Содержание:
Определение: Вектором называется направленный отрезок прямой
где А — начало, а В — конец вектора.
Замечание: Векторы в основном обозначают одной прописной буквой латинского алфавита со стрелочкой (или черточкой) наверху 
Определение: Если начало и конец вектора 
Замечание: Свободный вектор можно перемещать как вдоль его прямой, так и параллельно самому себе.
Определение: Если зафиксирована точка, которая определяет начало вектора, то она называется точкой приложения вектора.
Определение: Длиной (модулем) вектора а называется расстояние от его начала до его конца:
Определение: Векторы называются коллинеарными (Рис. 1), если они лежат на одной прямой или в параллельных прямых.
Рис.1. Коллинеарные векторы.
Определение: Векторы называются компланарными (Рис. 2), если они лежат в одной плоскости или параллельных плоскостях.
Рис.2. Компланарные векторы.
Определение: Два коллинеарных вектора 

Определение вектора и основные свойства
Многие величины, например, масса, длина, время, температура и др. характеризуются только числовыми значениями. Такие величины называются скалярными величинами. Некоторые же величины, например, скорость, ускорение, сила и др. определяются как числовыми значениями, так и направлением. Такие величины называются векторными величинами. Перемещение — самый простой пример векторных величин. Перемещение тела из точки 



Длина этого отрезка, называется длиной или модулем вектора. Вектор обозначается указанием начальной и конечной точки. Например, вектор 




Два вектора называется равными, если они равны по модулю и одинаково направлены. На рисунке векторы 


• Два вектора называются противоположными, если они равны по модулю и противоположно направлены.
Векторы 

Если начало и конец вектора совпадают, то такой вектор называется нулевым и обозначается 


На рисунке векторы 
Выражения вектора компонентами в координатной плоскости
Рассмотрим вектор 
















Равные векторы имеют равные компоненты. Наоборот, если, соответствующие компоненты векторов равны, то эти векторы равны. На рисунке 

На координатной плоскости вектор 





Длина вектора
Длину вектора можно найти по координатам начальной у и конечной точек, используя формулу расстояния между точками.
Длину вектора данными с компонентами можно найти по формуле:
Пример 1.
Напишите вектор 


Решение: Напишем вектор с компонентами:
Пример 2.
Точка 

Решение: Примем за координаты конечной точки вектора 


Пример 3.
В координатной плоскости нарисуйте несколько векторов равных вектору 

Решение: Данные точки отмечаются на координатной плоскости. Начиная с этих точек изображаются векторы равные
Пример 4.




Направление вектора
В соответствии с областями применения существуют различные способы определения направления вектора. В повседневной жизни мы выражаем направление словами налево, направо, вниз, вверх или же восток, запад, север, юг. На координатной плоскости направление вектора определяется углом с положительным направлением оси 
На рисунке длина вектора 


длина вектора:
направление вектора: 
Иногда для простоты вектор изображается на плоскости только указанием положительного направления 
Пример 1.
Вектор перемещения, модуль которого 200 м, направлен под углом наклона 
Решение: От начала луча, образующий с положительным направлением оси 

Пример 2.
Определите длину и угол наклона вектора
Решение: Произвольную точку на координатной плоскости примем за начало вектора. От этой точки по горизонтальной оси отложим компоненту 




Длина вектора: 
Сложение и вычитание коллинеарных векторов
Вектор, показывающий сумму одинаково направленных коллинеарных векторов называется результирующим. Его абсолютная величина равна сумме абсолютных величин данных векторов, а сам вектор имеет одинаковое направление с данными векторами.
Абсолютная величина результирующего вектора 2-х противоположно-направленных коллинеарных векторов равна разности абсолютных величин этих векторов, а направление совпадает с направлением вектора большего по абсолютной величине.
Выполним графически сложение векторов, соответствующее реальным жизненным ситуациям.
Задача 1.
Для того, чтобы достичь финиша, Джамиля должна пройти 3 знака. Если она пройдет 10 м на восток, то доберется до 1-го знака, потом пройдя 50 м вперед до 2-го знака и, пройдя в том же направлении еще 20 м, сможет добраться до финиша. Изобразите движение Джамили графически — векторами. Выберем масштаб:
1 см : 10 м и на числовой оси нарисуем векторы так, чтобы начало второго вектора совпало с концом первого, а начало третьего с концом второго.
Результирующий вектор обозначим через 
Общее перемещение: 10 м + 50 м + 20 м = 80 м (на восток) Изображается вектор 
Задача 2.
Представьте, что вы прошли 100 м на восток, еще 200 метров на запад.
Нарисуем данные вектора в масштабе
По определению, модуль результирующего вектора равен разности модулей векторов. А направление будет на запад.
В этом случае длина результирующего вектора 
200 м 100 м = 100 м (на запад)
Пусть векторы 





При 


При 

Для того, чтобы найти разность 



То есть выражения 
Жившие в XVII веке ученые-математики Рене Декарт и Пьер Ферма, взаимосвязывая алгебру и геометрию, создали новую область науки-аналитическую геометрию. Аналитическая геометрия, благодаря методу координат, позволила, с одной стороны, посредством алгебраических выкладок легко доказывать геометрические теоремы, а с другой стороны, в силу наглядности геометрических представлений упрощает решение задач над векторами.
Сложение векторов
Существуют различные способы сложения неколлинеарных векторов. Рассмотрим два графических способа. При сложении векторов графическим способом данные вектора и результирующий вектор, показывающий их сумму строятся с помощью линейки (модуль) и транспортира(направление).
Вектора можно складывать в любой последовательности. Переместительное свойство сложения верно и для векторов. По этому правилу можно складывать три и более вектора. Определим графическим способом вектор 




3. Соединим начальную точку вектора 

Пример 1.
Джамал прошел от палатки, разбитой в лагере 60 метров на юг, 120 м на восток, еще 100 м на север и дошел до озера. Какое наименьшее расстояние от палатки до озера?
Решение:
Выберем масштаб: 1 см : 40 м
Движение Джамала изобразим последовательно соответствующими векторами по выбранному масштабу.
Начальную точку 1-го вектора, показывающего движение Джамала, соединим с конечной точкой 3-го вектора. Полученный результирующий вектор 

Ответ: Озеро находится на расстоянии 126,4 м от палатки.
Правило параллелограмма
1. Даны вектора: 
2. Переместим вектор 


3. Построим параллелограмм со сторонами 




Переместительные и сочетательные свойства сложения векторов
Для любых векторов 
Переместительное свойство:
Сочетательное свойство:
Свойство идентичности:
Сумма противоположенных векторов:
Пример:
Сложение векторов, заданных компонентами
Выполним сложение двух векторов на координатной плоскости, используя их компоненты.
Суммой векторов 

Пример 1.
Если 


Решение: Для того, чтобы найти компоненты вектора 
Пример 2.
Самолет летит в направлении северо-востока со скоростью 707 миль/час. Скорость самолета выражается вектором 

Конечная скорость самолета:
Аналогично можно показать, что
Пример 3.
Если 
Тригонометрические отношения и компоненты вектора
Найдем компоненты вектора 


Запись 
Пример 1.
Автомобиль движется в северо-восточном направлении под углом 
Решение: По данным
скорость в вост. напр.
скорость в север, напр.
Пример 2.
Движения мяча изображены двумя векторами: 



Решение: Перемещение мяча: 

Здесь
Пусть
По правилу сложения векторов с заданными компонентами имеем:
Найдем длину и угол наклона вектора перемежения 
Умножение вектора на число
Произведение вектора











Свойство умножения вектора на число
1. Сочетательное свойство.
Для любых чисел 
2. Распределительное свойство.
Для любых чисел 
Для любого числа 
Действия над векторами, заданным над координатами
Для вектора 

Пример: Если
Пример: Если
• Соответствующие координаты коллинеарных векторов пропорциональны.
• Наоборот, если соответствующие координаты векторов пропорциональны, то эти векторы коллинеарные.
Условие коллинеарности векторов 

Пример: При каком значении 

Подробное объяснение вектора:
Определение: Вектор — Упорядоченную совокупность 

Пример:
Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент.
Обозначения:
Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху, например, 
Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) 
Операции над векторами. Произведением вектора 




Пространство векторов. N-мерное векторное пространство 
Экономическая иллюстрация. Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров). Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте. Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров
где через 

Линейная независимость. Система 




Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.
Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.
Теорема 3. Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.
Левая и правая тройки векторов. Тройка некомпланарных векторов 


Базис и координаты. Тройка 







Ортонормированный базис. Если векторы 



Векторное произведение. Векторным произведением вектора 


- Длина вектора
численно равна площади параллелограмма, построенного на векторах
- Вектор
перпендикулярен к каждому из векторов
- Векторы
взятые в указанном порядке, образуют правую тройку.
Для векторного произведения 
Если векторы 












Смешанное произведение имеет простое геометрическое толкование — это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.
Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка 


Координаты векторов, встречающиеся в задачах первой главы, предполагаются заданными относительно правого ортонормированного базиса. Единичный вектор, сонаправленный вектору 



Пример №1
Найдите угол между векторами

Решение:
Имеем:
Окончательно имеем:
Пример №2
Зная векторы АВ(-3,-2,6) и ВС(-2,4,4), вычислите длину высоты AD треугольника АВС.
Решение:
Обозначая площадь треугольника АВС через S, получим:



Пример №3
Даны два вектора 




Решение:
Обозначим координаты вектора 




Из первого и второго уравнений системы получим 

Используя условие 
С учетом выражений для 

Линейные операции над векторами
1. Сумма векторов. Для нахождения суммы векторов существует два правила: а) правило треугольника. Пусть векторы 






Рис. 3. Сложение векторов по правилу треугольника.
б) правило параллелограмма. Пусть векторы 




Рис. 4. Сложение векторов по правилу параллелограмма.
Сумма векторов обладает следующими свойствами:
-переместительным 
2. Разность векторов. Разностью векторов 




3. Умножение вектора на вещественное число. При умножении веществе иного числа k на вектор 





Замечание: Числа в векторной алгебре называют скалярами. Отметим здесь, что векторы и скаляры нельзя складывать и вычитать, так как это объекты разной природы.
Замечание: Из определения операции 3 следует первое условие коллинеарности векторов: 
Пример №4
Найти произведение вектора 
Решение:
Используя вышеприведенное правило, получим
Произведение числа на вектор обладает следующими свойствами:
Замечание: Если k = 0, то в результате умножения 
Определение: Нулевым вектором называется вектор, начало и конец которого совпадают, т.е. расположены в одной точке.
Проекция вектора на произвольную ось
Пусть дана ось l и вектор 

которая параллельна оси l, угол между прямой и вектором 

Рис. 6. Проекция вектора на заданную ось.
Из начала и конца вектора 
Определение: Проекцией вектора 










Проекции обладают свойствами:
— если 
Декартова система координат и вектора
Определение: Направленная прямая с выбранным началом отсчета и масштабом измерения называется числовой осью.
Определение: Две (три) взаимно перпендикулярные числовые оси называются декартовой системой координат на плоскости (в пространстве).
Рассмотрим декартову систему координат и спроектируем вектор 
Рис. 7. Проекции вектора на оси декартовой системы координат.
Из рисунка видно, что проекции вектора 
(в пространстве — ось аппликат (Oz) 
Определение: Проекции 


Направляющие косинусы вектора 
Обозначим углы, которые образует вектор 

Определение: Величины 
Вычислив квадрат модуля вектора 

Способы задания вектора
- Задаются координаты начальной и конечной точек вектора
и
. Тогда
- Задаются аффинные координаты вектора
- Задаются длина вектора и два любых угла, которые образует вектор
с какими-либо координатными осями и знак одной из проекций:
, но так как по условию
, то
. Следовательно,
Деление отрезка в заданном отношении
Пусть в пространственной декартовой системе отсчета даны две точки 





Рис. 8. Деление отрезка в заданном отношении.
Из рисунка видно, что



Отсюда найдем вектор 




Понятие базиса векторов
Определение: Любые два (три) неколлинеарных (некомпланарных) вектора образуют базис.
Теорема: Пусть даны два неколлинеарных вектора 






Доказательство: Пусть векторы 


Рис. 9. Разложение вектора по заданному базису.
Из рисунка видно, что 






Докажем единственность разложения вектора 





Это означает, что векторы 




Замечание: С геометрической точки зрения числа 




Определение: Ортом направления оси 





Рис. 10. Орты (единичные векторы) декартовой системы координат.
Из Рис. 10 видно, что орты осей имеют следующие проекции:
Так как векторы 

Векторы в геометрии
Изучая материал этого параграфа, вы узнаете, что векторы используются не только в физике, но и в геометрии. Вы научитесь складывать и вычитать векторы, умножать вектор на число, находить угол между двумя векторами, применять свойства векторов для решения задач.
Понятие вектора в геометрии
Вы знаете много величин, которые определяются своими числовыми значениями: масса, площадь, длина, объем, время, температура и т. д. Такие величины называют скалярными величинами или скалярами.
Из курса физики вам знакомы величины, для задания которых недостаточно знать только их числовое значение. Например, если на пружину действует сила 5 
Величины, которые определяются не только числовым значением, но и направлением, называют векторными величинами или векторами.
Сила, перемещение, скорость, ускорение, вес — примеры векторных величин.
Есть векторы и в геометрии.
Рассмотрим отрезок 



Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.
Вектор с началом в точке 


На рисунках вектор изображают отрезком со стрелкой, указывающей его конец. На рисунке 12.2 изображены векторы 

Вектор, у которого начало и конец — одна и та же точка, называют нулевым вектором или нуль-вектором и обозначают 


Модулем вектора 




Модуль нулевого вектора считают равным нулю:
Определение. Ненулевые векторы называют коллинеарными, если они лежат на параллельных прямых или на одной прямой.
Нулевой вектор считают коллинеарным любому вектору.
На рисунке 12.4 изображены коллинеарные векторы 
Тот факт, что векторы 
На рисунке 12.5 ненулевые коллинеарные векторы 
Если
Аналогичным свойством обладают и сонаправленные векторы, то есть если 
На рисунке 12.7 ненулевые коллинеарные векторы 
Определение. Ненулевые векторы называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.
На рисунке 12.8 изображены равные векторы 
Равенство ненулевых векторов 

Нетрудно доказать, что если 
Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 12.9 изображены вектор а и векторы, равные вектору 
На рисунке 12.10, а изображены вектор 





Покажем, как от произвольной точки 
Если вектор 
Теперь рассмотрим случай, когда 






Если точка 


От заданной точки можно отложить только один вектор, равный данному.
Пример №5
Дан четырехугольник 


Решение:
Из условия 


Равенство 

Координаты вектора
Рассмотрим на координатной плоскости вектор 





Числа 
Из определения следует, что равные векторы имеют равные соответствующие координаты. Например, каждый из равных векторов 
Справедливо и обратное утверждение: если соответствующие координаты векторов равны, то равны и сами векторы.
Действительно, если отложить такие векторы от начала координат, то их концы совпадут.
Очевидно, что нулевой вектор имеет координаты
Теорема 13.1. Если точки 



Доказательство: Пусть вектор 


Если 
Пусть 



Поскольку 



Эти равенства выполняются и тогда, когда точка 


Отсюда
Из формулы расстояния между двумя точками следует, что если вектор 

Пример №6
Даны координаты трех вершин параллелограмма 
Решение:
Поскольку четырехугольник 

Пусть координаты точки 


Имеем:
Отсюда:
Ответ:
Сложение и вычитание векторов
Если тело переместилось из точки 








Этот пример подсказывает, как ввести понятие суммы векторов, то есть как сложить два данных вектора 
Отложим от произвольной точки 







Описанный алгоритм сложения двух векторов называют правилом треугольника.
Это название связано с тем, что если векторы 

По правилу треугольника можно складывать и коллинеарные векторы. На рисунке 14.3 вектор 
Следовательно, для любых трех точек 

Теорема 14.1. Если координаты векторов 


Доказательство: Пусть точки 



Найдем координаты векторов
Имеем:
С учетом того, что 
Замечание. Описывая правило треугольника для нахождения суммы векторов 











Для любых векторов 
Для доказательства этих свойств достаточно сравнить соответствующие координаты векторов, записанных в правой и левой частях равенств. Сделайте это самостоятельно.
Сумму трех и более векторов находят так: сначала складывают первый и второй векторы, затем складывают полученный вектор с третьим и т. д. Например,
Из переместительного и сочетательного свойств сложения векторов следует, что при сложении нескольких векторов можно менять местами слагаемые и расставлять скобки любым способом.
В физике часто приходится складывать векторы, отложенные от одной точки. Так, если к телу приложены силы 
Для нахождения суммы двух неколлинеарных векторов, отложенных от одной точки, удобно пользоваться правилом параллелограмма для сложения векторов.







