.

Сумма геометрической прогрессии

Запишем сумму n элементов геометрической прогрессии:  

    [S_n=b_1+b_2+b_3+ldots+b_n=b_1+b_1q+b_1q^2+ldots+b_1q^{n-1}.]

Прибавим к левой и правой части равенства  b_1q^n.

Получим:

    [S_n+b_1q^n=b_1+b_1q+b_1q^2+ldots+b_1q^{n-1}+b_1q^n=b_1+q cdot S_n]

    [S_n(1-q)=b_1-b_1q^n]

S_n=b_1frac{1-q^n}{1-q}, если q neq 1.

Если q=1, то S_n=b_1 cdot n.

Пример 2. Найдите сумму чисел frac{1}{2}+frac{1}{4}+frac{1}{8}+frac{1}{16}+frac{1}{32}.

Решение.

frac{1}{2}+frac{1}{4}+frac{1}{8}+frac{1}{16}+frac{1}{32}=frac{1}{2}cdot frac{1-{left ( frac{1}{2}right )}^5}{1-frac{1}{2}}=1-frac{1}{32}=frac{31}{32}.

Ответ: frac{31}{32}.

Бесконечно убывающей геометрической прогрессией называется бесконечная геометрическая прогрессия, знаменатель которой удовлетворяет условию |q|<1.

При неограниченном возрастании n сумма S_n=b_1frac{1-q^n}{1-q}, первых n членов бесконечно убывающей геометрической прогрессии стремится к числу S=frac{b_1}{1-q}, которое называется суммой бесконечно убывающей геометрической прогрессии.

Пример 3. Переведите бесконечную периодическую дробь 0,(8) в обыкновенную дробь.

Решение.

0,(8)=frac{8}{10}+frac{8}{100}+frac{8}{1000}+frac{8}{10000}+ldots=frac{0,8}{1-frac{1}{10}}=frac{0,8}{0,9}=frac{8}{9}

Ответ:frac{8}{9}.

Характеристическое свойство геометрической прогрессии

    [b_n^2=b_{n-1} cdot b_{n+1}]

Пример 4. Выписано несколько последовательных членов геометрической прогрессии:

    [ldots;189; x; 21; 7; ldots .]

Найдите x.

Решение.

    [x^2=189 cdot 21]

    [x^2=13969]

x=63, так как в данной геометрической прогрессии x>0.

Ответ: 63.

Содержание

Геометрическая прогрессия

q — знаменатель геометрической прогрессии (от лат. qwoti — частное).
$$
b_n = b_{n-1} cdot q\[10pt]
b_n = b_{1} cdot q^{n-1}
$$

Если $ b_{1}>0$ и $ q>1$, прогрессия является возрастающей последовательностью, если $ 0<q<1$, — убывающей последовательностью, а при $q<0$  — знакочередующейся.

Пример 1.

Пример 2.
Последовательность площадей квадратов, где каждый следующий квадрат получается соединением середин сторон предыдущего — бесконечная геометрическая прогрессия со знаменателем 1/2.

Пример 3.

The Quadrature of the Parabola — Wikipedia

Пример 4. Фракталы — Кривая Коха (снежинка Коха)

Берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырёх звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д… Предельная кривая и есть кривая Коха.

Непрерывна, но нигде не дифференцируема.

Koch snowflake — Wikipedia

Площадь снежинки Коха составляет 8/5 площади оригинального треугольника.

