Сочетанием без повторений называют комбинации, составленные из n элементов по m элементам, которые отличаются друг от друга хотя бы одним элементом.
Обозначение: $С_n^m$
Допустим, имеется три буквы А, В и С.
Составим всевозможные комбинации только из двух букв, которые отличаются друг от друга хотя бы одним элементом: АВ, АС, ВС.
При подсчете числа сочетаний элементов — порядок не важен.
Запишем формулу сочетания
Пример 1
В классе 20 учащихся. Сколькими способами можно выделить двух человек для дежурства? Так как каждая группа учащихся в 2 человека должна отличаться хотя бы одним из учащихся. Отсюда, применим формулу комбинаторики — сочетание, имеем
Пример 2
Пусть имеется множество, содержащие 4 буквы: {А,В,С,D}.
Записать все возможные сочетания из указанных букв по три.
Решение
По формуле сочетания имеем,
$C_4^3 =frac{{4!}}{{left( {4 — 3} right)!cdot3!}} = frac{{4!}}{{3!}} = frac{{1cdot2cdot3cdot4}}{{1cdot2cdot3}} = 4$
Пример 3
В ящике 15 деталей, среди которых 6 бракованных. Наугад выбирается комплект из 5 деталей. Сколькими способами можно составить такой комплект, в котором 2 детали бракованные?
Решение
$C_{6}^2$ — количество способов выбора двух бракованных деталей из шести
$C_{9}^3$ — количество способов выбора трех исправных деталей из девяти
Тогда количество комбинаций по правилу умножения будет
$C_{6}^2·C_{9}^3=frac{{6!}}{{(6-2)!2!}}·frac{{9!}}{{(9-3)!3!}}=15·84=1260$
Пример 4
Сколькими способами можно распределить три путевки в один санаторий между пятью желающими?
Решение
Так как путевки предоставлены в один санаторий, то варианты распределения отличаются друг от друга хотя бы одним желающим. Поэтому число способов распределения равно
Пример 5
В научном конкурсе участвует 12 человек, из них 5 женщин и 7 мужчин. Сколькими способами можно сформировать группу из 7 человек, чтобы в ней было 3 женщины?
Решение
Из пяти женщин необходимо выбрать по три. Следователь, число таких способов отбора равно $С_5^3$
Число способов отбора мужчин, четырех из семи равно $С_7^4$
По формуле комбинаторики – сочетания, группу можно сформировать способами:
Пример 6
Сколькими способами можно составить суточный наряд по университету из одного офицера, двух сержантов и семи курсантов, если имеется 3 офицера, 6 сержантов и 30 курсантов?
Решение
Число способов выбора офицера: $С_3^1$
сержантов $С_6^2$

по аналогии, число комбинаций выбора курсантов, получаем $С_30^7$
Итак, получаем число способов составления суточного наряда
$$C_3^1cdot{C_6^2}cdot{C_{30}^7}=3cdot15cdot2035800=91611000$$
Сочетания
- Сочетания без повторений
- Сочетания с повторениями
- Биномиальные коэффициенты и их свойства
- Примеры
п.1. Сочетания без повторений
Сочетаниe без повторений – это неупорядоченная ⟨n,k⟩-выборка без повторений, k ≤ n. Общее количество сочетаний без повторений: $$ mathrm{ C_n^k=frac{n!}{(n-k)!k!} } $$
Внимание! Главным отличием сочетаний от размещений является неупорядоченность выборок. Если для размещения выборки (a,b)≠(b,a) не равны, то для сочетания (a,b)=(b,a) – одна и та же выборка.
Сочетания используются тогда, когда порядок выборки не важен.
Например:
Из 10 программистов нужно отобрать 4 для участия в проекте. Сколькими способами это можно сделать?
$$mathrm{ n = 10, k=4 }$$ В данном случае, порядок отбора не важен (выборка неупорядоченная); каждый кандидат может войти только один раз в выборку (выборка без повторений). Поэтому рассматриваем неупорядоченные ⟨10,4⟩ –выборки без повторений. Количество способов отбора равно: $$mathrm{ C_{10}^4=frac{10!}{6! 4!}=frac{10cdot 9cdot 8cdot 7}{1cdot 2cdot 3cdot 4}=210 }$$ Ответ: 210.
п.2. Сочетания с повторениями
Сочетаниe с повторениями – это неупорядоченная ⟨n,k⟩-выборка с повторениями. Общее количество сочетаний с повторениями: $$ mathrm{ overline{C}_n^k=frac{(n+k-1)!}{(n-1)k!} } $$
$$ mathrm{ overline{C}_n^k=C_{n+k-1}{k} } $$
Например:
Нужно отобрать 4 программистов для участия в проекте. Многочисленных претендентов можно разделить на две категории: желающих работать удаленно и предпочитающих работу в офисе. Сколько всего комбинаций из любителей офиса и удалёнки может оказаться в выбранной четвёрке? $$mathrm{ n = 2, k=4 }$$ Порядок отбора не важен; кандидатов из каждой категории может быть несколько или ни одного. Поэтому рассматриваем неупорядоченные ⟨2,4⟩ –выборки с повторениями: $$ mathrm{ overline{C}_2^4=frac{(2+4-1)!}{(2-1)4!}=frac{5!}{4!}=5 } $$ Всего – 5 комбинаций: OOOO,OOOD,OODD,ODDD,DDDD
где O – любитель офиса; D – любитель удалёнки. Напоминаем, что порядок не важен – важен только состав группы.
Ответ: 5.
п.3. Биномиальные коэффициенты и их свойства
Подробно о биноме – см. §28 справочника для 7 класса.
Для n-й степени бинома справедливо выражение: $$ mathrm{ (apm b)^n=a^n+C_n^1a^{n-1}bpm C_n^2a^{n-2}b^2+…+C_n^{n-1}b^n } $$ где (mathrm{C_n^k}) – биномиальные коэффициенты, к оторые одновременно являются количествами сочетаний без повторений из n по k: $$ mathrm{ C_n^k=frac{n!}{(n-k)!k!} } $$ Таким образом, биномиальные коэффициенты можно определять как с помощью треугольника Паскаля, так и с помощью данной формулы.
Заметим, что в литературе также часто встречается обозначение (mathrm{left(_k^nright)}) для биномиальных коэффициентов (mathrm{left(C_n^kright)}).
Свойства биномиальных коэффициентов
Свойство симметрии
$$mathrm{ C_n^k=C_n^{n-k} }$$
Свойство Паскаля
$$mathrm{ C_n^k=C_{n-1}^{k-1}+C_{n-1}^k }$$
Замена индексов
$$mathrm{ C_n^mC_m^{n-k}=C_{n}^{k}C_{k}^{n-m} }$$
Вынесение за скобки
$$mathrm{ C_n^k=frac{n}{k}C_{n-1}^{k-1} }$$
Рекуррентные формулы
begin{gather*}mathrm{ C_n^k=frac{n-k+1}{k}C_{n}^{k-1} }\ mathrm{ C_n^k=frac{n}{n-k}C_{n-1}^k } end{gather*}
Свойство суммы
$$mathrm{ C_n^0+C_n^1+C_n^2+…+ C_n^n=sum_{k=0}^nC_n^k=2^n }$$
Свойство разности
$$mathrm{ C_n^0-C_n^1+C_n^2-…+(-1)^nC_n^n=sum_{k=0}^n(-1)^kC_n^k=0 }$$
Свойства максимума
Если n – четное, то максимальное значение (mathrm{C_n^k}) имеет при (mathrm{k=frac{n}{2}}).
Если n – нечетное, то максимальное значение имеют два коэффициента (mathrm{C_n^k}), при (mathrm{k=frac{n-1}{2}}) и (mathrm{k=frac{n+1}{2}})
Свёртка Вандермонда
$$mathrm{ sum_{r=0}^kC_n^rC_m^{k-r}=C_{n+m}^k }$$
Сумма квадратов
$$mathrm{ sum_{k=0}^n(C_n^k)^2=C_{2n}^n }$$
Взвешенное суммирование
begin{gather*} mathrm{ sum_{k=0}^nnC_n^k=n2^{n-1} }\ mathrm{ sum_{k=0}^nn^2C_n^k=n(n+1)2^{n-2} } end{gather*}
Связь с числами Фибоначчи
$$mathrm{ C_n^0+C_{n-1}^1+…+C_{n-k}^{k}+…+C_{0}^{n}=F_{n+1} }$$
п.4. Примеры
Пример 1. На столе лежит 10 яблок и 5 груш.
1) Сколькими способами можно выбрать 7 фруктов?
2) Сколькими способами можно выбрать 7 фруктов, чтобы среди них было 3 груши?
1) Всего у нас n = 10 + 5 = 15 фруктов. Нужно выбрать k = 7 фруктов.
Порядок выбора не важен, т.е. выборка неупорядоченная. Находим: $$ mathrm{ C_n^k=C_{15}^7=frac{15cdot 14cdot 13cdot 12cdot 11cdot 10cdot 9}{1cdot 2cdot 3cdot 4cdot 5cdot 6cdot 7}=6435 } $$ Существует 6435 способов выбрать 7 фруктов из 15.
2) Выбираем 4 яблока из 10 и 3 груши из 5.
Для яблок: $$ mathrm{ C_{10}^4=frac{10cdot 9cdot 8cdot 7}{1cdot 2cdot 3cdot 4}=210 } $$ Для груш: $$ mathrm{ C_3^5=C_{5}^2=frac{5cdot 4}{1cdot 2}=10 } $$ По правилу произведения, общее количество способов выбрать 4 яблока и 3 груши: $$ mathrm{ C_{10}^3cdot C_{5}^3=210cdot 10=2100 } $$ Ответ: 1) 6435; 2) 2100.
Пример 2. В кондитерском магазине продаётся 4 вида пирожных. Сколькими способами можно купить 7 пирожных? $$ mathrm{ n=4, k=7 } $$ Порядок выбора пирожных неважен – выборка неупорядоченная; пирожные одного вида могут повторяться. Значит, находим количество сочетаний с повторениями: $$ mathrm{ overline{C}_4^7=C_{7+4-1}^7=C_{10}^7=C_{10}^3=frac{10cdot 9cdot 8}{1cdot 2cdot 3}=120 } $$ Ответ: 120
Пример 3. Рота состоит из 3 офицеров, 6 сержантов и 15 рядовых. Сколькими способами можно выбрать из них отряд, состоящий из 1 офицера, 2 сержантов и 5 рядовых?
По всем трём множествам делаем неупорядоченную выборку (т.е., сочетания) без повторений.
Выбираем офицеров: (mathrm{C_3^1=frac31=3})
Выбираем сержантов: (mathrm{C_6^2=frac{6cdot 5}{1cdot 2}=15})
Выбираем рядовых: (mathrm{C_{15}^6=frac{15cdot 14cdot 13cdot 12cdot 11}{1cdot 2cdot 3cdot 4cdot 5}=3003})
По правилу произведения, отряд можно выбрать:
(mathrm{3cdot 15cdot 3003=135135}) способами.
Ответ: 135135.
Пример 4. Найдите сумму
a) (mathrm{C_6^1+C_6^2+C_6^3+C_6^4+C_6^5+C_6^6})
По свойству суммы (mathrm{sum_{k=0}^6C_6^k=2^6}). Получаем: $$ mathrm{ C_6^1+C_6^2+C_6^3+C_6^4+C_6^5+C_6^6=sum_{k=0}^6C_6^k-C_6^0=2^6-1=64-1=63 } $$
б) (mathrm{C_n^1+6C_n^2+6C_n^3}) $$ mathrm{ C_n^1=n, C_n^2=frac{n(n-1)}{2}, C_n^3=frac{n(n-1)(n-2)}{6} } $$ Получаем begin{gather*} mathrm{ C_n^1+6C_n^2+6C_n^3=n+6cdot frac{n(n-1)}{2}+6cdot frac{n(n-1)(n-2)}{6}=}\ mathrm{ =n(1+3(n-1)+(n-1)(n-2))=n(3n-2+n^2-3n+2)=n^3 } end{gather*} Ответ: а) 63; б) n3.
Пример 5. Рассчитайте все (mathrm{C_{10}^k}) по рекуррентной формуле (mathrm{C_{n}^k=frac{n-k+1}{k}C_n^{k-1}}).
Постройте график (mathrm{C_{10}^k(k)}). Сделайте выводы.
Начальное значение (mathrm{C_{10}^0=1}).
|
0 $$mathrm{ C_{10}^0=1 }$$ 1 $$mathrm{ C_{10}^1=frac{10-1+1}{1}C_{10}^0=10 }$$ 2 $$mathrm{ C_{10}^2=frac{10-2+1}{2}C_{10}^1=45 }$$ 3 $$mathrm{ C_{10}^3=frac{10-3+1}{3}C_{10}^2=120 }$$ 4 $$mathrm{ C_{10}^4=frac{10-4+1}{4}C_{10}^3=210 }$$ 5 $$mathrm{ C_{10}^4=frac{10-5+1}{5}C_{10}^4=252 }$$ 6 $$mathrm{ C_{10}^6=frac{10-6+1}{6}C_{10}^5=210 }$$ 7 $$mathrm{ C_{10}^7=frac{10-7+1}{7}C_{10}^6=120 }$$ 8 $$mathrm{ C_{10}^6=frac{10-8+1}{8}C_{10}^7=45 }$$ 9 $$mathrm{ C_{10}^9=frac{10-9+1}{9}C_{10}^8=10 }$$ 10 $$mathrm{ C_{10}^{10}=frac{10-10+1}{10}C_{10}^9=1 }$$ |
![]() |
На графике видно симметрию коэффициентов: (mathrm{C_{10}^k=C_{10}^{10-k}}).
Т.к. n = 10 – чётное, максимальный коэффициент при (mathrm{k=frac{n}{2}=5, C_{10}^5=252}).
Можем также проверить свойство суммы: (mathrm{sum_{k=0}^{10}C_{10}^k=1024=2^{10}}).
Рейтинг пользователей
В комбинаторике сочетанием из N различных элементов по M называется набор M элементов, выбранных из множества N элементов. Такие наборы отличаются только вхождением в них M определенных элементов, порядок следования элементов в таком наборе не важен. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, и этим сочетания отличаются от размещений.
Сочетания без повторений
Задача: Найти все возможные сочетания без повторений из множества элементов {1,2,3} по 2.
Существуют следующие сочетания:
1: 1 2
2: 1 3
3: 2 3
Количество возможных сочетаний без повторений из N элементов по M можно определить по формуле (N≥M):
что в M! раз меньше соответствующего количества размещений без повторений (поскольку сочетания без повторений не зависят от порядка следования элементов).
Рассмотрим задачу получения всех сочетаний для чисел 1…N по M.
Реализация на С++
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include <iostream>
using namespace std;
bool NextSet(int *a, int n, int m)
{
int k = m;
for (int i = k — 1; i >= 0; —i)
if (a[i] < n — k + i + 1)
{
++a[i];
for (int j = i + 1; j < k; ++j)
a[j] = a[j — 1] + 1;
return true;
}
return false;
}
void Print(int *a, int n)
{
static int num = 1;
cout.width(3);
cout << num++ << «: «;
for (int i = 0; i < n; i++)
cout << a[i] << » «;
cout << endl;
}
int main()
{
int n, m, *a;
cout << «N = «;
cin >> n;
cout << «M = «;
cin >> m;
a = new int[n];
for (int i = 0; i < n; i++)
a[i] = i + 1;
Print(a, m);
if (n >= m)
{
while (NextSet(a, n, m))
Print(a, m);
}
cin.get(); cin.get();
return 0;
}
Результат выполнения
Сочетания с повторениями
Сочетаниями с повторениями называются наборы по M элементов, в которых каждый элемент множества N может участвовать несколько раз. При этом на соотношение значений M и N не накладывается никаких ограничений, а общее количество сочетаний с повторениями составляет
Примером такой задачи может служить выбор M открыток из N всеми возможными способами.
Для генерации сочетаний с повторениями воспользуемся решением для генерации размещений с повторениями, рассмотренным в этой статье.
Реализация на С++
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <iostream>
using namespace std;
bool NextSet(int *a, int n, int m)
{
int j = m — 1;
while (a[j] == n && j >= 0) j—;
if (j < 0) return false;
if (a[j] >= n)
j—;
a[j]++;
if (j == m — 1) return true;
for (int k = j + 1; k < m; k++)
a[k] = a[j];
return true;
}
void Print(int *a, int n)
{
static int num = 1;
cout.width(3);
cout << num++ << «: «;
for (int i = 0; i < n; i++)
cout << a[i] << » «;
cout << endl;
}
int main()
{
int n, m, *a;
cout << «N = «;
cin >> n;
cout << «M = «;
cin >> m;
int h = n > m ? n : m; // размер массива а выбирается как max(n,m)
a = new int[h];
for (int i = 0; i < h; i++)
a[i] = 1;
Print(a, m);
while (NextSet(a, n, m))
Print(a, m);
cin.get(); cin.get();
return 0;
}
Результат работы приведенного выше алгоритма:
Назад: Алгоритмизация
Комбинаторика — это раздел математики, в котором изучаются способы выбора и размещения элементов некоторого конечного множества на основании определенных условий. Выбранные (или выбранные и размещенные) группы элементов называются соединениями. Если все элементы полученного множества разные, получаем соединения без повторений, а если элементы повторяются — соединения с повторениями.
Содержание:
В комбинаторике перестановка — это упорядоченный набор без повторений чисел.
Перестановки:
Перестановкой из n элементов называется любое упорядоченное множество из n данных элементов.
Иными словами, это такое множество, для которого указано, какой элемент находится на первом месте, какой — на втором, …, какой — на n-м.
Формула числа перестановок
Пример:
Количество различных шестизначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, не повторяя эти цифры в одном числе, равно
Размещения:
Размещением из n элементов по k называется любое упорядоченное множество из k элементов, состоящее из элементов данного n-элементного множества.
Формулы для нахождения количества соединений с повторениями обязательны только для классов физико-математического профиля.
Формула числа размещений
Пример:
Количество различных трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, если цифры не могут повторяться, равно
Сочетания:
Сочетанием без повторений из n элементов по k называется любое k-элементное подмножество данного n-элементного множества.
Формула числа сочетаний