Приведенные соображения позволяют сформулировать правило параллелограмма для сложения неколлинеарных векторов
Отложим от произвольной точки 






Определение. Разностью векторов 


Пишут:
Покажем, как построить вектор, равный разности данных векторов
От произвольной точки 






На рисунке 14.7 векторы 




Теорема 14.2. Если координаты векторов 


Докажите эту теорему самостоятельно.
Из теоремы 14.2 следует, что для любых векторов 

Определение. Два ненулевых вектора называют противоположными, если их модули равны и векторы противоположно направлены.
Если векторы 



Вектором, противоположным нулевому вектору, считают нулевой вектор.
Вектор, противоположный вектору 
Из определения следует, что противоположным вектору 


Из правила треугольника следует, что
А из этого равенства следует, что если вектор 


Теорема 14.3. Для любых векторов 
Для доказательства достаточно сравнить соответствующие координаты векторов, записанных в правой и левой частях равенства. Сделайте это самостоятельно.
Теорема 14.3 позволяет свести вычитание векторов к сложению: чтобы из вектора 



Пример №7
Диагонали параллелограмма 



Решение:
Поскольку точка 

Имеем:
Умножение вектора на число
Пусть дан ненулевой вектор 




Вектор 




Этот пример подсказывает, как ввести понятие «умножение вектора на число».
Определение. Произведением ненулевого вектора 


2) если 
Пишут:
Если 
На рисунке 15.2 изображены векторы
Из определения следует, что
Также из определения следует, что если 

А если векторы 


Теорема 15.1. Если векторы 


Доказательство: Если 



1) Пусть 





2) Пусть 

Теорема 15.2. Если вектор 


Доказательство: Если 
Пусть 


Отложим от начала координат векторы 





Следовательно, точка 


При 









Следствие 1. Векторы 
Следствие 2. Если векторы 

С помощью теоремы 15.2 можно доказать такие свойства умножения вектора на число.
Для любых чисел 

Для доказательства этих свойств достаточно сравнить соответствующие координаты векторов, записанных в правых и левых частях равенств. Сделайте это самостоятельно.
Эти свойства позволяют преобразовывать выражения, содержащие сумму векторов, разность векторов и произведение векторов на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например,
Пример №8
Докажите, что если 


Решение:
Из условия следует, что векторы 


Пример №9
Точка 

Решение:
Применяя правило треугольника, запишем:
Сложим эти два равенства:
Поскольку векторы 

Отсюда
Пример №10
Докажите, что середины оснований трапеции и точка пересечения продолжение ее боковых сторон лежат на одной прямой.
Решение:
Пусть точки 




Применяя ключевую задачу 2, запишем:
Поскольку 

Поскольку 
Имеем:
Из ключевой задачи 1 следует, что точки 
Пример №11
Докажите, что если 

Решение:
Пусть отрезки 

Отсюда
Из свойства медиан треугольника следует, что
Тогда 
Отсюда
Применение векторов
Применяя векторы к решению задач, часто используют следующую лемму.
Лемма. Пусть 



Доказательство: Имеем:
Поскольку 
Запишем:
Поскольку 
Заметим, что эта лемма является обобщением ключевой задачи 2 п. 15.
Пример №12
Пусть 

Решение:
Пусть точка 


Докажем векторное равенство, связывающее две замечательные
Теорема. Если точка 


Доказательство: Для прямоугольного треугольника равенство 
Пусть треугольник 




На луче 





По правилу параллелограмма
Поскольку точка 


Следовательно, этот четырехугольник — параллелограмм. Отсюда
Имеем:
Обратимся к векторному равенству 





Имеем:
Учитывая равенство 
Это равенство означает, что точки 
Скалярное произведение векторов
Пусть 





Угол между векторами 


Если векторы 


Следовательно, для любых векторов 
Векторы 

Вы умеете складывать и вычитать векторы, умножать вектор на число. Также из курса физики вы знаете, что если под действием постоянной силы 



Изложенное выше подсказывает, что целесообразно ввести еще одно действие над векторами.
Определение. Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними. Скалярное произведение векторов 
Имеем:
Если хотя бы один из векторов 
Пусть
Скалярное произведение 

Мы получили, что 
Теорема 16.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.
Доказательство: Пусть 
Имеем: 
Пусть теперь 
Запишем: 

Теорема 16.2. Скалярное произведение векторов 
Доказательство: Сначала рассмотрим случай, когда векторы 

Отложим от начала координат векторы 

Применим теорему косинусов к треугольнику
Отсюда
Поскольку
Кроме того, 
Имеем: 
Упрощая выражение, записанное в правой части последнего равенства, получаем:
Рассмотрим случай, когда векторы 
Если 
Если 

Если 
Случай, когда 
Следствие. Косинус угла между ненулевыми векторами 
Доказательство: Из определения скалярного произведения векторов 

С помощью теоремы 16.2 легко доказать следующие свойства скалярного произведения векторов.
Для любых векторов 




Для доказательства этих свойств достаточно выразить через координаты векторов скалярные произведения, записанные в правых и левых частях равенств, и сравнить их. Сделайте это самостоятельно.
Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, аналогично тому, как мы преобразовываем алгебраические выражения.
Например,
Пример №13
С помощью векторов докажите, что диагонали ромба перпендикулярны.
Решение:
На рисунке 16.5 изображен ромб 


Отсюда
Следовательно,
Пример №14
Известно, что
Найдите
Решение:
Поскольку скалярный квадрат вектора равен квадрату его модуля, то 
Ответ:
Пример №15
В треугольнике 

Решение. Применяя ключевую задачу 2 п. 15, запишем: 
Отсюда:
Следовательно,
Ответ:
Справочный материал
Вектор
Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.
Коллинеарные векторы
Ненулевые векторы называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
Равные векторы
Ненулевые векторы называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. Равные векторы имеют равные соответствующие координаты. Если соответствующие координаты векторов равны, то равны и сами векторы.
Координаты вектора
Если точки 


Модуль вектора
Если вектор 
Правила сложения двух векторов
Правило треугольника
Отложим от произвольной точки 








Правило параллелограмма
Отложим от произвольной точки 






Координаты суммы векторов
Если координаты векторов 



Свойства сложения векторов
Для любых векторов 
Разность векторов
Разностью векторов 


Для любых трех точек 
Координаты разности векторов
Если координаты векторов 



Противоположные векторы
Два ненулевых вектора называют противоположными, если их модули равны и векторы противоположно направлены. Для любых точек 
Умножение вектора на число
Произведением ненулевого вектора 


2) если
Если 
Если вектор 


Свойства коллинеарных векторов
Если векторы 

Если векторы 

Свойства умножения вектора на число
Для любых чисел 

Скалярное произведение векторов
Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними:


Свойства скалярного произведения
Для любых векторов 

Условие перпендикулярности двух векторов
Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.
Косинус угла между двумя векторами
Косинус угла между ненулевыми векторами 
Векторы в аналитической геометрии
Понятие вектора широко применяется в экономике, математике, физике и других науках, при этом одинаково широко используется как алгебраическая концепция изложения векторного анализа, так и его геометрическая интерпретация, в рамках которой различаются величины двух видов: скалярные и векторные.
Скалярной величиной или скаляром называется величина, которая полностью определяется одним числом, выражающим отношение этой величины к соответствующей единице измерения, например, цена, количество проданного товара, стоимость и т.д.
Векторной величиной или вектором называется величина, для задания которой кроме численного значения необходимо указать и ее направление в пространстве, например, изменение темпов производства (рост или падение), колебание курса акций на бирже и т.д.
Векторная величина графически обычно изображается как связанный вектор или направленный отрезок, т.е. отрезок прямой, у которого указано, какая из ограничивающих точек является его началом, а какая концом. Но в отличие от направленного отрезка, для описания которого необходимо указать начальную точку, длину и направление, свободный вектор или просто вектор представляет собой множество всех эквивалентных между собой связанных векторов и вполне характеризуется:
- направлением;
- длиной (модулем).
Для задания такого множества достаточно указать какой-либо один из связанных векторов этого множества — представитель вектора, в качестве которого обычно выбирается связанный вектор с началом, совпадающим с началом координат.
Вектор обозначается одной маленькой буквой со стрелкой сверху, например, 

Длина вектора называется его модулем, обозначается
и равна длине любого его представителя, т.е. расстоянию между начальной и конечной точками связного вектора 

Два вектора называются равными, если:
- равны их длины;
- они параллельны;
- они направлены в одну сторону.
Иными словами, равные векторы получаются один из другого параллельным переносом в пространстве.
Векторы называются коллинеарными, если они расположены на одной или на параллельных прямых, и компланарными, если они лежат на одной или на параллельных плоскостях.
Вектор, длина которого равна единице, называется единичным вектором или ортом. Орт обозначатся 
Линейные операции над векторами
Сложение вектора производится по правилу параллелограмма:
Поскольку вектор 








Это правило распространяется на любое число слагаемых: если векторы 


В частности, если ломаная замыкается, т.е. O = L, то сумма ее звеньев равна нуль-вектору 
Сложение векторов подчиняется обычным законам сложения -сочетательному и переместительному, а также обладает обратной операцией — вычитанием.
Разностью двух векторов 





Векторы можно не только складывать и вычитать, но и умножать на числа (скаляры).
Вектор 


коллинеарен
;
- длина вектора
отличается от длины вектора
в
раз, т.е.
- при
направлены в одну сторону, при
— в разные.
Произведение вектора на скаляр обладает следующими свойствами:
Проекция вектора на ось
Пусть даны ось









Проекция вектора 


Свойства проекций:
— угол между вектором
и осью
;
Пусть

Вектор 
Из свойства проекций следует, что:
Линейная зависимость векторов
Говорят, что векторы линейно независимы, если из равенства:

следует, что 
В противном случае векторы 



Теорема. Векторы 
Следствие. Если векторы 
Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой. Любые два неколлинеарных вектора 





Пусть 





Из параллелограмма 
Следовательно, любые три компланарных вектора 
Любые три некомпланарных вектора 
Если предположить, что три некомпланарных вектора 




Три вектора 
Пусть векторы 




Линейная зависимость означает, что существует ненулевой набор коэффициентов 

Если один из векторов, например, 


Теорема, Векторы 
Базис. Координаты вектора в базисе
Определим понятие базиса на прямой, плоскости и в пространстве.
Базисом на прямой называется любой ненулевой вектор
этой прямой. Любой другой вектор 
может быть выражен через вектор 

Базисом на плоскости называются любых два линейно независимых вектора 



Базисом в трехмерном пространстве называются любые три некомпланарных вектора 





Коэффициенты


Координаты вектора в заданном базисе определяются однозначно. Введение координат для векторов позволяет сводить различные соотношения между векторами к числовым соотношениям между их координатами. Координаты линейной комбинации векторов равны таким же линейным комбинациям соответствующих координат этих векторов.
Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
Декартова прямоугольная система координат в пространстве определяется заданием единицы масштаба для измерения длин и трех пересекающихся в точке взаимно перпендикулярных осей, первая из которых называется осью абсцисс (Ох), вторая — осью ординат (Оу), третья — осью аппликат (Oz); точка О — начало координат (Рис. 4.4).
Положение координат осей можно задать с помощью единичных векторов 


Пусть в пространстве дана точка М. Проектируя ее на ось Ох, получим точку Мх. Первой координатой х или абсциссой точки М называется длина вектора 


Система координат называется правой, если вращение от оси Ох к оси Оу в ближайшую сторону видно с положительного направления оси Oz совершающимися против часовой стрелки, и левой, если вращение от оси Ох к оси Оу в ближайшую сторону видно совершающимися по часовой стрелке.
Вектор 

Если даны координаты точек 


Следовательно, по формуле (4.5):
При сложении (вычитании) векторов их координаты складываются (вычитаются), при умножении вектора на число все его координаты умножаются на это число.
Длина вектора 

Длина вектора

Если 

Пусть точка М(х, у, z) делит отрезок между точками 



Отсюда получаются координатные формулы:
В частности, если точка М делит отрезок 
Направляющие косинусы
Пусть дан вектор 


Пусть ось 





Направляющие косинусы связаны между собой соотношением:
Если направление 


Скалярное произведение
Скалярными произведением 

Скалярное произведение обладает следующими свойствами:
4. Если 




5. Скалярный квадрат вектора а равен квадрату его длины, т.е.
Следовательно,
Геометрический смысл скалярного произведения: скалярное произведение вектора на единичный вектор 



Из определения скалярного произведения вытекает следующая таблица умножения ортов 
Если векторы заданы своими координатами 


Векторное произведение
Векторным произведением вектора 


3. 