Площадь внутри снежинки Коха можно описать как объединение бесконечного числа равносторонних треугольников (см. рисунок).
Каждая сторона зеленого треугольника = 1/3 длины стороны большого синего треугольника,
и поэтому площадь зеленого = 1/9 площади синего. Аналогично, каждый желтый треугольник имеет площадь = 1/9 площади зеленого треугольника, и так далее.
Возьмем синий треугольник за единицу площади, общая площадь снежинки равна

$ 1,+,3left({frac {1}{9}}right),+,12left({frac {1}{9}}right)^{2},+,48left({frac {1}{9}}right)^{3},+,cdots .$

The first term of this series represents the area of the blue triangle, the second term the total area of the three green triangles, the third term the total area of the twelve yellow triangles, and so forth. Excluding the initial 1, this series is geometric with constant ratio r = 4/9. The first term of the geometric series is a = 3(1/9) = 1/3, so the sum is

$ 1,+,{frac {a}{1-r}};=;1,+,{frac {frac {1}{3}}{1-{frac {4}{9}}}};=;{frac {8}{5}}.$

Характеристическое свойство

Характеристическое свойство: числовая последовательность ${b_n}$ является геометрической прогрессией тогда и только тогда, когда любой член этой последовательности, начиная со второго, есть среднее геометрическое соседних с ним членов.
$$
b_n^2 = b_{n-1} cdot b_{n+1} \[10pt]
|b_n| = sqrt{b_{n-1} cdot b_{n+1}}\[20pt]

b_k cdot b_l = b_m cdot b_n ; text{ если } ; k+l = m + n
$$

Свойство:
Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

$ P_{n}=(b_{1}cdot b_{n})^{frac n 2 }$

Сумма геометрической прогрессии

$$
S_n = frac {b_{1} (q^n-1)} {q-1}, quad q ne 1
$$

Сумма бесконечной геометрической прогрессии, в которой |q| < 1, равна первому члену, деленному на 1 — знаменатель прогрессии.
$$ text{при } |q|<1 : quad S = frac {b_1}{1-q}
$$

Равенство это имеет необычный характер, так как в левой его части мы не можем буквально сложить всё «бесконечное множество» слагаемых. Оно выражает лишь то, что чем больше слагаемых левой части мы сложим, тем меньше наша сумма будет отличаться от $frac {b_1}{1-q}$.

В учебнике Виленкина упоминается «Сумма бесконечно убывающей геометрической прогрессии выражается формулой…» — это неверно, так как при отрицательных q, |q|<1, получаем знакочередующуюся последовательность, которая не может быть убывающей

Первоначальная формулировка: если $|q|<1$, то при неограниченном возрастании числа $n$ сумма $S_n$ стремится к числу $frac{b_1}{1-q}$. Это число называется суммой бесконечной геометрической прогрессии при |q|<1.


Cумма геометрической прогрессии со знаменателем q, b=1 :

$$S=1 + q +q^2+cdots=1+q(1+q+cdots) = 1+qcdot S$$

Отсюда выразить S.

Эта же техника может быть использована при вычислении любых самоподобных выражений.

Формула суммы сходящейся геометрической прогрессии была известна до Эйлера.

$$ S = frac {b_{n+1}-b_1}{q-1}
$$

Периодические дроби

Обращение бесконечных периодических дробей в обыкновенные дроби:

$0,(7) = 0,7+0,07+0,007+ldots = 0,7 / (1-0.1) = 7/10 / (9/10) = 7/9$

$0.9999ldots ;=;{frac {9}{9}};=;1.$

см. также 0.999… — Wikipedia

Геометрическая интерпретация

q=1/2, S=1:

q=1/4, S=1/3:

Сходимость геометрической прогрессии при q=1/2, b=1/2:

Шутка

В магазин заходит бесконечное число математиков. Первый просит килограмм картошки, второй — полкило, третий — четверть… «Понял», — говорит продавец и кладет на прилавок два килограмма.

Легенда о шахматной доске

Шахматы – одна из самых древних игр. Она существует уже многие века, и неудивительно, что с нею связаны различные предания, правдивость которых, за давностью времени, невозможно проверить.

Об одной из подобных легенд и математической составляющей ее содержания мы сегодня и поведём речь. Чтобы понять ее, не нужно вовсе уметь играть в шахматы: достаточно знать, что игра происходит на доске, разграфленной на 64 клетки.