Пример:
Из 25 учащихся одного класса можно выделить пятерых для дежурства по школе 

Некоторые свойства числа сочетаний без повторений


Схема поиска плана решения простейших комбинаторных задач:
Выбор правила:
Правило суммы
Если элемент А можно выбрать т способами, а элемент В — n способами (при этом выбор элемента А исключает одновременный выбор элемента В), то А или В можно выбрать m + n способами.
Правило произведения
Если элемент А можно выбрать m способами, а после этого элемент В — n способами, то А и В можно выбрать 
Объяснение и обоснование:
Понятие соединения. Правило суммы и произведения:
При решении многих практических задач приходится выбирать из определенной совокупности объектов элементы, имеющие те или иные свойства, размещать их в определенном порядке и т. д. Поскольку в этих задачах речь идет о тех или иных комбинациях объектов, то такие задачи называют комбинаторными. Раздел математики, в котором рассматриваются методы решения комбинаторных задач, называется комбинаторикой. В комбинаторике рассматривается выбор и размещение элементов некоторого конечного множества на основании определенных условий.
Выбранные (или выбранные и размещенные) группы элементов называют соединениями. Если все элементы полученного множества разные, получаем размещения без повторений, а если элементы могут повторяться — размещения с повторениями. В этом параграфе мы рассмотрим соединения без повторений.
Решение многих комбинаторных задач базируется на двух основных правилах — правиле суммы и правиле произведения.
Правило суммы. Если на тарелке лежат 5 груш и 4 яблока, то выбрать один фрукт (грушу или яблоко) можно 9 способами (5 + 4 = 9). В общем виде справедливо такое утверждение:
- если элемент А можно выбрать m способами, а элемент В — n способами (при этом выбор элемента А исключает одновременный выбор элемента В), то А или В можно выбрать m + n способами.
Уточним содержание этого правила, используя понятие множеств и операций над ними.
Пусть множество А состоит из m элементов, а множество В -из n элементов. Если множества А и В не пересекаются (то есть 


Правило произведения. Если в киоске продают ручки 5 видов и тетради 4 видов, то выбрать набор из ручки и тетради (то есть пару — ручка и тетрадь) можно 5æ4 = 20 способами (поскольку с каждой из 5 ручек можно взять любую из 4 тетрадей). В общем виде имеет место такое утверждение:
- если элемент А можно выбрать m способами, а после этого элемент В — n способами, то А и В можно выбрать
способами.
Это утверждение означает, что если для каждого из m элементов А можно взять в пару любой из n элементов В, то количество пар равно произведению 
В терминах множеств полученный результат можно сформулировать следующим образом. Если множество А состоит из т элементов, а множество В — из n элементов, то множество всех упорядоченных пар* (а; b), где первый элемент принадлежит множеству А (а ∈ А), а второй множеству В (b ∈ В), состоит из 
Повторяя приведенные рассуждения несколько раз (или, более строго, используя метод математической индукции), получаем, что правила суммы и произведения можно применять при выборе произвольного конечного количества элементов.
Упорядоченные множества:
При решении комбинаторных задач приходится рассматривать не только множества, в которых элементы можно записывать в любом порядке, но и так называемые упорядоченные множества. Для упорядоченных множеств существенным является порядок следования их элементов, то есть то, какой элемент записан на первом месте, какой на втором и т. д. В частности, если одни и те же элементы записать в разном порядке, то мы получим различные упорядоченные множества. Чтобы различить записи упорядоченного и неупорядоченного множеств, элементы упорядоченного множества часто записывают в круглых скобках, например (1; 2; 3) ≠ (1; 3; 2).
Рассматривая упорядоченные множества, следует учитывать, что одно и то же множество можно упорядочить по-разному. Например, множество из трех чисел {–5; 1; 3} можно упорядочить по возрастанию: (–5; 1; 3), по убыванию: (3; 1; –5), по возрастанию абсолютной величины числа: (1; 3; –5) и т. д.
* Множество всех упорядоченных пар (а; b), где первый элемент принадлежит множеству А (а ∈ А), а второй — множеству В (b ∈ В), называют декартовым произведением множеств А и В и обозначают А × В. Отметим, что декартово произведение В × А также состоит из m*n элементов.
Заметим следующее: для того чтобы задать конечное упорядоченное множество из n элементов, достаточно указать, какой элемент находится на первом месте, какой на втором, …, какой на n-м.
Размещения:
Размещением из n элементов по k называется любое упорядоченное множество из k элементов, состоящее из элементов заданного n-элементного множества.
Например, из множества, содержащего три цифры {1; 5; 7}, можно составить следующие размещения из двух элементов без повторений:
(1; 5), (1; 7), (5; 7), (5; 1), (7; 1), (7; 5).
Количество размещений из n элементов по k обозначается 
Выясним, сколько всего можно составить размещений из n элементов по k без повторений. Составление размещения представим себе как последовательное заполнение k мест, которые будем изображать в виде клеточек (рис. 21.1). На первое место можем выбрать один из n элементов данного множества (то есть элемент для первой клеточки можно выбрать n способами).
Если элементы нельзя повторять, то на второе место можно выбрать только один элемент из оставшихся, то есть из n – 1 элементов. Теперь уже два элемента использованы и на третье место можно выбрать только один из n – 2 элементов и т. д. На k-е место можно выбрать только один из n – (k –1) = n – k +1 элементов (см. рис. 21.1).
Поскольку требуется выбрать элементы и на первое место, и на второе, …, и на k-е, то используем правило произведения и получим следующую формулу числа размещений из n элементов по k:
Например, 
- Учитывается ли порядок следования элементов в соединении?
- Все ли заданные элементы входят в полученное соединение?
Если, например, порядок следования элементов учитывается и из n данных элементов в соединении используется только k элементов, то по определению это — размещение из n элементов по k.
После определения вида соединения следует также выяснить, могут ли элементы в соединении повторяться, то есть выяснить, какую формулу необходимо использовать — для количества соединений без повторений или с повторениями.
Примеры решения задач:
Пример:
На соревнования по легкой атлетике приехала команда из 12 спортсменок. Сколькими способами тренер может определить, кто из них побежит в эстафете 4 × 100 м на первом, втором, третьем и четвертом этапах?
Решение:
Количество способов выбрать из 12 спортсменок четырех для участия в эстафете равно количеству размещений из 12 элементов по 4 (без повторений), то есть
Комментарий:
Для выбора формулы выясняем ответы на вопросы, приведенные выше. Поскольку для спортсменок важно, в каком порядке они будут бежать, то порядок при выборе элементов учитывается. В полученное соединение входят не все 12 заданных элементов. Следовательно, соответствующее соединение — размещение из 12 элементов по 4 (без повторений, поскольку каждая спортсменка может бежать только на одном этапе эстафеты).
Пример:
Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 7, если цифры в числе не повторяются.
Решение:
Количество трехзначных чисел, которые можно составить из семи цифр 1, 2, 3, 4, 5, 6, 7, равно числу размещений из 7 элементов по 3, то есть
Комментарий:
Для выбора формулы выясняем, что для чисел, которые мы будем составлять, порядок следования цифр учитывается и не все элементы выбираются (только 3 из заданных семи). Следовательно, соответствующее соединение — размещение из 7 элементов по 3 (без повторений).
Пример:
Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 0, если цифры в числе не повторяются.
Комментарий:
Выбор формулы проводится таким же образом, как и в задаче 2. Следует учесть, что если число, составленное из трех цифр, начинается цифрой 0, то оно не считается трехзначным. Следовательно, для ответа на вопрос задачи можно сначала из заданных 7 цифр записать все числа, состоящие из 3 цифр (см. задачу 2). Затем из количества полученных чисел вычесть количество чисел, составленных из трех цифр, но начинающихся цифрой 0. В последнем случае мы фактически будем из всех цифр без нуля (их 6) составлять двузначные числа. Тогда их количество равно числу размещений из 6 элементов по 2 (см. решение).
Можно выполнить также непосредственное вычисление, последовательно заполняя три места в трехзначном числе и используя правило произведения. В этом случае для наглядности удобно изображать соответствующие разряды в трехзначном числе в виде клеточек, например так:
Решение:
Количество трехзначных чисел, которые можно составить из семи цифр (среди которых нет цифры 0), если цифры в числе не повторяются, равно числу размещений из 7 элементов по 3, то есть
Но среди данных цифр есть цифра 0, с которой не может начинаться трехзначное число. Поэтому из размещений из 7 элементов по 3 необходимо исключить те размещения, в которых первым элементом является цифра 0. Их количество равно числу размещений из 6 элементов по 2, то есть 
Пример:
Решите уравнение
Решение:
ОДЗ: x ∈ N, 
На ОДЗ это уравнение равносильно уравнениям:
(x – 2) (x – 3) = 6,
x2 – 5x = 0,
x (x – 5) = 0.
Тогда x = 0 или x = 5. В ОДЗ входит только x = 5.
Ответ: 5.
Комментарий:
Уравнения, в запись которых входят выражения, обозначающие количество соответствующих соединений из x элементов, считаются определенными только при натуральных значениях переменной x. Чтобы выражение 