Векторное произведение обладает следующими свойствами: 



5. Если 
Из первых трех свойств следует, что векторное умножение суммы векторов на сумму векторов подчиняется обычным правилам перемножения многочленов. Надо только следить за тем, чтобы порядок следования множителей не менялся.
Основные орты перемножаются следующим образом:
Если
Если принять во внимание полученные выше правила перемножения ортов, то:

Более компактную форму записи выражения для вычисления координат векторного произведения двух векторов можно построить, если ввести понятие определителя матрицы.
Рассмотрим частный случай, когда вектора 

Если координаты векторов записать в виде таблицы следующим образом: 
В таком случае:
Абсолютная величина определителя, таким образом, равна площади параллелограмма, построенного на векторах 
Если сравнить это выражение с формулой векторного произведения (4.7), то: 
Определитель матрицы третьего порядка вычисляется следующим образом:
и представляет собой алгебраическую сумму шести слагаемых.
Формулу для вычисления определителя матрицы третьего порядка легко запомнить, если воспользоваться правилом Саррюса, которое формулируется следующим образом:
- Каждое слагаемое является произведением трех элементов, расположенных в разных столбцах и разных строках матрицы;
- Знак «плюс» имеют произведения элементов, образующих треугольники со стороной, параллельной главной диагонали;
- Знак «минус» имеют произведения элементов, принадлежащих побочной диагонали, и два произведения элементов, образующих треугольники со стороной, параллельной побочной диагонали.
Смешанное произведение
Смешанным произведением тройки векторов 

Если рассматриваемые векторы 


Таким образом, смешанное произведение векторов
(которое обозначается есть число, абсолютная величина которого выражает объем параллелепипеда, построенного па векторах 
Знак произведение положителен, если векторы


Из геометрического смысла смешанного произведения непосредственно следует необходимое и достаточное условие некомпланарности векторов 

Если 

или в свернутой форме:
Справедливы следующие свойства сметанного произведения векторов:
- Смешанное произведение не меняется при циклической перестановке его сомножителей
- При перестановке двух соседних множителей смешанное произведение меняет свой знак на противоположный
Векторы в высшей математике
Определение вектора:
На начальной стадии, когда приходится прибегать к математическим методам исследования, необходимо разработать удобное средство организации исходных данных. Таким простейшим средством является вектор. Например, еженедельное изменение цены за месяц на некоторый товар удобно записать в виде массива: (5500; 5700; 6000; 6200). Записанный таким образом массив чисел называют вектором.
Алгебраические операции над векторами и их свойства
Введём теперь математическое определение векторов и алгебраические операции над ними.
Упорядоченную совокупность действительных чисел




С геометрической точки зрения, вектор — это направленный отрезок. Поэтому вектор, длина которого равна единице, также называется единичным вектором.
Определим далее линейные операции над векторами: сложение и умножение вектора на число.
Сложение векторов
Пусть даны два вектора





Пусть дан вектор 



Сложение векторов обладает следующими свойствами:
- Для любых двух векторов
существует единственный вектор
, называемый суммой векторов
.
- Для любых
.
- Для любых
.
- Существует единственный вектор
, называемый нулевым вектором, такой, что
для всех
.
- Для любого вектора
существует единственный вектор
, такой, что
. Вектор
называется вектором, противоположным вектору
Из указанных свойств векторов следует, что можно рассматривать сумму любого конечного числа векторов 
Умножение вектора на число
Пусть 







Положим, 


Умножение вектора на число обладает следующими свойствами:
- Для любого вектора
и любого числа
существует единственный вектор
.
для любых чисел
и любого
.
для любых чисел
и любого .
для любых чисел
и любого
.
для любого
.
Выражение 








Замечание. Зная координаты вектора 

Пример №16
Найти линейную комбинацию 

Решение:
Воспользуемся определением линейной комбинации векторов и операций над векторами. Тогда получим вектор вида:
Скалярное произведение векторов и его свойства
Предположим, что объем продаж трёх видов товаров фирмы 






Приведенный пример помогает уяснить общую методику введения скалярного произведения векторов.
Определепие2.2.1. Скалярным произведением векторов 


Это определение можно применять только в тех случаях, когда векторы 

Укажем некоторые свойства скалярного произведения:
;
;
;
.
Два ненулевых вектора 
Рассмотрим систему n ненулевых векторов 
скалярное произведение каждого вектора на себя равно единице, а скалярное произведение различных векторов равно нулю, т.е.
то система векторов 
где 
Пример №17
Найти вектор 


Решение:
Так как вектор 




Откуда следует, что 
Пример №18
Пусть рассматривается проект вложения капитала на четыре года. Этот проект должен обеспечивать следующую денежную выручку: в первый год- 1000 дсн.ед.; во второй — 3000 дсн.ед.; в третий — 10000 ден.ед.; в четвёртый — 15000 дсн.ед. Проект будет принят в том случае, если совокупный доход от капиталовложений (в пересчёте на сегодняшний доход) будет превышать требующиеся затраты, составляющие 17000 дсн.ед. Дисконтирование ожидаемого дохода проводится по годовой ставке равной 10%. Будет ли принят рассматриваемый проект?
Решение:
При ставке дисконтирования 10% годовых, доход, который будет получен на протяжении первого года, должен быть умножен на 



1. Вектор 

Запишем денежную выручку и дисконтирующие множители в векторной форме:
и

Скалярное произведение векторов 


Так как 21158,3>17000, то рассматриваемый проект вложения капитала будет принят.
Операции над векторами в высшей математике
Внимание! Вектор определяется числом и направлением.
Отрезком АВ называется множество точек, заключенных между точками
А и В, включая их. Точки А и В называются концами отрезка.
Отрезок АВ называется направленным, если его концы упорядочены.
Направленный отрезок с началом в точке А и концом в точке В будем обозначать АВ. Направленный отрезок ВА с началом в точке В и концом в точке А называется противоположно направленным отрезку АВ.
Модулем 
Вектором называется класс направленных отрезков, расположенных на параллельных или совпадающих прямых и имеющих одинаковые направление и длину.
Векторы геометрически изображают направленными отрезками и обозначаются 
Вывод. Вектор однозначно определяется своим одним направленным отрезком. Пусть заданы два вектора 

называется вектор, проведенный из начала а к концу b: 
Способ сложения векторов, показанный на рис.1, называется правилом треугольника.
Замечание. На векторах а и b можно построить параллелограмм, в котором одна диагональ будет их суммой: 

Множество всех нулевых отрезков называется нулевым вектором и обозначается 0. Направление нулевого вектора произвольно.
Вектор, длина которого равна единице, называется единичным.
Для любого вектора а верны равенства:
Произведением вектора а на число 

- длина вектора
равна длине вектора а, умноженного на модуль числа
- векторы а и
одинаково направлены, если
, и противоположно направлены, если
(рис.З).
Произведение вектора на число «нуль» есть нулевой вектор.
Углом между двумя векторами а и b называется наименьший угол 
Проекцией вектора а на вектор b называется длина вектора а, умноженная на косинус угла между векторами а и b (рис.4):
Внимание! Для ненулевых векторов возможны три варианта произведений: скалярное произведение (в ответе получается число), векторное произведение (в ответе получается вектор) и смешанное произведение (в ответе получается число).
Скалярным произведением двух ненулевых векторов а и b называется число, равное произведению длин этих векторов на косинус угла между ними. Обозначение: 
Например, для скалярного квадрата ii, где i -единичный вектор, имеем
Векторным произведением двух ненулевых векторов а и b называется такой вектор 
- 1) его модуль равен площади параллелограмма, построенного на данных векторах, т.е.
- 2) он перпендикулярен плоскости построенного на данных векторах параллелограмма, , т.е.
- 3) векторы
образуют правую тройку векторов, т.е. при наблюдении из конца вектора
кратчайший поворот от а к b виден против часовой стрелки.
Пример №19
Найти площадь параллелограмма, построенного на векторах а и b. если а — единичный вектор, длина вектора b равна трем, а их скалярное произведение — двум.
Решение:
Площадь параллелограмма, построенного на векторах а и b, равна 
По условию задачи имеем
Найдем синус угла между векторами а и b. Так как 
Следовательно,
Подставим найденное значение в формулу и получим: 
Смешанным произведением трех ненулевых векторов а, b и с называется число, равное скалярному произведению векторного произведения первых двух векторов а и b на третий вектор 
Замечание. Смешанное произведение не меняется при циклической перестановке его сомножителей. При перестановке двух соседних множителей смешанное произведение меняет свой знак на противоположный, т.е.
Геометрический смысл смешанного произведения. Модуль смешанного произведения трех векторов равен объему параллелепипеда, построенного на этих векторах.
Действительно,

Два вектора называются ортогональными, если угол между ними равен
Необходимое и достаточное условие ортогональности:
Два ненулевых вектора ортогональны тогда и только тогда, когда их скалярное произведение равно нулю 
Два вектора называются коллинеарными, если они лежат на одной прямой. Пулевой вектор коллинеарен любому вектору.
Необходимое и достаточное условие коллинеарности:
- Два ненулевых вектора а и b коллинеарны тогда и только тогда, когда они пропорциональны, т.е.
— произвольное число, отличное от нуля.
- Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору (площадь параллелограмма равна нулю).
Три вектора называются компланарными, если они лежат на одной плоскости. Любую тройку векторов, содержащую нулевой вектор, считают компланарной.
Необходимое и достаточное условие компланарности. Три ненулевых вектора компланарны тогда и только тогда, когда их смешанное произведение равно нулю (объем параллелепипеда равен нулю).
Действия над векторами, заданными прямоугольными координатами
Пусть Ох, Оу, Oz — три взаимно перпендикулярные оси в трехмерном пространстве (оси координат), исходящие из общей точки О (начала координат) и образующие правую тройку (рис. 5).
Точка М с координатами х, у, z обозначается M(x,y,z), причем первая координата называется абсциссой, вторая — ординатой, третья — аппликатой точки М.
Для каждой точки М пространства существует ее радиус-вектор r=ОМ, начало которого есть начало координат О и конец которого есть данная точка М. Координаты x,y,z точки М являются проекциями радиус-вектора r на оси Ох, Оу, Oz соответственно.



(«от координат конца отнимают координаты начала»).
Например, координаты радиус-вектора
Если ввести единичные векторы i,j, k, направленные по осям Ох, Оу, Oz соответственно (рис.5), то координаты вектора r можно записать в эквивалентной форме:
Векторы i, j,k называются базисными.
Пусть даны два вектора
Сложив векторы почленно, получим:
или
Умножив вектор а на число 
или
Пример №20
Найти вектор х из уравнения
Решение:
Выразим х из векторного уравнения:
Подставим векторы а, b и с в полученное выражение:
Задача решена.
Скалярное произведение двух векторов в координатной форме вычисляется по формуле:
Для cкалярного квадрата аа получаем:
но, с другой стороны, 
Мы получили формулу вычисления длины вектора, заданного в координатной форме.
Векторное произведение двух векторов в координатной форме вычисляется по формуле
которую можно выразить через символический определитель третьего порядка
Смешанное произведение трех векторов в координатной форме 
- Заказать решение задач по высшей математике
Пример №21
Вершины треугольной пирамиды находятся в точках А( 1,1 ,-1), В(2,1,-3), С(-1,1,1), D(0,7,3). Вычислить высоту пирамиды, опущенную из вершины D на основание АВС.
Решение:
Высоту треугольной пирамиды найдем из формулы:
где 

Найдем площадь треугольника АВС. Она равна половине площади параллелограмма, построенного, например, на векторах АВ и АС. Следовательно, по определению векторного произведения

Векторное произведение АВ и АС в координатной форме равно
Найдем объем треугольной пирамиды. Он равен одной шестой объема параллелепипеда, построенного, например, на векторах АВ, АС и AD. Тогда по геометрическому смыслу смешанного произведения 
Смешанное произведение АВ, АС и AD в координатной форме равно 
Задача решена.
Замечание.
- 1. Площадь треугольника АВС можно находить из площади параллелограмма, построенного на любых двух векторах, исходящих из одной вершины, например: АВ и АС; ВА и ВС; СА и СВ.
- 2. Объем треугольной пирамиды ABCD можно находить из объема параллелепипеда, построенного на любых трех векторах, исходящих из одной точки, например: АВ, АС и AD; ВА, ВС и BD; СА, СВ и CD; DA, DB и DC.
Линейное пространство
Идея линейности является одним из важнейших принципов математики. На этой основе построены различные разделы математики. Более того, почти каждый экономический процесс в малом является линейным, что позволяет делать о нём достаточно точные выводы, изучая линейный, гораздо более простой для исследования объект.
В математике часто приходится встречаться с объектами, для которых определены операции сложения и умножения на числа. Объектами такого рода являются векторы, функции, матрицы и т.д. Для того, чтобы изучать все такие объекты с единой точки зрения и вводится понятие линейного пространства.
Определение 2.3.1. Множество L элементов х, у, z,… называется линейным пространством, если:
При этом введенные операции должны удовлетворять следующим требованиям (аксиомам):
- х+у = у+х (коммутативности);
- (х+у)+ z = x+(y+z) (ассоциативности);
- существует элемент 0, такой, что х+0=х для любого х. Элемент 0 называется нулевым элементом;
- для каждого х существует противоположный элемент, обозначаемый -х, такой, что х+(-х)=0;
;
;
:;
,
где 

В определении линейного пространства не говорится, как определяются операции сложения и умножения на числа, и не говорится о природе объектов. Требуется только, чтобы были выполнены сформулированные выше аксиомы. Поэтому всякий раз, когда мы встречаемся с операциями, удовлетворяющими этим условиям, будем считать их операциями сложения и умножения.
Рассмотрим систему векторов на плоскости и в трёхмерном пространстве, для которых определены операции сложения векторов и умножения вектора на число как в п.2.1. Так как для этих операций выполняются свойства (1) — (8) определения 2.3.1, то они образуют линейное пространство.
Линейное пространство образует и совокупность многочленов степени не выше п с вещественными коэффициентами, для которых определены обычные операции сложения многочленов и умножения многочлена на число.
Линейное пространство, в котором введено скалярное произведение, называется евклидовым.
Пространство, где векторами являются наборы из n действительных чисел с покомпонентными операциями сложения и умножения их на число, и скалярное произведение определяется по формуле (1.2.1), является евклидовым пространством. Это пространство обозначается 
Линейно зависимые и линейно независимые векторы. Свойства линейной зависимости векторов.
Определение линейной комбинации векторов, тесно связано с понятием подпространства векторного пространства.
Определение 2.4.1. Некоторое непустое подмножество векторного пространства М называется подпространством, если оно само является векторным пространством.
А доказательство того, что подмножество является векторным пространством, проводится на основании доказательства того, что всякая линейная комбинация любых двух векторов этого подмножества, также является вектором этого подмножества.
Определение 2.4.2. Векторы 


Если равенство (2.4.1) возможно и при ненулевом значении хотя бы одного числа 

Пример №22
Рассмотрим евклидово пространство 
называемые координатными векторами. Покажем, что в пространстве 

Решение:
Пусть 

Подставив координаты векторов 
В результате получили вектор




Вектор 




Относительно линейной зависимости векторов справедливы следующие утверждения:
- Если совокупность векторов
из
содержит нулевой вектор, то она линейно зависима.
- Если в системе векторов
имеется подсистема линейно зависимых векторов, то и вся совокупность векторов
линейно зависима.
- Система векторов
из
линейно зависима тогда и только тогда, если один из векторов этой системы является линейной комбинацией остальных.
- Любые
векторов
из
, каждый из которых является линейной комбинацией m векторов
линейно зависимы. .
Пример №23
Выясним линейную зависимость векторов 

Полученный вектор является нулевым, если координаты равны нулю:
Полученная система имеет только одно решение 



Заметим, что два геометрических вектора линейно зависимы тогда и только тогда, когда они коллинеарны (их направления параллельны). Три геометрических вектора линейно зависимы тогда и только тогда, когда они компланарны (их направления параллельны некоторой плоскости).
Элементы векторной алгебры
Некоторые физические величины (например, температура, масса, объем, работа, потенциал) могут быть охарактеризованы одним числом, которое выражает отношение этой величины к соответствующей единице измерения; такие величины называются скалярными. Ещё примеры скалярных величин: длина, площадь, время, угол, плотность, сопротивление.
Другие величины (например, сила, скорость, ускорение, напряжённость электрического или магнитного поля) характеризуются числом и направлением. Эти величины называются векторными.
Необходимо подчеркнуть, что вектор не является числом. Если мы рассматриваем вектор, лежащий в плоскости, то для его описания необходимо знать два фактора – модуль и его направление (например, угол, образуемый им с одним из осей координат). Если рассматривается вектор в трехмерном пространстве, то для описания вектора требуется три фактора: один – величину для его модуля и два для указания его положения в системе координат.
Скаляры и векторы
Величина, полностью характеризуемая своим числовым значением в выбранной системе единиц, называется скалярной или скаляром. Таковы, например, масса тела, объем его, температура среды и т. п. Скаляр определяется числом положительным или отрицательным или равным нулю.
Величина, кроме числового значения характеризуемая еще направлением, называется векторной или вектором. К числу их относятся сила, перемещение, скорость и т.п. Вектор определяется числом и направлением.
Векторы обычно обозначают буквами жирного шрифта, например а. Геометрически вектор изображается направленным отрезком пространства (рис. 168); при этом используется обозначение а = 
Под модулем (длиной) вектора а
понимается числовое значение его, без учета направления. (Естественно, 

Два вектора 
В частности, для свободных векторов можно обеспечить общую начальную точку их. В дальнейшем мы будем излагать теорию свободных векторов в трехмерном пространстве.
Сумма векторов
Определение: Суммой нескольких векторов, например а, b, с, d (рис. 169), называется вектор
по величине и направлению равный замыкающей ОМ пространственной ломаной линии, построенной на данных векторах.