Шахматная игра была придумана в Индии, и когда индусский царь Шерам познакомился с нею, он был восхищен ее остроумием и разнообразием возможных в ней положений. Узнав, что она изобретена одним из его подданных, царь приказал его позвать, чтобы лично наградить за удачную выдумку.

– Я достаточно богат, чтобы исполнить самое смелое твое пожелание, – сказал царь.– Назови награду, которая тебя удовлетворит, и ты получишь ее.

он удивил царя беспримерной скромностью своей просьбы.

– Повелитель, – сказал Сета,– прикажи выдать мне за первую клетку шахматной доски одно пшеничное зерно.

– Простое пшеничное зерно? – изумился царь.

– Да, повелитель. За вторую клетку прикажи выдать 2 зерна, за третью 4, за четвертую – 8, за пятую – 16, за шестую – 32…

–Довольно, – с раздражением прервал его царь.– Ты получишь свои зерна за все 64 клетки доски, согласно твоему желанию: за каждую вдвое больше против предыдущей. Но знай, что просьба твоя недостойна моей щедрости. Прося такую ничтожную награду, ты непочтительно пренебрегаешь моею милостью. Поистине, как учитель, ты мог бы показать лучший пример уважения к доброте своего государя. Ступай. Слуги мои вынесут тебе твой мешок с пшеницей.

За обедом царь вспомнил об изобретателе шахмат и послал узнать, унес ли уже безрассудный Сета свою жалкую награду.

– Повелитель, – был ответ, – приказание твое исполняется. Придворные математики исчисляют число следуемых зерен.

Царь нахмурился. Он не привык, чтобы повеления его исполнялись так медлительно.

Вечером, отходя ко сну, царь еще раз осведомился, давно ли Сета со своим мешком пшеницы покинул ограду дворца.

– Повелитель, – ответили ему,– математики твои трудятся без устали и надеются еще до рассвета закончить подсчет.

– Почему медлят с этим делом? – гневно воскликнул царь. – Завтра, прежде чем я проснусь, все до последнего зерна должно быть выдано Сете. Я дважды не приказываю.

Утром царю доложили, что старшина придворных математиков просит выслушать важное донесение. Царь приказал ввести его.

– Прежде чем скажешь о твоем деле, – объявил Шерам,– я желаю услышать, выдана ли, наконец, Сете та ничтожная награда, которую он себе назначил.

– Ради этого я и осмелился явиться перед тобой в столь ранний час,– ответил старик.– Мы добросовестно исчислили все количество зерен, которое желает получить Сета. Число это так велико…

– Как бы велико оно ни было, – надменно перебил царь, житницы мои не оскудеют. Награда обещана и должна быть выдана…

– Не в твоей власти, повелитель, исполнять подобные желания. Во всех амбарах твоих нет такого числа зерен, какое потребовал Сета. Нет его и в житницах целого царства. Не найдется такого числа зерен и на всем пространстве Земли. И если желаешь непременно выдать обещанную награду, то прикажи превратить земные царства в пахотные поля, прикажи осушить моря и океаны, прикажи растопить льды и снега, покрывающие далекие северные пустыни. Пусть все пространство их сплошь будет засеяно пшеницей. И все то, что родится на этих полях, прикажи отдать Сете. Тогда он получит свою награду. С изумлением внимал царь словам старца.

– Назови же мне это чудовищное число, – сказал он в раздумье.

– Восемнадцать квинтиллионов четыреста сорок шесть квадриллионов семьсот сорок четыре триллиона семьдесят три биллиона семьсот девять миллионов пятьсот пятьдесят одна тысяча шестьсот пятнадцать, о повелитель!

S = 18 446 744 073 709 551 615.

Это количество зерна примерно в 1800 раз превышает мировой урожай пшеницы за год (в 2008 – 2009 аграрном году урожай составил 686 млн тонн), то есть превышает весь урожай пшеницы, собранный за всю историю человечества.

Индусский царь не в состоянии был выдать подобной награды. Но он легко мог бы, будь он силен в математике, освободиться от столь обременительного долга. Для этого нужно было лишь предложить Сете самому отсчитать себе зерно за зерном всю причитавшуюся ему пшеницу.