Объяснение и обоснование:
Перестановкой из n элементов называется любое упорядоченное множество из n заданных элементов.
Напомним, что упорядоченное множество — это такое множество, для которого указано, какой элемент находится на первом месте, какой на втором, …, какой на n-м.
Например, переставляя цифры в числе 236 (в котором множество цифр {2; 3; 6} уже упорядоченное), можно составить такие перестановки без повторений: (2; 3; 6), (2; 6; 3), (3; 2; 6), (3; 6; 2), (6; 2; 3), (6; 3; 2) — всего 6 перестановок* .
Количество перестановок без повторений из n элементов обозначается 

Фактически перестановки без повторений из n элементов являются размещениями из n элементов по n без повторений, поэтому

*Отметим, что каждая из перестановок определяет трехзначное число, составленное из цифр 2, 3, 6 таким образом, что цифры в числе не повторяются.
Например,
С помощью факториалов формулу для числа размещений без повторений

запишем в другом виде. Для этого умножим и разделим выражение в формуле (1) на произведение 
Следовательно, формула числа размещений без повторений из n элементов по k может быть записана так:

Для того чтобы этой формулой можно было пользоваться при всех значениях k, в частности при k = n – 1 и k = n, договорились считать, что
1! = 1 и 0! = 1.
Например, по формуле (2)
Обратим внимание, что в тех случаях, когда значение n! оказывается очень большим, ответы оставляют записанными с помощью факториалов. Например,
Примеры решения задач:
Для выбора формулы при решении простейших комбинаторных задач достаточно выяснить следующее:
- Учитывается ли порядок следования элементов в соединении?
- Все ли заданные элементы входят в полученное соединение?
Если, например, порядок следования элементов учитывается и все n заданных элементов используются в соединении, то по определению это перестановки из n элементов.
Пример:
Найдите, сколькими способами можно восемь учащихся построить в колонну по одному.
Решение:
Количество способов равно числу перестановок из 8 элементов, то есть
Комментарий:
Для выбора соответствующей формулы выясняем ответы на вопросы, приведенные выше. Поскольку порядок следования элементов учитывается и все 8 заданных элементов выбираются, то искомые соединения — это перестановки из 8 элементов без повторений. Их количество можно вычислить по формуле
Пример:
Найдите количество различных четырехзначных чисел, которые можно составить из цифр 0, 3, 7, 9 (цифры в числе не повторяются).
Решение:
Из четырех цифр 0, 3, 7, 9, не повторяя заданные цифры, можно получить 

Комментарий:
Поскольку порядок следования элементов учитывается и для получения четырехзначного числа надо использовать все элементы, то искомые соединения — это перестановки из 4 элементов. Их количество — 
Пример:
Имеется десять книг, из которых четыре — учебники. Сколькими способами можно поставить эти книги на полку так, чтобы все учебники стояли рядом?
Решение:
Сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 10, а 7 книг. Это можно сделать 

Комментарий:
Задачу можно решать в два этапа. На первом будем условно считать все учебники одной книгой.
Тогда получим 7 книг (6 не учебников + 1 условная книга — учебник). Порядок следования элементов учитывается и используются все элементы (поставить на полку необходимо все книги). Следовательно, соответствующие соединения — это перестановки из 7 элементов. Их количество — 
На втором этапе решения будем переставлять между собой только учебники. Это можно сделать 
Объяснение и обоснование:
1. Сочетания без повторений:
Сочетанием без повторений из n элементов по k называется любое k-элементное подмножество заданного n-элементного множества.
Например, из множества {a, b, c, d} можно составить следующие сочетания без повторений из трех элементов: {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.
Количество сочетаний без повторений из n элементов по k элементов обозначается символом 
Выясним, сколько всего можно составить сочетаний без повторений из n элементов по k. Для этого используем известные нам формулы числа размещений и перестановок. Составление размещения без повторений из n элементов по k проведем в два этапа. Сначала выберем k разных элементов из заданного n-элементного множества, не учитывая порядок выбора этих элементов (то есть выберем kэлементное подмножество из n-элементного множества — сочетание без повторений из n-элементов по k). По нашему обозначению это можно сделать 





Например, 
Используя формулу (3), можно легко обосновать свойство 1 числа сочетаний без повторений, приведенное в табл. 28.
1) Поскольку 

Для того чтобы формулу (4) можно было использовать и при k = n, договорились считать, что 
Заметим, что формулу (4) можно получить без вычислений с помощью достаточно простых комбинаторных рассуждений.
Когда мы выбираем k предметов из n, то n – k предметов мы оставляем. Если же, напротив, выбранные предметы оставим, а другие n – k -выберем, то получим способ выбора n – k предметов из n. Мы получили взаимно-однозначное соответствие способов выбора k и n – k предметов из n. Значит, количество одних и других способов одинаково. Но количество одних — 


Если в формуле (3) сократить числитель и знаменатель на (n – k)!, то получим формулу, по которой удобно вычислять 

Например,
2. Вычисление числа сочетаний без повторений с помощью треугольника Паскаля:
Для вычисления числа сочетаний без повторений можно применять формулу (3): 

Для обоснования равенства (6) можно записать сумму




Это равенство позволяет последовательно вычислять значения 

Каждая строка этой таблицы начинается с единицы и заканчивается единицей
Если какая-либо строка уже заполнена, например третья, то в четвертой строке надо записать на первом месте единицу. На втором месте запишем число, равное сумме двух чисел третьей строки, стоящих над ним левее и правее (поскольку по формуле (6) 

Примеры решения задач:
Обратим внимание, что, как и раньше, для выбора формулы при решении простейших комбинаторных задач достаточно ответить на вопросы:
- Учитывается ли порядок следования элементов в соединении?
- Все ли заданные элементы входят в полученное соединение?
Чтобы выяснить, является ли заданное соединение сочетанием, достаточно ответить только на первый вопрос (см. схему в табл. 28). Если порядок следования элементов не учитывается, то по определению это сочетание из n элементов по k элементов.
Пример:
Из 12 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать этот выбор?
Решение:
Количество способов выбрать из 12 туристов трех дежурных равно количеству сочетаний из 12 элементов по 3 (без повторений), то есть
Комментарий:
Для выбора соответствующей формулы выясняем ответы на вопросы, приведенные выше. Поскольку порядок следования элементов не учитывается (для дежурных неважно, в каком порядке их выберут), то соответствующее соединение является сочетанием из 12 элементов по 3 (без повторений). Для вычисления можно использовать формулы (3) или (5), в данном случае применяем формулу (3):
Пример:
Из вазы с фруктами, в которой лежат 10 разных яблок и 5 разных груш, требуется выбрать 2 яблока и 3 груши. Сколькими способами можно сделать такой выбор?
Решение:
Выбрать 2 яблока из 10 можно 


Комментарий:
Сначала отдельно выберем 2 яблока из 10 и 3 груши из 5.
Поскольку при выборе яблок или груш порядок следования элементов не учитывается, то соответствующие соединения — сочетания без повторений.
Учитывая, что требуется выбрать 2 яблока и 3 груши, используем правило произведения и перемножим полученные возможности выбора яблок 
Бином Ньютона:
Поскольку 
Общий член разложения степени бинома имеет вид



Свойства биномиальных коэффициентов:
- Число биномиальных коэффициентов (а следовательно, и число слагаемых) в разложении n-й степени бинома равно n + 1.
- Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой (поскольку
)
- Сумма всех биномиальных коэффициентов равна
- Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах.
- Для вычисления биномиальных коэффициентов можно воспользоваться треугольником Паскаля, в котором вычисления коэффициентов основываются на формуле
Объяснение и обоснование:
Бином Ньютона:
Двучлен вида a + x также называют биномом. Из курса алгебры известно, что:
Можно заметить, что коэффициенты разложения степени бинома 

Формулу (7) называют биномом Ньютона. Правая часть этого равенства называется разложением степени бинома

Общий член разложения степени бинома имеет вид
Обосновать формулу (7) можно, например, с помощью метода математической индукции. (Проведите такое обоснование самостоятельно.)
Приведем также комбинаторные рассуждения для обоснования формулы бинома Ньютона.
По определению степени с натуральным показателем 







Именно из-за бинома Ньютона числа 
Записывая степень двучлена по формуле бинома Ньютона для небольших значений n, биномиальные коэффициенты можно вычислять с помощью треугольника Паскаля (см. табл. 30).
Например,
Так как 

Если в формуле бинома Ньютона (8) заменить x на (–x), то получим формулу возведения в степень разности a – x:
Например, 
Свойства биномиальных коэффициентов:
- Число биномиальных коэффициентов (а следовательно, и число слагаемых) в разложении n-й степени бинома равно n + 1, поскольку разложение содержит все степени x от 0 до n (и других слагаемых не содержит).
- Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой, поскольку
- Сумма всех биномиальных коэффициентов равна
Для обоснования полагаем в равенстве (7) значения a = x = 1 и получаем:
Например,
4. Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах.
Для обоснования возьмем в равенстве (7) значения a = 1, x = –1:
Тогда
Примеры решения задач:
Пример:
По формуле бинома Ньютона найдите разложение степени
Комментарий:
Для нахождения коэффициентов разложения можно использовать треугольник Паскаля (табл. 30) или вычислять их по общей формуле. По треугольнику Паскаля коэффициенты равны: 1, 6, 15, 20, 15, 6, 1. Учитывая, что при возведении разности в степень знаки членов разложения чередуются, получаем:
Для упрощения записи ответа можно избавиться от иррациональности в знаменателях полученных выражений (см. решение) или сначала учесть, что ОДЗ данного выражения: x > 0. Тогда 

Решение:
Пример:
В разложении степени 
Решение:
ОДЗ: b > 0. Тогда

Общий член разложения:
По условию член разложения должен содержать 

Тогда член разложения, содержащий 
Комментарий:
На ОДЗ (b > 0) каждое слагаемое в данном двучлене можно записать как степень с дробным показателем. Это позволит проще записать общий член разложения степени
(где k = 0, 1, 2, …, n), выяснить, какой из членов разложения содержит 
Всё о комбинаторике
Пусть имеется несколько множеств элементов:
Вопрос: сколькими способами можно составить новое множество 
Элемент 





Способы выбора трех элементов аbc перечислены в табл. 1.2.
В этой таблице 



Основной комбинаторный принцип. Если некоторый первый выбор можно сделать 



Комбинаторные формулы в прикладных задачах теории вероятностей обычно связывают с выбором 


- а) повторный выбор, при котором выбранный элемент возвращается в генеральную совокупность и может быть выбран вновь;
- б) бесповторный выбор, при котором выбранный элемент в совокупность не возвращается и выборка не содержит повторяющихся элементов.
При повторном выборе каждый по порядку элемент может быть выбран 



В случае бесповторной выборки первый элемент можно выбрать 





Число 


Например, существует 


Выделим особо случай, когда один за другим выбраны все 

называют числом перестановок из 
Например, пять человек могут встать в очередь 


Подсчитаем количество бесповторных выборок объема 






Это число называют числом сочетаний из 



Например, сочетаний из четырех элементов 

Так как из 


Величины 
Из формулы (1.3) следует, что
Биномиальные коэффициенты образуют так называемый треугольник Паскаля, который имеет вид:
В 




Биномиальные коэффициенты обладают свойством симметрии:
Это наглядно демонстрирует треугольник Паскаля. Равенство (1.4) подтверждает тот очевидный факт, что выбор 




При повторном выборе из 













Совокупность из 





Пусть 




Для безошибочного выбора комбинаторной формулы достаточно последовательно ответить на вопросы в следующей схеме:
Например, число словарей, необходимых для непосредственного перевода с одного на другой, для пяти языков определяется из следующих рассуждений. Для составления словаря выбираем из пяти языков (

Комбинаторные задачи с решением
Комбинаторика — раздел математики, занимающийся вопросом выбора и расположения элементов некоторого конечного множества в соответствии с заданными условиями.
Рассмотрим примеры задач комбинаторики.
Пример №1
Сколькими способами можно выбрать путь из начала координат 0(0,0) в точку В(6,4), если каждый шаг равен единице, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(2,3)?
Решение. Весь путь занимает 10 шагов (четыре вверх и шесть вправо). Для планирования пути следует решить, какие именно по счету четыре шага следует сделать вверх, а остальные шесть — вправо. Выбор бесповторный и нас интересует только состав выбора. Поэтому в описанных условиях всего путей из точки О в точку В будет
Рассуждая подобным образом легко видеть, что путей из точки О в точку А существует 

Ответ. 210; 50.
Пример №2
Сколькими способами можно выбрать путь из начала координат 0(0,0) в точку 

Исходные данные к задаче 1.1.
Пример №3
В городе с идеальной прямоугольной планировкой (сеть улиц в этом городе изображена на рис. 1.1) из пункта А выходят 




Решение. Каждый человек пройдет N улиц и окажется на одном из перекрестков 
На каждом перекрестке для каждого человека производится выбор из двух возможностей: идти в направлении 


В пункте 



Ответ.
Пример №4
Сколькими способами можно 

Решение. Поставим эти предметы в ряд. Между ними будет 








Ответ.
Пример 1.4.
Сколькими способами можно распределить 6 яблок, 8 груш и 10 слив между тремя детьми? Сколькими способами это можно сделать так, чтобы каждый ребенок получил по меньшей мере одно яблоко, одну сливу и одну грушу?
Решение. Яблоки в соответствии с формулой (1.5) можно распределить 




Ответ. 83160; 7560.
Пример №5
Сколько цифр в первой тысяче не содержат в своей записи цифры 5?
Решение. Для записи любой из цифр 000, 001, 002, …, 999 необходимо трижды выбрать повторным способом одну из десяти цифр, поэтому и получается всего 

Ответ. 729.
Пример №6
Сколько шестизначных чисел содержат в записи ровно три различных цифры?
Решение. Заметим, что всего шестизначных чисел имеется 

Выбрать три ненулевых цифры можно 




Учтем теперь возможность использования нуля. К нулю нужно добавить две цифры, что можно сделать 



Ответ. 58320.
Пример №7
В саду есть цветы десяти наименований (розы, флоксы, ромашки и т. д.).
а) Сколькими способами можно составить букет из пяти цветков (не принимая во внимание совместимость растений и художественные соображения)?
б) Сколькими способами можно составить букет из пяти различных цветков?
в) Сколькими способами можно составить букет из пяти цветков так, чтобы в букете непременно было хотя бы по одному цветку двух определенных наименований
Решение. а) Если запрета на повторение цветков нет, то мы имеем дело с повторным выбором и нас интересует только состав. Поэтому по формуле (1.5) получаем 
б) Если цветы должны быть разными, то способ выбора бесповторный и букет можно составить 
в) Отберем по одному цветку каждого из двух названных наименований. Три остальных цветка можно выбрать из 10 возможных 
Ответ. а) 2002; б) 504; в) 220.
Пример №8
Имеется 


Решение. Ясно, что яблоки можно разложить 


При ответе на второй вопрос учтем, что следует по одному яблоку сразу положить в каждую из корзин, а остальные 


Ответ.
Пример №9
Требуется найти число натуральных делителей натурального числа 
Решение. Разложим 
где 

Заметим, что при разделении числа 







Так что разложение 


Ответ. 
Пример №10
Сколькими способами легкоатлет, собираясь на тренировку, может выбрать себе пару спортивной обуви, имея 5 пар кроссовок и 2 нары кед?
Очевидно, что выбрать одну из имеющихся пар обуви, кроссовки или кеды, можно 5 + 2 = 7 способами.
Обобщая, приходим к комбинаторному правилу сложения:
Это правило справедливо также для трех и более элементов.
Пример №11
В меню школьной столовой предлагается на выбор 4 вида пирожков и 3 вида сока. Сколько разных вариантов выбора завтрака, состоящего из одного пирожка и одного стакана сока, имеется у учащегося этой школы?
Пирожок можно выбрать 4 способами и к каждому пирожку выбрать сок 3 способами (рис. 76). Следовательно, учащийся имеет 
Обобщая, приходим к комбинаторному правилу умножения:
Это правило справедливо также для трех и более элементов.
Пример №12
Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, если в числе: 1) цифры не повторяются; 2) цифры могут повторяться?
Решение:
1) Первую цифру можем выбрать 4 способами (рис.77). Так как после выбора первой цифры их останется три (ведь цифры в нашем случае повторяться не могут), то вторую цифру можем выбрать 3 способами.И наконец, третью цифру можем выбрать из оставшихся двух — то есть 2 способами. Следовательно, количество искомых трехзначных у чисел будет равно 
2) Применим комбинаторное правило умножения. Так как цифры в числе могут повторяться, то каждую из цифр искомого числа можно выбрать 4 способами (рис. 78), и тогда таких чисел будет 
Ответ. 1) 24 числа; 2) 64 числа.
Отметим, что решить подобные задачи без применения комбинаторного правила умножения можно только путем перебора всех возможных вариантов чисел, удовлетворяющих условию задачи. Но такой способ решения является слишком долгим и громоздким.
Пример №13
Сколько четных пятизначных чисел можно составить из цифр 5, 6, 7, 8, 9, если цифры в числе не повторяются?
Решение:
Четное пятизначное число можно получить, если последней его цифрой будет 6 или 8. Чисел, у которых последней является цифра 6, будет 
а тех, у которых последней является цифра 8, — также 24. По комбинаторному правилу сложения всего четных чисел будет 
Ответ. 48.
Пример №14
Азбука племени АБАБ содержит всего две буквы — «а» и «б». Сколько слов в языке этого племени состоит: 1) из двух букв; 2) из трех букв?
Решение:
1) аа, ба, аб, бб (всего четыре слова); 2) ааа, ааб, аба, абб, ббб, бба, баб, баа (всего восемь слов).
Заметим, что найденное количество слов соответствует комбинаторному правилу умножения. Так как на каждое место есть два «претендента» — «а» и «б», то слов, состоящих из двух букв, будет 

Пример №15
В футбольной команде из 11 игроков надо выбрать капитана и его заместителя. Сколькими способами это можно сделать?
Решение:
Капитаном можно выбрать любого из 11 игроков, а его заместителем — любого из 10 оставшихся игроков. Таким образом (по правилу умножения), имеем 
Пример №16
В Стране Чудес 10 городов и каждые два из них соединяет авиалиния. Сколько авиалиний в этой стране?
Решение. Так как каждая авиалиния соединяет два города, то одним из них может быть любой из 10 городов, а другим — любой из 9 оставшихся. Следовательно, количество авиалиний равно 

Комбинаторные задачи неразрывно связаны с задачами теории вероятностей, еще одного раздела математики.
В ХIII-ХII в. до н. э. встречаются упоминания о вопросах, близких к комбинаторным. Некоторые комбинаторные задачи решали и в Древней Греции. В частности, Аристоксен из Тарента (IV в. до н. э.), ученик Аристотеля, перечислил различные комбинации длинных и коротких слогов в стихотворных размерах. А Папп Александрийский в IV в. н. э. рассматривал число пар и троек, которые можно получить из трех элементов, допуская их повторения. Некоторые элементы комбинаторики были известны и в Индии во II в. до н. э. Индийцы умели вычислять числа, известные нам как коэффициенты формулы бинома Ньютона. Позднее, в VIII в. н. э., арабы нашли и саму эту формулу, и ее коэффициенты, которые сейчас вычисляют с помощью комбинаторных формул или «треугольника Паскаля».
Свой нынешний вид упомянутые комбинаторные формулы приобрели благодаря средневековому ученому Леви бен Гершону (XIV в.) и французскому математику П. Эригону (XVII в.).
В III в. н. э. сирийский философ Порфирий для классификации понятий составил специальную схему, получившую название «древо Порфирия». Сейчас подобные деревья используются для решения определенных задач комбинаторики в разнообразных областях знаний. Некоторые ранее неизвестные комбинаторные задачи рассмотрел Леонардо Пизанский (Фибоначчи) в своей знаменитой «Книге абака» (1202 г.), в частности, о нахождении наименьшего набора различных гирь, позволяющего взвесить груз с любой целочисленной массой, не превышающей заданного числа. Со времен греческих математиков были известны две последовательности, каждый член которых получали по определенному правилу из предыдущих, — арифметическая и геометрическая прогрессии. А Фибоначчи впервые в одной из задач выразил член последовательности через два предыдущих, используя формулу, которую назвали рекуррентной. В дальнейшем метод рекуррентных формул стал одним из мощнейших для решения комбинаторных задач.
Как ни странно, развитию комбинаторики в значительной степени способствовали азартные игры, которые были очень популярны в XVI в. В частности, вопросами определения разнообразных комбинаций в игре в кости в то время занимались такие известные итальянские математики, как Д. Кардано, H. Тарталья и др. А наиболее полно изучил этот вопрос в XVII в. Галилео Галилей.
Современные комбинаторные задачи высокого уровня сложности связаны с объектами в других отраслях математики: определителями, конечными геометриями, группами, математической логикой и т. п.
Правила суммы и произведения
Вспомните, что в математике любые совокупности называют множествами. Объекты, входящие в множества, называют его элементами. Множества обозначают большими латинскими буквами, а их элементы записывают в фигурных скобках. Считают, что все элементы множества различны.
Например,
Множества бывают конечными и бесконечными. Если множество не содержит ни одного элемента, его называют пустым и обозначают символом
Два множества называют равными, если они состоят из одних и тех же элементов.
Если 



Случается, что множества 






элементы, называется объединением множеств 



Разницей множеств 



Говоря «множество», «подмножество», порядок их элементов не учитывают. Говорят, что они не упорядочены. Рассматривают и упорядоченные множества. Так называют множества с фиксированным порядком элементов. Их обозначают не фигурными, а круглыми скобками. Например, из элементов множества 
Как множества, все они равны, как упорядоченные множества — разные.
Существуют задачи, в которых надо определить, сколько различных подмножеств или упорядоченных подмножеств можно образовать из элементов данного множества. Их называют комбинаторными задачами, а раздел математики, в котором рассматривается решение комбинаторных задач, называют комбинаторикой.
Комбинаторика — раздел математики, посвящённый решению задач выбора и расположения элементов некоторого конечного множества в соответствии с заданными правилами.
Рассмотрим два основных правила, с помощью которых решается много комбинаторных задач.
Пример №17
В городе 
Решение:
Обозначим буквой 



Описанную ситуацию можно обобщить в виде утверждения, которое называется правилом суммы.
Если элемент некоторого множества 





Правило суммы распространяется и на большее количество множеств.
Пример №18
Планируя летний отдых, семья определилась с местами его проведения: в Одессе — 1, в Евпатории — 3, в Ялте — 2, в Феодосии — 2. Сколько возможностей выбора летнего отдыха имеет семья?
Решение:
Поскольку все базы отдыха разные, то для решения задачи достаточно найти сумму элементов всех множеств, о которых говорится: 
Пример №19
От пункта 



Решение:
Чтобы пройти от пункта 




Обобщим описанную ситуацию.
Если первый компонент пары можно выбрать 


Это — правило произведения, его часто называют основным правилом комбинаторики. Обратите внимание: речь идёт об упорядоченных парах, составленных из различных компонентов.
Правило произведения распространяется и на упорядоченные тройки, четвёрки и любые другие упорядоченные конечные множества. В частности, если первый компонент упорядоченной тройки можно выбрать 



Описанной ситуации соответствует диаграмма, изображённая на рисунке 137. Такие диаграммы называют деревьями.
Пример №20
Сколько разных поездов можно составить из 6 вагонов, если каждый из вагонов можно поставить на любом месте?
Решение:
Первым можно поставить любой из б вагонов. Имеем 6 выборов. Второй вагон можно выбрать из оставшихся 5 вагонов. Поэтому, согласно правилу умножения, два первых вагона можно выбрать 


Обратите внимание на решение последней задачи. Оно свелось к вычислению произведения всех натуральных чисел от 1 до 6. В комбинаторике подобные произведения вычисляют часто.
Произведение всех натуральных чисел от 1 до 

Например:
Условились считать, что
Языком теории множеств правила суммы и произведения можно сформулировать следующим образом.
Если пересечение множеств 

Если множества 
Если множества 


Пример №21
В розыгрыше на первенство города по баскетболу принимают участие команды из 12 школ. Сколькими способами могут быть распределены первое и второе места?
Решение:
Первое место может получить одна из 12 команд. После того, как определён обладатель первого места, второе место может получить одна из 11 команд. Следовательно, общее количество способов, которыми можно распределить первое и второе места, равно
Ответ. 132.
Пример №22
Сколько четырёхзначных чисел можно составить из цифр 0,1, 2, 3, 4, 5, если ни одна цифра не повторяется?
Решение:
Первой цифрой числа может быть одна из 5 цифр 1, 2, 3, 4, 5. Если первая цифра выбрана, то вторая может быть выбрана 5-ю способами, третья — 4-мя, четвёртая — 3-мя. Согласно правилу умножения общее число способов равно:
Ответ. 300.
Пример №23
Упростите выражение
Решение:
Размещения и перестановки
Задача:
Сколькими способами собрание из 20 человек может избрать председателя и секретаря?
Решение:
Председателя можно выбрать 20-ю способами, секретаря — из остальных 19 человек — 19-ю способами. По правилу произведения председателя и секретаря собрания могут выбрать 
Обобщим задачу. Сколько упорядоченных 








Например, из 4 элементов 
Упорядоченое 



Из предыдущих рассуждений следует, что 
В правой части этого равенства 
Число размещений из 


Примеры:
Пример №24
Сколькими способами можно составить дневное расписание из пяти разных уроков, если класс изучает 10 различных предметов?
Решение:
Речь идёт об упорядоченных 5-элементных подмножествах некоторого множества, состоящего из 10 элементов.
Это размещения.
Ответ. 30 240 способами.
Число размещений из 


Размещение 


Например, из трёх элементов 

Подставив в формулу числа размещений 
Число перестановок из 

Примеры:
Пример №25
Сколькими способами можно составить список из 10 фамилий?
Решение:
Ответ. 3 628 800 способами.
Некоторые комбинаторные задачи сводятся к решению уравнений, в которых переменная указывает на количество элементов в некотором множестве или подмножестве. Рассмотрим несколько таких уравнений.
Пример №26
Решите уравнение
Решение:
Пользуясь формулой размещений, данное уравнение можно заменить таким:
По условию задачи 

Пример №27
Решите уравнение
Решение:
Запишем выражения 
Имеем:
Поскольку по смыслу задачи 



Пример №28
Команда из трёх человек выступает в соревнованиях по художественной гимнастике, в которых принимают участие ещё 27 спортсменок. Сколькими способами могут распределиться места между членами команды, при условии, что на этих соревнованиях ни одно место не делится?
Решение:
Речь идёт об упорядоченных 3-элементных подмножествах множества, состоящего из 30 элементов. Это — размещения.
Пример №29
Сколькими способами можно разместить на полке 5 дисков?
Решение:
Речь идёт об упорядоченных 5-элементных множествах. Искомое количество способов равно
Ответ. 120 способами.
Пример №30
Изображённое на рисунке 140 кольцо раскрашено в 7 цветов. Сколько существует таких колец, раскрашенных теми же цветами только в других последовательностях?
Решение:
Зафиксируем одну какую-нибудь часть кольца, окрашенную одним цветом, б других частей можно раскрасить 
Ответ. 720 колец.
Пример №31
Сколько можно составить различных неправильных дробей, числителями и знаменателями которых есть числа 3,5, 7,9,11,13?
Решение:
Способ 1. Дробей, у которых числитель не равен знаменателю, можно составить 

Неправильными являются также дроби, у которых числитель равен знаменателю. Таких дробей в нашем случае 6. Итак, всего можно составить 
Способ 2. Если знаменатель неправильной дроби 3, то его числителями могут быть все 6 данных чисел. Если знаменатель 5, то числителями неправильной дроби могут быть 5 чисел (5, 7, 9, 11, 13) и т.д. Наконец, если знаменатель — число 13, то существует только 1 неправильная дробь, со знаменателем 13. Всего таких неправильных дробей существует
Ответ. 21 дробь.
Комбинации и бином ньютона
Пусть дано множество из трёх элементов: 

Комбинацией из 



Число комбинаций из 


Сравните: 






число 


То есть, 
Пример №32
Вычислите:
Решение:
Обратите внимание! 

Пример №33
Сколькими способами из 25 учеников можно выбрать на конференцию двух делегатов?
Решение:
Здесь 
Ответ. 300-ми способами.
Докажем, что для натуральных значений 
Доказательство. Пусть дано 










Следовательно, 
Такое комбинаторное тождество можно доказать также, воспользовавшись формулой числа комбинаций.
С комбинациями тесно связана формула бинома Ньютона. Вспомните формулу квадрата двучлена:
Умножив 
Эти три формулы можно записать и так:
Оказывается, для каждого натурального значения 
Это тождество называют формулой бинома Ньютона. а её правую часть разложением бинома Ньютона. Бином — латинское название двучлена. Пользуясь этой формулой, возведём, например, двучлен 
Доказать формулу бинома Ньютона можно методом математической индукции.
Доказательство. Предположим, что формула 

Выражения в скобках преобразованы согласно формулы
Следовательно, если формула бинома Ньютона верна для 



Вычислять коэффициенты разложения бинома Ньютона можно не по формуле числа комбинаций, а пользуясь числовым треугольником Паскаля — своеобразным способом вычисления коэффициентов разложения бинома Ньютона
Треугольник Паскаля можно продолжать как угодно далеко. Это следует из тождества 
Например, прибавляя числа шестой строки (для 



Например:
Пример №34
В турнире по шашкам приняли участие 5 девушек и 7 юношей. Каждый участник сыграл один раз с каждым другим. Сколько партий было: а) между девушками; б) между юношами; в) между юношами и девушками?
Решение:
а) Речь идёт о 2-элементных подмножествах (неупорядоченных) множества, состоящего из 5 элементов. Это — комбинации. 
б) Аналогично
в) Воспользуемся правилом умножения. Поскольку каждой из 5 девушек предстоит сыграть с каждым из 7 юношей, возможных случаев
Пример №35
Для дежурства в столовой приглашают 3-х учеников из 7 класса и 2-х учеников из 10 класса. Сколькими способами это можно сделать, если в 7 классе учится 24 ученика, а в 10 классе — 18.
Решение:
Речь идёт о неупорядоченных подмножествах двух разных множеств. Это — комбинации.
По правилу произведения имеем 
Пример №36
Сколько разных делителей имеет число 1001?
Решение:
Разложим заданное число на простые множители: 



Пример №37
Докажите, что выпуклый 

Решение:
Отрезков, концами которых являются 




Пример №38
Докажите тождество
Сделайте обобщение.
Решение:
Все члены разложения бинома Ньютона 

Пример №39
Найдите номер члена разложения 
Решение:
Воспользуемся формулой общего члена разложения бинома. Имеем:
По условию задачи 



Элементы комбинаторики
Решение многих задач теории вероятностей требует знания элементов комбинаторики, основными понятиями которой являются перестановки, размещения и сочетания.
Определение: Перестановки — это комбинации из одних и тех же элементов, отличающиеся только порядком элементов.
Пример:
Даны три числа 1, 2, 3. Определить количество комбинаций из этих элементов, отличающиеся только порядком элементов.
Решение:
Комбинации из данных элементов, отличающиеся только порядком элементов: 123; 132; 213; 231; 321; 312. Всего таких комбинаций 

Пример:
Даны три числа 1, 2, 3. Определить количество размещений из этих элементов по два, отличающиеся составом или порядком элементов.
Решение:
Комбинации из данных элементов по два, отличающиеся составом или порядком элементов: 12; 21; 23; 32; 13; 31. Всего таких комбинаций 6. Если дано n элементов, то число размещений по m элементов, которые отличаются либо составом элементов, либо их расположением:
Определение: Сочетания — это комбинации, составленные из n различных элементов по m элементов, которые отличаются друг от друга хотя бы одним элементом.
Пример:
Даны три числа 1, 2, 3. Определить количество размещений из этих элементов по два, отличающиеся хотя бы одним элементом.
Решение:
Комбинации из данных элементов по два, отличающиеся хотя бы одним элементом: 12; 23; 13. Всего таких комбинаций 3. Если дано n элементов, то число сочетаний по m элементов, которые отличаются хотя бы одним элементом:
Пример:
Пусть в урне находится n прономерованных шаров. Определить количество способов, которыми можно извлечь из урны эти шары один за другим.
Решение:
Число способов равно числу различных комбинаций из п элементов, отличающихся только порядком элементов, т.е. числу перестановок:
Пример:
Из колоды, содержащей 36 карт, наугад вынимают 3 карты. Найти вероятность того, что среди выбранных карт окажется один туз.
Решение:
Событие А состоит в том, что среди выбранных карт окажется один туз. Это сложное событие состоит из двух событий: выбирается один туз из четырех, а две другие карты выбираются из оставшихся 32 карт. Следовательно, число случаев, благоприятствующих появлению события A, равно 

Арифметика случайных событий
Будем считать, что все события, которые могут произойти в рамках данного эксперимента, располагаются внутри квадрата G, тогда невозможные события располагаются вне квадрата G (Рис. 2):
Рис. 2. Квадрат возможных событий.
Таким образом, достоверное событие определяется внутренней частью квадрата, а невозможное — областью вне квадрата.
Определение: Суммой двух случайных событий А и В называется третье случайное событие С, которое состоит в том, что произойдет (или не произойдет) или событие А, или событие В : С = А + В (Рис. 3).
Определение: Суммой n случайных событий 

Рис. 3. Сумма случайных событий
Замечание: Если в словесном описании сложного события присутствует разделительный союз “или” между элементарными событиями, то речь идет о сумме этих элементарных событий.
Замечание: Суммой события А и ему противоположного события 


Определение: Произведением двух случайных событий А и В называется третье случайное событие С, которое состоит в том, что произойдет (или не произойдет) и событие А, и событие В : 
Рис. 4. Произведение случайных событий.
Определение: Произведением n случайных событий 
Замечание: Если в словесном описании сложного события присутствует соединительный союз “и” между элементарными событиями, то речь идет о произведении этих элементарных событий.
Пример №40
Пусть имеются передатчик и приемник. Приемник удален от передатчика недостаточно большое расстояние, при котором он может при определенных условиях не принять один из сигналов, переданных передатчиком. Пусть передатчик послал три сигнала. Определить следующие сложные события:
- а) приемник принят только второй сигнал (событие А );
- б) приемник принял только один сигнал (событие В);
- в) приемник принял не менее двух сигналов (2 или 3 сигнала — событие С);
- г) приемник не принял ни одного сигнала (событие D);
- д) приемник принял хотя бы один сигнал (событие E).
Решение:
Обозначим через 
Сложное событие А состоит в том, что приемник не принял первый сигнал и принял второй сигнал, и не принял третий сигнал. Так как между элементарными событиями стоит соединительный союз “и”, то речь идет о их произведении, т.е.
Сложное событие В состоит в том, что приемник принял или первый сигнал, или принял второй сигнал, или принял третий сигнал. Так как между элементарными событиями стоит разделительный союз “или”, то речь идет о сумме сложных событии, т.е.
Рассуждая аналогично, получим выражения для остальных событий: 
Теорема сложения вероятностей несовместных событий
Теорема: Если случайные события А и В несовместны, то вероятность их суммы равна сумме вероятностей этих событий, т.е. Р(А + В) = Р(А) + Р(В)
Доказательство: Пусть в данном опыте имеется n равновозможных, элементарных, несовместных событий и пусть в m случаях наступает событие А, а в l случаях-событие В. Тогда появлению события А + В благоприятствует m+l исходов. Поэтому
Следствие: Если имеется N событий, то
Следствие: Если события 

Доказательство: Так как события 

Следствие: Вероятность суммы противоположных событий равна 1.
Доказательство: В силу того, что события А и ему противоположное событие 
Замечание: Если сложное событие состоит из суммы элементарных событий, то перед применением теоремы надо определить совместны или несовместны элементарные события.
Пример:
Пусть в урне находится 5 белых шаров, 3 — красных и 4 — зеленых. Из урны наудачу вынули шар. Какова вероятность того, что данный шар цветной?
Решение:
Событие, состоящее в том, что из урны извлечен красный шар, обозначим через А. Событие, состоящее в том, что из урны извлечен зеленый шар, обозначим через В. Тогда извлечение цветного шара есть событие С. Так как события А и В несовместны, т.е. событие С состоит в том, что из урны извлечен или событие А , или событие В, то С = А + В. Используя теорему о сложении вероятностей несовместных событий, получим:
Зависимые и независимые события. Условная и безусловная вероятности
Определение: Случайные события А и В называются независимыми, если появление одного из них не влияет на вероятность появления другого события, в противном случае события называются зависимыми.
Замечание: В этом определении речь идет не о причинно-следственной связи между событиями, а о вероятностной (появление одного из них не влияет на вероятность появления другого события), которая является более общей зависимостью между событиями.
Пример №41
В хранилище находится 10 исправных и 5 неисправных приборов, причем неизвестно, какие из них исправные, а какие — нет. Обозначим событием А — из хранилища взят исправный прибор, а В — взят неисправный прибор. Пусть вначале взят неисправный прибор. Определить вероятности указанных событий с возвращением неисправного прибора на склад и без возвращения неисправного прибора в хранилище.
Решение:
Если неисправный прибор возвращается в хранилище, то события А и В независимы и их вероятности равны 

Определение: Вероятность случайного события называется безусловной, если при ее вычислении на комплекс условий, в которых рассматривается это случайное событие, не накладывается никаких дополнительных ограничений. Безусловная вероятность обозначается
Определение: Вероятность случайного события называется условной, если она вычисляется при условии, что произошло другое случайное событие. Условная вероятность обозначается
Теорема умножения вероятностей
Т.2. Вероятность совместного появления двух случайных событий А и В равна произведению вероятности одного из них на условную вероятность другого события, вычисленную при условии, что первое событие имело место:
Доказательство: Пусть событие А состоит в том, что брошенная точка наугад в квадрат G попадает в область А, которая имеет площадь 




Рис. 5. Совместное наступление зависимых и независимых случайных событий.
Вероятность совместного наступления событий 


Замечание: Если события А и В независимы, то 
В связи с вышеприведенным замечанием теорема об умножении вероятностей независимых случайных событий имеет вид:
ТЗ. Вероятность совместного наступления независимых событий равна произведению вероятностей этих событий:
Замечание: Независимость случайных событий всегда взаимная. Если 

Следствие: Методом математической индукции теоремы легко обобщается на произведение N зависимых событий:

Замечание: Если сложное событие представляется в виде произведения элементарных событий, то при вычислении вероятности такого события надо определить, зависимы или независимы эти элементарные события.
Что такое комбинаторика
Понятие множества и его элементов:
Множество можно представить как совокупность некоторых объектов, объединенных по определенному признаку. В математике множество — одно из основных неопределяемых понятий. Каждый объект, принадлежащий множеству А, называется элементом этого множества. Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается 
Подмножество
Если каждый элемент множества А является элементом множества В, то говорят, что множество А является подмножеством множества В,
и записывают так: 

Равенство множеств
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Пересечение множеств
Пересечением множеств A и В называют их общую часть, то есть множество С всех элементов, принадлежащих как множеству А, так и множеству В
Объединение множеств
Объединением множеств А и В называют множество С, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (А или В)
Разность множеств
Разностью множеств А и В называется множество С, которое состоит из всех элементов, принадлежащих множеству А и не принадлежащих множеству В
Дополнение множества
Если все рассматриваемые множества являются подмножествами некоторого универсального множества U, то разность U А называется дополнением множества А. Другими словами, дополнением множества А называется множество, состоящее из всех элементов, не принадлежащих множеству А (но принадлежащих универсальному множеству).
Объяснение и обоснование:
Понятие множества
Одним из основных понятий, которые используются в математике, является понятие множества. Для него не дается определения. Можно пояснить, что множеством называют произвольную совокупность объектов, а сами объекты — элементами данного множества. Так, можно говорить о множестве учеников в классе (элементы — ученики), множестве дней недели (элементы — дни недели), множестве натуральных делителей числа 6 (элементы — числа 1, 2, 3, 6) и т. д.
В курсах алгебры и алгебры и начал анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.
Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество М состоит из чисел 1; 2; 3, то его обозначают так: М = {1; 2; 3}. Тот факт, что число 2 входит в это множество (является элементом данного множества М) записывается с помощью специального значка

Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.
Например: множество простых делителей числа 1 — пустое множество.
Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом
Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества А = {7} и М = {1; 2; 3} — конечные потому, что содержат конечное число элементов, а множества N, Z, Q, R — бесконечные.
Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило (характеристическое свойство), которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, А = {-1; 0; 1} (множество задано перечислением элементов), В — множество четных целых чисел (множество задано характеристическим свойством элементов множества). Последнее множество иногда записывают так: 

В общем виде запись множества с помощью характеристического свойства можно обозначить так:
Равенство множеств
Пусть А — множество цифр трехзначного числа 312, то есть А = {3; 1; 2}, а В — множество натуральных чисел, меньших четырех, то есть В = {1; 2; 3}. Поскольку эти множества состоят из одних и тех же элементов, то они считаются равными. Это записывают так: А = В.
Для бесконечных множеств таким способом (сравнивая все элементы) установить их равенство невозможно. Поэтому в общем случае равенство множеств определяется следующим образом.
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, {1; 2; 2} = {1; 2}, поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.
Подмножество
Если каждый элемент множества А является элементом множества В, то говорят, что множество А является подмножеством множества В.
Это записывают следующим образом:
Например,


Полагают, что всегда
Иногда вместо записи 


Сопоставим определение равенства множеств с определением подмножества. Если множества А и В равны, то: 1) каждый элемент множества А является элементом множества В, следовательно, А — подмножество В

два множества равны, если каждое из них является подмножеством другого.
А = В означает то же, что
Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера-Венна). Например, рисунок 118 иллюстрирует определение подмножества, а рисунок 119-отношения между множествами
Операции над множествами
Над множествами можно выполнять определенные действия: находить их пересечение, объединение, разность. Дадим определение этих операций и проиллюстрируем их с помощью кругов.
Пересечением множеств А и В называют их общую часть, то есть множество С всех элементов, принадлежащих как множеству А, так и множеству В.
Пересечение множеств обозначают знаком 
Например, если А = {2; 3; 4}, В = {0; 2; 4; 6}, то
Объединением множеств А и В называют множество С, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (А или В).
Объединение множеств обозначают знаком U (на рисунке 121 приведена иллюстрация и символическая запись определения объединения множеств).
Например, для множеств А и В из предыдущего примера
Разность множеств обозначают знаком . На рисунке 122 приведена иллюстрация и символическая запись определения разности множеств.
Например, если А = {1; 2; 3}, В = {2; 3; 4; 5}, то АВ = {1}, а В А = {4; 5}. Если В — подмножество А, то разность А В называют дополнением множества В до множества А (рис. 123).
Например, если обозначить множество иррациональных чисел через М, то R Q = М: множество М иррациональных чисел дополняет множество Q рациональных чисел до множества R всех действительных чисел.
Все множества, которые мы рассматриваем, являются подмножествами некоторого так называемого универсального множества U. Его обычно изображают в виде прямоугольника, а все остальные множества — в виде кругов внутри этого прямоугольника (рис. 124). Разность U А называется дополнением множества А.
Дополнением множества А называется множество, состоящее из всехэлементов, не принадлежащих множеству А (но принадлежащих универсальному множеству U).
Дополнение множества А обозначается

Комбинаторика и Бином Ньютона
Элементы комбинаторики:
Комбинаторика — раздел математики, в котором изучаются способы выбора и размещения элементов некоторого конечного множества на основании некоторых условий. Выбранные (или выбранные и размещенные) группы элементов называются Соединения с повторениямими.
Если все элементы полученного множества разные — получаем соединения без повторений, а если в полученном множестве элементы повторяются, то получаем соединения с повторениями*.
Перестановки:
Перестановкой из п элементов называется любое упорядоченное множество из
Иными словами, это такое множество, для которого указано, какой элемент находится на первом месте, какой — на втором,…, какой — на п-м.
*Формулы для нахождения количества соединений с повторениями являются обязательными только для классов физико-математического профиля. Формула числа перестановок

Пример:
Количество различных шестизначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, не повторяя эти цифры в одном числе, равно
Размещения:
Размещением из 



Пример:
Количество различных трехзначных чисел, которые можно составить из цифр 1,2,3, 4, 5, 6, если цифры не могут повторяться, равно
Сочетания:
Сочетанием без повторений из





Пример:
Из класса, состоящего из 25 учащихся, можно выделить 5 учащихся для дежурства по школе 

Схема решения комбинаторных задач
Выбор правила:
Правило суммы
Если элемент А можно выбрать 


Правило произведения
Если элемент А можно выбрать 


Учитывается ли порядок следования элементов в соединении?
- Нет
Все ли элементы входят в соединение?
- Перестановки
- Размещения
- Сочетания
без повторений с повторениями без повторений с повторениями без повторений с повторениями
Объяснение и обоснование:
Понятие соединения
При решении многих практических задач приходится выбирать из определенной совокупности объектов элементы, имеющие те или иные свойства, размещать эти элементы в определенном порядке и т. д. Поскольку в этих задачах речь идет о тех или иных комбинациях объектов, то такие задачи называют комбинаторными. Раздел математики, в котором рассматриваются методы решения комбинаторных задач, называется комбинаторикой. В комбинаторике рассматривается выбор и размещение элементов некоторого конечного множества на основании определенных условий.
Выбранные (или выбранные и размещенные) группы элементов называют соединениями. Если все элементы полученного множества разные — получаем размещения без повторений, а если в полученном множестве элементы могут повторяться, то получаем размещения с повторениями. Рассматриваются соединения без повторений, а соединения с повторениями.
Решение многих комбинаторных задач базируется на двух основных правилах — правиле суммы и правиле произведения.
Правило суммы
Если на тарелке лежит 5 груш и 4 яблока, то выбрать один фрукт (то есть грушу или яблоко) можно 9 способами (5 + 4 = 9). В общем виде имеет место такое утверждение:
Правило произведения
Если в киоске продают ручки 5 видов и тетради 4 видов, то выбрать набор из ручки и тетради (то есть пару — ручка и тетрадь) можно 5 • 4 = 20 способами (поскольку с каждой из 5 ручек можно взять любую из 4 тетрадей). В общем виде имеет место такое утверждение:
- если элемент А можно выбрать m способами, а после этого элемент В —
способами, то А и В можно выбрать m • п способами.
Это утверждение означает, что если для каждого из т элементов А можно взять в пару любой из 
Повторяя приведенные рассуждения несколько раз (или, иначе говоря, используя метод математической индукции), получаем, что правила суммы и произведения можно применять при выборе произвольного конечного количества элементов.
Следовательно, если приходится выбирать или первый элемент, или второй, или третий и т. д. элемент, количества способов выбора каждого еле-мента складывают, а когда приходится выбирать набор, в который входят и первый, и второй, и третий, и т. д. элементы, количества способов выбора каждого элемента перемножают.
Упорядоченные множества
При решении комбинаторных задач приходится рассматривать не только множества, в которых элементы можно записывать в любом порядке, но и так называемые упорядоченные множества. Для упорядоченных множеств существенным является порядок следования их элементов, то есть то, какой элемент записан на первом месте, какой на втором и т. д. В частности, если одни и те же элементы записать в разном порядке, то мы получим различные упорядоченные множества. Чтобы различить записи упорядоченного и неупорядоченного множеств, элементы упорядоченного множества часто записывают в круглых скобках, например
Рассматривая упорядоченные множества, следует учитывать, что упорядоченность не является свойством самого неупорядоченного множества (из которого мы получили упорядоченное), поскольку одно и то же множество можно по-разному упорядочить. Например, множество из трех чисел {-5; 1; 3} можно упорядочить по возрастанию: (-5; 1; 3), по убыванию: (3; 1; — 5), по возрастанию абсолютной величины числа: (1; 3; -5) и т. д.
Будем понимать, что для того чтобы задать конечное упорядоченное множество из п элементов, достаточно указать, какой элемент находится на первом месте, какой на втором, …, какой на п-м.
Размещения
Размещением из 



Например, из множества, содержащего три цифры {1; 5; 7}, можно составить следующие размещения из двух элементов без повторений: (1;5),(1;7),(5; 7), (5; 1), (7; 1), (7; 5).
Количество размещений из 




Выясним, сколько всего можно составить размещений из 



Если элементы нельзя повторять, то на второе место можно выбрать только один элемент из оставшихся, то есть из



Поскольку требуется выбрать элементы и на первое место, и на второе, …, и на

Например, 
При решении простейших комбинаторных задач важно правильно выбрать формулу, по которой будут проводиться вычисления. Для этого достаточно выяснить следующее:
- — Учитывается ли порядок следования элементов в соединении?
- — Все ли заданные элементы входят в полученное соединение?
Если, например, порядок следования элементов учитывается и из 



Заметим, что после определения вида соединения следует также выяснить, могут ли элементы в соединении повторяться, то есть выяснить, какую формулу необходимо использовать — для количества соединений без повторений или с повторениями.
Примеры решения задач:
Пример №42
На соревнования по легкой атлетике приехала команда из 12 спортсменок. Сколькими способами тренер может определить, кто из них побежит в эстафете 4 х 100 м на первом, втором, третьем и четвертом этапах?
Решение:

Комментарий:
Для выбора формулы выясняем ответы на вопросы, приведенные выше. Поскольку для спортсменок важно, в каком порядке они будут бежать, то порядок при выборе элементов учитывается. В полученное соединение входят не все 12 заданных элементов. Следовательно, соответствующее соединение — размещение из 12 элементов по 4 (без повторений, поскольку каждая спортсменка может бежать только на одном этапе эстафеты).
Пример №43
Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 7, если цифры в числе не повторяются.
Решение:

Комментарий:
Для выбора формулы выясняем, что для чисел, которые мы будем составлять, порядок следования цифр учитывается и не все элементы выбираются (только 3 из заданных семи). Следовательно, соответствующее соединение — размещение из 7 элементов по 3 (без повторений).
Пример №44
Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 0, если цифры в числе не повторяются.
Комментарий:
Выбор формулы проводится таким же образом, как и в задаче 2. Следует учесть, что если число, составленное из трех цифр, начинается цифрой О, то оно не считается трехзначным. Следовательно, для ответов на вопросы задачи можно сначала из заданных 7 цифр записать все числа, состоящие из 3 цифр (см. пример 2), а затем из количества полученных чисел вычесть количество чисел, составленных из трех цифр, но начинающих цифрой 0. В последнем случае мы фактически будем из всех цифр без нуля (их 6) составлять двузначные числа. Тогда их количество равно числу размещений из 6 элементов по 2 (см. решение).
Также можно выполнить непосредственное вычисление, последовательно заполняя три места в трехзначном числе и используя правило произведения. В этом случае удобно сделать рассуждения наглядными, изображая соответствующие разряды в трехзначном числе в виде клеточек, например, так:
- 6 возможностей
- 6 возможностей
- 5 возможностей
Решение:

Но среди данных цифр есть цифра 0, с которой не может начинаться трехзначное число. Поэтому из размещений из 7 элементов по 3 необходимо исключить те размещения, в которых первым элементом является цифра 0. Их количество равно числу размещений из 6 элементов по 2, то есть 
Пример №45
Решите уравнение 
Решение:


Комментарий:
Уравнения, в запись которых входят выражения, обозначающие количество соответствующих соединений из х элементов, считаются определенными только при натуральных значениях переменной х. В данном случае, чтобы выражение 



Перестановки
Перестановкой из п элементов называется любое упорядоченное множество из 
Напомним, что упорядоченное множество — это такое множество, для которого указано, какой элемент находится на первом месте, какой на втором,…, какой на
Например, переставляя цифры в числе 236 (там множество цифр {2; 3; 6} уже упорядоченное), можно составить такие перестановки без повторений: (2; 3; 6), (2; 6; 3), (3; 2; 6), (3; 6; 2), (6; 2; 3), (6; 3; 2) — всего 6 перестановок*.
Количество перестановок без повторений из









*Отметим, что каждая такая перестановка определяет трехзначное число, составленное из цифр 2,3,6 так, что цифры в числе не повторяются.
Например, 
С помощью факториалов формулу для числа размещений без повторений
можно записать в другом виде. Для этого умножим и разделим выражение в формуле (1) на произведение 
Следовательно, формула числа размещений без повторений из 

Для того чтобы этой формулой можно было пользоваться при всех значениях

Например, по формуле (2)
Обратим внимание, что в тех случаях, когда значение 
Например,
Примеры решения задач:
Напомним, что для выбора формулы при решении простейших комбинаторных задач достаточно выяснить следующее:
- — Учитывается ли порядок следования элементов в соединении?
- — Все ли заданные элементы входят в полученное соединение? Если, например, порядок следования элементов учитывается и все п заданных элементов используются в соединении, то по определению это перестановки из п элементов.
Пример №46
Найдите, сколькими способами можно восемь учащихся построить в колонну по одному.
Решение:

Комментарий:
Для выбора соответствующей формулы выясняем ответы на вопросы, приведенные выше. Поскольку порядок следования элементов учитывается и все 8 заданных элементов выбираются, то соответствующие соединения — это перестановки из 8 элементов без повторений. Их количество можно вычислить по формуле.
Пример №47
Найдите количество разных четырехзначных чисел, которые можно составить из цифр 0, 3, 7, 9 (цифры в числе не повторяются).
Решение:



Комментарий:
Поскольку порядок следования элементов учитывается и для получения четырехзначного числа надо использовать все элементы, то искомые соединения — это перестановки из 4 элементов. Их количество — 

Пример №48
Есть десять книг, из которых четыре — учебники. Сколькими способами можно поставить эти книги на полку так, чтобы все учебники стояли рядом?
Решение:



Комментарий:
Задачу можно решать в два этапа. На первом этапе условно будем считать все учебники за 1 книгу. Тогда получим 7 книг (6 не учебников + 1 условная книга — учебник). Порядок следования элементов учитывается и используются все элементы (поставить на полку необходимо все книги). Следовательно, соответствующие соединения — это перестановки из 7 элементов. Их количество — 
На втором этапе решения будем переставлять между собой только учебники. Это можно сделать 
Сочетания без повторений
Сочетанием без повторений из 



Например, из множества 
Количество сочетаний без повторений из п элементов по к элементов обозначается символом 





Составление размещения без повторений из 



















Например, 
Используя формулу (3), можно легко обосновать свойство 1 числа сочетаний без повторений, приведенное в таблице 21.

Для того чтобы формулу (4) можно было использовать и при 


Если в формуле (3) сократить числитель и знаменатель на


Например,
Вычисление числа сочетаний без повторений с помощью треугольника Паскаля
Для вычисления числа сочетаний без повторений можно применять формулу (3):



Это равенство позволяет последовательно вычислять значения 

Каждая строка этой таблицы начинается с единицы и заканчивается единицей 
Если какая-либо строка уже заполнена, например, третья, то в четвертой строке надо записать на первом месте единицу. На втором месте запишем число, равное сумме двух чисел третьей строки, стоящих над ним левее и правее (поскольку по формуле (6)
На третьем месте запишем число, равное сумме двух следующих чисел третьей строки, стоящих над ним левее и правее
Примеры решения задач:
Обратим внимание, что, как и раньше, для выбора формулы при решении простейших комбинаторных задач достаточно ответить на вопросы:
- Учитывается ли порядок следования элементов в соединении?
- Все ли заданные элементы входят в полученное соединение?
Для выяснения того, что заданное соединение является сочетанием, достаточно ответить только на первый вопрос. Если порядок следования элементов не учитывается, то по определению это сочетания из 

Пример №49
Из 12 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать этот выбор?
Решение:

Комментарий:
Для выбора соответствующей формулы выясняем ответы на вопросы, приведенные выше. Поскольку порядок следования элементов не учитывается (для дежурных неважно, в каком порядке их выберут), то соответствующее соединение является сочетанием из 12 элементов по 3 (без повторений). Для вычисления можно использовать формулы (3) или (5), в данном случае применяем формулу (3):
Пример №50
Из вазы с фруктами, в которой лежит 10 разных яблок и 5 разных груш, требуется выбрать 2 яблока и 3 груши. Сколькими способами можно сделать такой выбор?
Решение:



Комментарий:
Сначала отдельно выберем 2 яблока из 10 и 3 груши из 5. Поскольку при выборе яблок или груш порядок следования элементов не учитывается, то соответствующие соединения — сочетания без повторений.
Учитывая, что требуется выбрать 2 яблока и 3 груши, используем правило произведения и перемножим полученные возможности выбора яблок(

Бином Ньютона
Бином Ньютона:
Поскольку 
Общий член разложения степени бинома имеет вид
Коэффициенты 
Свойства биномиальных коэффициентов:
- Число биномиальных коэффициентов (а следовательно, и число слагаемых в разложении
степени бинома) равно
- Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой (поскольку
- Сумма всех биномиальных коэффициентов равна
- Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах.
- Для вычисления биномиальных коэффициентов можно воспользоваться треугольником Паскаля, в котором вычисления коэффициентов основываются на формуле
Треугольник Паскаля
Степень:
Коэффициенты разложения:
Ориентир:
В каждом ряду по краям стоят единицы, а каждое из остальных чисел равно сумме двух чисел, находящихся над ним справа и слева Например,
Объяснение и обоснование Бинома Ньютона
Двучлен вида а + х также называют биномом. Из курса алгебры известно, что:
Можно заметить, что коэффициенты разложения степени бинома 


Формулу (7) называют биномом Ньютона. Правая часть этого равенства называется разложением степени бинома 

Если раскрыть скобки в выражении 


Чтобы найти значение 

Чтобы найти 
затем, подставив в обе части полученного равенства (9) х = 0, получим: 



и, подставив х = 0 в равенство (10), получим


Подставляя в последнее равенство х = 0, имеем
Ориентир:
В каждом ряду по краям стоят единицы, а каждое из остальных чисел равно сумме двух чисел, находящихся над ним справа и слева
Умножим обе части равенства (11) на 

1, 2, …,
Записывая степень двучлена по формуле бинома Ньютона для небольших значений п, биномиальные коэффициенты можно вычислять по треугольнику Паскаля (табл. 25, см. также табл. 24).
Например,
Так как
а учитывая, что
Если в формуле бинома Ньютона (12) заменить х на (-х), то получим формулу возведения в степень разности а — х:


Свойства биномиальных коэффициентов
1. Число биномиальных коэффициентов (а следовательно, и число слагаемых) в разложении 


2. Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой, поскольку
3. Сумма всех биномиальных коэффициентов равна 2″.

Например,
4. Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах,

Тогда
Примеры решения задач:
Пример №51
По формуле бинома Ньютона найдите разложение степени
Комментарий:
Для нахождения коэффициентов разложения можно использовать треугольник Паскаля или вычислять их по общей формуле. По треугольнику Паскаля коэффициенты равны: 1, 6, 15, 20, 15, б, 1. Учитывая, что при возведении в степень разности знаки членов разложения чередуются, получаем



Решение:
Пример №52
В разложении степени 
Решение:
► ОДЗ: 
Общий член разложения:
По условию член разложения должен содержать

Тогда член разложения, содержащий 
Комментарий:
На ОДЗ (b > 0) каждое слагаемое в заданном двучлене можно записать как степень с дробным показателем. Это позволит проще записать общий член разложения степени




Чтобы упростить запись общего члена разложения, удобно отметить, что
Зачем нужна комбинаторика
Для решения задач с использованием классического определения вероятности необходимо знать основные правила и формулы комбинаторики -раздела математики, изучающего методы решения комбинаторных задач — т.е. задач, связанных с подсчетом числа различных комбинаций.
Пусть 
Правило суммы
Если элемент 





Пример №53
В группе 30 студентов. Известно, что 5 из них на экзамене по математике получили оценку «отлично», 10 — оценку «хорошо», остальные -«удовлетворительно». Сколько существует способов выбрать одного студента, получившего на экзамене оценку «отлично» или «хорошо»?
Решение:
Студент, получивший оценку «отлично» может быть выбран


Правило произведения
Если элемент 







Пример №54
В группе 30 студентов. Необходимо выбрать старосту, его заместителя и профорга. Сколько существует способов это сделать?
Решение:
Старостой может быть выбран любой из 30 студентов, его заместителем – любой из оставшихся 29, а профоргом – любой из оставшихся 28 студентов, т.е. 

Пусть дано множество из n различных элементов. Из этого множества могут быть образованы подмножества из m элементов (0 ≤ m ≤n). Например, из 5 элементов a, b, c, d, e могут быть отобраны комбинации по 2 элемента – ab, bc, cd, ba и т.д., по 3 элемента – abc, cbd, cba и т.д.
Если комбинации из n элементов по m отличаются либо составом элементов, либо порядком их расположения (либо и тем и другим), то такие комбинации называют размещениями из n элементов по m. Число размещений из n элементов по m находится по формуле 
Пример №55
Сколько можно записать двузначных чисел, используя без повторения цифры от 1 до 5?
Решение:
В данном случае двузначное число является комбинацией из пяти цифр по две цифры. Поскольку числа отличаются как составом входящих в них цифр, так и порядком их расположения, то в данном случае двузначные числа являются размещениями из пяти цифр по две. Число таких размещений

Число сочетаний из n элементов по m находится по формуле
Пример №56
Необходимо выбрать в подарок две из пяти имеющихся различных книг. Сколькими способами можно это сделать?
Решение:
Из смысла задачи следует, что порядок выбора книг не имеет значения. Здесь важен только их состав. Поэтому в данном случае комбинации книг представляют собой сочетания из 5 книг по 2. Число таких комбинаций 
Пример №57
Сколько можно записать трехзначных чисел, которые не содержат цифр 0 и 5?
Решение:
В данном случае трехзначное число является комбинацией из восьми цифр (0 и 5 не учитываются) по три цифры. При этом некоторые из цифр (или все) могут повторяться. Поэтому в данном случае трехзначные числа является размещениями с повторениями из восьми цифр по три. Число таких размещений с повторениями 


Пример №58
В почтовом отделении продаются открытки восьми видов. Сколькими способами можно купить в нем три открытки?
Решение:
Учитывая, что порядок выбора открыток не имеет значения, а важен только их состав, причем некоторые из открыток (или все) могут оказаться одинаковыми, искомое число способов находим по формуле числа сочетаний с повторениями 
Пример №59
Порядок выступления 5 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?
Решение:
Каждый вариант жеребьевки отличается только порядком участников конкурса, т.е. является перестановкой из 5 элементов. Их число равно 




Пример №60
Сколько можно составить шестизначных чисел, состоящих из цифр 3, 5, 7, в которых цифра 3 повторяется 3 раза, цифра 5 – 2 раза, цифра 7 – 1 раз?
Решение:
Каждое шестизначное число отличается от другого порядком следования цифр (причем 
- Классическое определение вероятности
- Геометрические вероятности
- Теоремы сложения и умножения вероятностей
- Формула полной вероятности
- Математическая обработка динамических рядов
- Корреляция — определение и вычисление
- Элементы теории ошибок
- Методы математической статистики
Для
построения соответствующих математических
моделей комбинаторных задач будем
использовать математический
аппарат теории множеств.
Может случиться, что в данном множестве
порядок следования элементов не важен,
а важен только состав множества. Но есть
задачи, в которых прядок элементов
является существенным.
Определение
1: Порядок
во множестве
из
элементов – это нумерация его элементов
натуральными числами, т.е. отображение
множествана множество
.
Определение
2: Множество
с заданным на нем порядком называется
упорядоченным
множеством.
Очевидно,
что множество, содержащее более одного
элемента, можно упорядочить не единственным
способом.
Например,
из двух букв
и
можно построить упорядоченное множество
двумя различными способами:
и
.
Три
буквы
,
и
можно расположить в виде последовательности
шестью способами:
,
,
,
,
,
.
Для четырех букв
путем перебора получим уже 24 различных
упорядоченных последовательностей.
Упорядоченные
последовательности элементов некоторого
множества можно рассматривать как
распределения или расстановки этих
элементов в последовательности.
Определение
3: Пусть
дано конечное множество
из
элементов. Всякий набор из
элементов данного множества (при этом
элементы в наборе могут и повторяться)
будем называть—расстановками.
Через
понятие расстановки вводятся основные
определения комбинаторики: сочетания,
размещения и перестановки.
При этом каждое из этих понятий может
быть с повторениями и без повторений.
В данном параграфе будут рассмотрены
комбинаторные формулы без повторений.
Перестановки
без повторений.
Определение
4: Пусть
— конечное множество из
элементов.Перестановками
из
различных элементов множества
называются все расположения
элементов в определенном порядке.
Обозначается:(от французского словаpermutation
— перестановка).
Упорядоченные
множества считаются различными, если
они отличаются либо своими элементами,
либо их порядком.
Определение
5: Различные
упорядоченные множества, которые
отличаются лишь порядком элементов,
называются перестановками
этого множества.
Последнее определение
сформулировано с позиции теории множеств.
Определение
6: Произведение
последовательных натуральных чисел в
математике обозначаюти называютфакториалом.
Выбор
для обозначения
восклицательного знака, возможно, связан
с тем, что даже для сравнительно небольших
значенийчисло
очень велико. Например,
,
,
,
,
,
,
и т.д.
Теорема
1: Число
перестановок из
различных элементов вычисляется по
формуле:
(1)
Доказательство.
Рассмотрим произвольное множество из
элементов. Построим всевозможные
расстановки из этихэлементов.
На первое
место
расстановки можно поставить любой из
элементов (
способов выбора первого элемента). После
того, как первый элемент выбран и
независимо как он выбран, второй элемент
можно выбратьспособом. Для выбора третьего элемента
остаетсяспособа и т.д. Последний элемент выбирается
соответственно одним способом. Тогда,
в силу комбинаторного принципа умножения,
количество таких расстановок будет
равно:
Теорема доказана.
Пример
1: Сколькими
способами трое друзей могут занять в
кинотеатре места с номерами 1, 2 и 3.
Решение.
Количество искомых способов будет равно
числу перестановок без повторений из
трех элементов:
способов. При необходимости эти способы
можно перебрать.
Перестановки
букв некоторого слова называют
анаграммами.
Открытые еще в ІІІ
веке до
нашей эры греческим грамматиком
Ликофроном анаграммы до сих пор привлекают
внимание языковедов, поэтов и любителей
словесности. Мастера словесных игр
помимо эрудиции и большого запаса слов
знают много секретов, связанных с
комбинаторными навыками, один из которых
– анаграммы. Часто требуется среди всех
перестановок выбрать те, которые обладают
определенным свойством. Например, среди
анаграмм слова «крот»,
которых всего
,
только одна, не считая самого слова«крот»,
имеет смысл в русском языке – «корт».
Кроме линейных
перестановок, можно рассматривать
перестановки круговые (или циклические).
В этом случае перестановки, переходящие
друг в друга при вращении, считаются
одинаковыми и не должны засчитываться.
Теорема
2: Число
круговых перестановок из
различных элементов равно
Пример
2: Сколькими
способами 7 детей могут стать в хоровод?
Решение.
Число линейных перестановок 7 детей
будет равно
.
Если хоровод уже сформирован, тогда для
него существует 7 круговых перестановок,
переходящих друг в друга при повороте.
Эти перестановки не должны быть засчитаны,
поэтому круговых перестановок из 7
элементов будет.
Размещения без
повторений.
Определение
7: Пусть
имеется
различных предметов. Расстановки из
элементов по
элементов (
)
называютсяразмещениями
без повторений.
Обозначают:
.
Здесь имеется в виду, что элементы в
расстановках не повторяются.
В
данном определении существенной является
следующая позиция: две расстановки
различны, если
они отличаются хотя бы одним элементом
или порядком элементов.
Приведем
еще одно определение размещений,
эквивалентное исходному, более простое
для понимания.
Определение
8: Конечные
упорядоченные множества называются
размещениями.
Теорема
3: Количество
всех размещений из
элементов по
элементов без повторений вычисляется
по формуле:
. (2)
Доказательство.
Пусть имеется произвольное множество
,
состоящее изэлементов. Необходимо выбрать из этого
множестваразличных элементов. Причем, важен
порядок выбора.
Выбор
элементов осуществляется поэтапно.
Первый элемент расстановки можно выбрать
различными способами. Тогда из оставшихся
элементов множествавторой элемент расстановки выбирается
способом. Для выбора третьего элемента
возможноспособа и т.д. Тогда для выбора
—
го элемента имеемспособ. Следовательно, согласно правилу
умножения, количество таких расстановок
будет равно:
.
По
определению, такие расстановки являются
размещениями. Что и требовалось доказать.
Пример
3: Собрание
из 25 человек выбирает президиум из 3
человек: 1) председатель, 2) заместитель,
3) секретарь. Сколько возможно вариантов
выбора президиума?
Решение.
Выбирая трех человек из 25, замечаем, что
важен порядок выбора, поэтому количество
президиумов будет равно:
.
Замечание:
Число размещений без повторений можно
также находить по формуле:

Если
в знаменателе дроби из формулы (3)
,
то принято считать.
Замечание:
Формула (3) отличается компактностью,
но при решении задач удобнее использовать
формулу (2). Дробь, стоящая в правой части
формулы (3), может быть сокращена до
целого числа. Это число равно числу из
правой части формулы (2).
Пример
4: Сколько
можно составить двухбуквенных слов
(буквы не повторяются) из 33 букв русского
алфавита?
Решение.
В данном случае мы имеем дело не со
словами в лингвистическом понимании,
а с буквенными комбинациями произвольного
состава.
Тогда количество
различных комбинаций из 2 букв, выбранных
из 33 букв алфавита, будет равно:

В
данном случае важен порядок букв. Если
поменять 2 буквы в слове, то получим
новое слово.
Замечание:
Перестановка без повторений – это
частный случай размещений без повторений
при
.
Можно сказать, что перестановка изэлементов – это размещение из
элементов по
элементов:
В
некоторых задачах по комбинаторике не
имеет значения порядок расположения
объектов в той или иной совокупности.
Важно лишь то, какие именно элементы ее
составляют. В таких ситуациях мы имеем
дело с сочетаниями.
Сочетания без
повторений.
Определение
9: Сочетания
без
повторений из
элементов некоторого множества по
элементов (
)
– это расстановки, отличающиеся друг
от другасоставом,
но не порядком
элементов. Обозначают:
(от французского словаcombinaison
– сочетание).
В
данном случае в расстановках важен
состав, а не порядок элементов
в подмножестве. Если две расстановки
отличаются только порядком следования
элементов, то с точки зрения сочетаний
они не различимы. Элементы в этих
расстановках не повторяются.
С
точки зрения теории множеств определение
сочетаний можно сформулировать иначе.
Определение
10: Конечные
неупорядоченные множества называются
сочетаниями.
Таким образом,
сочетания – это такая выборка элементов,
при которой их порядок совершенно не
важен.
Сочетаний
из
элементов по
элементов должно быть меньше, чем
соответствующих размещений. Это следует
из того, что не надо засчитывать
расстановки одинакового состава.
Теорема
4: Число
сочетаний
находится по следующей формуле:

Доказательство.
Если из произвольного
-элементного
множества выбраныэлементов, то их можно пронумеровать
номерамичислом способов, равным
.
Оставшиесяэлементов можно занумеровать номерами
,
,
…,всего
способами. Кроме того, сам отбор
элементов из
элементов можно осуществить
способами. Таким образом, мы получили
вариантов нумерации полного множества
из
элементов, которых всего
.
Поэтому имеем,
откуда получаем:

Теорема доказана.
Замечание:
Дробь, стоящая в правой части (4), может
быть сокращена до целого числа.
Из формулы числа
сочетаний следует:
,
,
.
Формула
(4) может быть преобразована к виду:
.
Отсюда видно, что число размещенийв
раз больше числа соответствующих
сочетаний.
Другими словами, чтобы посчитать все
сочетания,
нужно исключить из всех размещенийподмножества, отличающиеся порядком
(их будетштук), т.е.
делят на
.
Пример
5: Сколькими
способами можно выбрать 3 различные
краски из имеющихся пяти.
Решение.
Порядок выбора красок не важен. Важно
только какие краски выбраны. Поэтому
количество вариантов равно:
.
Пример
6: Сколькими
способами можно пошить трехцветные
полосатые флаги, если имеется материал
пяти различных цветов.
Решение.
Порядок выбора полос важен, поэтому
количество таких флагов равно:
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
























способами. 































)





























































































































































































способами, то А и В можно выбрать m • п способами.






































степени бинома) равно









