Для случая двух векторов а и b (рис. 170) их суммой s является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки приложения их (правило параллелограмма).
Так как в треугольнике длина одной стороны не превышает суммы длин двух других сторон, то из рис. 170 имеем
т. е. модуль суммы двух векторов не превышает суммы модулей этих векторов.
Для случая трех векторов а, b, с (рис. 171) их суммой s является диагональ 
Легко проверить, что для векторного сложения справедливы следующие свойства:
1)переместительное свойство
а + b = b + а,
т. е. векторная сумма не зависит от порядка слагаемых;
2)сочетательное свойство
т.е. сумма трех (и большего числа) векторов не зависит от порядка расстановки скобок.
Для каждого вектора 

где 0 — нуль-вектор.
Легко проверить, что а + 0 = а.
Разность векторов
Под разностью векторов 
такой, что
Отметим, что в параллелограмме, построенном на данных векторах 
Легко проверить, что справедливо следующее правило вычитания:
Умножение вектора на скаляр
Определение: Произведением вектора а на скаляр k (рис. 174) называется вектор
имеющий длину b =
с направлением вектора а, если k > 0; 2) противоположно ему, если k < 0; 3) произвольно, если k = 0.
Нетрудно убедиться, что эта векторная операция обладает следующими свойствами:
Пример:
Если ненулевой вектор а разделить на его длину a = |a| (т.е. умножить на скаляр 1 /а), то мы получим единичный вектор е, так называемый 
Формула (1) формально справедлива также и для нулевого вектора а = 0, где а = 0 и е — произвольный орт.
Коллинеарные векторы
Определение: Два вектора 
Так как направление нулевого вектора произвольно, то можно считать, что нулевой вектор коллинеарен любому вектору.
Теорема: Два ненулевых вектора 
(k — скаляр).
Доказательство: 1) Пусть векторы 

Очевидно,
где знак плюс соответствует векторам 

Из формул (2) и (3) получаем
Отсюда вытекает формула (1), где
2) Если выполнено равенство (1), то коллинеарность векторов 
Компланарные векторы
Определение: Три вектора a, b и с называются компланарны ми, если они параллельны некоторой плоскости в широком смысле (т. е. или параллельны плоскости, или лежат в ней).
Можно сказать также, что векторы а, b и с компланарны тогда и только тогда, когда после приведения их к общему началу они лежат в одной плоскости.
По смыслу определения тройка векторов, среди которых имеется хотя бы один нулевой, компланарна.
Теорема: Три ненулевых вектора а, b и с компланарны тогда и только тогда, когда один из них является линейной комбинацией других, т.е., например,
(k, I — скаляры).
Доказательство: 1) Пусть векторы а, b и с компланарны, расположены в плоскости Р (рис. 176) и имеют общую точку приложения О.
Предположим сначала, что эти векторы не все попарно коллинеарны, например векторы а и b неколлинеарны. Тогда, производя разложение вектора с в сумму векторов са и сь, коллинеарных соответственно векторам а и b, в силу будем иметь
где k и I — соответствующие скаляры.
Если векторы а, b, с попарно коллинеарны, то можно написать
таким образом, снова выполнено условие (1).
2) Обратно, если для векторов 
Пример:
Векторы а, а + b, а — b компланарны, так как
Проекция вектора на ось
Осью называется направленная прямая. Направление прямой обычно обозначается стрелкой. Заданное направление оси будем считать положительным, противоположное — отрицательным.
Определение: Проекцией точки А на ось 
Здесь под перпендикуляром АА’ понимается прямая, пересекающая ось 
Определение: Под ком-по не н той (составляющей) вектора 



Определение: Под проекцией вектора а на ось 


Напомним, что все геометрические объекты мы здесь рассматриваем в трехмерном пространстве.
Если направление компоненты совпадает с направлением оси 
Если а = О, то полагают
Заметим, что если е — единичный вектор оси 
Теорема: Проекция вектора а на ось 
Доказательство: Так как вектор 

1) Если угол ф между вектором a и осью 



2) Если угол ф между вектором а и осью 



3) Если же ф = 

Таким образом, формула (2) доказана.
Следствие 1. Проекция вектора на ось: 1) положительна, если вектор образует с осью острый угол; 2) отрицательна, если этот угол — тупой, и 3) равна нулю, если этот угол — прямой.
Следствие 2. Проекции равных векторов на одну и ту же ось равны между собой.
Теорема: Проекция суммы нескольких векторов на данную ось равна сумме их проекций на эту ось.
Доказательство: Пусть, например, s = a + b + с,
где (рис. 179) 


Обозначая проекции точек 


что и требовалось доказать.
Следствие. Проекция замкнутой векторной линии на любую ось равна нулю.
Теорема: При умножении вектора на скаляр его проекция на данную ось умножается на этот скаляр, т.е.
Формула (4) следует из теоремы 1 и смысла умножения вектора на скаляр.
Следствие. Проекция линейной комбинации векторов равна такой же линейной комбинации проекций этих векторов, т.е.
Прямоугольные декартовы координаты в пространстве
Пусть (рис. 180) Ox, Оу, Oz — три взаимно перпендикулярные оси в трехмерном пространстве (оси координат), исходящие из общей точки О (начало координат) и образующие правую тройку (правая система координат), т. е. ориентированные по правилу правого буравчика. Иными словами, для наблюдателя, направленного по оси Oz, кратчайший поворот оси Ох к оси Оу происходит против хода часовой стрелки.
Три взаимно перпендикулярные плоскости Oyz, Ozx и Оху, проходящие через соответствующие оси, называются координатными плоскостями; они делят все пространство на восемь октантов.
Для каждой точки М пространства (рис. 180) существует ее радиус-вектор г = ОМ, начало которого есть начало координат О и конец которого есть данная точка М.
Определение: Под декартовыми прямоугольными координатами х, у, z точки М понимаются проекции ее радиуса вектора г на соответствующие оси координат, т. е.
В дальнейшем для краткости декартовы прямоугольные координаты мы будем называть просто прямоугольными координатами.
Точка М с координатами х, у, z обозначается через М (х, у, z), причем первая координата называется абсциссой, вторая — ординатой, а третья — аппликатой точки М.
Для нахождения этих координат через точку М проведем три плоскости МА, MB, МС, перпендикулярные соответственно осям Ox, Оу, Oz (рис. 180). Тогда на этих осях получатся направленные отрезки
численно равные координатам точки М.
Радиус-вектор г является диагональю параллелепипеда П с измерениями 
Если обозначить через 
Косинусы cos а, cos р, cos у называются направляющими косинусами радиуса-вектора г. Из (4), учитывая (3), получаем
т. е. сумма квадратов направляющих косинусов радиуса-век-тора точки пространства равна 1.
Из формулы (4) следует, что координата точки М положительна, если радиус-вектор этой точки образует острый угол с соответствующей координатной осью, и отрицательна, если этот угол тупой. В частности, в I октанте пространства, ребра которого составляют положительные полуоси координат, все координаты точек положительны- В остальных октантах пространства отрицательными координатами точек будут те, которые соответствуют отрицательно направленным ребрам октанта.
Измерения 
В частности, если точка 
Длина и направление вектора
Пусть в пространстве Oxyz задан вектор а. Проекции этого вектора на оси координат
называются координатами вектора а; при этом вектор мы будем записывать так:
Так как вектор а свободный, то его можно рассматривать как радиус-вектор точки 
т.е. модуль вектора равен корню квадратному из суммы квадратов его координат.
Направляющие косинусы вектора а определяются из уравнений
причем
т.е. сумма квадратов направляющих косинусов вектора равна единице. Направляющие косинусы ненулевого вектора однозначно определяют его направление. Следовательно, вектор полностью характеризуется своими координатами.
Пример №24
Найти длину и направление вектора а = {1, 2, -2}.
Решение:
Имеем
Отсюда
Таким образом, вектор а образует острые углы с координатными осями Ох и Оу и тупой угол с координатной осью Ог.
Расстояние между двумя точками пространства
Пусть 





Рассматривая вектор 

Проецируя это векторное равенство на оси координат и учитывая свойства проекций, получаем
Таким образом, проекции направленного отрезка на оси координат равны разностям соответствующих координат конца и начала отрезка.
Из формул (2) получаем длину отрезка (или, иначе, расстояние между двумя точками 
Итак, расстояние между двумя точками пространства равно корню квадратному из квадратов разностей одноименных координат этих точек.
Пример №25
Ракета из пункта М1 (10, -20, 0) прямолинейно переместилась в пункт М2 (-30, -50, 40) (расстояния даны в километрах). Найти путь пройденный ракетой.
Решение:
На основании формулы (3) имеем
Заметим, что, найдя направляющие косинусы вектора перемещения 
Действие над векторами, заданными в координатной форме
Пусть вектор 
Построим параллелепипед (рис. 182), диагональю которого является вектор а, а ребрами служат компоненты его 
Если ввести единичные векторы (орты) i, j, k, направленные по осям координат, то на основании связи между компонентами вектора и его проекциями будем иметь
Подставляя эти выражения в равенство (1), получаем координатную форму вектора
Заметим, что разложение (3) для вектора а единственно. Действительно, пусть
Отсюда, вычитая из равенства (3) равенство (3′) и пользуясь перемести -тельным и сочетательным свойствами суммы векторов, а также свойствами разности векторов, будем иметь
Если хотя бы один из коэффициентов при ортах i, j и k был отличен от нуля, то векторы i, j и k были бы компланарны, что неверно. Поэтому 
Если 
Рассмотренные выше линейные операции над векторами можно теперь записать в следующем виде:
или короче: 
или кратко:
Таким образом, при сложении (или вычитании) векторов их одноименные координаты складываются (или вычитаются):
Пример №26
Найти равнодействующую F двух сил
и ее направление.
Решение:
Имеем 
где 
Скалярное произведение векторов
Определение: Под скалярным произведением двух векторов а и b понимается число, равное произведению длин этих векторов на косинус угла между ними, т. е. в обычных обозначениях:
где
Заметим, что в формуле (1) скалярное произведение можно еще записывать как ab, опуская точку. Так как (рис. 183)
то можно записать
т.е. скалярное произведение двух векторов равно длине одного из них, умноженной на проекцию другого на ось с направлением первого.
Физический смысл скалярного произведения
Пусть постоянная сила F обеспечивает прямолинейное перемещение 
На основании формулы (1) имеем
Таким образом, работа постоянной силы при прямолинейном перемещении ее м точки приложения равна скалярному произведению вектора силы на вектор перемещения.
Скалярное произведение векторов обладает следующими основными свойствами.
1)Скалярное произведение двух векторов не зависит от порядка этих сомножителей (переместительное свойство):
Эта формула непосредственно следует из формулы (1).
2)Для трех векторов а, b и с справедливо распределительное свойство
т. е. при скалярном умножении суммы векторов на вектор можно «раскрыть скобки».
Действительно, на основании формул (2), учитывая свойства проекций векторов, имеем
3)Скалярный квадрат вектора равен квадрату модуля этого вектора, т.е.
Действительно,
Отсюда для модуля вектора получаем формулу
4)Скалярный множитель можно выносить за знак скалярного произведения, т.е.
Это свойство также легко получается из (1).
5)Скалярное произведение линейной комбинации векторов на произвольный вектор равно такой же линейной комбинации данных векторов на этот вектор, т.е.
(
Это — очевидное следствие 2) и 4).
Из определения (1) вытекает, что косинус угла 
Из формулы (8) получаем, что два вектора а и b перпендикулярны (ортогональны), т. е. 
Это утверждение справедливо также и в том случае, когда хотя бы один из векторов а или b нулевой.
Пример №27
Найти проекцию вектора а на вектор b. Обозначая через 
где е =
Скалярное произведение векторов в координатной форме
Пусть
Перемножая эти векторы как многочлены и учитывая соотношения
будем иметь
Таким образом, скалярное произведение векторов равно сумме парных произведений их одноименных координат. Отсюда, обозначая через ф угол между векторами а и b, получаем
Пример:
Определить угол ф между векторами а = { 1,+2, 3} и b ={-3, 2,-1}. На основании формулы (4) имеем
Отсюда
Пусть векторы а и b коллинеарны (параллельны). Согласно условию коллинеарности,
где k — скаляр, что эквивалентно 
Таким образом, векторы коллинеарны тогда и только тогда, когда их одноименные координаты пропорциональны.
Для перпендикулярных (ортогональных) векторов а и b имеем 
Таким образом, два вектора перпендикулярны тогда и только тогда, когда сумма парных произведений их одноименных координат равна нулю.
Векторное произведение векторов
Напомним, что тройка а, b и с некомпланарных векторов называется правой (рис. 185, а) или левой (рис. 185, б), если она ориентирована по правилу правого винта или соответственно по правилу левого винта.
Заметим, что если в тройке некомпланарных векторов а, b, с переставить два вектора, то она изменит свою ориентацию, т. е. из правой сделается левой или наоборот.
В дальнейшем правую тройку мы будем считать стандартной.
Определение: Под векторным произведением двух векторов а и b понимается вектор
для которого:
1)модуль равен площади параллелограмма, построенного на данных векторах, т. е.
где 
2)этот вектор перпендикулярен перемножаемым векторам (иначе говоря, перпендикулярен плоскости построенного на них параллелограмма), т. е. 
3)если векторы неколлинеарны, то векторы а, b, с образуют правую тройку векторов.
Укажем основные свойства векторного произведения.
1)При изменении порядка сомножителей векторное произведение меняет свой знак на обратный, сохраняя модуль, т. е.
Действительно, при перестановке векторов а и b площадь построенного на них параллелограмма остается неизменной, т. е. 



Таким образом, векторное произведение двух векторов не обладает переместительным свойством.
2)Векторный квадрат равен нуль-вектору, т.е.
Это — очевидное следствие свойства 1).
3)Скалярный множитель можно выносить за знак векторного произведения, т.е. если 
Это свойство непосредственно вытекает из смысла произведения вектора на скаляр и определения векторного произведения.
4)Для любых трех векторов а, b, с справедливо равенство
т.е. векторное произведение обладает распределительным свойством.
Пример:
Отсюда, в частности, имеем
т. е. площадь параллелограмма, построенного на диагоналях данного параллелограмма, равна удвоенной площади этого параллелограмма.
С помощью векторного произведения удобно формулировать легко проверяемый критерий коллинеарности двух векторов а и b:
Векторное произведение в координатной форме
Пусть
Перемножая векторно эти равенства и используя свойства векторного произведения, получим сумму девяти слагаемых:
Из определения векторного произведения следует, что для ортов 
Поэтому из формулы (3) получаем


Для удобства запоминания формула (4) записывается в виде определителя третьего порядка (см. гл. XVII)
Из формулы (4) вытекает, что
Геометрически формула (6) дает квадрат площади параллелограмма, построенного на векторах 
Пример №28
Найти площадь треугольника с вершинами А (1, 1, 0), В (1,0, 1) и С (0, 1, 1).
Решение:
Площадь S треугольника ABC равна 1/2 площади параллелограмма, построенного на векторах 

Следовательно,
Смешанное произведение векторов
Определение: Под смешанным (или векторно-скалярным) произведением векторов 
Построим параллелепипед П (рис. 188), ребрами которого, исходящими из общей вершины О, являются векторы 
Тогда 

Высота этого параллелепипеда 
где 


На основании определения скалярного произведения имеем
где V — объем параллелепипеда, построенного на векторах 
т. е. смешанное произведение трех векторов равно объему V параллелепипед а у построенного на этих векторах, взятому со знаком плюсу если эти векторы образуют правую тройку, и со знаком минус, если они образуют левую тройку.
Справедливы следующие основные свойства смешанного произведения векторов.
1)Смешанное произведение не меняется при циклической перестановке его сомножителей, т.е.
Действительно, в этом случае не изменяется ни объем параллелепипеда П, ни ориентация его ребер.
2)При перестановке двух соседних множителей смешанное произведение меняет свой знак на обратный, т. е.
Это следует из того, что перестановка соседних множителей, сохраняя объем параллелепипеда, изменяет ориентацию тройки векторов, т.е. правая тройка переходит в левую, а левая — в правую.
С помощью смешанного произведения получаем необходимое и достаточное условие компланарности трех векторов 
abc = 0
(объем параллелепипеда равен нулю). Если
то, используя выражения в координатах для векторного и скалярного произведений векторов, получаем