В самом деле: если бы Сета, принявшись за счет, вел его непрерывно день и ночь, отсчитывая по зерну в секунду, он в первые сутки отсчитал бы всего 86 400 зерен. Чтобы отсчитать миллион зерен, понадобилось бы не менее 10 суток неустанного счета. Один кубический метр пшеницы он отсчитал бы примерно за полгода. И осталось бы отсчитать ещё 1 499 999 999 999 м3. Вы видите, что, посвятив счету даже весь остаток своей жизни, Сета получил бы лишь ничтожную часть потребованной им награды.

Экспоненциальный рост

Стремительное возрастание значений величины, подобное тому, которое мы наблюдали, в математике называется экспоненциальным ростом.

Экспоненциальный рост – возрастание величины, когда скорость роста пропорциональна значению самой величины. Говорят, что такой рост подчиняется экспоненциальному закону. В случае дискретной области определения с равными интервалами его еще называют геометрическим ростом (значения функции образуют геометрическую прогрессию). 

Для любой экспоненциально растущей величины чем большее значение она принимает, тем быстрее растет. Также это означает, что величина зависимой переменной и скорость ее роста прямо пропорциональны.

Примером экспоненциального роста может быть рост числа бактерий в колонии до наступления ограничения ресурсов.

Экспоненциальный рост противопоставляется более медленным (на достаточно длинном промежутке времени) линейной или степенной зависимостям.

Сумма бесконечной геометрической прогрессии

Геометрическая прогрессия бывает убывающей, если знаменатель по модулю меньше единицы.

число $q^n$ при достаточно больших n может стать сколь угодно малым.
И с ростом n сумма n членов геометрической прогрессии $S_n = b_1 (1 – q^n) / (1 – q)$ становится ближе к числу $S = b_1 / (1 – q)$. (Так рассуждал, например, Ф. Виет). Число S называется суммой бесконечно убывающей геометрической прогрессии. Тем не менее, долгие века вопрос о том, какой смысл имеет суммирование ВСЕЙ геометрической прогрессии, с ее бесконечным числом членов, не был достаточно ясен математикам.

Убывающую геометрическую прогрессию можно видеть, например, в апориях Зенона «Деление пополам» и «Ахиллес и черепаха». В первом случае наглядно показывается, что вся дорога (предположим, длины 1) является суммой бесконечного числа отрезков 1/2, 1/4, 1/8 и т. д. Так оно, конечно, и есть с точки зрения представлений о конечной сумме бесконечной геометрической прогрессии. И все же – как такое может быть?

Прогрессия с коэффициентом 1/2

В апории про Ахиллеса ситуация чуть более сложная, т. к. здесь знаменатель прогрессии равен не 1/2, а какому-то другому числу. Пусть, например, Ахиллес бежит со скоростью v, черепаха движется со скоростью u, а первоначальное расстояние между ними равно l. Это расстояние Ахиллес пробежит за время l/v, черепаха за это время сдвинется на расстояние lu/v. Когда Ахиллес пробежит и этот отрезок, дистанция между ним и черепахой станет равной $l (u/v)^2$, и т. д. Получается, что догнать черепаху – значит найти сумму бесконечно убывающей геометрической прогрессии с первым членом l и знаменателем u/v. Эта сумма – отрезок, который в итоге пробежит Ахиллес до места встречи с черепахой – равен $l / (1 – u/v) = lv / (v – u)$. Но, опять-таки, как надо интерпретировать этот результат и почему он вообще имеет какой-то смысл, долгое время было не очень ясно.

От апорий Зенона один шаг до понятий предела, предельного перехода, производной и интеграла — но на этот шаг человечеству понадобилось 2000 лет. Через 300 лет после того, как это шаг сделан и подробно изложен в учебниках для средней школы, […] смотрят на апории как баран на новые ворота.

Предел складывания бумаги

Предел складывания бумаги пополам — физический феномен, суть которого состоит в том, что лист обычной бумаги размера А4 можно сложить пополам не более 7 раз. Он происходит из-за быстроты роста показательной функции.

Если бумагу сложили пополам пять раз, то количество слоёв будет два в степени пять, то есть тридцать два.

Если бумагу сложили пополам 7 раз, то количество слоёв будет два в степени 7, то есть 128.

На обычном листе А4 закон подтвердился, тогда исследователи проверили закон на огромном листе бумаги. Лист размером с футбольное поле (51,8×67,1 м) им удалось сложить 8 раз без специальных средств (11 раз с применением катка и погрузчика). По утверждению поклонников телепередачи, калька от упаковки офсетной печатной формы формата 520×380 мм при достаточно небрежном складывании без усилий складывается восемь раз, с усилиями — девять.

Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Вот, например, задача из папируса Райнда: «У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»

решение.

Людей всего 7, кошек 72 = 49, они съедают всего 73 = 343 мыши, которые съедают всего 74 = 2401 колосьев, из них вырастает 75 = 16807 мер ячменя, в сумме эти числа дают 19 607.

Логарифмы членов геометрической прогрессии (если определены) образуют арифметическую прогрессию.

Задача

Найти сумму первых 20 членов:
$$2+22+222+2222+ldots$$

Решение

См. также

Учебники:
Кравчук Алгебра 9 класс, раздел 4 (с. 164)
Виленкин Алгебра 9 класс (угл) 2006, с.251 — вводятся понятия предела последовательности и математической индукции

Арифметическая прогрессия

Геометрическая прогрессия

  1. Понятие геометрической прогрессии
  2. Формула n-го члена геометрической прогрессии
  3. Свойства геометрической прогрессии
  4. Сумма первых n членов геометрической прогрессии
  5. Примеры

п.1. Понятие геометрической прогрессии

Геометрической прогрессией называют числовую последовательность, каждый член которой bn, начиная со второго, равен произведению предыдущего члена bn-1 и некоторого постоянного числа q: $$ mathrm{ b_n=b_{n-1}q, ninmathbb{N}, n ge 2, qne 0, qne 1, b_1ne 0 } $$ Число q называют знаменателем геометрической прогрессии.

Например:
1. Последовательность 1, 3, 9, 27, … является геометрической прогрессией с b1 = 1, q = 3.

2. Последовательность (mathrm{9, -3, 1, -frac13, frac19,…}) является геометрической прогрессией с b1 = 9, (mathrm{q=-frac13}).

п.2. Формула n-го члена геометрической прогрессии

По определению геометрической прогрессии мы получаем рекуррентную формулу для n-го члена: bn = bn-1q. Из неё можно вывести аналитическую формулу:

b2 = b1q,   b3 = b2q = (b1q)q = b1q2,   b4 = b3q = (b1q2)q = b1q3,…

Получаем:

bn = b1qn-1

Например:
Найдём b5, если известно, что (mathrm{b_1=frac12, q=2}).
По формуле n-го члена получаем: (mathrm{b_5=b_1q^4=frac12cdot 2^4=2^3=8})

п.3. Свойства геометрической прогрессии

Свойство 1. Экспоненциальный рост/падение

Геометрическая прогрессия с положительными первым членом и знаменателем b1 > 0, q > 0 является показательной функцией вида f(n) = kqn: $$ mathrm{ b_n=frac{b_1}{q}q^n } $$

Свойство 1

Свойство 1

При b1 > 0, q > 1 прогрессия экпоненциально растёт

При b1 > 0, 0 < q < 1 прогрессия экпоненциально падает

Свойство 2. Признак геометрической прогрессии

Для того чтобы числовая последовательность была геометрической прогрессией необходимо и достаточно, чтобы каждый её член, начиная со второго, был средним геометрическим предыдущего и последующего членов: $$ mathrm{ left{b_nright} — text{геометрическая прогрессия} Leftrightarrow b_n=sqrt{b_{n-1}b_{n+1}}, ninmathbb{N}, n geq 2 } $$ Следствие: аждый член прогрессии является средним геометрическим двух равноудалённых от него членов: $$ mathrm{ b_n=sqrt{b_{n-k}b_{n+k}}, ninmathbb{N}, kinmathbb{N}, n geq k+1 } $$