- Прямая — понятие, виды и её свойства
- Плоскость — определение, виды и правила
- Кривые второго порядка
- Евклидово пространство
- Логарифм — формулы, свойства и примеры
- Корень из числа — нахождение и вычисление
- Теория множеств — виды, операции и примеры
- Числовые множества
Вектором называется направленный отрезок. Вектор обозначается либо символом 




2. Длиной (модулем) вектора 


3.Вектор называется единичным, если его длина равна «1»; единичный вектор 



4. Вектор называется нулевым, если его начало и конец совпадают 
5. Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Коллинеарность векторов обозначается: 




6. Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и направление.
7. Вектор 

8. Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.
Для решения задач необходимо уметь выполнять линейные операции над вектором в геометрической форме, то есть над вектором, как над
направленным отрезком: сложение, вычитание векторов и умножение вектора на число.
9. Сложение двух векторов можно выполнить по правилу параллелограмма (рис. 1) или по правилу треугольника (рис. 2).
При сложении более двух векторов, лежащих в одной плоскости, используется правило «замыкающей линии многоугольника» (рис. 3).
При сложении трех некомпланарных векторов удобно пользоваться правилом «параллелепипеда» (рис. 4).
10. Действие вычитания двух векторов связано с действием сложения (рис.5).
Разностью двух векторов называется вектор, проведенный из конца вычитаемого в конец уменьшаемого. Заметим, что разностью является вектор, служащий второй диагональю параллелограмма.
Разность можно также представить в виде сложения с противоположным вектором (рис. 6).
11. Произведением вектора 


12. Для решения задач полезно знать также следующие законы и свойства:
Примеры задач решаемых с применением векторной алгебры
Задача:
Пусть даны точки 
1) Найти координаты векторов
2) Написать разложение этих векторов по базису
3) Найти длины этих векторов
4) Найти скалярное произведение
5) Найти угол между векторами 

6) Найти разложение вектора 

Решение:
1) Вычислим координаты векторов 



2)
3)
4) Для вычисления угла между векторами воспользуемся формулой:
5) Разложить вектор 












Задача:
а). Даны векторы 



Решение:
Три вектора образуют базис, если 
Найдем координаты вектора 


Два вектора равны, если их соответствующие координаты равны.
Решим систему методом Крамера:
Ответ: 

Задача:
Даны координаты вершин тетраэдра 








Решение:
1) Найдем координаты т. 

Точка 




2) Найдем направляющий вектор прямой 



3) Найдем уравнение плоскости 
Найдем каноническое уравнение прямой, перпендикулярной плоскости 




Найдем координаты точки 


Координаты точки 



Ответ: 1) координаты точки пересечения медиан 


На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:
Высшая математика краткий курс лекций для заочников
Возможно вам будут полезны эти страницы:
Векторная алгебра — решение заданий и задач по всем темам с вычислением
Понятие вектора. Линейные операции над векторами
1°. Любые две точки 





Векторы, расположенные на одной прямой или на параллельных прямых, называются коллинеарными.
Два вектора 

Векторы 
Вектор называется нулевым, если его модуль равен нулю, и обозначается
2°. Линейными называются действия сложения, вычитания векторов и умножения вектора на число.
1.Если начало 




2.Если начала векторов 




3.При умножении вектора




Вектор 

3°. Запись ci — 




4°. Числа 




5°. Линейные операции над векторами, которые заданы своими координатами, определяются так: пусть 
Следовательно, при сложении векторов складываются их соответствующие координаты, а при умножении вектора на число умножаются на число все координаты вектора.
6°. Необходимое и достаточное условие коллинеарности векторов 


Если один из членов какого-нибудь из этих отношений равен нулю, то и второй член того же отношения должен быть нулем. Геометрически это значит, что в этом случае оба вектора перпендикулярны соответствующей координатной оси (например, если 

7°. Система векторов 
(


Примеры с решениями
Пример:
Доказать, что треугольник с вершинами в точках A(1,2), B(2,5), С(3,4) прямоугольный.
Решение:
Построим векторы, совпадающие со сторонами треугольника (см. п. 1°): 
Найдем длины сторон: 
Нетрудно видеть, что 

Пример:
Проверить, что точки А( 2,-4,3), В(5, —2,9), С( 7,4,6) и D(6,8, -3) являются вершинами трапеции.
Решение:
Составим векторы-стороны с целью обнаружения коллинеарности векторов (в трапеции ВС || AD) (рис. 3.5):
Имеем 
Пример:
Найти орт и направляющие косинусы вектора
Решение:
Имеем 


Пример:
Определить точку В, которая является концом вектора 
Решение:
Пусть точка В имеет координаты B(x,y,z) (рис. 3.6). Тогда координа- ^ ты вектора (п. 1°)
Следовательно, 
Пример:
Вектор 
Решение:
Необходимо найти такие числа х, у, z, что 
Имея в виду, что при сложении векторов складываются их координаты и равные векторы имеют равные координаты, приходим к системе уравнений
из которой
Ответ.
Пример:
Показать, что система векторов 
Решение:
В данном случае равенство (1) имеет вид 

из которой следует, что 
Пример:
Показать, что система векторов 
Решение:
Равенство (1) равносильно системе уравнений
Она имеет ненулевое решение, например, 






Скалярное произведение векторов
1°. Скалярным произведением двух ненулевых векторов а и b называется число, равное произведению их длин на косинус угла 
Из 




Итак,
2°. Если
т.е. скалярное произведение векторов равно сумме произведений одноименных координат этих векторов.
При этом 


3°. Из определения скалярного произведения следует формула для вычисления угла между двумя векторами:
Примеры с решениями
Пример:
Перпендикулярны ли векторы 
Решение:
Условие перпендикулярности векторов (п. 2°) 
Ответ. Да.
Пример:
Найти проекцию вектора 
Решение:
Имеем 

Ответ
Пример:
Зная векторы, совпадающие с двумя сторонами: 

Решение:
Имеем (рис. 3.8)
При помощи таблиц находим 



Ответ. 123° 10′, 19°29′, 37°21′.
Пример:
Найти координаты вектора 


Решение:
На рис. 3.9 имеем 


Векторное произведение векторов
1°. Векторы 



2°. Векторным произведением ненулевых векторов 


1)

2) Вектор 

3) 

Если векторы 

3°. Если известны координаты векторов-сомножителей 
в которой определитель следует разложить по элементам первой строки.
Примеры с решениями
Пример:
Найти площадь треугольника, вершины которого находятся в точках А(1,2,3), В{3,2,1), С(1,0,1).
Решение:
Найдем координаты векторов 

Найдем длину этого вектора, которая равна численно площади параллелограмма S (п. 2°): 

Пример:
Построить параллелограмм на векторах 


Сделаем чертеж (рис. 3.13). Имеем 
Следовательно,
Смешанное произведение векторов
1°. Смешанным произведением трех ненулевых векторов 






Модуль смешанного произведения векторов



Объем тетраэдра с вершинами в точках 

2°. Условие 



Примеры с решениями
Пример:
Найти объем параллелепипеда, построенного на векторах
Решение:
Искомый объем 
Пример:
В точках 0(0,0,0), А(5,2,0), В(2,5,0) и С(1,2,4) находятся вершины пирамиды. Вычислить ее объем, площадь грани ABC и высоту пирамиды, опущенную на эту грань.
Решение:
1) Сделаем схематический чертеж (рис. 3.15).
2) Введем векторы 

3) Площадь грани ABC
4) Объем пирамиды 
Ответ.
Основные понятия векторной алгебры
Прямоугольные декартовы координаты
Координатная ось
Пусть на плоскости или в пространстве задана произвольная прямая L: Ясно, что по этой прямой L сы можем перемещаться в oднoм из двух противоположных направлений. Выбор любого (одного) из этих направлений будем называть ориентацией прямой L.
Оnределение:
Прямая с заданной на ней ориентацией называется осью. На чертеже ориентация оси указывается стрелкой (рис. 1 ) . Фиксируем на оси 
Пусть М — произвольная точка оси 
Оnределение:
Ось 
Прямоугольные декартовы координаты на плоскости
Пусть П — произвольная плоскость. Возьмем на ней некоторую точку О и проведем через эту точку взаимно перпендикулярные прямые L 1 и L 2. Зададим на каждой из nрямых L 1 и L 2 ориентацию и выберем единый масштабный отрезок а. Тогда эти прямые nревратятся в координатные оси с общей точкой отсчета О (рис. 4).
Назовем одну из координатных осей осью абсцисс (осью Ох), друrую —осью ординат (осью Оу) (рис. 5). Точка О называется началом координат. Пусть М — произвольная точка плоскости П (рис. 6). Проведем через точку М прямые, перпендикулярные координатным осям, и поставим ей в соответствие упорядоченную пару чисел (х, у) по следующему nравилу:

Числа х и у называются прямоугольными декартовыми при этом х называется ее абсциссой, а у — ординатой. координатами точки М; Обозначение: М(х, у). Чтобы кратко охарактеризовать описанную конструкцию, говорят, что на плоскости П задана прямоугольная декартова система координат Ох у. Координатные оси разбивают плоскость на четыре части, называемые четвертями или квадрантами. На рисунке и в таблице показано, как эти квадранты нумеруются (рис. 7).

Замечание:
Масштабные от резки на координатных осях могут быть и разной длины. В этом случае координатная система называется просто прямоугольной.
Прямоугольные декартовы координаты в пространстве
Возьмем в пространстве некоторую точку О и проведем через нее три взаимно перпендикулярные прямые L 1 , L 2 и L 3 . Выберем на каждой из nрямых ориентацию и единый масштаб. Прямые L 1 , L 2 и L 3 превратятся в координатные оси с общей точкой отсчета О (рис. 8).
Назовем одну из этих осей осью абсцисс (осью Ох), вторую — осью ординат (осью Оу) и третью — осью аппликат (осью Oz) (рис. 9). Точка О называется началом координат. Пусть М — nроизвольная точка (рис. 10). Проведем через точку М nлоскости, перпендикулярные координатным осям, и поставим ей в соответстnие упорядоченную тройку чисел (х, у, z) по следующему правилу:

Числа х, у и z называются прямоугольными декартовыми координатами точки М; при этом х называется абсциссой точки М, у — ее ординатой, а z —аппликатой. Обозначение: М(х, у, z). Таким образом, в пространстве введена прямоугольная декартова система координат.
Оnределение:
Плоскость, проходящая через любую пару координатных осей, называется координатной плоскостью.
Координатных плоскостей три: Оху, Oyz и Oxz. Эти плоскости разбивают пространство на восемь частей — октантов. 1 .4. Простейшие задачи аналитической геометрии А. Расстояние между точками Пусть М 1 (х 1 ) и М 2 (х 2 )- две точки на координатной оси. Тогда расстояние d между ними вычисляется по формуле

Если на плоскости задана прямоугольная декартова система координат Оху, то расстояние d между любыми двумя точками М 1 (х 1 , у1 и М2 (х2 , y2) вычисляется по следующей формуле

Рассмотрим прямоугольный треугольник ∆MM1M2 (pиc. l l). По теореме Пифагора

Так как расстояние d между точками M 1 и M 2 равно длине отрезка M1M2 а |M1M| = |x 2 — x 1|, |MM2| = |y 2 — y 1|, то отсюда получаем, что

Замечая, что

,и извлекая из обеих частей равенства квадратный корень, приходим к требуемой формуле .
Замечание:
Расстояние между точками 

Задача:
Написать уравнение окружности радиуса т с центром в точке Р(а, b).
Пусть М(х, у) — точка окружности (рис. 12). Это означает, что |M P| = r. Заменим |M P|его выражением

и возведем обе части полученного равенства в квадрат:

Это есть каноническое уравнение окружности радиуса r с центром в точке Р(а, b) .
Задача:
Пусть F л (-с, 0) и F n (c, 0) -фиксированные точки плоскости, а -заданное число (а > с ≥ 0). Найти условие, которому удовлетворяют координаты х и у точки М, обладающей следующим свойством: сумма расстояний от точки М до Fл и до F n равна 2а.
Вычислим расстояния между точками М и F л и между точками М и F n . Имеем

(рис. 13). Отсюда

Перенесем второй корень в правую часть

Возводя обе части в квадрат, после простых преобразований получим

С целью дальнейших упрощений вновь возводим обе части в квадрат. В результате nриходим к равенству

Полагая b 2 = а 2 — с 2 и деля обе части nоследнего соотноwения на а 2 b2 , nолучаем уравнение эллипса

(см. главу 111) .
Деление отрезка в данном отношении:
Пусть М1 (х1 , y1) и М2 (х2 , y2) — различные точки плоскости. Пусть, далее, точка М(х, у) лежит на отрезке М1М2 и делит его в отношении λ 1 : λ 2 , т. е.

Требуется выразить координаты х и у этой точки через координаты концов отрезка М1М2 и числа λ 1 и λ 2 . Предположим сначала, что отрезок М1М2 не параллелен оси ординат Оу (рис. 14). Тогда

Так как

то из последних двух соотношений получаем, что


Точка М лежит между точками М1 и М2 , поэтому либо х 1 < х < х 2 , либо х 1 > х > х 2 . В любом из этих случаев разности х1 — х и х — х 2 имеют одинаковые знаки. Это позволяет переписать последнее равенство в следующей форме

Отсюда

В случае, когда отрезок М1М2 параллелен оси Оу, х 1 = х 2 = х. Заметим, что тот же результат дает формула (*), если nоложить в ней х 1 = х 2 . Справедливость формулы

доказывается аналогичным рассуждением .
Задача:
Найти координаты центра тяжести М треугольника с вершинами в точках . М1 ( х 1 , у 1 ), М2 ( х 2 , у 2 ) и М3 ( х 3 , у 3 ). Восnользуемся тем, что центр тяжести треугольника совпадает с точкой пересечения его медиан. Точка М делит каждую медиану в отношении 2 : 1, считая от вершины (рис. 15). Тем самым, ее координаты х и у можно найти по формулам

где х’ и у’ — координаты второго конца М’ медианы М3 М’. Так как М’ — середина отрезка М1М2, то


Полученные соотношения позволяют выразить координаты z и у центра тяжести М треугольника ∆М1М2М3 через координаты его вершин:

Замечание:
Если точка М(х,у,z ) делит отрезок с концами М1( х1, у1, z1) и М2( х2, у2, z2) в отношении λ1 : λ2, то ее координаты вычисляются по формулам

Полярные координаты
Предположим, что задана точка О, ось 
Пусть М — произвольная точка плоскости, отличная от точки О (рис.17). Ее положение на плоскости однозначно определяется двумя числами: расстоянием г между точками О и М и отсчитываемым против часовой стрелки углом φ между положительным лучом оси 
Точка О называется полюсом, 
Ясно, что
Таким образом, на плоскости можно задать еще одну координатную систему — полярную.
Прямоугольную декартову систему координат Оху будем называть согласованной с заданной полярной, если начало координат 0(0, 0) — полюс, ось Ох — полярная ось, а ось Оу составляете осью Ох угол, равный

(рис.18). В свою очередь
Пример:
Пусть R > О — заданное число. Множество точек плоскости, полярные координаты (г, <р) которых удовлетворяют равенству
r = R,
является окружностью радиуса R с центром в полюсе (рис. 19)

Определители 2-го и 3-го порядков
Пусть имеем четыре числа а11, а12, а21, а22 (читается — «а-один-один», «а-один-два», «а-два-один», «а-два-два»).
Определителем второго порядка называется число

Обозначение:

Числа а11, а12, а21, а22 называются элементами определителя; пары элементов а11, а12 и а21, а22 образуют строки определителя, а пары элементов а11, а21 и а12, а22 — его столбцы; пара элементов а11, а22 образует главную диагональ определителя, а пара а12, а21 — побочную диагональ.
Тем самым, для вычисления определителя второго порядка нужно из произведения а11, а22 элементов главной диагонали вычесть произведение а12, а21 элементов его побочной диагонали (рис. 20).

Пример:
Вычислить определитель

По правилу (1) имеем

С определителями второго порядка мы встречаемся уже при отыскании решения системы двух линейных алгебраических уравнений с двумя неизвестными

Решая эту систему методом исключения неизвестных при условии, что

находим

Пусгь теперь даны девять чисел aij (i = I, 2, 3; j = I, 2, 3).
Определителем третьего порядка называется число, обозначаемое символом

и вычисляемое по следующему правилу:
Первый индекс i элемента aij указывает номер строки, в которой он расположен, а второй индекс j — номер столбца.
Элементы а11, а22, а33 образуют главную диагональ определителя ∆, элементы а13, а22, а31 — побочную диагональ, элементы а13, а22, а31 — побочную диагональ.
Чтобы разобраться с распределением знаков в правой части формулы (2), обратим внимание на следующее: произведение элементов а11, а22, а33 главной диагонали входит в формулу со своим знаком, также как и произведение а11, а22, а33 и а11, а22, а33 элементов, расположенных в вершинах треугольников, основания которых параллельны главной диагонали (рис. 21); с другой стороны, произведение а13, а22, а31 элементов побочной диагонали, а также произведения а12, а21, а33 и а11, а23, а32 — с противоположным знаком (рис.22). Такой подход к вычислению определителя третьего порядка называется правилом треугольника.

Пример:
Вычислить определитель

Применяя правило треугольника, находим
Установим некоторые свойства определителей 3-го порядка, легко проверяемые при помощи разложений (1) и (2).
Свойство:
Величина определителя не изменится, если все его строки заменить его столбцами с теми же номерами

Свойство:
При перестановке любых двух строк (или любых двух столбцов) определителя он изменяет свой знак на противоположный.
Свойство:
Общий множитель всех элементов одной строки (или одного столбца) определителя можно вынести за знак определителя

Следующие три свойства определителя вытекают из свойств 1-3. Впрочем, в их справедливости можно убедиться и непосредственно, пользуясь формулами (1) и (2).
Свойство:
Если определитель имеет две равные строки (или дна равных столбца), то он равен нулю.
Свойство:
Если все элементы некоторой строки (или некоторого столбца) равны нулю, то и сам определитель равен нулю.
Свойство:
Если соответствующие элементы двух строк (или двух столбцов) пропорциональны, то определитель равен нулю.
Укажем еще один способ вычисления определителя 3-го порядка

Минором Mij элемента aij определителя ∆ называется определитель, получаемый изданного путем вычеркивания элементов i-й строки и j-ro столбца, на пересечении которых находится этот элемент. Например, минором элемента a23 будет определитель

Алгебраическим дополнением элемента Aij называется минор Mij — этого элемента, взятый со своим знаком, если сумма i + j номеров строки и столбца, на пересечении которых расположен элемент aij, есть число четное, и с противоположным знаком, если это число нечетное:

Теорема:
Определитель равен сумме произведений элементов любой его строки (любого его столбца) на их алгебраические дополнения, так что имеют место следующие равенства

Покажем, например, что

Пользуясь формулой (2), получаем, что

Правило (3) называется разложением определителя по элементам i-й строки, а правило (4) — разложением определителя по элементам j -го столбца.
Пример:
Вычислить определитель

Раскладывая определитель по элементам 1-ой строки, получим

Понятия связанного и свободного векторов
Рассмотрим две точки А и В. По соединяющему их отрезку можно перемещаться в любом из двух противоположных направлений. Если считать, например, точку А начальной, а точку В конечной, то тогда получаем направленный отрезок АВ, в другом случае — направленный отрезок В А. Направленные отрезки часто называют связанными или закрепленными векторами. На чертеже заданное направление указывается стрелкой (рис. 1).
В случае, когда начальная и конечная точки совпадают, А = В, связанный вектор называется нулевым.
Определение:
Будем говорить, что связанные векторы АВ и CD равны, если середины отрезков AD и ВС совпадают (рис. 2).
Обозначение:
А В = CD.
Заметим, что в случае, когда точки А, В, С и D не лежат на одной прямой, это равносильно тому, что четырехугольник ABCD — параллелограмм. Ясно, что равные связанные векторы имеют равные длины.
Пример:
Рассмотрим квадрат и выберем векторы, как указано на рис.3. Векторы АВ и DC равны, а векторы ВС и DA не равны.
Укажем некоторые свойства равных связанных векторов:
- Каждый связанный вектор равен самому себе: АВ = АВ.
- Если АВ = CD, той CD = АВ.
- Если АВ = CD и CD = EF,то АВ = EF (рис.4).
Пусть АВ — заданный связанный вектор и С — произвольная точка. Ясно, что, опираясь на определение, всегда можно построить точку D так, чтобы
CD = АВ.
Тем самым, от каждой точки можно отложить связанный вектор, равный исходному (рис. 5).
Мы будем рассматривать свободные векторы, т. е. такие векторы, начальную точку которых можно выбирать произвольно, или, что то же самое, которые можно произвольно переносить параллельно самим себе. Ясно, что свободный вектор 
Если в качестве начальных выбирать лишь те точки, которые лежат на прямой, определяемой заданным (ненулевым) связанным вектором, то мы приходим к понятию скользящего вектора (рис. 6).
Связанные и скользящие векторы широко используются в теоретической механике.
Для обозначен ия свободных векторов будем пользоваться полужирными строчными латинскими буквами — а, b, с,… ; нулевой вектор обозначается через 0.
Пусть заданы вектор а и точка А. Существует ровно одна точка В, для которой

(рис.7). Операция построения связанного вектора АВ, для которого выполняется это равенство, называется откладыванием свободного вектора а от точки А.

Заметим, что связанные векторы, получаемые в результате описанной операции откладывания, равны между собой и, значит, имеют одинаковую дли ну. Это позволяет ввести длину свободного вектора а, которую мы будем обозначать символом |а. Длина нулевого вектора равна нулю. Если а = b, то |а| = |b; обратное неверно.
Линейные операции над векторами
Сложение векторов
Пусть заданы два вектора а и b. Возьмем какую-нибудь точку О и отложим от нее вектор a: 


Нетрудно заметить, что сложение векторов коммутативно, т. е. для любых векторов а и b справедливо равенство

Если отложить векторы а и 1» от обшей точки О и построить на них как на сторонах параллелограмм, то вектор 
Пусть заданы три вектора, например, a, b и с. Отложим от произвольной точки О вектор a: 




(а +b) + с = а + (b + с),
т. е. сложение векторов ассоциативно. Опуская скобки, можно говорить о сумме трех векторов и записывать ее так:
а + b + с.
Аналогично определяется сумма любого числа векторов: это есть вектор, который замыкает ломаную, построенную из заданных векторов. На рис. 14 показан», как построить сумму семи векторов:

Приведенный способ сложения произвольного числа векторов называется правилом замыкающего ломаную.
Пример:
Найти сумму векторов, идущих из центра правильного шестиугольника в его вершины.
По правилу замыкающего ломаную получаем

(рис. 15).
Умножение вектора на число
Определение:
Свободные векторы а и b называются коллинеарными, если определяющие их связанные векторы лежат на параллельных или на совпадающих прямых (рис. 16).

Обозначение: а||b.
Замечание:
Из определения следует, что если хотя бы один из векторов a и b нулевой, то они коллинеарны.
Если отложить коллинеарные векторы а и b от обшей точки О, 


Если векторы имеют равные длины и одинаково направлены, то они равны. Пусть а — вектор, λ — вещественное число.
Определение:
Произведением вектора а на число λ называется вектор b такой, что
- |Ь| = |λ| • |а|;
2) векторы а и b одинаково (соответственно, противоположно) направлены, если λ > 0 (соответственно, λ < 0).
Обозначение: b = λа.
При λ = 0 положим λа = 0.
Таким образом, векторы а и Ь = λа коллинеарны по определению. Верной обратное: если векторы а(а ≠ 0) и Ь коллинеарны, то можно найти число А такое, что h = λа.
Укажем основные свойства этой операции умножения вектора на число:

(здесь λ и μ — любые действительные числа, а и Ь — произвольные векторы).
Определение:
Вектор, длина которого равна единице, называется единичным вектором, или ортом, и обозначается а° (читается: а с нуликом), |а°| = 1.
Если а ≠ 0, то вектор

есть единичный вектор (орт) направления вектора а (рис. 18).

Координаты и компоненты вектора
Выберем в пространстве прямоугольную декартову систему координат. Обозначим через i, j, к единичные векторы (орты) положительных направлений осей Ox, Оу, Oz (рис. 19). Рассмотрим произвольный вектор п, начало которого лежит в начале координат О, а конец — в точке А. Проведем через точку А плоскости, перпендикулярные осям Ох, Оу и Oz. Эти плоскости пересекут координатные оси в точках Р, Q и R соответственно. Из рис. 20 видно, что

Векторы 
поэтому найдутся числа х, у, z такие, что

и, следовательно,
а = xi + yj + zk. (2)
Формула (2) называется разложением вектора а по векторам i, j, к. Указанным способом всякий вектор может быть разложен по векторам i, j, k.
Векторы i, j, к попарно ортогональны, и их длины равны единице. Тройку i, j, k называют ортонормированным (координатным) базисом (ортобазисом).
Можно показать, что для каждого вектора а разложение (2) по базису i, j, к единственно, т. е. коэффициенты х, у, z в разложении вектора а по векторам i, j, к определены однозначно. Эти коэффициенты называются координатами вектора а. Они совпадают с координатами х, у, z точки А — конца вектора а. Мы пишем в этом случае
а = {х, y,z}.
Эта запись означает, что свободный вектор а однозначно задастся упорядоченной тройкой своих координат. Векторы xi, yj, zk, сумма которых равна вектору а, называются компонентами вектора а.

Из вышеизложенного следует, что два вектора а = { х1, у1, z1 } и b = {х2, у2, z2} равны тогда и только тогда, когда соответственно равны их координаты, т. е.

Радиус-вектором точки М(х,у, z) называется вектор г = xi + yj + zk, идущий из начала координат О в точку М (рис. 21).
Линейные операции над векторами в координатах
Пусть имеем два вектора а = { х1, у1, z1} и b = { х2, у2, z2 },так что а = х1i, у1j+ z1k. b = х2i+ у2j+z2k. На основании правила сложения векторов имеем
или, что то же,

— при сложении векторов их координаты попарно складываются. Аналогично получаем

Далее,

или, что то же,

— при умножении вектора на число все его координаты умножаются на это число.
Пусть а = { х1, у1, z1}, b = { х2, у2, z2 } — коллинеарные векторы, причем b ≠ 0. Тогда а = μb, т.е.

или (3)

Обратно, если выполняются соотношения (3), то а = μb, т. е. векторы a и b коллинеарны.
Таким образом, векторы а и b коллинеарны тогда и только тогда, когда их координаты пропорциональны.

Пример:
Найти координаты вектора 
Из рис. 22 видно, что 

— координаты вектора ММг равны разностям одноименных координат конечной М2 и начальной М точек этого вектора.
Проекция вектора на ось
Рассмотрим на оси l ненулевой направленный отрезок АВ (рис.23). Величиной направленного отрезка АВ на оси l называется число, равное длине отрезка АВ, взятой со знаком «+», если направление отрезка АВ совпадаете направлением оси l, и со знаком «-», если эти направления противоположны.
Рассмотрим теперь произвольный вектор 
Определение:
Проекцией вектора 
Обозначение:
Основные свойства проекций
- Проекция вектора АВ на какую-либо ось l равна произведению длины вектора на косинус угла между осью и этим вектором (рис. 25)
- Проекция суммы векторов на какую-либо ось l равна сумме проекций векторов на ту же ось.
Например,

(рис. 26).
Скалярное произведение векторов
Пусть имеем два вектора a и b.
Определение:
Скалярным произведением вектора а на вектор b называется число, обозначаемое символом (а, b) и определяемое равенством

(1)
где φ, или в иной записи (
Заметив, что |b| cos φ есть проекция вектора b на направление вектора а, можем написать

(рис. 27 б) и, аналогично,’ (2)


(рис. 27 в), т.е. скалярное произведение двух векторов равно длине одного из них, помноженной на проекцию на него другого вектора. В случае, если один из векторов а или b — нулевой, будем считать, что
(a, b) = 0.
Свойства скалярного произведения
- Скалярное произведение обращается в нуль в том и только в том случае, когда по крайней мере один из перемножаемых векторов является нулевым или когда векторы а и b ортогональны, a ⊥ b.
Это следует из формулы (1), определяющей скалярное произведение.
Поскольку направление нулевого вектора не определено, мы можем его считать ортогональным любому вектору. Поэтому указанное свойство скалярного произведения можно сформулировать так:
2. Скалярное произведение коммутативно:
(а, b) = (b, а).
Справедливость утверждения вытекает из формулы (I), если учесть четность функции cos φ: cos(- φ) = cos φ.
3. Скалярное произведение обладает распределительным свойством относительно сложения:
(а + b, с) = (а, с) + (b, c).
Действительно,

4. Числовой множитель А можно выносить за знак скалярного произведения
(λа, b) = (а, λb) = λ (а, b).
- Действительно, пусть λ > 0. Тогда

поскольку при λ > 0 углы (

Аналогично рассматривается случай λ < 0. При λ = 0 свойство 4 очевидно.

Замечание:
В общeм случае (а, b)c ≠ a(b, c).
Скалярное произведение векторов, заданных координатами
Пусть векторы а и b заданы своими координатами в ортонормированном базисе i, j, k:

Рассмотрим скалярное произведение векторов а и b:

Пользуясь распределительным свойством скалярного произведения, находим
Учитывая, что

получаем (4)

То есть, если векторы а и b заданы своими координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений одноименных координат.
Пример:
Найти скалярное произведение векторов n = 4i — 2j + k и b = 6i + 3j + 2k.
(a, b) = 4 • 6 + (-2) • 3 + 1 • 2 = 20.
Скалярное произведение вектора на себя называется скалярным квадратом:
(а, а) = а2.
Применяя формулу (4) при b = а, найдем (5)

С другой стороны,

так что из (5) следует, что (6)

— в ортонормированном базисе длина вектора равна квадратному корню из суммы квадратов его координат.
Косинус угла между векторами. Направляющие косинусы
Согласно определению
(а, b) = |а| • |b| • cos φ,
где φ — у гол между векторами а и b. Из этой формулы получаем
(7)

(предполагается, что векторы а и b — ненулевые).
Пусть а = { х1, у1, z1}, b = { х2, у2, z2 }. Тогда формула (7) примет следующий вид

Пример:
Найти угол между векторами a = {2, -4,4,} и d = {-3,2,6}. Пользуясь формулой (8), находим

Пусть b = i, T.e. b = {1,0,0}. Тогда для всякого вектора а = { х1, у1, z1} ≠ 0 имеем

или, в координатной записи, (9)

где а есть угол, образованный вектором я с осью Ох. Аналогично получаем формулы


Формулы (9)-(11) определяют направляющие косинусы вектора а, т. е. косинусы углов, образуемых вектором n с осями координат (рис. 29).
Пример:
Найти координаты единичного вектора n°. По условию | n°| = 1. Пусть n° = zi+ yj+ zk. Тогда

Таким образом, координатами единичного вектора являются косинусы углов, образованных этим вектором с осями координат:

Отсюда получаем


Пример:
Пусть единичный вектор n° ортогонален оси z:

(рис. 30). Тогда его координаты г и у соответственно равны
x=cos φ, y = sin φ.
Тем самым,

Векторное произведение векторов
Определение:
Векторным произведением вектора а на вектор b называется вектор, обозначаемый символом [a, b] (или a х b), такой, что
1) длина вектора [а, b] равна |а| • |Ь| • sin φ, где φ — угол между векторами а и b (рис.31);
2) вектор [а, b] перпендикулярен векторам а и b, т.е. перпендикулярен плоскости этих векторов;
3) вектор [а, Ь] направлен так, что из конца этого вектора кратчайший поворот от л к Ь виден происходящим против часовой стрелки (рис. 32).

Иными словами, векторы я, b и [a, b] образуют правую тройку векторов, т.е. расположены так, как большой, указательный и средний пальцы правой руки. В случае, если векторы a и b коллинеарны, будем считать, что [a, b] = 0.

По определению длина векторного произведения (1)

численно равна площади 
|[a, b]| = 
Свойства векторного произведения
- Векторное произведение равно нулевому вектору тогда и только тогда, когда по крайней мере один из перемножаемых векторов является нулевым или когда эти векторы коллинеарны (если векторы я и b коллинеарны, то угол между ними равен либо 0, либо тг).
Это легко получить из того, что |[a, b]| = |a| • |b| • sin φ.
Если считать нулевой вектор коллинеарным любому вектору, то условие коллинеарности векторов a и b можно выразить так

2. Векторное произведение антикоммутативно, т. е. всегда (2)

В самом деле, векторы [а, b] и [b, а] имеют одинаковую длину и коллинеарны. Направления же этих векторов противоположны, так как из конца вектора [a, b] кратчайший поворот от a к b будет виден происходящим против часовой стрелки, а из конца вектора [b, a] — почасовой стрелке (рис. 34).

3. Векторное произведение обладает распределительным свойством по отношению к сложению

4. Числовой множитель λ можно выносить за знак векторного произведения

Векторное произведение векторов, заданных координатами
Пусть векторы a и b заданы своими координатами в базисе i,j, k: а = { х1, у1, z1}, b = { х2, у2, z2 }. Пользуясь распределительным свойством векторного произведения, находим (3)
Выпишем векторные произведения координатных ортов (рис. 35):



Поэтому для векторного произведения векторов a и b получаем из формулы (3) следующее выражение (4)

Формулу (4) можно записать в символической, легко запоминающейся форме, если воспользоваться определителем 3-го порядка: (5)

Разлагая этот определитель по элементам 1-й строки, получим (4). Примеры:
- Найти площадь параллелограмма, построенного на векторах а = i + j- k, b = 2i + j- k.
Искомая площадь 

откуда


2. Найти площадь треугольника ОАВ (рис.36).
Ясно, что площадь S∆ треугольника ОАВ равна половине площади S параллелограмма О АС В. Вычисляя векторное произведение [a, b] векторов a=


Отсюда

Замечание:
Векторное произведение не ассоциативно, т.е. равенство [[а, b], с] = [а, b,с]] в общем случае неверно. Например, при а = i, b = j. c= j имеем

Смешанное произведение векторов
Пусть имеем три вектора а, b и с. Перемножим векторы а и b векторно. В результате получим вектор [а, b). Умножим его скалярно на вектор с:
([a, b], с).
Число ([а, b], с) называется смешанным произведением векторов а, b, с и обозначается символом (а, b, с).
Геометрический смысл смешанного произведения
Отложим векторы а, b и с от общей точки О (рис. 37). Если все четыре точки О, А, В, С лежат в одной плоскости (векторы a, b и с называются в этом случае компланарными), то смешанное произведение ([а, b], с) = 0. Это следует из того, что вектор [а, b] перпендикулярен плоскости, в которой лежат векторы а и b, а значит, и вектору с.

Если же точки О, А, В, С не лежат в одной плоскости (векторы a, b и с некомпланарны), построим на ребрах OA, OB и ОС параллелепипед (рис. 38 а). По определению векторного произведения имеем

где 

Умножая обе части последнего равенства справа скалярно на вектор с, получаем, что

Число ргe с равно высоте h построенного параллелепипеда, взятого со знаком « + », если угол ip между векторами с и с острый (тройка а, b, с — правая), и со знаком «-», если угол — тупой (тройка а, b, с — левая), так что

Тем самым, смешанное произведение векторов a, b и с равно объему V параллелепипеда, построенного на этих векторах как на ребрах, если тройка а, b, с — правая, и -V, если тройка а, b, с — левая.
Исходя из геометрического смысла смешанного произведения, можно заключить, что, перемножая те же векторы a, b и с в любом другом порядке, мы всегда будем О получать либо +V, либо -V. Знак произведения будет зависеть лишь от того, какую тройку образуют перемножаемые векторы — правую или левую. Если векторы а, b, с образуют правую тройку, то правыми будут также тройки b, с, а и с, а, b. В то же время все три тройки b, а, с; а, с, b и с, b, а — левые. Тем самым,
(а, b, с) = (b, с, а) = (с, a,b) = -(b, а, с) = -(а, с, b) = -(с, b, а).
Еще раз подчеркнем, что смешанное произведение векторов равно нулю тогда и только тогда, когда перемножаемые векторы а, b, с компланарны:
{а, b, с компланарны} <=> (а, b, с) = 0.
Смешанное произведение в координатах
Пусть векторы а, b, с заданы своими координатами в базисе i, j, k:

Найдем выражение для их смешанного произведения (а, b, с). Имеем

Откуда

Итак,

— смешанное произведение векторов, заданных своими координатами в базисе i, j, k, равно определителю третьего порядка, строки которого составлены соответственно из координат первого, второго и третьего из перемножаемых векторов.
Необходимое и достаточное условие компланарности векторов а = { х1, у1, z1}, b = { х2, у2, z2 }, c = { х3, у3, z3} запишется в следующем виде

Пример:
Проверить, компланарны ли векторы
a = {7, 4,-6}, b = {2, 1,1}, с ={19, 11,17}.
Рассматриваемые векторы будут компланарны или некомпланарны в зависимости от того, будет равен нулю или нет определитель

Разлагая его по элементам первой строки, получим

Двойное векторное произведение
Двойное векторное произведение [а, [b, с]] представляет собой вектор, перпендикулярный к векторам а и [b, с]. Поэтому он лежит в плоскости векторов b и с и может быть разложен по этим векторам. Можно показать, что справедлива формула
[а, [b, с]] = b(а, с) — с(а, b).
Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат
В данной публикации мы рассмотрим, что такое проекция вектора на ось или на другой вектор, и приведем формулу, с помощью которой можно найти значение этой проекции. Также разберем примеры решения задач по этой теме.
- Нахождение проекции вектора
- Примеры задач
Нахождение проекции вектора
Проекция вектора AB на ось l – это число, которое равняется отрезку A1B1. Точки A1 и B1 при этом являются проекциями точек A и B на ось l.
Проекция вектора a на направление вектора b – это число, которое равно проекции a на ось, проходящую через b.
Формула для нахождения проекции вектора на вектор
Рассчитать проекцию a на направление b можно следующим образом:
Примеры задач
Задание 1
Найдем проекцию вектора a = {3; 5} на b = {2; 8}.
Решение:
1. Сперва посчитаем скалярное произведение заданных векторов:
a · b = 3 · 2 + 5 · 8 = 46
2. Теперь вычислим длину (модуль) b:
3. Остается только воспользоваться формулой выше для нахождения проекции вектора:
Задание 2
Вычислим проекцию вектора a = {4; -7; 5} на b = {11; 3; 6}.
Решение:
Поочередно выполняем те же самые действия, что и в примере, разобранном выше.
a · b = 4 · 11 + (-7) · 3 + 5 · 6 = 53
Угол между векторами. Ортогональные проекции векторов
Угол между векторами
Углом между двумя ненулевыми векторами называется угол между равными им векторами, имеющими общее начало, не превосходящий по величине числа .
Пусть в пространстве даны два ненулевых вектора и
(рис.1.22). Построим равные им векторы
и
. На плоскости, содержащей лучи
и
, получим два угла
. Меньший из них, величина
которого не превосходит
, принимается за угол между векторами
и
.
Поскольку направление нулевого вектора не определено, то не определен и угол между двумя векторами, если хотя бы один из них нулевой. Из определения следует, например, что угол между ненулевыми коллинеарными векторами либо равен нулю (если векторы одинаково направлены), либо равен (если векторы противоположно направлены).
Ортогональные проекции векторов
Движение по любой прямой может быть в двух направлениях. Ориентированной прямой называется прямая, на которой выбрано направление, т.е. одно из направлений считается положительным, а противоположное — отрицательным. Для измерения длин отрезков на прямой задается масштабный отрезок, который принимается за единицу.
Ориентированная прямая с заданным масштабным отрезком называется осью.
Любой ненулевой вектор , принадлежащий прямой, называется направляющим вектором для данной прямой, поскольку задает на ней ориентацию. Направление вектора
принимается за положительное, а направление противоположного вектора
— за отрицательное. Кроме того, длину вектора
— можно принять за величину масштабного отрезка на этой прямой. Поэтому можно сказать, что любой ненулевой вектор определяет ось — прямую, содержащую этот вектор, задавая на ней направление и масштабный отрезок.
Ортогональной проекцией вектора на ось, задаваемую вектором
, называется его проекция на ось вдоль прямой (или вдоль плоскости), перпендикулярной данной оси. Ортогональную проекцию вектора
на ось, задаваемую вектором
, будем обозначать
.
Ортогональную проекцию вектора на прямую
(см. разд. 1.2.2 и рис. 1.13) будем обозначать
.
Ортогональную проекцию вектора а на плоскость (см. разд. 1.2.2 и рис. 1.14) будем обозначать
.
Разность между вектором и его ортогональной проекцией называют ортогональной составляющей:
— — ортогональная составляющая вектора
относительно вектора
;
— — ортогональная составляющая вектора
относительно прямой
;
— — ортогональная составляющая вектора
относительно плоскости
.
На рис. 1.23 изображены ортогональные проекции вектора :
— на прямую (или на ось
, задаваемую вектором
) вдоль прямой
(рис.1.23,а);
— на прямую (или на ось
, задаваемую вектором
) вдоль плоскости
(рис.1.23,б);
— на плоскость вдоль прямой
(рис.1.23,в).
На рис. 1.23 изображены ортогональные составляющие вектора :
— относительно оси (вектора
):
(рис.1.23,а);
— относительно плоскости (рис.1.23,в).
Для ортогональных проекций справедлива следующая теорема (см. теорему 1.1 в разд. 1.5).
Теорема 1.2 (об ортогональных проекциях вектора).
1. Если на плоскости заданы две взаимно перпендикулярные прямые и
, то любой вектор
на плоскости можно однозначно представить в виде суммы своих ортогональных проекций на эти прямые, т.е.
(рис. 1.24,а).
2. Если в пространстве заданы три попарно перпендикулярные прямые и
, пересекающиеся в одной точке, то любой вектор
в пространстве можно однозначно представить в виде суммы своих ортогональных проекций на эти прямые, т.е.
(рис. 1.24,6).
3. Квадрат длины вектора на плоскости или в пространстве равен сумме квадратов длин своих ортогональных проекций, т.е.
Первые два утверждения представляют собой частные случаи теоремы 1.1. Третье утверждение следует из теоремы Пифагора (для треугольника (рис. 1.24,а) или треугольников
и
(рис. 1.24,6)).
В формулировке теоремы 1.2 прямые можно заменить осями, задаваемыми попарно ортогональными векторами.
На рис.1.24,а проекции вектора на оси одновременно являются ортогональными составляющими:
и
. На рис. 1.24,6 вектор
является проекцией вектора
на плоскость
, содержащую прямые
и
:
, а вектор
является ортогональной составляющей вектора
относительно плоскости
.
Алгебраическое значение длины проекции
Пусть – угол между ненулевым вектором
и осью, задаваемой вектором
, т.е. угол между ненулевыми векторами
и
.
Алгебраическим значением длины ортогональной проекции вектора на ось, задаваемую вектором
, называется длина его ортогональной проекции
, взятая с положительным знаком, если угол
не превышает
, и с отрицательным знаком, если угол
больше
, т.е.:
Например, для проекций, изображенных на рис. 1.25, , поскольку угол
между векторами
и
острый, a
, так как угол
между векторами
и
тупой.
Некоторые свойства проекций векторов переносятся на алгебраические значения их длин, в частности:
1. — алгебраическое значение длины ортогональной проекции суммы векторов равно сумме алгебраических значений длин ортогональных проекций слагаемых;
2. — алгебраическое значение длины ортогональной проекции произведения вектора на число равно произведению этого числа на алгебраическое значение длины ортогональной проекции вектора
Замечания 1.4.
1. Из определения алгебраического значения длины ортогональной проекции следует (см. также рис.1.25), что , т.е. алгебраическое значение длины ортогональной проекции ненулевого вектора на ось равна произведению длины этого вектора на косинус угла между вектором и осью.
Ортогональную проекцию вектора на ось, задаваемую вектором
, можно представить в виде
Если — единичный вектор, то
.
2. Равенство можно использовать как определение косинуса угла между ненулевыми векторами
и
(или, что то же самое, косинуса угла между осями, заданными ненулевыми векторами
и
(рис. 1.26)).
3. Углом между ненулевым вектором и прямой
называется угол
между вектором
и его ортогональной проекцией
на прямую
. Величина угла
может быть найдена по формуле
4. Углом между ненулевым вектором и плоскостью
называется угол
между вектором
и его ортогональной проекцией
на плоскость
. Величина угла
может быть найдена по формуле
Пример 1.7. Основания и
равнобокой трапеции
равны
и
соответственно; точка
— середина стороны
(рис. 1.27). Найти алгебраические значения длин ортогональных проекций векторов
и
на ось, задаваемую вектором
.
Решение. Пусть — высота трапеции,
— точка пересечения прямых
и
. По свойству равнобокой трапеции
; из равенства треугольников
и
.
Обозначим через искомые алгебраические значения длин ортогональных проекций.Тогда из равенств
,
и свойства 1 алгебраических значений длин проекций следует:
Решая систему находим
, т.е.
.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Время на прочтение
10 мин
Количество просмотров 12K
В настоящий момент появилось достаточно большое количество библиотек дополненной реальности с богатым функционалом (ARCore, ARKit, Vuforia). Тем не менее я решил начать свой открытый проект, попутно описывая как это работает изнутри. Если повезет, то позже получится добавить какой-то особый интересный функционал, которого нет в других библиотеках. В качестве целевых платформ пока возьмем Windows и Android. Библиотека пишется на C++, и сторонние библиотеки будут задействованы по минимуму, т.е. преимущественно не будет использовано ничего готового. Фокус в статьях будет направлен на алгоритмы и математику, которые постараюсь описать максимально доступно и подробно. В этой статье пойдет речь про основы векторной алгебры.
Дополненная реальность — это совмещение виртуального мира и реального. Для этого, нам нужно представить окружающее реальное пространство в виде математической модели, понимая закономерности которой, мы сможем получить данные для совмещения. Начнем с основ векторной алгебры.
Вектора — это частный случай матриц, состоящие либо из одного столбца, либо из одной строки. Когда мы говорим о векторе, обычно имеется вектор-столбец . Но записывать вектор как столбец неудобно, поэтому будем его транспонировать —
.
Длина вектора
Первое, что мы рассмотрим — получение длины вектора — , где
— значение длины,
— наш вектор. Для примера возьмем двумерный вектор:
, где
и
— компоненты вектора, значения проекций вектора на оси двумерных координат. И мы видим прямоугольный треугольник, где
и
— это длины катетов, а
— длина его гипотенузы. По теореме Пифагора получается, что
. Значит
. Вид формулы сохраняется и для векторов большей размерности, например —
.
Скалярное произведение
Скалярное произведение векторов — это сумма произведение их компонентов: . Но так как мы знаем, что вектора — это матрицы, то тогда удобнее записать это в таком виде:
. Это же произведение можно записать в другой форме:
, где
— угол между векторами
и
(для двумерного случая эта формула доказывается через теорему косинусов). По этой формуле можно заключить, что скалярное произведение — это мера сонаправленности векторов. Ведь, если
, то
, и
— это просто произведение длин векторов. Так как
— не может быть больше 1, то это максимальное значение, которые мы можем получить, изменяя только угол
. Минимальное значение
будет равно -1, и получается при
, т.е. когда вектора смотрят в противоположные направления. Также заметим, что при
, а значит какие бы длины не имели вектора
и
, все равно
. Можно в таком случае сказать, что вектора не имеют общего направления, и называются ортогональными.
Также при помощи скалярного произведения, мы можем записать формулу длины вектора красивее: ,
.
Проекция вектора на другой вектор
Возьмем два вектора: и
.
Проекцию вектора на другой вектор можно рассматривать в двух смыслах: геометрическом и алгебраическом. В геометрическом смысле проекция вектора на ось — это вектор, а в алгебраическом – число.
Вектора — это направления, поэтому их начало лежит в начале координат. Обозначим ключевые точки: — начало координат,
— конечная точка вектора
,
— конечная точка вектора
.
В геометрическом смысле мы ищем такой , чтобы конечная точка вектора (обозначим ее как —
) была ближайшей точкой к точке
, лежащей на прямой
.
Иначе говоря, мы хотим найти составляющую в
, т.е. такое значение
, чтобы
и
Расстояние между точками и
будет минимальным, если
. Получаем прямоугольный треугольник —
. Обозначим
. Мы знаем, что
по определению косинуса через соотношение сторон прямоугольного треугольника
( — гипотенуза,
— прилежащий катет).
Также возьмем скалярное произведение . Отсюда следует, что
. А значит
.
Тут вспоминаем, что — это искомый вектор
, а
—
, и получаем
. Умножаем обе части на
и получаем —
. Теперь мы знаем длину
. Вектор
отличается от вектора
длинной, но не направлением, а значит через соотношение длин можно получить:
. И мы можем вывести финальные формулы:
и
Нормализованный вектор
Хороший способ упростить работу над векторами — использовать вектора единичной длины. Возьмем вектор и получим сонаправленный вектор
единичной длины. Для этого вектор разделим на его длину:
. Эта операция называется нормализацией, а вектор — нормализованным.
Зная нормализованный вектор и длину исходного вектора, можно получить исходный вектор: .
Зная нормализованный вектор и исходный вектор, можно получить его длину: .
Хорошим преимуществом нормализованных векторов является то, что сильно упрощается формула проекции (т.к. длина равна 1, то она сокращается). Проекция вектора на
единичной длины:
Матрица поворота двумерного пространства
Предположим у нас есть некая фигура:
Чтобы ее нарисовать, заданы координаты ее вершин, от которых строятся линии. Координаты заданы в виде набора векторов следующим образом . Наша координатная сетка задана двумя осями — единичными ортогональными (перпендикулярными) векторами. В двумерном пространстве можно получить два перпендикулярных вектора к другому вектору такой же длины следующим образом:
— левый и правый перпендикуляры. Берем вектор, задающим ось
—
и ось
— левый к нему перпендикуляр —
.
Выведем новый вектор, получаемый из наших базисный векторов:
Сюрприз — он совпадает с нашим исходным вектором.
Теперь попробуем как-то изменить нашу фигуру — повернем ее на угол . Для этого повернем векторы
и
, задающих оси координат. Поворот вектора
задается косинусом и синусом угла —
. А чтобы получить вектор оси
, возьмем перпендикуляр к
:
. Выполнив эту трансформацию, получаем новую фигуру:
Вектора и
являются ортонормированным базисом, потому как вектора ортогональны между собой (а значит базис ортогонален), и вектора имеют единичную длину, т.е. нормированы.
Теперь мы говорим о нескольких системах координат — базовой системы координат (назовем ее мировой), и локальной для нашего объекта (которую мы поворачивали). Удобно объединить наш набор векторов в матрицу —
Тогда .
В итоге — .
Матрица , составляющая ортонормированный базис и описывающая поворот, называется матрицей поворота.
Также матрица поворота имеет ряд полезных свойств, которые следует иметь ввиду:
- При
, где
— единичная матрица, матрица соответствует нулевому повороту (угол
), и в таком случае локальные оси совпадают с мировыми. Как рассматривали выше, матрица никак не меняет исходный вектор.
— определитель матрицы равен 1, если у нас, как обычно бывает, правая тройка векторов.
, если тройка векторов левая.
.
.
.
, поворот не меняет длины вектора.
- зная
и
, можем получить исходный вектор
—
. Т.е. умножая вектор на матрицу поворота мы выполняем преобразование координат вектора из локальной системы координат объекта в мировую, но также мы можем поступать и наоборот — преобразовывать мировые координаты в локальную систему координат объекта, умножая на обратную матрицу поворота.
Теперь попробуем повернуть наш объект два раза, первый раз на угол , второй раз на угол
. Матрицу, полученную из угла
, обозначим как
, из угла
—
. Распишем наше итоговое преобразование:
.

Обозначим , тогда
. И из двух операций мы получили одну. Так как поворот — это линейное преобразование (описали ее при помощи одной матрицы), множество преобразований можно описать одной матрицей, что сильно упрощает над ними работу.
Масштабирование в двумерном пространстве
Масштабировать объект достаточно просто, нужно только умножить координаты точек на коэффициент масштаба: . Если мы хотим масштабировать объект на разную величину по разным осям, то формула принимает вид:
. Для удобства переведем операцию в матричный вид:
.
Теперь предположим, что нам нужно повернуть и масштабировать наш объект. Нужно отметить, что если сначала масштабировать, а затем повернуть, то результат будет отличаться, от того результата, где мы сначала повернули, а затем масштабировали:
Сначала поворот, а затем масштабирование по осям:
Сначала масштабирование по осям, а затем поворот:
Как мы видим порядок операций играет большое значение, и его нужно обязательно учитывать.
Также здесь мы также можем объединять матрицы преобразования в одну:
Хотя в данном случае, если , то
. Тем не менее, с порядком преобразований нужно быть очень аккуратным. Их нельзя просто так менять местами.
Векторное произведение векторов
Перейдем в трехмерное пространство и рассмотрим определенное на нем векторное произведение.
Векторное произведение двух векторов в трёхмерном пространстве — вектор, ортогональный к обоим исходным векторам, длина которого равна площади параллелограмма, образованного исходными векторами.
Для примера возьмем два трехмерных вектора — ,
. И в результате векторного произведения получим
Визуализируем данную операцию:

Здесь наши вектора ,
и
. Вектора начинаются с начала координат, обозначенной точкой
. Конечная точка вектора
— точка
. Конечная точка
— точка
. Параллелограмм из определения формируются точками
,
,
,
. Координаты точки
находим как —
. В итоге имеем следующие соотношения:
Два вектора образуют плоскость, а векторное произведение позволяет получить перпендикуляр к этой плоскости. Получившиеся вектора образуют образуют правую тройку векторов. Если берем обратный вектор, то получаем второй перпендикуляр к плоскости, и тройка векторов будет уже левой.
Для запоминания этой формулы удобно использовать мнемонический определитель. Пусть , и мы раскладываем определить по строке как сумму определителей миноров исходной матрицы
:
Некоторые удобные свойства данного произведения:
- Если два вектора ортогональны и нормализованы, то вектор также будет иметь единичную длину. Параллелограмм, который образуется двумя исходными векторами, станет квадратом с длинной сторон равной единице. Т.е. площадь равна единице, отсюда длина выходного вектора — единица.
Матрица поворота трехмерного пространства.
С тем, как формировать матрицу в двумерном пространстве мы разобрались. В трехмерном она формируется уже не двумя, а тремя ортогональными векторами — . По свойствам, описанным выше, можно вывести следующие отношения между этими векторам:
Вычислить вектора этих осей сложнее, чем в матрице поворота двумерного пространства. Для примера получения этих векторов рассмотрим алгоритм, который в трехмерных движках называется lookAt. Для этого нам понадобятся вектор направления взгляда — и опорный вектор для оси
—
. Сам алгоритм:
- Обычно направление камеры совпадает с осью
. Поэтому нормализуем
и получаем ось
—
.
- Получаем вектор оси
—
. В итоге у нас есть два нормализованных ортогональных вектора
и
, описывающих оси
и
, при этом ось
сонаправлена с входным вектором
, а ось
перпендикулярна к входному опорному вектору
.
- Получаем вектор оси
из полученных
и
—
.
- В итоге
В трехмерных редакторах и движках в интерфейсах часто используются углы Эйлера для задания поворота. Углы Эйлера более интуитивно понятны — это три числа, обозначающие три последовательных поворота вокруг трех основных осей . Однако, работать с ними не очень то просто. Если попробовать выразить итоговый вектор напрямую через эти повороты, то получим довольно объемную формулу, состоящую из синусов и косинусов наших углов. Есть еще пара проблем с этими углами. Первая проблема — это то, что сами по себе углы не задают однозначного поворота, так как результат зависит от того, в какой последовательности происходили повороты —
или
или как-то еще. Углы Эйлера — это последовательность поворотов, а как мы помним, смена порядка трансформаций меняет итоговый результат. Вторая проблема — это gimbal lock.
Внутри же трехмерные движки чаще всего используют кватернионы, которых мы касаться не будем.
Существуют разные способы задания поворота в трехмерном пространстве, и каждый имеет свои плюсы и минусы:
- Матрица поворота. С ней просто работать (т.к. это просто матрицы). Но есть логическая избыточность данных — все элементы матрицы связаны определенными условиями, так как количество элементов больше степеней свободы (12 элементов против трех степеней). Т.е. мы не можем взять матрицу и наполнить ее случайными числами, так при несоблюдении условий матрица просто не будет являться матрицей поворота.
- Углы Эйлера. Они интуитивно понятны, но работать с ними сложно.
- Вектор оси вращения и угол порота вокруг нее. Любой возможный поворот можно описать таким образом. Поворота вектора вокруг заданной оси рассмотрим ниже.
- Вектор поворота Родрига. Это трехмерный вектор, где нормализованный вектор представляет собой ось вращения, а длина вектора угол поворота. Этот способ задания поворота похож на предыдущий способ, но количество элементов здесь равно числу степеней свободы, и элементы не связаны между собой жесткими ограничениями. И мы можем взять трехмерный вектор с абсолютно случайными числами, и любой полученный вектор будет задавать какое-то возможное вращение.
Поворот вектора вокруг заданной оси
Теперь рассмотрим операцию, позволяющую реализовать поворот вектора вокруг оси.
Возьмем вектор — описывающий ось, вокруг которой нужно повернуть вектор
на угол
. Результирующий вектор обозначим как
. Иллюстрируем процесс:
Вектор мы можем разложить сумму векторов: вектора, параллельный к вектору
—
, и вектора, перпендикулярному к вектору к вектору
—
.
.
Вектор — это проекция вектора
на вектор
. Т.к.
— нормализованный вектор, то:
Та часть , которая принадлежит оси вращения (
) не измениться во время вращения. Повернуть нам нужно только
в плоскости перпендикулярной к
на угол
, Обозначим этот вектор как
. Тогда наш искомый вектор —
.
Вектор можем найти следующим образом:
Для того, чтобы повернуть , выведем оси
и
в плоскости, в которой будем выполнять поворот. Это должны быть два ортогональных нормализованных вектора, ортогональных к
. Один ортогональный вектор у нас уже есть —
, нормализуем его и обозначим как ось
—
.
Теперь получим вектор оси . Это должен быть вектор, ортогональный к
и
(т.е. и к
). Получить его можно через векторное произведение:
. Значит
. По свойству векторного произведения
будет равно площади параллелограмма, образуемого двумя исходными векторами (
и
). Так как вектора ортогональны, то у нас будет не параллелограмм, а прямоугольник, а значит
.
. Значит
.
Поворот двумерного вектора на угол
можно получить через синус и косинус —
. Т.к.
в координатах полученной плоскости сонаправлен с осью
, то он будет равен
. Этот вектор после поворота —
. Отсюда можем вывести:
Теперь мы можем получить наш искомый вектор:
Мы разобрались с тем, как поворачивать вектор вокруг заданной оси на заданный угол, значит теперь мы умеем использовать поворот, заданный таким образом.
Получить вектор оси вращения и угол из вектора Родрига не составляет большого труда, а значит мы теперь умеем работать и с ним тоже.
Напоминаю, что матрица поворота представляет собой три базисных вектора , а углы Эйлера — три последовательных поворота вокруг осей
,
,
. Значит мы можем взять единичную матрицу, как нулевой поворот
, а затем последовательно поворачивать базисные вектора вокруг нужных нам осей. В результате получим матрицу поворота соответствующую углам Эйлера. Например:
Также можно отдельно вывести матрицы вращения по каждой из осей ,
,
(
,
,
соответственно) и получить итоговую матрицу последовательным их умножением:
Таким же образом можно перевести вектор поворота Родрига в матрицу поворота: также поворачиваем оси матрицы поворота, полученные от единичной матрицы.
Итак, с вращением объекта разобрались. Переходим к остальным трансформациям.
Масштабирование в трехмерном пространстве
Все тоже самое что и двумерном пространстве, только матрица масштабирования принимает вид:
Перемещение объекта
До этого момента точка начала локальных координат не смещалась в мировом пространстве. Так как точка начала координат нашего объекта — это его центр, то центр объект никуда не смещался. Реализовать это смещение просто: , где
— вектор, задающий смещение.
Теперь мы умеем масштабировать объект по осям, поворачивать его и перемещать.
Объединим все одной формулой: :
Чтобы упростить формулу, мы можем, как уже делали ранее, объединить матрицы . В итоге наше преобразование описывает матрица
и вектор
. Объединение вектора
с матрицей
еще более бы упростило формулу, однако сделать в данном случае не получится, потому как сложение здесь — это не линейная операция. Тем не менее сделать это возможно, и рассмотрим этот момент уже в следующей статье.
Заключение
Для какого-то покажется, что статья описывает очевидные вещи, кому-то может показаться наоборот немного запутанной. Тем не менее это базовый фундамент, на котором будет строиться все остальное. Векторная алгебра — является фундаментом для многих областей, так что статья может вам оказаться полезной не только в дополненной реальности. Следующая статья будет уже более узконаправленной.











































































































численно равна площади параллелограмма, построенного на векторах 
перпендикулярен к каждому из векторов 
взятые в указанном порядке, образуют правую тройку.

































и
. Тогда 

с какими-либо координатными осями и знак одной из проекций:
, но так как по условию
, то
. Следовательно, 


















































































































































































































коллинеарен
раз, т.е.
направлены в одну сторону, при
— в разные.
— угол между вектором
и осью
;







































существует единственный вектор
, называемый суммой векторов
.
.
.
, называемый нулевым вектором, такой, что
для всех
.
существует единственный вектор
, такой, что
. Вектор
называется вектором, противоположным вектору 
и любого числа
существует единственный вектор
.
для любых чисел
и любого
.
для любых чисел
и любого .
для любых чисел
и любого
.
для любого
.

;
;
;
.








равна длине вектора а, умноженного на модуль числа
, и противоположно направлены, если
(рис.З).





образуют правую тройку векторов, т.е. при наблюдении из конца вектора
кратчайший поворот от а к b виден против часовой стрелки.






— произвольное число, отличное от нуля.






















;
;
:;
,



из
содержит нулевой вектор, то она линейно зависима.
имеется подсистема линейно зависимых векторов, то и вся совокупность векторов
линейно зависима.
из
линейно зависима тогда и только тогда, если один из векторов этой системы является линейной комбинацией остальных.
векторов
из
, каждый из которых является линейной комбинацией m векторов
линейно зависимы. .
































































































































































































































