Например:
Найдём b9, если известно, что (mathrm{b_7=frac{1}{16}, b_{11}=4})
По следствию из признака геометрической прогрессии: (mathrm{b_9=sqrt{b_7b_{11}}=sqrt{frac{1}{16}cdot 4}=frac12})

Свойство 3. Равенство сумм индексов

Если {bn} – геометрическая прогрессия, то из равенства сумм индексов следует равенство произведений членов: $$ mathrm{ m+k=p+q Rightarrow b_mb_k=b_pb_q } $$ Следствие: произведение членов, равноудалённых от концов прогрессии, является постоянной величиной: $$ mathrm{ b_1b_n = b_2b_{n-1}=b_3b_{n-2}=… } $$

Например:
Найдём b6, если известно, что b2 = 5, b4 = 10, b8 = 40
По равенству сумм индексов b2b8 = b4b6
Откуда (mathrm{b_6=frac{b_2b_8}{b_4}=frac{5cdot 40}{10}=20})

п.4. Сумма первых n членов геометрической прогрессии

Сумма первых n членов геометрической прогрессии равна $$mathrm{ S_n=frac{b_nq-b_1}{q-1}, qne 1} $$

Если учесть, что bn = b1qn-1, получаем ещё одну формулу для суммы: $$mathrm{ S_n=b_1frac{q^n-1}{q-1}, qne 1} $$

Например:
Найдём сумму первых 10 степеней двойки: 2 + 22 + 23 + … + 210
В этом случае b1 = 2, q = 2, n = 10
Получаем: (mathrm{ S_{10}=2cdot frac{2^{10}-1}{2-1}=2cdot (1024-1)=2046})

п.5. Примеры

Пример 1. Найдите знаменатель геометрической прогрессии и сумму первых 10 членов, если:
а) b5 = 9, b8 = 243
Найдём отношение $$ mathrm{ frac{b_8}{b_5}=frac{b_1cdot q^7}{b_1cdot q^4}=q^3, frac{b_8}{b_5}=frac{243}{9}=27=3^3, q^3=3^3Rightarrow q = 3 } $$ Найдём 1-й член: $$ mathrm{ b_1=frac{b_5}{q^4}=frac{9}{3^4}=frac{3^2}{3^4}=frac{1}{3^2}=frac19 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=frac{3^{10}-1}{9cdot 2}=frac{29524}{9}=3280frac49 } $$ Ответ: q = 3, S10 = (mathrm{3280frac49})

б) b1 = 3, bn = 96, Sn = 189
По формуле суммы: $$ mathrm{ S_{n}=frac{b_nq-b_1}{q-1}Rightarrow 189 =frac{96q-3}{q-1}Rightarrow 189(q-1)=96q-3Rightarrow 93q=186Rightarrow q = 2 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=3cdot frac{2^{10}-1}{2-1}=3cdot 1023=3069 } $$ Ответ: q = 2, S10 = 3069

Пример 2. Между числами (mathrm{40frac12 text{и} 5frac13}) вставьте такие четыре числа, чтобы они вместе с данными числами образовали геометрическую прогрессию.
По условию (mathrm{b_1=40frac12, b_6=5frac13}) $$ mathrm{ frac{b_6}{b_1}=q^5, frac{b_6}{b_1}=5frac13 : 40frac12=frac{16}{3} : frac{81}{2}=frac{16}{3} cdot frac{2}{81}=frac{32}{243}=frac{2^5}{3^5}=left(frac23right)^5 } $$ Знаменатель (mathrm{q=frac23})
Находим промежуточные члены прогрессии: begin{gather*} mathrm{ b_2=b_1q=40frac12cdotfrac23=frac{81}{2}cdot frac23=27, b_3=b_2q=27cdotfrac23=18, }\ mathrm{ b_4=b_3q=18cdotfrac23=12, b_5=b_4q=12cdotfrac23=8 } end{gather*} Ответ: 27, 18, 12 и 8

Пример 3. Найдите первый и последний члены геометрической прогрессии, если: $$ left{ begin{array}{ l } mathrm{b_4-b_2=0,6} & \ mathrm{b_5-b_3=1,2} & \ mathrm{S_n=12,7} & end{array}right. $$ Заметим, что b4=b2q2,   b5=b3q2. Для первых двух уравнений получаем: $$ left{ begin{array}{ l } mathrm{b_2q^2-b_2=0,6} & \ mathrm{b_3q^2-b-3=1,2} & end{array}right. Rightarrow left{ begin{array}{ l } mathrm{b_2(q^2-1)=0,6} & \ mathrm{b_3(q^2-1)=1,2} & end{array}right. $$ Делим второе уравнение на первое: $$ mathrm{ frac{b_3(q^2-1)}{b_2(q^2-1)}=frac{1,2}{0,6}Rightarrowfrac{b_3}{b_2}=q=2 } $$ Подставляем найденное значение знаменателя прогрессии в первое уравнение: $$ mathrm{ b_2(2^2-1)=0,6 Rightarrow b_2=frac{0,6}{3}=0,2 Rightarrow b_1=frac{b_2}{q}=frac{0,2}{2}=0,1 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=0,1cdotfrac{2^n-1}{2-1}=frac{2^n-1}{10}=12,7 Rightarrow 2^n-1=127 Rightarrow }\ mathrm{ Rightarrow 2^n=128=2^7 Rightarrow n=7 } end{gather*} 7-й член b7 = b1q6 = 0,1 · 26 = 6,4
Ответ: b1 = 0,1;   b7 = 6,4

Пример 4. В геометрической прогрессии, все члены которой положительны, сумма первого и второго членов равна 48, а сумма третьего и четвёртого членов равна 12. Найдите значение n, при котором Sn = 63. $$ text{По условию} left{ begin{array}{ l } mathrm{b_1+b_2=48} & \ mathrm{b_3+b_4=12} & \ mathrm{S_n=63} & end{array}right. $$ Заметим, что b3 = b1q2,   b_4=b_2q2. Второе уравнение можно переписать в виде: $$ mathrm{ b_3+b_4=b_1q^2+b2q^2=underbrace{(b_1+b_2)}_{=48} q^2=12 Rightarrow q^2=frac{12}{48}=frac14 Rightarrow q=frac12 } $$ Берём положительное значение q, т.к. по условию все члены положительны.
Из первого уравнения $$ mathrm{ b_1+b_2=b_1(1+q)=48 Rightarrow b_1=frac{48}{1+frac12}=48cdotfrac23=32 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=b_1frac{1-q^n}{1-q}=32cdotfrac{1-frac{1}{2^n}}{1-frac12}=64left(1-frac{1}{2^n}right)=63 }\ mathrm{ 64-frac{64}{2^n}=63 Rightarrow 1=frac{2^6}{2^n} Rightarrow n=6 } end{gather*} Ответ: 6

Пример 5. Бактерия, попав в организм, делится надвое каждые 20 мин. Сколько бактерий будет в организме через сутки?
Сутки – это 24 · 60 = 1440 мин, или n = 1440 : 20 = 72 цикла деления.
По условию необходимо найти

N = N0 · 2n,   где N0 = 1
N = 272 = 4 722 366 482 869 645 213 696 ≈ 4,7 · 1021

Ответ: 4,7 · 1021 бактерий

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти в аутласт генератор
  • Расскажите как найти неизвестный делитель
  • Как на гис жкх найти мой дом
  • Как найти часы эппл через телефон
  • Как найти коэффициент корреляции по дисперсии

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии