Содержание:
Величина называется случайной, если она принимает свои значения в зависимости от исходов некоторого испытания (опыта), причем для каждого элементарного исхода она имеет единственное значение. Случайная величина называется дискретной (в узком смысле), если множество всех возможных значений ее конечно.
Геометрически множество всех возможных значений дискретной случайной величины представляет конечную систему точек числовой оси.
Пусть X — дискретная случайная величина, возможными и единственно возможными значениями которой являются числа
Обозначим через
вероятности этих значений (т. е. 

События 
Определение: Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.
В простейших случаях закон распределения дискретной случайной величины X удобно задавать таблицей:
Здесь первая строка таблицы содержит все возможные значения случайной величины, а вторая — их вероятности.
Заметим, что таблицу значений дискретной случайной величины X, если это целесообразно, формально всегда можно пополнить конечным набором любых чисел, считая их значениями X с вероятностями, равными нулю.
Пример:
В денежной лотерее разыгрывается 1 выигрыш в 1000 руб., 10 выигрышей по 100 руб. и 100 выигрышей по 1 руб. при общем числе билетов 10 000. Найти закон распределения случайного выигрыша X для владельца одного лотерейного билета.
Решение:
Здесь возможные значения для X есть


Число появлений т события А при 

где 
В частности, если р мало и п велико, причем 
Определение случайной величины
Определение 29. Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно.
Случайные величины (СВ) обозначаются большими буквами X, Y…
Примеры СВ: X — число попаданий при трех выстрелах, Y — абсцисса точки попадания при выстреле.
Случайные величины характеризуются своими возможными значениями, которые обозначаются маленькими буквами, соответствующими случайной величине: х,у…
Например, случайная величина X — число попаданий при трех выстрелах характеризуется следующими возможными значениями: 
Определение 30. Случайные величины, принимающие только отдаленные друг от друга возможные значения, которые можно заранее перечислить, называются дискретными случайными величинами (ДСВ).
Примеры ДСВ. 1) В приведенном выше примере СВ X. 2) Случайная величина Z- число вызовов скорой помощи за сутки. Ее возможные значения 
Определение 31. Случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток (который иногда имеет резко выраженные границы, а чаще — расплывчатые, неопределенные), называются непрерывными случайными величинами (НСВ).
Примеры НСВ. 1) В приведенном выше примере СНВ Y — абсцисса точки попадания при выстреле. Ее возможные значения заполняют некоторый промежуток 

Замечание. В классической теории вероятностей рассматриваются события, в современной теории вероятностей — случайные величины.
Определение 32. Случайная величина X называется характеристической случайной величиной события А.
Примеры перехода от событий к случайным величинам
1). Рассмотрим событие А, которое в результате опыта происходит или нет. Введем в рассмотрение случайную величину X такую, что если А происходит, то Х= 1, если А не происходит, то Х=0. Следовательно, Х — дискретная случайная величина с возможными значениями 
Если происходит ряд таких опытов, то общее число появлений события А равно сумме характеристических случайных величин X события А во всех опытах.
2). Пусть в действительности точка М совпадает с началом координат — точкой О. При измерении координат точки М были допущены ошибки. Событие А = {Ошибка в положении точки М не превзойдет заданного значения r}. Пусть X, Y — случайные ошибки при измерении координат точки. Это непрерывные случайные величины, так как их возможные значения непрерывно заполняют некоторые промежутки. Событие А равносильно попаданию точки M(X,Y) в пределы круга радиуса r с центром в точке О. Т.е. для выполнения события А случайные величины должны удовлетворять неравенству: 
Законы распределения случайных величин
Для описания случайной величины (т.е. для возможности сказать, как часто следует ожидать появления тех или других возможных значений случайной величины в результате повторения опыта в одних и тех же условиях) необходимо знать закон распределения вероятностей случайной величины.
Определение 33. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.
Рассмотрим дискретную случайную величину (ДСВ) Xс возможными значениями 
В результате опыта величина X примет одно из этих значений, т.е. произойдет одно из полной группы несовместных событий: X = 


Обозначим 

Эта суммарная вероятность каким-то образом распределена между отдельными значениями ДСВ. Задать это распределение, т.е. указать, какой вероятностью обладает каждое из событий, значит установить закон распределения СВ.
Говорят, что СВ подчинена данному закону распределения.
Формы закона распределения ДСВ
1. Простейшей формой задания закона распределения является таблица, называемая рядом распределения ДСВ.
Для элементов нижней строки должно выполняться условие: 
2. Формой задания закона распределения является многоугольник распределения — фигура, получаемая при графическом изображении ряда распределения.
Возможные значения откладываются по оси {Ох). Вероятности возможных значений откладываются по оси (Оу).
Механическая интерпретация ряда распределения ДСВ: Распределение единичной массы в нескольких изолированных точках по оси (Ох). (В отдельных точках 


Пример №1
Рассмотрим опыт, в котором может появиться или не появиться событие А. Р(А) = 0,3. Рассмотрим случайную величину X — число появлений события А в данном опыте, т.е. возможные значения данной величины: 

Решение.

Проверка: 
Пример №2
Стрелок производит 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. За каждое попадание стрелку засчитывастся 5 очков. Построить ряд и многоугольник распределения числа выбитых очков.
Решение.
ДСВ X — число выбитых очков. Вероятность попадания (успеха) равна р = 0,4, вероятность промаха (неудачи) равна q = 1 — 0,4 = 0,6. Количество испытаний n = 3.
Возможные значения X: 



По формуле Бернулли 
Ряд распределения имеет вид:
Проверка: 
Многоугольник распределения:
Замечание. Ряд распределения является удобной формой представления закона распределения для ДСВ с конечным числом возможных значений. Однако эта характеристика не универсальна, так как ряд или многоугольник нельзя построить для непрерывной случайной величины (НСВ). Действительно, НСВ имеет бесчисленное множество возможных значений, которые сплошь заполняют некоторый промежуток, и перечислить их в какой-нибудь таблице нельзя.
Кроме того (это будет доказано позднее) каждое отдельное значение НСВ обычно не обладает никакой отличной от нуля вероятностью. Следовательно, для НСВ не существует ряда распределения в том смысле, в каком он существует для ДСВ.
Однако различные области возможных значений НСВ все же не являются одинаково вероятными, и для НСВ существует «распределение вероятностей», хотя и не в том смысле, как для ДСВ.
В силу этого, желательно иметь такую характеристику распределения вероятностей, которая была бы применима для самых разнообразных случайных величин.
Пример №3
Вероятности того, что студент сдаст экзамены в сессию по математическому анализу и органической химии соответственно равны 0,7 и 0,8. Составить закон распределения случайной величины Х − числа экзаменов, которые сдаст студент.
Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений:
Найдем вероятности этих значений. Обозначим события:




По условию:
Тогда:
Итак, закон распределения случайной величины Х задается таблицей:
Контроль: 0,06+0,38+0,56=1.
Пример №4
Дискретная случайная величина Х задана законом распределения:
Найти 
Решение: Так как сумма вероятностей возможных значений случайной величины Х равна 1, то
Найдем функцию распределения
Геометрически это равенство можно истолковать так: F(х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.
Если 
Если 

Если 
Если 

1=−1, x2=0 и x3=1;
Если 
=0,1+0,1+0,3+0,2=0,7, так как в промежуток (−∞; х) попадают четыре значения
Если 
=0,1+0,1+0,3+0,2+0,3=1, так как в промежуток (−∞; х) попадают пять значений
Итак,
Изобразим функцию F(x) графически (рис. 4.3):
Найдем числовые характеристики случайной величины:
Пример №5
Составить закон распределения случайной величины Х − числа выпадений пятерки при трех бросаниях игральной кости. Вычислить 
Решение: Испытание состоит в одном бросании игральной кости. Так как кость бросается 3 раза, то число испытаний n = 3.
Вероятность события А − «выпадение пятёрки» в каждом испытании одна и та же и равна 1/6, т.е. 

Случайная величина Х может принимать значения: 0;1;2;3.
Вероятность каждого из возможных значений Х найдём по формуле Бернулли:
Таким образом закон распределения случайной величины Х имеет вид:
Контроль: 125/216+75/216+15/216+1/216=1.
Найдем числовые характеристики случайной величины Х:
Пример №6
Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной равна 0,002. Найти вероятность того, что среди 1000 отобранных деталей окажется:
а) 5 бракованных;
б) хотя бы одна бракованная.
Решение: Число n = 1000 велико, вероятность изготовления бракованной детали р = 0,002 мала, и рассматриваемые события (деталь окажется бракованной) независимы, поэтому имеет место формула Пуассона:
Найдем 
а) Найдем вероятность того, что будет 5 бракованных деталей среди отобранных (m = 5):
б) Найдем вероятность того, что будет хотя бы одна бракованная деталь среди отобранных.
Событие А − «хотя бы одна из отобранных деталей бракованная» является противоположным событию

Математическое ожидание
Определение: Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных ее значений на их вероятности.
Если 

где
Очевидно, математическое ожидание случайной величины X не изменится, если таблицу значений ее пополнить конечным числом любых чисел, считая, что вероятности этих чисел равны нулю.
Математическое ожидание М (X) случайной величины есть величина постоянная и поэтому представляет числовую характеристику случайной величины X.
Пример №7
Найти математическое ожидание выигрыша X.
Решение:
Пользуясь помещенной там таблицей, имеем
Как нетрудно сообразить, М(Х) = 21 коп. есть «справедливая» цена билета.
Замечание 1. Отдельные слагаемые 



Замечание 2. Пусть 
Таким образом,
Таким образом, математическое ожидание случайной величины является некоторым ее средним значением.
Замечание 3. Математическое ожидание числа появлений события А при одном испытании совпадает с вероятностью этого события Р(А) = р.
Действительно, пусть X — число появлений события А в данном испытании. Случайная величина X может принимать два значения: 


Поэтому
Основные свойства математического ожидания
Укажем важнейшие свойства математического ожидания. Доказательства будут проведены для дискретных случайных величин. Однако соответствующие теоремы справедливы также и для непрерывных случайных величин, поэтому при формулировках этих теорем мы не будем упоминать, что рассматриваемые случайные величины дискретны.
Нам понадобится выяснить смысл арифметических операций 
Например, под суммой X + У понимается случайная величина Z, значениями которой являются допустимые суммы 
Если какая-нибудь из комбинаций 

Аналогично определяются остальные выражения.
Различают также независимые и зависимые случайные величины. Две случайные величины считаются независимыми, если возможные значения и закон распределения каждой из них один и тот же при любом выборе допустимых значений другой. В противном случае они называются зависимыми. Несколько случайных величин называются взаимно независимыми, если возможные значения и законы распределения любой из них не зависят от того, какие возможные значения приняли остальные случайные величины.
Теорема: Математическое ожидание постоянной величины равно этой постоянной, т. е. если С — постоянная величина, то
Доказательство: Постоянную величину С можно рассматривать как случайную дискретную величину, принимающую лишь одно возможное значение С с вероятностью р = 1. Поэтому
Теорема: Математическое ожидание суммы двух (или нескольких) случайных величин равно сумме математических ожиданий этих величин, т. е. если X и У — случайные величины, то
и т. п.
Доказательство: 1) Пусть случайная величина X принимает значения 




Как было отмечено выше, все комбинации 


Имеем
Воспользовавшись очевидными свойствами суммы: 1) сумма не зависит от порядка слагаемых и 2) множитель, не зависящий от индекса суммирования, можно выносить за знак суммы, из (4) получим
Сумма 
Аналогично,
Тогда из формулы (5) получаем
что и требовалось доказать.
2) Для нескольких случайных величин, например для трех X, У и Z, имеем
и т. д.
Следствие. Если С — постоянная величина, то
Теорема: Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т. е.
где X и У — независимые случайные величины.
Доказательство: Пусть 


Имеем
что и требовалось доказать.
Следствие 1. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению математических ожиданий этих величин.
Действительно, например, для трех взаимно независимых случайных величин X, У, Z имеем
и т. п.
Следствие 2. Постоянный множитель можно выносить за знак математического ожидания.
Если С — постоянная величина, а X — любая случайная величина, то, учитывая, что С и X независимы, на основании теоремы 1 получим
Следствие 3. Математическое ожидание разности любых двух случайных величин X и Y равно разности математических ожиданий этих величину т. е.
Действительно, используя теорему о сумме математических ожиданий и следствие 2, получим
Дисперсия
Пусть X — случайная величина, М(Х) — ее математическое ожидание (среднее значение). Случайную величину X — М(Х) называют отклонением.
Теорема: Для любой случайной величины X математическое ожидание ее отклонения равно нулю, т. е.
Локазательство. Действительно, учитывая, что М(Х) — постоянная величина, имеем
Определение: Дисперсией (рассеянием) случайной величины называют математическое ожидание квадрата отклонения этой величины от ее математического ожидания.
Отсюда, обозначая дисперсию буквой D, для случайной величины X будем иметь
Очевидно, что дисперсия случайной величины постоянна, т. е. является числовой характеристикой этой величины.
Если случайная величина X имеет закон распределения 

Корень квадратный из дисперсии D{X) называется средним квадратичным отклонением а (иначе— стандартом) этой величины:
Пример №8
Пусть закон распределения случайной величины задан таблицей:
Определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратичное отклонение 
отсюда
Дисперсия D{X)служит мерой рассеяния (разброса)значений дискретной случайной величины X. Действительно, пусть D(X) мала. Тогда из формулы (2) получаем, что все слагаемые 



Теорема: Дисперсия случайной величины равна разности между математическим ожиданием квадрата этой величины и квадратом ее математического ожидания, т. е.
Доказательство: Используя основные теоремы о математических ожиданиях случайных величин, имеем
Теорема: Дисперсия постоянной величины равна нулю. Действительно, если С — постоянная величина, то М(С) = С и, следовательно,
Результат этот очевиден, так как постоянная величина изображается одной точкой на числовой оси Ох и не имеет рассеяния.
Теорема: Дисперсия суммы двух независимых случайных величин X и Y равна сумме дисперсий этих величин, т. е.
Доказательство: Так как
то имеем
где
— так называемый корреляционный момент величин X и У. Если случайные величины X и У независимы, то случайные величины X — М(Х) и У — М(У), отличающиеся от X и У на постоянные величины, очевидно, также независимы. Поэтому в силу теорем 3 имеем
и, следовательно, справедлива формула (5).
Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме дисперсий этих величин.
Следствие 2. Если С — постоянная величина, то
Таким образом, случайные величины X и X + С имеют одинаковую меру рассеяния.
Теорема: Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат, т. е.
Доказательство: Если С — постоянный множитель, то в силу теоремы 2 имеем
Таким образом, рассеяние величины СХ в С2 раз больше рассеяния величины X.
Следствие. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин, т. е. если случайные величины X и У независимы, то
Действительно, на основании теорем 4 и 5 имеем
Математическое ожидание и дисперсия случайной величины являются ее основными числовыми характеристиками.
Пример №9
Определить математическое ожидание и дисперсию для числа X появления события А при п независимых испытаниях, в каждом из которых вероятность события Р(А) = р постоянна.
Случайная величина X принимает значения 
где
Величину X можно рассматривать как сумму независимых случайных величин
где 


. Отсюда, используя теорему о математическом ожидании суммы, будем иметь
Таким образом, математическое ожидание числа появлений события А в условиях схемы Бернулли совпадает со «средним числом» появления этого события в данной серии испытаний. Для дисперсии случайной величины X, получаем
Отсюда по свойству дисперсии суммы независимых случайных величин (теорема) будем иметь
Поэтому среднее квадратичное отклонение (стандарт)
Формулы (8) и (9) дают математическое ожидание и дисперсию для биномиального закона распределения.
Замечание. Теперь становится понятным смысл случайной величины
в приближенных формулах Лапласа, а именно, t представляет собой отклонение числа появлений события А от его математического ожидания, измеренное в стандартах (так называемое нормированное отклонение).
Рассмотрим п дискретных попарно независимых случайных величин 

Эти величины, возможно, имеют значительный разброс, однако их среднее арифметическое
ведет себя достаточно «кучно».
А именно, при указанных выше условиях имеет место замечательная теорема:
Теорема Чебышева: Для любого положительного 
сколь угодно близка к 1, если число случайных величин п достаточно велико, т. е.
(закон .больших чисел в форме Чебышева).
Теорема Чебышева находит применение в теории ошибок, статистике и т. п.
Непрерывные случайные величины. Функция распределения
Случайную величину X будем называть непрерывной, если все ее возможные значения целиком заполняют некоторый конечный или бесконечный промежуток 

Для характеристики непрерывной случайной величины X вводят функцию распределения
называемую интегральным законом распределения.
Если значения случайной величины X рассматривать как точки числовой оси Ох, то Ф(х) представляет собой вероятность события, состоящего в том, что наблюдаемое значение случайной величины X принадлежит интервалу 

Заметим, что функция распределения имеет смысл также для дискретных случайных величин.
Функция распределения Ф(х) обладает следующими свойствами:
I.Функция Ф(х) есть неубывающая функция аргумента х, т. е. если 

Действительно, если х’ > х, то из события 

II.Так как Ф(х) — вероятность, то справедливо неравенство
III.
Действительно, событие 

Зная функцию распределения Ф(х), можно для любого промежутка 


В самом деле, пусть А есть событие 


Тогда, очевидно, имеем
Так как события А и С несовместны, то по теореме сложения вероятностей получаем Р(Б) = Р(А) + Р(С), отсюда
причем 
Таким образом, вероятность того, что случайная величина X примет значение, принадлежащее промежутку [a, b), равна приращению ее функции распределения на этом промежутке.
В дальнейшем случайную величину X будем называть непрерывной лишь в том случае, когда ее функция распределения Ф(х) непрерывна на оси 
Теорема: Вероятность (до опыта) того, что непрерывная случайная величина X примет заранее указанное строго определенное значение а, равна нулю.
В самом деле, в силу формулы (2) имеем
Положим, что 
Переход я к пределу при 
Таким образом, при непрерывной функции распределения вероятность «попадания в точку» равна нулю.
Следствие. Для непрерывной случайной величины X справедливы равенства
где 
Аналогично доказывается второе равенство.
Замечание. В общем случае невозможные события и события с нулевой вероятностью могут оказаться неэквивалентными.
Предположим теперь, что для непрерывной случайной величины X ее функция распределения Ф(х) имеет непрерывную производную
Функцию ф(х) называют плотностью вероятности (для данного распределения) или дифференциальным законом распределения случайной величины X.
Термин плотность вероятности имеет следующий смысл. Пусть 
Заменяя бесконечно малое приращение функции 

Таким образом, плотность вероятности представляет собой отношение вероятности попадания точки в бесконечно малый промежуток к длине этого промежутка.
Так как плотность вероятности ф(х) является производной неубывающей функции Ф(х), то она неотрицательна: 
Так как Ф(х) является первообразной для ф(х), то на основании формулы Ньютона—Лейбница имеем
Отсюда в силу (3′) получаем
Геометрически (рис. 271) эта вероятность представляет собой площадь S криволинейной трапеции, ограниченной — графиком плотности вероятности у = ф(х), осью Ох и двумя ординатами
Полагая 

Полагая в формуле (6) 
Числовые характеристики непрерывной случайной величины
Будем рассматривать бесконечно малый промежуток 
Представляя прямую 
Определение: Под математическим о жид а ни ем непрерывной случайной величины X понимается число
(конечно, это определение имеет смысл лишь для таких случайных величин X, для которых интеграл (1) сходится).
Для дисперсии непрерывной случайной величины X сохраним прежнее определение
Из формулы (1) вытекает
(конечно, в предположении, что интеграл (2) сходится). Можно также пользоваться формулой
Можно доказать, что основные свойства математического ожидания и дисперсии дискретных случайных величин сохраняются также и для непрерывных случайных величин.
Пусть теперь все возможные значения непрерывной случайной величины X целиком заполняют конечный отрезок 


Аналогично,
Равномерное распределение
Непрерывная случайная величина X, все возможные значения которой заполняют конечный промежуток 
Иными словами, для равномерно распределенной случайной величины все ее возможные значения являются равновозможными.
Пусть, например, 

отсюда
Пусть 
т. е.
где L — длина (линейная мера) всего отрезка 


Значения случайной величины X, т. е. точки х отрезка 


Согласно формуле (1) имеем геометрическое определение вероятности: под вероятностью события А понимается отношение меры 
Это определение естественно переносит классическое определение вероятности на случай бесконечного числа элементарных исходов.
Аналогичное определение можно ввести также тогда, когда элементарные исходы испытания представляют собой точки плоскости или пространства.
Пример №10
В течение часа 
Решение:
Здесь множество всех элементарных исходов образует отрезок [0, 1], временная длина которого L = 1, а множество благоприятных элементарных исходов составляет отрезок [0,1/6] временной длины 
Поэтому искомая вероятность есть
Пример №11
В квадрат К со стороной а с вписанным в него кругом S (рис. 273) случайно бросается материальная точка М. Какова вероятность того, что эта точка попадает в круг S?
Решение:
Здесь площадь квадрата есть К = а2, а площадь круга
За искомую вероятность естественно принять отношение
Эта вероятность, а следовательно, и число л, очевидно, могут быть определены экспериментально.
Нормальное распределение
Распределение вероятностей случайной величины X называется нормальным, если плотность вероятности подчиняется закону Гаусса
где 

Для удобства выкладок эту кривую центрируем, введя новые координаты 

и будет представлять собой дифференциальный закон распределения случайной величины
Постоянные а и b в формуле (2) не являются произвольными, так как для плотности вероятностей 
Делая замену переменной 
Отсюда на основании формулы (3) находим
т. е.
Таким образом,
Для математического ожидания случайной величины будем иметь
(ввиду нечетности подынтегральной функции). Отсюда
Таким образом, при нормальном распределении случайной величины X ее математическое ожидание х0 совпадает с точкой пересечения оси симметрии графика соответствующей кривой Гаусса с осью Ох (центр рассеивания).
Для дисперсии случайной величины X получаем
Полагая 
Таким образом, из формулы (9) получаем
и, следовательно,
Отсюда для среднего квадратичного отклонения величины X получим
Введя обозначение 
Подставляя эти значения в формулу (1), получим стандартный вид нормального закона распределения случайной величины X в дифференциальной форме:
где
Таким образом, нормальный закон распределения зависит только от двух параметров: математического ожидания и среднего квадратичного отклонения.
Нормальный закон распределения случайной величины в интегральной форме имеет вид
Формулы (11) и (12) упрощаются, если ввести нормированное отклонение
тогда
. Полагая в интеграле (12) 
где t определяется формулой (13) и 
Отсюда получаем, что для случайной величины X, подчиняющейся нормальному закону, вероятность попадания ее на отрезок 
В частности, вероятность того, что отклонение величины X от ее математического ожидания х0 по абсолютной величине будет меньше а, равна
Полагая 
т. е. такое отклонение является почти достоверным (правило трех сигм).
Нормальный закон распределения вероятностей находит многочисленные применения в теории ошибок, теории стрельбы, физике и т. д.
Пример №12
Задана плотность распределения
Определить коэффициент к и функцию распределения
Решение.

Построим график 
Найдем функцию распределения, используя (2.7):
Построим график 
Функция распределения — универсальный закон распределения (для ДСВ и НСВ)
Для количественной характеристики распределения вероятностей любой случайной величины удобнее пользоваться не вероятностью события X = х, а вероятностью X < х, где х — некоторая текущая переменная.
Определение 34. Задание вероятности выполнения неравенства X < х , рассматриваемой как функции аргумента х, называется функцией распределения (или интегральным законом распределения, или интегральной функцией распределения) случайной величины X:

F(x) — универсальная характеристика: существует как для ДСВ, так и для НСВ. Она полностью характеризует СВ с вероятностной точки зрения, т.е. является одной из форм закона распределения.
Геометрическая интерпретация F(x): если рассматривать СВ как случайную точку X оси (Ох), которая в результате опыта может занять то или иное положение, то функция распределения F(x) есть вероятность того, что эта случайная точка X в результате опыта попадет левее точки х.
Для ДСВ X, которая может принимать возможные значения 

где символ 
Свойства F(x).
1. F(x) — неотрицательная функция, заключенная между 0 и 1: 
Пояснение: справедливость свойства вытекает из того, что F(x) определена как вероятность события X < х.
2. F(x) — неубывающая функция своего аргумента, т.е. при 
Пояснение (см. рис. выше): будем увеличивать х, т.е. перемещать точку х вправо по оси (Ох). Очевидно, что при этом вероятность того, что точка X попадет левее точки х не может уменьшаться, следовательно, функция F(x) с возрастанием х убывать не может.
3. 
Пояснение (см. рис. выше): будем неограниченно перемещать точку х влево по оси (Ох). При этом попадание случайной точки X левее точки х в пределе становится невозможным событием. Поэтому естественно полагать, что вероятность этого события стремится к нулю.
4. 
Пояснение (см. рис. выше): будем неограниченно перемещать точку х вправо по оси (Ох). При этом попадание случайной точки X левее точки х в пределе становится достоверным событием. Вероятность достоверного события по определению равна 1.
5. F(x) — непрерывна слева, т.е. 
6. Вероятность появления случайной величины в интервале 

Доказательство.
Рассмотрим три события: 
Очевидно, что А = В + С. По теореме сложения вероятностей несовместных событий имеем:

Перепишем данное равенство, воспользовавшись определением функции распределения:


Замечание. Если F(x) возрастает в каждой точке интервала (а; b), то возможные значения случайной величины непрерывно заполняют этот интервал, т.к. согласно свойству № 6, вероятность того, что СВ примет значение, заключенное в сколь угодно малой части 
Определение 35. Непрерывной случайной величиной называется случайная величина, функция распределения которой непрерывна.
Будем неограниченно уменьшать участок 




Значение этого предела зависит от того, непрерывна ли функция F(x) в точке 
Если в точке 


Если в точке 

Вывод: т.к. непрерывная случайная величина X имеет непрерывную функцию распределения F(x), то из равенства нулю предела для непрерывной функции в точке 

Таким образом, нулевой вероятностью могут обладать не только невозможные, но и возможные события, т.е. событие 


Вывод парадоксален, но он вполне согласуется со статистическим определением вероятности. Равенство нулю вероятности события характеризует тенденцию частоты этого события неограниченно убывать при увеличении числа опытов, т.е. частота только приближается к вероятности, и ни в коей мере не означает, что данное событие равно нулю.
Например: 1.) Тело имеет определенную массу, а ни одна из точек внутри тела определенной массой не обладает. Сколь угодно малый объем, выделенный из тела, обладает конечной массой, но она стремится к нулю по мере его уменьшения и равна нулю для точки. 2.) При непрерывном
распределении вероятностей вероятность попадания на сколь угодно малый участок может быть отлична от нуля, тогда как вероятность попадания в строго определенную точку равна нулю.
Механическая интерпретация непрерывной случайной величины: распределение единичной массы непрерывно по оси абсцисс, причем ни одна точка не обладает конечной массой.
Следствия из свойства 6:
1. Если все возможные значения X принимает интервал (a; b), F(x) = 0 при 

2. 
Графики функции распределения
1. Для ДСВ функция распределения 
Когда текущая переменная х проходит через какое-нибудь из возможных значений ДСВ X, функция распределения F(x) меняется скачкообразно, причем величина скачка равна вероятности этого значения. Таким образом, F(x) любой ДСВ — разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям СВ и равны вероятностям этих значений. Сумма всех скачков равна 1.
2. Для НСВ функция распределения — непрерывная функция во всех точках и заключенная между нулем и единицей (следует из свойств).
Замечание.
Если для ДСВ увеличить число возможных значений и уменьшить интервалы между ними, то число скачков будет больше, а сами скачки меньше, следовательно, ступенчатая кривая становится более плавной, ДСВ постепенно приближается к НСВ, а ее функция распределения — к непрерывной функции распределения.
3. Можно построить примеры СВ, возможные значения которых непрерывно заполняют некоторый промежуток, но для которых F(x) не везде является непрерывной, а в отдельных точках терпит разрыв. Такие СВ называются смешанными.
График F(x) в общем случае представляет собой график неубывающей функции, значения которой начинаются от 0 и доходят до 1, причем в отдельных точках функция может иметь скачки.
Пример №13
Стрелок производит 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. Построить функцию распределения числа попаданий. Найти вероятность того, что будет а) меньше 2 попаданий, b) не больше двух попаданий, с) больше одного попадания, d) число попаданий будет либо 1, либо 2.
Решение.
Ранее мы построили ряд распределения числа попаданий. Ряд распределения имеет вид:
Это ДСВ, следовательно, функция распределения находится по формуле: 
1) при 

2) при 

3) при 

4) при 

5) при 

Найдем вероятность того, что будет а) меньше 2 попаданий, b) не больше двух попаданий, с) больше одного попадания, d) число попаданий будет либо 1, либо 2.
a) 
b) 
c) Р(Х > 1) = 
d) 
Пример №14
Функция распределения непрерывной случайной величины задана выражением:
Найти коэффициент а. Определить вероятность того, что СВ X в результате опыта примет значение на участке а) (1; 2), b)[1; 2].
Решение.
Т. к. X — НСВ, то F(x) — непрерывная функция, следовательно, при х = 3 должно выполняться равенство, что F(x) = 1, т. е.

Найдем вероятность того, что Х в результате опыта примет значение на участке (1; 2):

Найдем вероятность того, что Х в результате опыта примет значение на участке [1; 2]:


Замечание. Функция распределения F(x) случайной величины является ее исчерпывающей вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения СВ в в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения НСВ в окрестностях различных точек дастся другой функцией — плотностью распределения вероятности.
Плотность распределения вероятностей НСВ
Пусть X — непрерывная случайная величина, ее функция распределения F{x) — непрерывная и дифференцируемая функция. Рассмотрим участок 


Рассмотрим предел отношения приращения функции F(x) на участке к длине этого участка (или среднюю вероятность, приходящуюся на единицу длины участка) при условии, что длина стягивается в точку:

Определение 36. Предел отношения вероятности попадания НСВ на элементарный участок от х до 



Другие названия плотности: плотность вероятности, дифференциальная функция распределения, дифференциальный закон распределения.


Механическая интерпретация: 
Определение 37. Кривая, изображающая плотность распределения 
Замечание. Если возможные значения СВ заполняют некоторый конечный промежуток, то 
Геометрическая интерпретация 
Перепишем определение: 
Из данного равенства следует, что 

Отсюда следует, что 
При 

Величина 
Рассмотрим большой участок 
Вероятность того, что НСВ примет значение, х принадлежащее интервалу 


Замечание. Для НСВ непринципиально, какие знаки в неравенстве брать < или 

Связь F(x) и 
Нам известно, что
Выразим функцию распределения F(x) через плотность. По определению 
Из формулы (1) следует, что
Геометрически, это площадь кривой распределения, лежащая левее точки х.
Замечания.
1. Формулу (3) можно доказать по-другому: по определению дифференциала функции имеем, что 

2. Формулу (1) можно доказать на основании свойства функции распределения: 
Но согласно равенству (3) 

3. Функция распределения F(x)- безразмерная величина, размерность плотности 
Свойства плотности распределения
1. 

Пояснение: это следует из того, плотность распределения есть производная от неубывающей функции F(х). Геометрически: вся кривая распределения лежит не ниже оси абсцисс.
2. Условие нормировки: интеграл в бесконечных пределах от плотности распределения равен 1:
—со
Доказательство
Подставим в равенство (3) 

Геометрически данное свойство означает следующее: полная площадь, ограниченная кривой распределения и осью абсцисс равна единице.
Пример №15
Дана функция распределения НСВ X:

Найти 1) коэффициент а, 2) плотность распределения 

Решение.
1) Т. к. F(x) — непрерывная функция, то при х = 1 должно выполняться равенство, что 

2) 


3) 1 способ: (0,25; 0,5) входит в интервал (0; 1). По свойству 6 функции распределения: 
2 способ. Можно было найти по формуле (1) с помощью плотности распределения:

Пример №16
Пусть НСВ X подчинена закону распределения с плотностью

Найти 1) коэффициент а, 2) функцию распределения F(x), 3) 

Решение.
1) Для нахождения коэффициента а воспользуемся условием нормировки (4):

2) Найдем функцию распределения по формуле (3): 
Если 


Если 

Если 

Итак, F(x) = 
3) 

1 способ: По свойству 6 функции распределения:

2 способ. Можно было найти по формуле (1) с помощью плотности распределения:

Вывод:
Законы распределения
ДСВ
1. Ряд распределения (графически -многоугольник распределения).
2. Функция распределения F(x).
НСВ
1. Функция распределения F(x).
2. Плотность распределения 
Числовые характеристики случайных величин, их роль и назначение
Определение 38. Характеристики, назначение которых — выразить в сжатой форме наиболее существенные особенности распределения, называются числовыми характеристиками СВ.
Они не характеризуют СВ полностью, а указывают только отдельные числовые параметры, например, какое-то среднее значение, около которого группируются возможные значения СВ; какое-либо число, характеризующее степень разбросанности этих значений относительно среднего и т. д.
Характеристики положения (математическое ожидание, мода, медиана)
Данные характеристики характеризуют положение СВ на числовой оси, т. е. указывают некоторое среднее, ориентировочное значение, около которого группируются все возможные значения случайной величины.
Например, 1) среднее время работы, 2) средняя точка попадания смещена относительно цели на 0,3 м вправо…
Разберем эти характеристики подробнее.
1. Математическое ожидание или среднее значение случайной величины
a) Для дискретных случайных величин.
Рассмотрим ДСВ X, имеющую возможные значения 





Определение 39. Сумма произведений всех возможных значений случайной величины на вероятности этих значений называется математическим ожиданием случайной величины
Замечания.
1. М[Х] существует тогда и только тогда, когда ряд 
2. Когда М[Х] входит в формулы как определенное число, то ее обозначают М[Х] = 
Механическая интерпретация М[Х] для ДСВ: пусть на оси (Ох) расположены точки с абсциссами 


Связь между М[Х] и средним арифметическим числа наблюдаемых значений СВ при большом числе опытов: при увеличении числа опытов среднее арифметическое наблюдаемых значений СВ будет приближаться (сходиться по вероятности) к ее математическому ожиданию. Эта связь — одна из форм закона больших чисел.
b) Для непрерывных случайных величин.
Рассмотрим НСВ. Заменим в формуле (1) отдельные значения 


Механическая интерпретация М[Х] для НСВ: М[Х] — абсцисса центра тяжести в случае, когда единичная масса распределена по оси (Ох) непрерывно с плотностью 
Свойства М[Х].
1. М[С] = С , где С — постоянная.
2. 
3. 
4. 
5. M[aX+b] = аМ[Х] + b, а, b- постоянные.
с) Для смешанных случайных величин.
М[Х] = 

2. Мода случайной величины
Определение 40. Мода — наиболее вероятное значение случайной величины.
Иначе, мода — точка максимума многоугольника распределения для ДСВ или кривой распределения для НСВ.
Мода обознается М; когда мода входит в формулы как определенное число, то ее обозначают 
а) Для дискретных случайных величин.
Мода М — такое значение 

b) Для непрерывных случайных величин.
Мода — действительное число 

Замечание. Мода может не существовать, может иметь единственное значение или иметь бесконечное множество значений.
Определение 41. Распределения, обладающие посередине не максимумом, а минимумом называются антимодальными.
Замечание. Мода и математическое ожидание СВ не совпадают, но если распределение является симметричным и модальным и существует мат. ожидание, то оно совпадает с модой и центром симметрии распределения.
3. Медиана случайной величины
Вводится лишь для НСВ, хотя формально ее можно определить и для ДСВ.
Определение 42. Медианой непрерывной случайной величины называется такое ее значение х = Me, относительно которого равновероятно получение большего или меньшего значения случайной величины, т. е. для которого справедливо равенство:




Таким образом, медиана — это корень уравнения 
Геометрически: медиана — это абсцисса точки, в которой площадь, ограниченная кривой распределения, делится пополам.
Замечание. В случае симметричного модального распределения медиана совпадает с мат. ожиданием и модой.
Когда медиана входит в формулы как определенное число, то ее обозначают 
Моменты:
Данные характеристики описывают некоторые свойства распределения СВ. В механике, например, для описания распределения масс существуют статические моменты, моменты инерции…
Определение 43. Начальным моментом s — того порядка для ДСВ и НСВ называется математическое ожидание s — той степени этой случайной величины:

Замечание. При s = 1 
a) Для дискретных случайных величин: 
Замечание. Определение совпадает с определением начального момента порядка s в механике, если на оси (Ох) в точках 

b) Для непрерывных случайных величин: 
Определение 44. Центрированной случайной величиной, соответствующей величине X, называется отклонение случайной величины Х от ее математического ожидания:

Рассмотрим математическое ожидание центрированной ДСВ:

Аналогично, для НСВ 
Центрирование СВ равносильно переносу начала координат в среднюю, центральную точку, абсцисса которой равна математическому ожиданию.
Определение 45. Моменты центрированной случайной величины называются центральными моментами.
Определение 46. Центральным моментом s — того порядка для ДСВ и НСВ называется математическое ожидание s — той степени соответствующей центрированной случайной величины:

a) Для дискретных случайных величин: 
b) Для непрерывных случайных величин: 
Замечание. Для любой СВ центральный момент 1-го порядка 

Рассмотрим подробнее центральные моменты 2, 3, 4 порядков и выведем соотношения, связывающие начальные и центральные моменты.

Определение 47. Дисперсией случайной величины X D[X] называется мат ожидание квадрата соответствующей центрированной случайной величины:
a) Для дискретных случайных величин: 
b) Для непрерывных случайных величин: 
Дисперсия случайной величины — характеристика рассеивания, разбросанности значений случайной величины около ее мат. ожидания.
Когда дисперсия входит в формулы как определенное число, то ее обозначают
Механическая интерпретация D[X]: Дисперсия — момент инерции заданного распределения масс относительно центра тяжести (мат. ожидания).
Рассмотрим ДСВ. (Для НСВ получаем аналогично)


Свойства D[X].
1. D[C] = 0 , где С — постоянная.
2. 
3. 
4. 
5. 
Замечание. D[X] имеет размерность квадрата случайной величины. Для более наглядной характеристики рассеивания удобнее пользоваться величиной, размерность которой совпадает с размерностью случайной величины. Для этого из D[X] извлекают корень:
где 
Когда среднее квадратическое входит в формулы как определенное число, то его обозначают 
Замечание. Математическое ожидание и дисперсия характеризуют наиболее важные черты распределения: его положение и степень разбросанности. Для более подробного описания применяются моменты высших порядков.

Асимметрия случайной величины — характеристика асимметрии или скошенности распределения значений случайной величины.
Теорема. Если распределение симметрично относительно мат. ожидания (т. е. масса распределена симметрично относительно центра тяжести), то все моменты нечетного порядка (если они существуют) равны нулю.
Доказательство.
Действительно, для ДСВ в сумме 


В связи с этим, в качестве характеристики асимметрии и выбирают простейший нечетный момент — третий 


Определение 48. Коэффициентом асимметрии Sk случайной величины X называется величина



Четвертый центральный момент 
Это свойство описывается с помощью эксцесса.
Определение 49. Эксцессом случайной величины X называется величина
Число 3 вычитается из соотношения 

Кривая нормального распределения, для которого эксцесс равен нулю, принята как бы за эталон, с которым сравниваются другие распределения. Кривые более островершинные имеют положительный эксцесс, более плосковершинные — отрицательный.
Абсолютные моменты:


Абсолютные моменты четных порядков совпадают с обычными моментами. Из абсолютных моментов нечетного порядка чаще всего применяется первый абсолютный центральный момент:

a) Для дискретных случайных величин: 
b) Для непрерывных случайных величин: 


Замечания.
1. Моменты могут рассматриваться не только относительно начала координат (начальные) или математического ожидания (центральные), но и относительно произвольной точки а:

2. Во многих задачах полная характеристика случайной величины (закон распределения) не нужна или не может быть получена, поэтому ограничиваются приблизительным описанием СВ с помощью числовых характеристик, каждая из которых выражает какое-либо характерное свойство распределения. Иногда характеристиками пользуются для приближенной замены одного распределения другим.
Пример №17
Дан ряд распределения ДСВ:
Найти: 1) величину а, 2) математическое ожидание и дисперсию М[Х] и D[X] , 3) М[3Х + 2], D[2X + 3].
Решение.
1) Величину а найдем из условия: 
2) Найдем математическое ожидание и дисперсию:
По формуле (1) 
По формуле (8) 
Дисперсию можно было найти, используя формулу (10) и (4):
3) М[ЗХ + 2] = (по 5 свойству мат. ожидания) = 
D[2X + 3] = (по 5 свойству дисперсии) =
Пример №18
Стрелок производит 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. СВ Х — число попаданий. Определить: 1) математическое ожидание, 2) дисперсию, 3) среднее квадратическое отклонение, 4) моду, 5) асимметрию, 6) среднее арифметическое отклонение.
Решение.
Ранее мы построили ряд распределения числа попаданий. Ряд распределения имеет вид:
1) 
2) 
(по формуле 8. Можно было по формуле (4): 
3) 
4) Найдем моду М: 
5) По формуле (6)
Тогда коэффициент асимметрии по формуле (12) 
6) По формуле (14) найдем среднее арифметическое отклонение:
Пример №19
Непрерывная случайная величина подчинена закону распределения с плотностью 

Решение.
1) Если х < 0 

Воспользуемся свойством плотности распределения для определения А:

2) 
3) 

4) 
5) M = 0.
6) 


7) 
Следовательно, асимметрия Sk=0.



Пример №20
Случайная величина X подчинена закону распределения, плотность которого задана графически. Найти: 1)выражение для плотности, 2) найти мат. ожидание, 3) дисперсию.
Решение.
1) 
2) 

3) Дисперсию найдем двумя способами.
1 способ (по определению): 
2 способ (через начальные моменты):

Биномиальное распределение
Постановка задачи: пусть СВ X выражает число появления события А ( m раз) при n независимых испытаниях, проводимых в одинаковых условиях. Вероятность появления события А — р — постоянна. Вероятности возможных значений 

Определение 50. Распределение дискретной случайной величины, для которой ряд распределения задастся формулой Бернулли, называется биномиальным.
Примеры типовых задач: 1) число бракованных изделий в выборке из n деталей, 2) число попаданий или промахов при выстрелах в мишень.
Найдем математическое ожидание и дисперсию СВ, имеющей биномиальное распределение.
1) 
Вычислим данную сумму. Ранее записали следствие из теоремы Бернулли, что 

Продифференцируем данное равенство по переменной р:




Вывод: математическое ожидание числа наступления события А в серии независимых и одинаковых испытаний равно произведению числа испытаний на вероятность появления события при одном испытании

2) Можно вывести, что дисперсия СВ X, распределенной по биномиальному закону, находится по формуле:

Тогда среднее квадратическое: 
Пример №21
Случайная величина X представляет число бракованных деталей из выборки в 50 штук. Вероятность брака одной детали р = 0,06. Найти М[Х], D[X], 
Решение.
СВ X имеет биномиальное распределение, следовательно, сразу по формулам имеем:



Распределение Пуассона
Постановка задачи: пусть СВ X выражает число появления события А ( m раз) при n независимых испытаниях, проводимых в одинаковых условиях, причем n очень велико (


где 

Определение 51. Распределение дискретной случайной величины, для которой ряд распределения задастся формулой Пуассона, называется распределением Пуассона.
Примеры типовых задач: 1) число вызовов на телефонной станции за некоторое время t, 2) число отказов сложной аппаратуры за некоторое время t, 3) распределение изюма в булочках, 4) число кавалеристов, убитых за год копытом лошади.
Распределение Пуассона зависит только от одного параметра 

Можно вывести, что дисперсия СВ X, распределенной по закону Пуассона, находится по формуле:

Замечание. Мы использовали распределение Пуассона как приближенное в тех случаях, когда точным распределением СВ является биномиальное распределение, и когда математическое ожидание мало отличается от дисперсии, т. е. 
Можно было получить распределение Пуассона, рассматривая задачу о числе случайных точек на оси абсцисс, попадающих на заданный отрезок, причем 
Пример №22
На телефонную станцию в течение определенного часа дня поступает в среднем 30 вызовов. Найти вероятность того, что в течение минуты поступает не более двух вызовов.
Решение.


СВ Х- число вызовов, ее возможные значения: 
По условию, в течение минуты поступает не более двух вызовов, т. е. 
Пример №23
Завод отправил на базу 500 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,002. Найти вероятность того, что на базу прибудет 3 негодных изделия.
Решение.
Дано: р = 0,002; q = 1 — р = 0,998; n = 500. Проверим, можно ли воспользоваться формулой Пуассона, т. е. проверим истинность равенства: 





Гипергеометрическое распределение
Постановка задачи: производится ряд n независимых испытаний, в каждом из которых с вероятностью p наступает событие А. Опыты продолжаются до первого появления события А. Случайная величина Х- число проведенных опытов, 
Определение 52. X с возможными значениями 

Можно вывести, что 

Определение 53. X имеет гипергеометричское распределение, если

Пример типовой задачи: из урны, содержащей 5 красных и 7 синих шаров, случайным образом и без возвращения извлекается 3 шара. Случайная величина X— число синих шаров в выборке. Описать закон распределения Х и найти математическое ожидание.
Решение.
Шары синие, следовательно, n = 3, а + b = 12, а = 7.
Данная случайная величина имеет возможные значения 


Следовательно, ряд распределения имеет вид:
Мат. ожидание найдем по формуле: 
или по определению: 
Равномерное распределение или закон равномерной плотности
Пусть известно, что все возможные значения х непрерывной случайной величины X лежат в пределах определенного интервала (а, b), в некоторых источниках рассматривается [а, b].
Определение 54. Равномерным называют распределение вероятностей НСВ X, если на каждом интервале (а, b) ее плотность распределения 

Примеры типовых задач: равномерное распределение реализуется 1) в экспериментах, в которых наудачу ставится точка на промежутке (а, b) или [а, b], причем Х — координата поставленной точки; 2) в экспериментах по измерению тех или иных физических величин с округлением, причем X — ошибка округления.
Выведем формулы для вычисления мат. ожидания и дисперсии.


Итак, 

Вероятность попадания случайной величины на участок 

Найдем функцию распределения F(x):


Итак,
Пример №24
Цена деления шкалы амперметра равна 0,1 ампера. Показания амперметра округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0,02 ампера.
Решение.
СВ X — ошибка округления отсчета. X распределена равномерно в интервале между двумя соседними целыми делениями:
Ошибка отсчета превысит 0,02, если она будет заключена в интервале (0,02; 0,08). Найдем вероятность попадания Х в этот интервал:

Можно было найти эту вероятность, сразу подставив в формулу 

Показательное или экспоненциальное распределение
Определение 55. НСВ X распределена по показательному или экспоненциальному закону, если ее плотность распределения 

Выведем формулы для вычисления мат. ожидания и дисперсии.

Итак, 
Найдем функцию распределения F(x):
Если 

Если 
Итак,
Пример №25
Случайная величина Т — время работы радиолампы имеет показательное распределение. Определить вероятность того, что время работы лампы будет не меньше 600 часов, если среднее время работы лампы 400 часов.
Решение.
По условию
Нормальный закон распределения
Определение 56. НСВ X распределена по нормальному закону, если ее плотность распределения 
Нормальный закон называют еще законом распределения Гаусса.
Говорят, что случайная величина X подчинена нормальному закону и пишут 
Примеры типовых задач: случайные величины в них характеризуют ошибки при измерениях, боковые отклонения и отклонения по дальности при стрельбе, величина износа деталей…
График плотности или кривая распределения называется гауссовской кривой. Она имеет симметричный холмообразный вид. При 
Главная особенность нормального закона состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях.
Кривые распределения по всем другим законам распределения получаются из одной единственной кривой — гауссовской.
Для наглядной демонстрации нормального закона распределения иногда используют специальное устройство — доску Гальтона. В нем падающие сверху шарики распределяются между правильными шестиугольниками и в результате падают на горизонтальную поверхность, образуя картинку, похожую на подграфик гауссовой кривой.
Распределение пассажиров по вагонам метро — гауссово распределение. Покажем это. Пассажиры метро бегут по переходу, выходящему на середину станции, на поезд, стоящий напротив выхода из перехода. Платформа, у которой стоит поезд, равномерно разделена колоннами. Ясно, что большинство пассажиров войдет в средние вагоны, а по мере удаления вагонов от центра, количество садящихся в них людей будет уменьшаться.
Замечание. С гауссовской плотностью 
1. Убедимся, что 



2. Докажем, что численные параметры m и 


Таким образом, m = M[X]. Этот параметр, особенно в задачах стрельбы, называют центром рассеивания.
Доказать самостоятельно, что 
Смысл параметров m и
m — центр симметрии распределения (т.к. при изменении знака разности (х — m) в формуле плотности на противоположный, выражение не меняется). Если изменять центр рассеивания m, то кривая распределения будет смещаться вдоль оси (Ох), не изменяя своей формы. Следовательно, m характеризует положение распределения на оси (Ох).
Размерность m та же, что и размерность случайной величины X.
В задачах m означает систематические ошибки.



Размерность о совпадает 

Замечания.
1. В некоторых курсах теории вероятностей вводят понятие меры точности 
2. 
3. Если НСВ X распределяется по закону N(0, 1), то она называется стандартизованной случайной величиной.
Формула для центральных моментов любого порядка имеет вид:
Т.к. 
Для четных моментов: 


Найдем вероятность попадания НСВ X, подчиненной нормальному закону с параметрами m и 




Итак,
Вероятность попадания НСВ X левее 
Свойства функции Лапласа
1. Ф(х) определена для всех действительных х.
2.
3. Ф(х) неубывающая, т. е. возрастает на R.
4. Ф(-х) = 1 — Ф(х) (это следует из симметричности нормального распределения с параметрами m = 0, 
5.
6.
7. 


Если m = 0, то
Вывод 7 свойства.
Из 4 свойства и формулы для вычисления интервальных вероятностей имеем, что:

Функция Лапласа затабулирована. Для тех значений х, которых нет в таблице:
Свойства функции Лапласа
1. Ф(x) определена для всех действительных x.
2. Ф(0) = 0.
3. Ф(x) неубывающая, т.е. возрастает на R.
4. Ф(-x) = -Ф(x).
5.
6.
7.
Функция Лапласа затабулирована. Для тех значений х, которых нет в таблице:
Пример №26
Длина изготовленной автоматом детали представляет собой случайную величину, распределенную по нормальному закону с параметрами 
Решение.
Вероятность брака:
Случайные величины в теории вероятностей
С каждым случайным экспериментом связано множество его возможных исходов 

Определение. Случайной величиной называется функция 

Определение. Всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями, называется законом распределения случайной величины. Фактически для задания закона распределения нужно перечислить все возможные значения случайной величины и указать вероятности этих значений.
Закон распределения является исчерпывающей характеристикой случайной величины. Если он задан, то с вероятностной точки зрения случайная величина описана полностью. Поэтому часто говорят о том или ином законе распределения, имея в виду случайную величину, которая распределена по этому закону.
Случайные величины будем обозначать большими латинскими буквами 
Определение. Случайную величину называют дискретной, если она может принимать отделенные друг от друга значения с определенными вероятностями. Множество возможных значений дискретной случайной величины конечно или счетно, т.е. их можно занумеровать с помощью ряда натуральных чисел.
Определение. Случайная величина называется непрерывной, если ее возможные значения составляет некоторый интервал (конечный или бесконечный).
Отметим способы задания законов распределения дискретных случайных величин. Соответствие между возможными значениями 68 дискретной случайной величины и вероятностями этих значений можно задать в виде формулы. Если это затруднительно, то можно просто перечислить то и другое в виде таблицы, называемой рядом распределения:
где 



Ряд распределения можно изобразить графически. Для этого в каждой точке 

Функция распределения
Определение. Функцией распределения случайной величины 
определяющую для каждого значения 

Непосредственно из определения функции распределения можно вывести ряд ее свойств
1. 

Отметим также, что 

2. Функция распределения является неубывающей, т.е. 






В правой части равенства (2.8.1) находится неотрицательная величина, поэтому 

3. 

4. Для любого 
Предел в правой части равен нулю, если 






Впредь будем называть непрерывными только случайные величины с непрерывной функцией распределения. Для непрерывной случайной величины вероятность любого отдельно взятого значения равна нулю. Сходная ситуация в геометрии. Геометрическая точка не имеет размера, а состоящий из точек интервал имеет отличную от нуля длину. Так и для непрерывной случайной величины: одно отдельно взятое значение имеет нулевую вероятность, хотя и является возможным значением, и только интервалы значений имеют отличную от нуля вероятность.
График функции распределения одной из непрерывных случайных величин изображен на рис. 2.8.2.
Функцию распределения можно задать и для непрерывной и для дискретной случайной величины. Для дискретной случайной величины функция распределения представляет собой, как это следует из определения, функцию накопленных вероятностей:
где суммирование распространяется на все значения индекса 
Если дискретная случайная величина Х имеет закон распределения:
то ее функция распределения имеет вид ступенчатой функции, причем скачки функции равны вероятностям соответствующих значений Х (рис. 2.8.3).
Функция распределения непрерывной случайной величины непрерывна, для дискретной случайной величины она представляет собой ступенчатую функцию. Можно привести примеры таких случайных величин, функция распределения которых вместе с участками непрерывного роста в некоторых точках имеет разрывы. Такие величины называют смешанными случайными величинами. Примером смешанной случайной величины может служить время ожидания у светофора. Пусть, например, равновозможно прибытие автомобиля к перекрестку в любой момент цикла работы светофора (рис. 2.8.4). Найдем функцию распределения времени ожидания автомобиля.
Обозначим время ожидания у светофора через 





Функция плотности вероятности
Если функция распределения представима в виде 




Заметим, что
Геометрически это означает, что вероятность попадания случайной величины в интервал 

Свойства функции плотности вероятности.
1.
2.
Последнее условие называется условием нормировки. Геометрически это условие означает, что площадь, заключенная между осью абсцисс и графиком функции плотности вероятности, равна единице.
По функции плотности вероятности 
Числовые характеристики случайных величин
Числа, назначение которых указывать основные особенности случайных величин, называются числовыми характеристиками.
Определение. Математическим ожиданием (или средним значением) дискретной случайной величины Х называется число
равное сумме произведений возможных значений 

Математическим ожиданием непрерывной случайной величины, имеющей функцию плотности вероятности 
если интеграл абсолютно сходится. Если интеграл (2.8.3) не сходится абсолютно, то говорят, что математическое ожидание не существует.
Свойства математического ожидания.
- Математическое ожидание постоянной равно самой этой постоянной, т.е.
- Математическое ожидание суммы любого конечного числа случайных величин равно сумме их математических ожиданий.
- Математическое ожидание произведения любого конечного числа взаимно независимых случайных величин равно произведению их математических ожиданий.
Следствие. Постоянный множитель можно выносить за знак математического ожидания.
Определение. Дисперсией случайной величины X называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:
Для вычисления дисперсии иногда удобно использовать другую формулу:
т.е. дисперсия равна математическому ожиданию квадрата случайной величины минус квадрат ее математического ожидания:
Свойства дисперсии.
- Дисперсия постоянной величины равна нулю:
- Постоянный множитель можно выносить за знак дисперсии с возведением в квадрат, т.е.
где C –– постоянная величина.
Определение. Центрированной случайной величиной называется отклонение случайной величины от ее математического ожидания:
Центрированные случайные величины удобно использовать в преобразованиях, так как
3. Если случайные величины Х и Y независимы, то
4. Если случайные величины Х и Y независимы, то
Дисперсия имеет размерность квадрата случайной величины. Это лишает наглядности дисперсию как числовую характеристику. Поэтому для характеристики разброса значений случайной величины используют среднее квадратическое отклонение, которое равно положительному значению корня квадратного из дисперсии: 
Пример №27
Некто носит на связке пять ключей. При отмыкании замка он последовательно испытывает ключи, пока не подберет нужный. Полагая выбор ключей бесповторным, написать закон распределения числа испытанных ключей. Вычислите математическое ожидание этой случайной величины.
Решение. Обозначим через X – число испытанных ключей. Так как выбор ключей бесповторный, то X может принимать значения: 1, 2, 3, 4, 5. Случайная величина X примет значение 

Случайная величина X имеет закон распределения
Среднее число попыток равно
Ответ. 3.
Пример №28
В ящике в полном беспорядке лежат пять пар туфель. Туфли по одной (без возвращения) вынимают из ящика, пока среди выбранных не обнаружится какая-либо пара. Сколько в среднем туфель придется извлечь из ящика?
Решение. Обозначим через X – число извлеченных туфель. Случайна величина X принимает только значения 2, 3, 4, 5, 6. (Чтобы сформировать пару, нужно извлечь минимум две туфли, а среди шести туфель хотя бы одна пара непременно найдется.) Найдем вероятности этих значений:





Итак, случайная величина имеет закон распределения:
Ответ.
Пример №29
Цена лотерейного билета равна 50 рублей. В данной лотерее каждый пятый билет выигрывает. Величина выигрыша на один билет X имеет распределение:
Некто приобрел пять билетов. Необходимо вычислить его средний выигрыш от участия в этом тираже лотереи.
Решение. Обозначим через 


где
Поэтому средний выигрыш на пять билетов составит 5 • 36 = 180 руб., но за билеты было заплачено 250 руб. В итоге, средний «выигрыш» (фактически, проигрыш) равен 180 – 250 = –70 руб.
Ответ. –70 руб.
Пример №30
Монету подбрасывают до тех пор, пока не выпадет герб, или пять раз подряд не выпадет цифра. Пусть X – число бросков монеты. Напишите закон распределения случайной величины X и найдите ее математическое ожидание.
Решение. Если при первом же броске выпадет герб, то X =1, вероятность чего равна 1/2.
Бросков понадобится два, если сначала выпадет цифра, а при втором броске – герб. Вероятность такого исхода равна (1/ 2)(1/ 2) = 1/ 4.
Монету придется бросать трижды, если сначала дважды выпадет цифра и при третьем броске – герб. Вероятность этого равна (1/ 2)(1/ 2)(1/ 2) = 1/ 8.
Аналогично
Если четыре раза подряд выпадет цифра, то необходим пятый бросок, который независимо от результата (с вероятностью один) будет последним. Поэтому
Закон распределения числа бросков имеет вид:
Среднее число бросков равно 
Ответ.
Пример №31
Вероятность попадания в цель при каждом выстреле равна 1/3. Имеется семь патронов. Стрельба производится до тех пор, пока не будет трех попаданий или пока не кончатся патроны. Пусть X – число выстрелов. Найдите математическое ожидание случайной величины X.
Решение. Найдем сначала закон распределения случайной величины X. Для трех попаданий необходимо минимум три выстрела. Вероятность трех попаданий подряд равна 





Выстрелов будет семь, если к моменту седьмого выстрела будет два или меньше двух попаданий.
Поэтому
Заметим, что проще эту вероятность было посчитать, отняв от единицы вычисленные уже вероятности остальных значений. Итак, случайная величина X имеет закон распределения:
Ответ.
Пример №32
Из 12 изделий три имеют скрытые дефекты. Наугад выбраны четыре изделия. Напишите закон распределения числа изделий со скрытыми дефектами среди выбранных.
Решение. Пусть X – число деталей со скрытыми дефектами среди выбранных четырех. Это дискретная случайная величина с возможными значениями 

Значению X = 0 благоприятствуют 






Среднее число деталей со скрытыми дефектами в выборке равно
Ответ. 1.
Пример №33
Случайная величина X принимает значения 1, 3, 5, 7, 9 с вероятностями

Решение. Так как сумма вероятностей всех возможных значений случайной величины равна единице, то 

Ответ.
Пример №34
Из чисел 1, 2, 3, …, 20 наугад без возвращения выбирают восемь чисел. Найти математическое ожидание их суммы.
Решение. Обозначим через 


Например, вероятность того, что пятое по порядку число будет равно 
Это означает, что для 



Ответ. 84.
Пример №35
Из чисел 1, 2, 3, 4, 5, 6, 7 наугад без возвращения выбирают четыре числа. Пусть X – наибольшее из этих чисел. Требуется найти закон распределения случайной величины X и ее математическое ожидание.
Решение. Случайная величина X может принимать значения 4, 5, 6, 7. Вычислим вероятности этих значений. Всего имеется 






Поэтому
Ответ.
Пример №36
Пусть в урне находится M белых шаров и R черных. Из урны наугад выбирают один шар. После установления его цвета в урну добавляют 



Обозначим через X число белых шаров, выбранных из урны в процессе этих 
Решение. Заметим, что X принимает значения 0, 1, 2, 3, …, 
Рассудим следующим образом. После каждого опыта число шаров в урне возрастает на 






Если белый шар был выбран 





Аналогично 




Различимых последовательностей в чередовании белых и черных шаров существует 


Закон распределения случайной величины X со значениями 0, 1, 2, 3, …, 

Замечание. Если в распределении Полиа 

Рассмотрим серию опытов, которые производятся в неодинаковых условиях и поэтому вероятность появления события 








Можно, как и при выводе формулы Бернулли (2.6.1), моделировать результаты 








Каждая перестановка этих букв соответствует определенной последовательности появлений и непоявлений события 
где 
Если перемножить скобки, привести подобные и упорядочить их по степеням 






Пример №37
С разных расстояний производится четыре независимых выстрела по одной и той же цели. Вероятности попадания в цель при этих выстрелах равны соответственно 0,1; 0,2; 0,4; 0,8. Найти распределения числа попаданий и математическое ожидание этого числа.
Решение. Обозначим число попаданий в цель через X . Запишем производящую функцию
Итак, случайная величина X имеет распределение:
Заметим, что 



Но 
Ответ.
Пример №38
На круговом экране локатора равновозможно появление пятна в каждой точке экрана. Радиус экрана равен R. Найти закон распределения расстояния от центра экрана до пятна. Найти математическое ожидание и дисперсию этого расстояния.
Решение. Обозначим через Х расстояние от центра экрана до пятна. Это расстояние будет меньше 










Ответ.
Пример №39
Случайная величина X имеет функцию распределения
Найти
Решение. Найдем сначала функцию плотности вероятности
Тогда 
С учетом определения и свойств функции распределения 
В последнем случае учтено, что 
Ответ.
Случайные величины и их характеристики
Если классическая теория вероятностей изучала, в основном, события и вероятность их появления (наступления), то современная теория вероятностей изучает случайные явления и их закономерности с помощью случайных величин. Понятие случайной величины, таким образом, является основополагающим в теории вероятностей. Ещё ранее проводились события, состоящие в появлении того или иного числа. Например, при бросании игральной кости могли появиться числа 1, 2, 3, 4, 5, 6. Наперёд определить число появившихся очков невозможно, поскольку оно зависит от многих случайных причин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная, а числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины. Случайной величиной называется величина, которая в результате опыта принимает то или иное (причём, одно и только одно) возможное числовое значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.
Случайны величины принято, обычно, обозначать прописными буквами X ,Y ,Z ,…, а их возможное значения — соответствующими строчными буквами x, y,z,… Например, если случайная величина X имеет три возможных значения, то они, соответственно, обозначаются так: 
Пример 1. Число родившихся мальчиков среди ста новорожденных есть величина случайная, которая имеет следующие возможные значения: 0, 1, 2, …, 100.
Пример 2. Расстояние, которое пролетит снаряд при выстреле из орудия, есть также величина случайная. Действительно, расстояние зависит не только от установки прицела, но и от многих других причин (силы и направления ветра, температуры и т. п.), которые не могут быть полностью учтены. Возможные значения этой величины, очевидно, принадлежат некоторому промежутку (интервалу) 
Например, опыт — выстрел по
мишени; событие — попадание в мишень; случайная величина — число попаданий в мишень. Вернёмся к примерам, приведённым выше. В первом из них случайная величина X могла принять одно из следующих возможных значений: 0, 1, 2,…, 100. Эти значения отделены одно от другого промежутками, в которых нет возможных значений X . Таким образом, в этом примере случайная величина принимает отдельные, изолированные, возможные значения.
Во втором примере случайная величина могла принять любое из значений промежутка a,b. Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины. Уже из сказанного можно заключить о целесообразности различать случайные величины, принимающие лишь отдельные, изолированные значения и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.
Дискретной (прерывной) случайной величиной называется такая случайная величина, которая принимает конечное или счётное множество4 различных значений. Другими словами — это такая случайная величина, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным. Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка действительной числовой оси.
Очевидно, во-первых, число возможных значений непрерывной случайной величины – бесконечно. Во-вторых, дискретная случайная величина является частным случаем непрерывной случайной величины.
Закон распределения вероятностей
Закон распределения вероятностей дискретной случайной величины:
На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все её возможные значения. В действительности это не так: различные случайные величины иногда могут иметь одинаковые перечни возможных значений, а соответствующие вероятности этих значений – различные. Поэтому для полной характеристики мало знать значения случайной величины, нужно ещё знать, как часто эти значения встречаются в опыте при его повторении, т.е. нужно ещё указать вероятности их появления.
Рассмотрим случайную величину 



4 Напомню, что счётным является множество, элементы которого можно пронумеровать числами натурального ряда.
5 Ai — событие, состоящее в том, что случайная величина X приняла в опыте значение 
Тогда: соответствие, устанавливающее связь между возможными значениями случайной величины и их вероятностями, называется законом распределения вероятностей случайной величины, или просто – законом распределения случайной величины. Закон распределения вероятностей данной случайной величины можно задать таблично (ряд распределения), аналитически (в виде формулы) и графически. При табличном задании закона распределения дискретной случайной
величины первая строка таблицы содержит возможные значения, а вторая — их вероятности, т.е.
В целях наглядности закон распределения дискретной случайной величины
можно изобразить и графически, для чего в прямоугольной системе координат строят точки 

Аналитически закон распределения дискретной случайной величины можно записать, например, используя формулу Бернулли для схемы повторения независимых опытов. Так, если обозначить случайную величину, которой является число бракованных деталей в выборке, через X , то возможные её значения 


что о определяет закон распределения данной случайной величины.
Закон распределения вероятностей непрерывной случайной величины:
Вспомним, что дискретная случайная величина задаётся перечнем всех её возможных значений и их вероятностей. Такой способ задания не является общим: он не применим, например, для непрерывных случайных величин. Действительно, рассмотрим случайную величину X , возможные значения которой сплошь заполняют интервал 
Пусть x – переменная, принимающая произвольные действительные значения (на оси 




Геометрически это равенство можно истолковывать так:
Свойства интегральной функции
1. Значения интегральной функции принадлежат отрезку
Доказательство этого свойства вытекает из определения интегральной функции как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.
Действительно, пусть A– событие, состоящее в том, что случайная величина X примет значение меньшее 

3. Если возможные значения непрерывной случайной величины расположены на всей числовой оси Ox , то справедливо следующее предельное соотношение:
Это свойство вполне очевидно. Так, если 

4. Вероятность того, что случайная величина примет значение, заключенное в интервале 
Рассмотрим следующие события:




Мы будем в основном изучать такие непрерывные случайные величины, функции распределения которых непрерывны.
График функция распределения дискретной случайной величины представляет собой ступенчатую ломаную линию (см. рис.). Величина
скачка в точках разрыва равна вероятности значения случайной величины в этой точке. Зная ряд распределения случайной величины, можно построить график её функции распределения:
Для непрерывной случайной величины более наглядной является не интегральная, а дифференциальная функция распределения или, так называемая, плотность распределения случайной величины:
плотностью распределения 

Свойства дифференциальной функции

Действительно:





6 Воспользоваться вторым свойством для функции
Но, по рассмотренному выше второму свойству для 


Замечу, что график дифференциальной функции 

Пример №40
Плотность распределения случайной величины X задана формулой
Требуется:
1. найти величину постоянной A;
2. найти функцию
3. определить вероятность попадания случайной величины X в интервал
Решение.
1. величину постоянной A найдём из условия нормировки: 
Числовые характеристики случайных величин
Закон распределения случайной величины отвечает на вопрос, где расположены возможные значения случайной величины и какова вероятность их появления в том или ином интервале значений. Часто на практике достаточно знать только некоторые характеристики
случайной величины, то есть иногда выгоднее пользоваться числами, которые описывают случайную величину суммарно. В теории вероятностей для общей характеристики случайной величины используют параметры, называемые числовыми характеристиками случайной величины. Наиболее часто используют такие из них: математическое ожидание, дисперсия, мода, медиана, моменты распределения.
Математическое ожидание
Математическим ожиданием 


Математическим ожиданием непрерывной случайной величины X называется число, равное
Из определения следует, что математическое ожидание случайной величины есть величина неслучайная, а постоянная. Кроме того, существуют случайные величины, у которых 

Легко сообразить, что математическое ожидание больше наименьшего и меньше наибольшего возможных значений случайной величины. Другими словами, на числовой оси возможные значения случайной величины расположены слева и справа от математического ожидания. В этом смысле математическое ожидание характеризует расположение распределения случайной величины и поэтому его часто называют центром распределения (последний термин заимствован из механики).
Свойства математического ожидания


Модой дискретной случайной величины называется её наибольшее вероятное значение 


Медианой случайной величины называется такое её значение e M , относительно которого равновероятно, что данная случайная величина
окажется больше или меньше медианы, т.е.
Геометрически, медиана – это абсцисса точки, в которой площадь области, ограниченная кривой распределения и осью Ox , делится
пополам. Если распределение симметрично и имеет один максимум, то все три указанные характеристики совпадают. На рисунке
изображён случай несимметричного распределения случайной величины.
7 Происхождение термина «математическое ожидание» связано с начальным периодом возникновения теории вероятностей (XVI-XVII вв.), когда область её применения ограничивалась азартными играми. Игрока интересовало среднее значение ожидаемого выигрыша или, иными
словами, математическое ожидание выигрыша.
Дисперсия
Легко указать такие случайные величины, которые имеют одинаковые математические ожидания, но различные возможные значения.
Рассмотрим, например, две дискретные случайные величины X и Y, заданные следующими законами распределения:
Нетрудно видеть, что M(X)=M(Y)=0. Здесь математические ожидания обеих случайных величин одинаковы, а возможные значения различны, причём Х имеет возможные значения, близкие к математическому ожиданию, а Y – далёкие от своего математического ожидания. Таким образом, зная лишь математическое ожидание случайной величины, ещё нельзя судить ни о том, какие возможные значения она может принимать, ни о том, как они рассеяны вокруг математического ожидания. Другими словами, математическое ожидание полностью случайную величину не характеризует. По этой причине, наряду с математическим ожиданием, вводят и другие числовые характеристики. Так, например, для того, чтобы оценить, как рассеяны возможные значения случайной величины вокруг её математического ожидания,
пользуются, в частности, числовой характеристикой, которую называют дисперсией. Дисперсией 
1). Для дискретной случайной величины 
2). Для непрерывной случайной величины 
Свойства дисперсии:
Доказательства, приведённых выше свойств, вполне очевидны и проводятся по определению. Давайте докажем, например, третье свойство:
Пример №41
Найти дисперсию 
Решение:
Вычислим, прежде всего, математическое ожидание данной случайной величины:
Среднее квадратическое отклонение
Для оценки рассеяния возможных значений случайной величины вокруг её среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратическое отклонение.
Средним квадратическим отклонением 
Легко показать, что дисперсия имеет размерность равную квадрату размерности случайной величины. Так как среднее квадратическое отклонение, по определению, равно квадратному корню из дисперсии, то размерность 
квадратическое отклонение, а не дисперсию. Например, если Х выражается в линейных метрах, то
Дисперсия и среднее квадратическое отклонение являются мерой рассеяния случайной величины относительно центра распределения – чем больше рассеяние, тем больше
Моменты распределения случайной величины
Рассмотрим дискретную случайную величину Х, Заданную законом распределения:
Видимо,что 



Обобщением основных числовых характеристик случайной величины являются её моменты. В теории вероятностей используют начальные и центральные моменты случайной величины.
Начальным моментом k -ого порядка (обозначают через 

Центральным моментом k -ого порядка (обозначают через 
Нетрудно видеть, что для дискретной случайной величины моменты будут выражаться через сумму, а для непрерывной – через интеграл.
Справедливо, в частности:
- Условие нормировки
- Первый начальный момент равен
- Второй центральный момент равен
- Нормированный третий центральный момент
называется коэффициентом асимметрии и служит характеристикой асимметрии или скошенности распределения случайной величины.
Асимметрия положительна, если «длинная часть» кривой распределения
расположена справа от математического ожидания; асимметрия отрицательна, если «длинная часть» кривой расположена слева от математического ожидания. На практике определяют знак асимметрии по расположению кривой распределения относительно моды (точки
максимума дифференциальной функции): если длинная часть кривой расположена правее моды, то асимметрия положительна, если слева – отрицательна (см. рис.).
Если A = 0, то можно сказать, что значения случайнойвеличины распределены симметрично относительно математического ожидания, т.е. случайная величина имеет нормальное распределение.
5. С четвёртым центральным моментом связана величина, называемая эксцессом:
Эксцесс характеризует островершинность или плосковершинность распределения случайной величины (другими
словами, эксцесс служит для оценки «крутости», то есть большего или меньшего подъёма кривой теоретического распределения по сравнению с нормальной кривой). Забегая немного вперёд, скажем, если эксцесс некоторого распределения отличен от нуля, то кривая этого распределения отличается от нормальной кривой: если эксцесс положительный, то кривая имеет более высокую и «острую» вершину, чем нормальная кривая; если эксцесс отрицательный, то сравниваемая кривая имеет более низкую и «плоскую» вершину, чем нормальная кривая (см. рис.). Для нормального распределения E = 0.
Замечания.
1. Для начальных и центральных моментов справедливы следующие соотношения:
2. Моменты непрерывной случайной величины аналогичны моментам твёрдого тела в механике. Так, если рассматривать бесконечный твёрдый стержень расположенный вдоль оси Ox , то можем записать:

3. Распределение вероятностей случайной величины можно интерпретировать как распределение массы стержня на прямой Ox .
Основные законы распределения случайной величины
Равномерное распределение дискретной случайной величины.
Пусть случайная величина Х принимает n значений с вероятностями 
В этом случае:
— ряд распределения
— функция распределения
— математическое ожидание
— дисперсия
Пример №42
Случайная величина Х – выпадение числа очков на верхней грани игрального кубика при одном броске. Найти математическое ожидание случайной величины Х.
Решение. Очевидно, что
то, согласно определению, случайная величина Х распределена по равномерному закону. Следовательно, в этом случае, можем записать:

Непрерывная случайная величина подчиняется равномерному закону распределения, если её возможные значения лежат в некотором определённом интервале, в пределах которого все значения равновероятны, то есть обладают одной и той же плотностью вероятности. Другими словами, распределение вероятностей называют равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, дифференциальная функция имеет постоянное значение. Случайные величины, имеющие равномерное распределение вероятностей, часто встречаются на практике. Например, при снятии показаний измерительных приборов. Ошибка при округлении отсчёта до ближайшего целого деления шкалы является случайной величиной, которая может с постоянной плотностью вероятности принимать любые значения между двумя соседними делениями. Таким образом, данная случайная величина имеет равномерное распределение.
Найдём дифференциальную функцию (плотность) равномерного распределения, считая, что все возможные значения случайной величины Х
заключены в промежутке 
По условию Х не принимает значений вне промежутка 


Итак, закон равномерного распределения случайной величины на отрезке 
Найдём теперь интегральную функцию равномерного распределения непрерывной случайной величины. Для этого воспользуемся формулой
Итак, искомая интегральная функция распределения аналитически может быть записана так:
Свойства равномерного непрерывного распределения:
Пример №43
Троллейбусы идут строго по расписанию и с интервалом в 6 мин. Найти вероятность того, что пассажир, подошедший к остановке, будет ожидать троллейбус менее двух минут.
Решение. Время ожидания троллейбуса есть непрерывная случайная величина Х, имеющая равномерное распределение на промежутке [0,6], так как с равной вероятностью время ожидания может быть любым в этом промежутке. Тогда
Гипергеометрическое распределение
Гипергеометрическое распределение играет важную роль в области статистического контроля качества. Будем говорить, что дискретная случайная величина Х, принимающая целочисленные значения 
3. при 
Пример №44
Партия из 100 изделий содержит 10% брака. Для контроля выбрано 5 изделий. Необходимо определить вероятность того, что в выборке меньше двух бракованных изделий. Найти 
Решение. Данная дискретная случайная величина Х={0,1,2,3,4,5}очевидно подчиняется гипергеометрическому закону распределения вероятностей. В нашем случае N = 100, D = 10, n = 5. Вероятность того, что в выборке ровно d бракованных изделий равна
Заметим, что 
Далее, найдём
Замечание: Сравним полученные значения математического ожидания и дисперсии с соответствующими значениями (см. свойства гипергеометрического распределения):
Биномиальное распределение
Биномиальное распределение вероятностей является самым распространённым распределением для дискретных случайных величин.
Итак, пусть производится n независимых испытаний, в каждом из которых событие А может появиться, либо не появиться. И пусть, вероятность наступления события во всех испытаниях постоянна и равна р (следовательно, вероятность непоявления 
Очевидно, событие А в n испытаниях может либо не появиться, либо появиться 1 раз, либо 2 раза, . . . , либо n раз. Таким образом, нетрудно записать возможные значения случайной величины
Формула Бернулли и является аналитическим выражением искомого закона распределения.
Биномиальным называют распределение вероятностей дискретной случайной величины, определяемое формулой Бернулли.
Запишем биномиальный закон в виде таблицы:
Свойства биномиального распределения:
Действительно:
Пример №45
Имеется три станка, коэффициент использования по времени которых составляет 0,8. Определить вероятность того, что в середине рабочей смены при нормальных условиях производства из данных трёх станков будет работать не более двух.
Решение. Работа каждого станка – события независимые. Вероятность того, что станок будет работать равна р=0,8 (следовательно q=1-0,8=0,2). Пусть случайная величина Х — число одновременно работающих станков, то есть 


Распределение Пуассона (закон редких событий)
Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р. Для определения вероятности k – появлений события А в этих испытаниях используют, как вам уже известно, формулу Бернулли. Однако, как быть если n велико, а вероятность р события А достаточно мала 
Итак, поставим своей задачей найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно k раз. Сделаем важное допущение: пусть произведение np сохраняет постоянное значение, а именно 
неизменным. Воспользуемся формулой Бернулли для вычисления интересующей нас
вероятности:
Приняв во внимание, что n имеет очень большое значение, вместо 

Итак
В результате (для простоты записи знак приближённого равенства опущен) запишем закон распределения.
Эта формула выражает закон распределения Пуассона вероятностей массовых (n велико) редких (р мало) событий.
Таким образом, будем говорить, что дискретная случайная величина 
Свойства распределения Пуассона:

3. если 
Пример №46
Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,0002. Найти вероятность того, что на базу прибудут: а) три негодных изделия; б) не более трёх повреждённых изделия.
Решение: по условию n=5000, p=0,0002. Найдём
а) k = 3. Искомая вероятность по формуле Пуассона приближённо равна
б) Пусть случайная величина Х – число изделий, повреждённых в пути, то есть 




число событий, происшедших за время t равно k , если события образуют пуассоновский поток, причём
Пример №47
В течение часа коммутатор получает в среднем 60 вызовов. Какова вероятность того, что за время 30 сек, в течении которых телефонистка отлучилась, не будет ни одного вызова?
Решение: Найдём, прежде всего, 
Распределение Гаусса (нормальное распределение)
Наиболее известным и часто применяемым в теории вероятностей законом является нормальный закон распределения или закон Гаусса9.
Главная особенность нормального закона распределения заключается в том, что он является предельным законом для других законов распределения. Будем говорить, что непрерывная случайная величина Х, принимающая значения 
закону, если её плотность распределения (дифференциальная функция) имеет вид
Нетрудно видеть, что нормальное распределение определяется двумя параметрами: 
Нормальное распределение было найдено впервые Муавром в 1733 г. в связи с исследованием предела биномиального распределения. Открытие прошло незамеченным; только в 1809 г. Гауссом и в 1812 г. Лапласом оно было снова открыто в связи с теорией ошибок наблюдений.
Существует известное замечание Липмана, гласящее, «каждый уверен в справедливости закона ошибок: экспериментаторы – потому, что они думают, что это математическая теорема, математики – потому, что они думают, что это экспериментальный факт». Отметим, что обе стороны совершенно правы, если только это их убеждение не слишком безусловно: при математическом доказательстве (см.центральную предельную теорему) утверждается, что при некоторых ограничениях вправе ожидать нормальное распределение, а статистический опыт показывает, что в действительности распределения являются часто приближённо нормальными. Поэтому, нормальному распределению уделяется большое внимание.
Покажем теперь, что вероятностный смысл параметров 


а) по определению математического ожидания непрерывной случайной величины
имеем

Действительно, 
симметричны относительно начала координат;
Итак, математическое ожидание нормального распределения равно параметру а.
б) по определению дисперсии непрерывной случайной величины и, учитывая, что 
Интегрируя по частям, положив

Итак, среднее квадратическое отклонение нормального распределения равно параметру
В случае если 
(Функция 

Свойства нормального распределения (свойства нормальной кривой):
- Очевидно, функция
на всей числовой прямой.
то есть нормальная кривая расположена над осью Ох.
то есть ось Ох служит горизонтальной асимптотой графика.
- Нормальная кривая симметрично относительно прямой х = а (соответственно график функции
симметричен относительно оси Оу). Следовательно, можем записать:
5.
6. Легко показать, что точки 
7. Очевидно, что
Но так как
Кроме того 
8.
9.
10.
11. При отрицательных значениях случайной величины
12.
13. Вероятность попадания случайной величины на участок, симметричный относительно центра распределения, равна:
Пример №48
Показать, что нормально распределённая случайная величина Х отклоняется от математического ожидания М(Х) не более чем на
Решение. Для нормального распределения: 
Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0, 0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие события, исходя из принципа невозможности маловероятных событий, можно считать практически невозможными
достоверным, то есть случайная величина отклоняется от математического ожидания не более чем на
Пример №49
Зная характеристики нормального распределения случайной величины Х – предела прочности стали: 
Решение.
В этом состоит сущность так называемого правила трёх сигм: если случайная величина распределена нормально, то абсолютная величина её отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения. На практике правило трёх сигм применяется так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведённом правиле, выполняется, то имеются все основания предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.
Показательное распределение (экспоненциальный закон распределения)
Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается дифференциальной функцией (плотность распределения)


Показательное распределение определяется одним параметром 
Нетрудно записать интегральную функцию показательного распределения:
Мы определили показательное распределение при помощи дифференциальной функции; ясно, что его можно определить, пользуясь интегральной функцией.
Замечание: Рассмотрим непрерывную случайную величину Т – длительность времени безотказной работы изделия. Обозначим принимаемые её значения через t, 


Применяется в теории надёжности для описания времени безотказной работы невосстанавливаемых изделий.
Функцией надёжности


Свойства показательного распределения:
1. Математическое ожидание показательного распределения равно обратной
величине параметра 
2.

Пример №50
Пусть время, необходимое для ремонта станков, распределено по показательному (экспоненциальному) закону с параметром 
Решение. Т – время ремонта станка 
Далее, так как среднее время ремонта – это М( Т ), то
Среднее арифметическое, мода и медиана. Среднее квадратическое отклонение
Вероятно, Вы отлично знаете, что такое среднее арифметическое. Если мы имеем набор каких-то величин, и все они одной природы (усреднять килограммы с километрами мы, конечно, не можем), надо посчитать сумму, а затем, поделив ее на количество слагаемых, найти среднее арифметическое. Казалось бы, простое и хорошо знакомое действие, но и тут имеется несколько проблем для обсуждения. При знакомстве с некоторыми «показателями» поневоле вспоминается известная шутка о «средней температуре по больнице».
Пример №51
Допустим, фирма имеет две палатки, торгующие горячей выпечкой, которую они пекут на месте из полуфабрикатов. В таблице приводится примерная сводка ежедневной выручки каждой из палаток за неделю (в руб.).
Различие в ежедневной выручке в основном связано с расположением палаток. Палатка 1 находится в парке отдыха, в то время как Палатка 2 расположена напротив школы и вблизи проходной крупного НИИ.
Владелец фирмы решил выплачивать ежемесячную премию продавцам той палатки, которая даст в этом месяце большую выручку. При распределении премии выяснилась удивительная вещь: выигрыш в этом «соревновании» зависел только от количества выходных в месяце.
Не хотелось бы приводить большое количество цифр за весь месяц в целом, но и без этого видно, что если бы владельцу фирмы пришла в голову идея ежедневного премирования победителя какой-то фиксированной суммой, «Палатка выходного дня» могла бы рассчитывать на премии в два с половиной раза реже, хотя недельная выручка от нее больше.
В таких условиях более разумное соревнование могло бы быть основано на осреднении показателей за неделю. Допустим, недельные показатели практически совпали. Как оценить, какая из палаток полезнее для фирмы, если по каким-то причинам фирме необходимо продать одну из них?
Если выручка практически совпадает, владелец, по-видимому, поинтересуется стабильностью работы торговой точки. Вины продавцов в этом нет, но если оборудование работает два дня в неделю на износ, а в остальное время больше простоев, выход из строя такого оборудования более вероятен. Пусть в один (случайным образом выпавший) день в неделю идет сильный дождь, и на улицах мало прохожих, падение выручки особенно резко заметно, когда такой дождливый день совпадает с одним из выходных. Для сравнения можно представить спортсменов, которые имеют равные шансы выиграть, но один из них выступает ровнее. Скорее всего, именно он и будет принят в состав сборной.
Но вот еще один вопрос: а не делает ли эта самая нестабильная палатка работу фирмы в целом более стабильной, прекрасно дополняя работу палатки 2? Давайте выдвинем это утверждение в качестве гипотезы и попробуем его доказать или опровергнуть. Чтобы оценить эту проблему количественно, надо прежде всего просуммировать дневную выручку обеих палаток.
То, что мы описали общими словами как «нестабильность работы», в статистике называется характеристикой рассеивания. К ним относятся такие показатели как дисперсия и среднее квадратическое отклонение. Покажем на предыдущем примере, как определяются эти понятия. Посчитаем сначала среднее арифметическое выручки для каждой палатки отдельно, и для обеих палаток вместе (осреднение проводим за семь дней):
Чтобы сравнить разброс значений, посчитаем для обеих палаток дневные отклонения выручки от их собственного среднего значения.
Чтобы измерить, насколько одна палатка «нестабильнее» другой, хочется сложить всю строку за неделю и получить общее отклонение за весь отчетный период. Но этого делать нельзя, мы сами так построили эти показатели, что, сложив, получим ноль (с точностью до погрешности округления — среднее арифметическое величина не обязательно целая). Чтобы избежать этого обнуления, нам надо, чтобы каждое отклонение от среднего арифметического «лишилось» своего знака. Для этого возводят каждую величину в квадрат, и лишь затем суммируют весь ряд значений.
Чтобы не зависеть от периода осреднения делят полученную сумму квадратов на число слагаемых (в нашем случае, по-прежнему на семь). Такая величина называется дисперсией.
Мы видим, что дисперсия действительно очень показательная величина. У «Палатки выходного дня» она выше более, чем в десять раз.
Дисперсию можно посчитать в Excel автоматически, даже не считая предварительно среднее арифметическое, программа сделает это сама. Для этого, находясь в файле Excel, нажмите в верхнем меню кнопку 
Затем, по подсказке, поставив курсор в поле «Число 1» проведите мышью вдоль строки с набранными значениями. Этот вид подсчета называется «вычисление смещенной дисперсии по генеральной совокупности». Дисперсией часто пользуются, но более удобная характеристика носит название среднее квадратическое отклонение (обычно обозначается греческой буквой омега.
Среднее квадратическое отклонение — это квадратный корень из дисперсии, он удобен тем, что имеет ту же размерность, что и исходные величины. Так, в нашем случае, дисперсия имела бы размерность «рубли в квадрате», в то время как среднее квадратическое отклонение получается просто и привычно, в рублях.
В нашем примере, видно, что суммарная дисперсия и среднее квадратическое отклонение у двух палаток вместе все-таки выше, чем у одной первой палатки, причем среднее квадратическое отклонение выше более, чем в два раза. Значит, наша гипотеза о «повышенной стабильности суммы» за счет присутствия второй палатки несостоятельна.
Иногда, вместо среднего арифметического употребляют другие характерные величины, если это по каким-то причинам лучше описывает выборку. Так если расставить выборку по возрастанию (или убыванию) той величины, которой мы интересуемся, то медиана — это то, что будет ровно посередине «строя». Например, если мы расположим по порядку длительности интервалы времени: секунда, минута, час, сутки и неделя — то медианой будет час. Еще одно понятие для замены среднего — мода. Само название позволяет легко запомнить это определение. Если мы выстроим по порядку все пары обуви на складе по размеру, то самый ходовой размер будет модой. Мода — это то, что непременно должны учитывать производители упаковок и фасовщики. Если бы большинство людей покупало за один раз стакан молока, молочные пакеты не были бы литровыми. В следующем параграфе мы начнем работать со случайными величинами, имеющими нормальное распределение, и эти понятия нам снова встретятся.
Случайные величины и их законы распределения
Понятие случайной величины. Функция распределения
Определение: Случайной величиной называется такая переменная величина, которая в результате проведения опыта может принять то или иное значение, неизвестное до проведения эксперимента.
Случайные величины принято обозначать заглавными, последними буквами латинского алфавита 
Пример:
Являются ли случайными величинами следующие переменные величины: а) число вызовов, поступивших от абонентов на телефонную станцию в течение определенного промежутка времени; б) число электронов, вылетевших из нагретого катода за определенный промежуток времени; в) длина некоторой детали при массовом производстве (самостоятельно).
Решение:
Все случайные величины делятся на три группы: дискретные, смешанные и непрерывные. В Примере случаи а) и б) указывают на случайные дискретные величины, а случай в) — на случайную непрерывную величину.
Определение: Законом распределения случайной величины называется любое соотношение, с помощью которого устанавливается соответствие между возможными значениями случайной величины и вероятностями некоторых событий, связанных определенным образом с этими возможными значениями. Закон распределения случайной величины может быть представлен аналитической формулой F(x); графиком, связывающим значения вероятности со значениями случайной величины; таблицей, которая устанавливает соответствие между значениями случайной величины и их вероятностями.
Замечание: В определение закона распределения случайной величины входят слова «любое соотношение» — это означает, что таких соотношений может быть очень много. К числу универсальных форм закона распределения случайной величины относится функция распределения.
Определение: Функцией распределения F(х) случайной величины X называется вероятность события X<х, которое состоит в том, что случайная величина X обязательно примет значение заведомо меньшее, чем заданное значение х, т. е.
Пример:
Найти функцию распределения F(х) случайной величины X, которая представляет собой значение определенной грани кубика.
Решение:
Рассмотрим события, определяющие случайную дискретную величину X, и вероятности этих событий:
1) 


-данное событие является достоверным, так как в этом случае обязательно выпадет одно из чисел от 1 до 6, а вероятность достоверного события равна 1 (см. Лекцию №7);


Итак, функция распределения имеет вид
Построим график функции распределения (Рис. 6):
Рис. 6. График функции распределения для случайной дискретной величины.
Замечание: Случайная дискретная величина характеризуется функцией распределения, график которой имеет “ступенчатый» вид. Случайная непрерывная величина характеризуется функцией распределения, график которой имеет “непрерывный” вид.
Свойства функции распределения
Вышеприведенный Примере иллюстрирует основные свойства функции распределения случайной величины произвольной природы:
Действительно, если 




В силу положительности всех слагаемых получаем, что 
Рис. 7. Неубывание функции распределения.
Дифференциальная функция распределения и ее свойства
Для случайных непрерывных величин помимо функции распределения используется дифференциальная функция распределения.
Определение: Дифференциальной функцией распределения (плотностью вероятности) случайной непрерывной величины X называется первая производная от функции распределения, т.е.
Замечание: Из определения плотности вероятности следует, что функция распределения F(x) является первообразной для дифференциальной функции распределения f(х).
Рассмотрим свойства плотности вероятности:
Пример №52
Дифференциальная функция распределения случайной непрерывной величины X имеет вид 
Решение:
Для нахождения коэффициента А воспользуемся свойством 4 для плотности вероятности: 

Следовательно, вероятность того, что случайная величина X попадает в интервал (-1; 1), по свойству 6 для интегральной функции распределения, равна:
Законы распределения случайных величин
Для задания закона распределения случайной непрерывной величины определяют плотность вероятности:
1. Нормальный закон распределения 
2. Закон Рэлея 
3. Закон Максвелла 
4. Закон Коши 
5. Экспоненциальный закон распределения 
6. Распределение “хи-квадрат 


7. Закон Стьюдента 
8. Закон равномерной плотности
В заключение этого пункта приведем некоторые законы распределения для случайной дискретной величины:
1. Гипергеометрическое распределение возникает, когда из некоторого множества, содержащего N элементов, из которых m благоприятствуют появлению дискретной величины, извлекают наудачу n элементов без возвращения их в множество. В этом случае вероятность того, что дискретная величина появится x раз, определяется по формуле 
2. Закон Бернулли
3. Закон Пуассона
4. Дифференциальный 

Числовые характеристики случайной величины
Полную характеристику случайной величины дает ее закон распределения (или функция распределения). Однако на практике зачастую требуется знать лишь некоторые ее параметры, которые определяют характер поведения изучаемой случайной величины. Такими числовыми характеристиками являются, например, математическое ожидание (параметр расположения центра тяжести распределения), дисперсия и средне-квадратичное отклонение (параметры рассеивания случайной величины относительно математического ожидания).
Математическое ожидание или среднее значение случайной величины
Термин «математическое ожидание» применяется в теории вероятностей, а термин ‘»среднее значение случайной величины» — в практических приложениях математической статистики.
Определение: Математическим ожиданием случайной величины называется центр тяжести распределения, который определяется по формуле:


Пример №53
Пусть в беспроигрышной лотереи участвует 100 билетов. Из них 40 дают выигрыш по 1 грн., 30 — по 2 грн., 20 — по 5 грн. и 10 — по 10 грн. Стоимость одного билета 5 грн. Определить математическое ожидание случайной дискретной величины X, которая определяет выигрыш на 1 билет.
Решение:
Составим таблицу распределения случайной дискретной величины X, которая определяет выигрыш на один билет:
По определению математическое ожидание будет равно:



Свойства математического ожидания
Рассмотрим свойства математического ожидания:
1.Математическое ожидание постоянной величины равно самой этой константе, т.е. 
Доказательство: Для случайной непрерывной величины
2. Постоянный множитель можно выносить за знак математического ожидания, т.е. 
Доказательство: Для случайной дискретной величины:
3. Математическое ожидание от суммы двух случайных величин X и У равно сумме их математических ожиданий, т.е.
4. Объединяя свойства 2 и 3 математического ожидания, получаем

5. Математическое ожидание от произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е.
Определение: Центрированной случайной величиной 

6. Математическое ожидание центрированной случайной величины Хо равно нулю, т.е.
Доказательство: Используя свойства математического ожидания, получим:
Пример №54
Вычислить математическое ожидание от непрерывной случайной величины X, распределенной по экспоненциальному закону.
Решение:
Согласно определению математического ожидания имеем:

Дисперсия или рассеивание случайной величины
Рассеивание случайной величины относительно математического ожидания определяется дисперсией и средним квадратичным отклонением.
Определение: Дисперсией случайной величины X называется математическое ожидание квадрата центрированной случайной величины 
Замечание: Дисперсия случайной величины X является неотрицательной величиной.
Определение: Средне-квадратичным отклонением случайной величины X называется положительное число
Основные свойства дисперсии
1. Дисперсия постоянной (неслучайной) величины равна 0, т.е.
Доказательство: В силу того, что
2. Постоянный множитель можно выносить за знак дисперсии, возводя этот множитель в квадрат, т.е.
Доказательство: По определению дисперсии имеем:
3. Дисперсия суммы двух случайных величин X и У равно сумме их дисперсий, т.е. 
4. Объединяя свойства 2 и 3 дисперсии, получаем
5. Дисперсия случайной величины X равна разности между математическим ожиданием квадрата этой величины и квадратом ее математического ожидания, т.е.
Доказательство: Используя определение дисперсии и свойства математического ожидания, получим:
Пример №55
Распределение случайной величины X определяется плотностью вероятности 
Решение:
Для нахождения коэффициента а воспользуемся свойством 4. для плотности вероятности:

Другие характеристики случайной величины
Иногда для практических расчетов требуется вычисление других числовых характеристик случайной величины. Определим эти параметры.
Определение: Начальным моментом порядка k случайной величины X называется математическое ожидание k-ой степени этой величины, т.е.
Замечание: Из определения начального момента порядка k видно, что математическое ожидание случайной величины X является ее первым начальным моментом.
Определение: Центральным моментом порядка k случайной величины X называется математическое ожидание k-ой степени центрированной случайной величины
Замечание: Из определения начального момента порядка k видно, что первый центральный момент любой случайной величины равен нулю, второй центральный момент равен дисперсии. Отметим также, что третий центральный момент используется в теории вероятностей для характеристики симметричности кривой плотности вероятности. Если 
Замечание: Центральные и начальные моменты случайной величины X связаны между собой определенными соотношениями. В качестве примера рассмотрим случай, когда 
Как решать случайные величины
Наряду со случайным событием одним из основных понятий теории вероятностей является понятие случайной величины.
Понятие случайной величины
Случайной называют величину, которая в результате испытания может принять одно и только одно возможное значение, заранее неизвестное и зависящее от случайных причин, которые заранее учесть невозможно. Примеры случайной величины:
- Число появлений герба при двукратном бросании монеты;
- Время безотказной работы некоторого устройства. Нетрудно заметить, что в первом случае все возможные значения случайной величины могут быть перечислены заранее. Такими значениями являются 0, 1, 2.
Отметим, что эти значения отделены друг от друга промежутками, в которых нет других возможных значений этой случайной величины. Во втором случае перечислить все возможные значения случайной величины не представляется возможным, так как эти значения не отделены друг от друга и заполняют собой некоторый промежуток. Очевидно, что число возможных значений непрерывной случайной величины – бесконечно.
В связи с этим принято различать дискретные и непрерывные случайные величины. Случайная величина называется дискретной (прерывной), если множество ее значений является конечным, или бесконечным, но счетным. Под непрерывной случайной величиной будем понимать величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.
Случайные величины принято обозначать прописными буквами латинского алфавита – X, Y, Z, а их значения – соответствующими строчными буквами x, y, z. Например, случайная величина Х – число появлений герба при двукратном бросании монеты – может принять значения
Закон распределения случайной величины
Наиболее полным, исчерпывающим описанием случайной величины является ее закон распределения.
Определение: Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.
Про случайную величину говорят, что она «распределена» по данному закону распределения или «подчинена» этому закону.
Для дискретной случайной величины закон распределения может быть задан в виде таблицы, аналитически или графически. Простейшей формой задания закона распределения дискретной случайной величины X является таблица, в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие им вероятности, т.е.
Такая таблица называется рядом распределения дискретной случайной величины.
Отметим, что события 


Пример №56
Два стрелка делают по одному выстрелу в мишень. Составить закон распределения случайной величины Х – общего числа попаданий в мишень, если вероятность поражения мишени в одном выстреле для первого стрелка равна 0,8, а для второго – 0,6.
Решение:
Очевидно, что возможные значения Х – 0, 1, 2. Пусть А1 – событие состоящее в том, что первый стрелок попадет в мишень, А2 – второй стрелок попадет в мишень. Тогда 

Две случайные величины называются независимыми, если закон распределения одной из них не меняется от того, какие возможные значения приняла другая величина. Так если случайная величина Х может принимать значения 


Функция распределения случайной величины
Мы установили, что ряд распределения полностью характеризует дискретную случайную величину. Однако эта характеристика не является универсальной. Она существует только для дискретных величин. Для непрерывной величины ряд распределения построить нельзя. Действительно, непрерывная случайная величина имеет бесчисленное множество возможных значений, которые сплошь заполняют некоторый промежуток. Составить таблицу, в которой были бы перечислены все возможные значения этой величины, невозможно. Следовательно, для непрерывной случайной величины не существует ряда распределения в том смысле, в каком он существует для дискретной величины. Однако различные области возможных значений случайной величины не являются одинаково вероятными, и для непрерывной величины все-таки существует «распределение вероятностей», хотя и не в том смысле, как для дискретной.
Для количественной характеристики этого распределения вероятностей удобно воспользоваться не вероятностью события Р(Х = х), состоящего в том, что случайная величина примет определенное значение х, а вероятностью события Р(Х <х), состоящего в том, что случайная величина примет значение меньшее х. Очевидно, что вероятность этого события зависит от х, т.е. является некоторой функцией от х.
Определение: Функцией распределения случайной величины Х называется функция F(x), выражающая для каждого значения х вероятность того, что случайная величина Х примет значение, меньшее х: 
Функция распределения – самая универсальная характеристика случайной величины. Она существует для всех случайных величин: как дискретных, так и непрерывных. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения. Функция распределения допускает простую геометрическую интерпретацию. Рассмотрим случайную величину Х на оси Ох (рис. 4.2), которая в результате опыта может занять то или иное положение.
Пусть на оси выбрана точка, имеющая значение х. Тогда в результате опыта случайная величина Х может оказаться левее или правее точки х. Очевидно, вероятность того, что случайная величина Х окажется левее точки х, будет зависеть от положения точки х, т.е. являться функцией аргумента х. Для дискретной случайной величины Х, которая может принимать значения 


Пример №57
Дан ряд распределения случайной величины Х. 
Решение:
Будем задавать различные значения х и находить для них F(x) = = P(X < x). 
Изобразим функцию распределения графически (рис. 4.3). Заметим, что при подходе слева к точкам разрыва функция сохраняет свое значение (про такую функцию говорят, что она непрерывна слева). Эти точки на графике выделены. ◄
Этот пример позволяет прийти к утверждению, что функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины и равны вероятностям этих значений.
Рассмотрим общие свойства функции распределения:
1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей: 




Пример №58
Функция распределения случайной величины Х имеет вид: 
Решение:
Для непрерывных случайных величин справедливо следующее свойство: Вероятность любого отдельно взятого значения непрерывной случайной величины равна нулю.
Поясним это свойство. До сих пор мы рассматривали испытания, сводившиеся к схеме случаев, и нулевой вероятностью обладали лишь невозможные события. Из приведенного свойства следует, что нулевой вероятностью могут обладать и возможные события. На первый взгляд этот вывод может показаться парадоксальным. Действительно, если, например, событие α ≤ Х ≤ β имеет отличную от нуля вероятность, то оказывается, что оно представляет собой сумму событий, состоящих в принятии случайной величиной Х любых конкретных значений на отрезке [α, β] и имеющих нулевую вероятность. Однако представления о событии, имеющем отличную от нуля вероятность, но складывающемся из событий с нулевой вероятностью, не более парадоксально, чем представление об отрезке, имеющем определенную длину, тогда как ни одна точка отрезка отличной от нуля длиной не обладает. Отрезок состоит из таких точек, но его длина не равна сумме их длин. Из этого свойства вытекает следующее следствие.
Следствие. Если Х – непрерывная случайная величина, то вероятность попадания этой величины в интервал 
Плотность вероятности
Непрерывная случайная величина может быть задана не только с помощью функции распределения. Введем понятие п л о т н о с т и в е р о я т н о с т и непрерывной случайной величины. Рассмотрим вероятность попадания непрерывной случайной величины наинтервал 



представляющую производную функции распределения F(х). Напомним, что для непрерывной случайной величины F(х) – дифференцируемая функция.
Определение: Плотностью вероятности (плотностью распределения) f(x) непрерывной случайной величины Х называется производная ее функции распределения
Про случайную величину Х говорят, что она имеет распределение с плотностью f(x) на определенном участке оси абсцисс.
Плотность вероятности f(x), как и функция распределения F(x) является одной из форм закона распределения. Но в отличие от функции распределения она существует только для н е п р е р ы в н ы х случайных величин.
Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения. График плотности вероятности называется кривой распределения.
Пример №59
По данным примера 4.3 найти плотность вероятности случайной величины Х.
Решение:
Будем находить плотность вероятности случайной величины как производную от ее функции распределения f(x) = F'(x). 
1. Плотность вероятности – неотрицательная функция, т.е. f(x) ≥ 0, (4.9) как производная монотонно неубывающей функции F(x).
2. Вероятность попадания непрерывной случайной величины Х в интервал


Геометрически вероятность попадания в интервал [α, β,] равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [α, β,] (рис.4.4).
3. Функция распределения непрерывной случайной величины может быть выражен через плотность вероятности по формуле: 
4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице: 
Пример №60
Функция f(x) задана в виде:
Найти: а) значение А; б) выражение функции распределения F(х); в) вероятность того, что случайная величина Х примет значение на отрезке [0; 1].
Решение:
а) Для того, чтобы f(x) была плотностью вероятности некоторой случайной величины Х, она должна быть неотрицательна, следовательно, неотрицательным должно быть и значение А. С учетом свойства 4 находим: 


Пример №61
Методом произведений вычислить выборочную среднюю и выборочную дисперсию по данным выборки (табл. 3.1).
Решение. В качестве «ложного нуля» возьмем варианту 16.
Следовательно
Результаты вычислений сведем в табл. 3.2.
Контроль: 273 = 100 + 46 + 127.
Равенство выполнено, следовательно, таблица заполнена верно.
Вычислим условные начальные моменты:
Вычислим выборочную среднюю и выборочную дисперсию:
Определим исправленную выборочную дисперсию:

Получим несмещенные оценки для математического ожидания, дисперсии и среднего квадратического отклонения.
- Числовые характеристики случайных величин
- Нормальный закон распределения
- Основные законы распределения вероятностей
- Асимптотика схемы независимых испытаний
- Теоремы сложения и умножения вероятностей
- Формула полной вероятности
- Повторные независимые испытания
- Простейший (пуассоновский) поток событий
to continue to Google Sites
Not your computer? Use Guest mode to sign in privately. Learn more
Двумерной называют случайную величину
, возможные значения
которой есть пары чисел
. Составляющие
и
, рассматриваемые
одновременно, образуют систему двух случайных величин. Двумерную величину
геометрически можно истолковать как случайную точку
на плоскости
либо как случайный вектор
.
Дискретной называют двумерную величину, составляющие которой дискретны.
Закон распределения дискретной двумерной СВ.
Безусловные и условные законы распределения составляющих
Законом распределения вероятностей двумерной случайной величины называют соответствие
между возможными значениями и их вероятностями.
Закон
распределения дискретной двумерной случайной величины может быть задан:
а) в
виде таблицы с двойными входом, содержащей возможные значения и их вероятности;
б) аналитически, например в виде функции распределения.
Зная
закон распределения двумерной дискретной случайной величины, можно найти законы
каждой из составляющих. В общем случае, для того чтобы найти вероятность
, надо просуммировать
вероятности столбца
. Аналогично сложив
вероятности строки
получим вероятность
.
Пусть
составляющие
и
дискретны и имеют соответственно следующие
возможные значения:
;
.
Условным распределением составляющей
при
(j сохраняет одно и то же
значение при всех возможных значениях
) называют совокупность
условных вероятностей:
Аналогично
определяется условное распределение
.
Условные
вероятности составляющих
и
вычисляют соответственно по формулам:
Для
контроля вычислений целесообразно убедиться, что сумма вероятностей условного
распределения равна единице.
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Ковариация (корреляционный момент)
Ковариация двух случайных величин характеризует степень зависимости случайных величин, так
и их рассеяние вокруг точки
.
Ковариацию
(корреляционный момент) можно найти по формуле:
Свойства ковариации
Свойство 1.
Ковариация двух независимых случайных величин равна нулю.
Свойство 2.
Ковариация двух случайных величин равна математическому ожиданию их
произведение математических ожиданий.
Свойство 3.
Ковариация двухмерной случайной величины по абсолютной случайной величине не
превосходит среднеквадратических отклонений своих компонентов.
Коэффициент корреляции
Коэффициент корреляции – отношение ковариации двухмерной случайной
величины к произведению среднеквадратических отклонений.
Формула коэффициента корреляции:
Две
случайные величины
и
называют коррелированными, если их коэффициент
корреляции отличен от нуля.
и
называют некоррелированными величинами, если
их коэффициент корреляции равен нулю
Свойства коэффициента корреляции
Свойство 1.
Коэффициент корреляции двух независимых случайных величин равен нулю. Отметим,
что обратное утверждение неверно.
Свойство 2.
Коэффициент корреляции двух случайных величин не превосходит по абсолютной
величине единицы.
Свойство 3.
Коэффициент корреляции двух случайных величин равен по модулю единице тогда и
только тогда, когда между величинами существует линейная функциональная
зависимость.
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Линейная регрессия
Рассмотрим
двумерную случайную величину
, где
и
– зависимые случайные величины. Представим
одну из величины как функцию другой. Ограничимся приближенным представлением
величины
в виде линейной функции величины
:
где
и
– параметры, подлежащие определению. Это можно
сделать различными способами и наиболее употребительный из них – метод
наименьших квадратов.
Линейная
средняя квадратическая регрессия
на
имеет вид:
Коэффициент
называют
коэффициентом регрессии
на
, а прямую
называют
прямой среднеквадратической регрессии
на
.
Аналогично
можно получить прямую среднеквадратической регрессии
на
:
Смежные темы решебника:
- Двумерная непрерывная случайная величина
- Линейный выборочный коэффициент корреляции
- Парная линейная регрессия и метод наименьших квадратов
Задача 1
Закон
распределения дискретной двумерной случайной величины (X,Y) задан таблицей.
Требуется:
—
определить одномерные законы распределения случайных величин X и Y;
— найти
условные плотности распределения вероятностей величин;
—
вычислить математические ожидания mx и my;
—
вычислить дисперсии σx и σy;
—
вычислить ковариацию μxy;
—
вычислить коэффициент корреляции rxy.
| xy | 3 | 5 | 8 | 10 | 12 |
| -1 | 0.04 | 0.04 | 0.03 | 0.03 | 0.01 |
| 1 | 0.04 | 0.07 | 0.06 | 0.05 | 0.03 |
| 3 | 0.05 | 0.08 | 0.09 | 0.08 | 0.05 |
| 6 | 0.03 | 0.04 | 0.04 | 0.06 | 0.08 |
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 2
Задана
дискретная двумерная случайная величина (X,Y).
а) найти
безусловные законы распределения составляющих; б) построить регрессию случайной
величины Y на X; в) построить регрессию случайной величины X на Y; г) найти коэффициент ковариации; д) найти
коэффициент корреляции.
| Y | X | ||||
| 1 | 2 | 3 | 4 | 5 | |
| 30 | 0.05 | 0.03 | 0.02 | 0.01 | 0.01 |
| 40 | 0.03 | 0.02 | 0.02 | 0.04 | 0.01 |
| 50 | 0.05 | 0.03 | 0.02 | 0.02 | 0.01 |
| 70 | 0.1 | 0.03 | 0.04 | 0.03 | 0.01 |
| 90 | 0.1 | 0.04 | 0.01 | 0.07 | 0.2 |
Задача 3
Двумерная случайная величина (X,Y) задана
таблицей распределения. Найти законы распределения X и Y, условные
законы, регрессию и линейную регрессию Y на X.
|
x y |
1 | 2 | 3 |
| 1.5 | 0.03 | 0.02 | 0.02 |
| 2.9 | 0.06 | 0.13 | 0.03 |
| 4.1 | 0.4 | 0.07 | 0.02 |
| 5.6 | 0.15 | 0.06 | 0.01 |
Задача 4
Двумерная
случайная величина (X,Y) распределена по закону
| XY | 1 | 2 |
| -3 | 0,1 | 0,2 |
| 0 | 0,2 | 0,3 |
| -3 | 0 | 0,2 |
Найти
законы распределения случайных величины X и Y, условный закон
распределения Y при X=0 и вычислить ковариацию.
Исследовать зависимость случайной величины X и Y.
Задача 5
Случайные
величины ξ и η имеют следующий совместный закон распределения:
P(ξ=1,η=1)=0.14
P(ξ=1,η=2)=0.18
P(ξ=1,η=3)=0.16
P(ξ=2,η=1)=0.11
P(ξ=2,η=2)=0.2
P(ξ=2,η=3)=0.21
1)
Выписать одномерные законы распределения случайных величин ξ и η, вычислить
математические ожидания Mξ, Mη и дисперсии Dξ, Dη.
2) Найти
ковариацию cov(ξ,η) и коэффициент корреляции ρ(ξ,η).
3)
Выяснить, зависимы или нет события {η=1} и {ξ≥η}
4)
Составить условный закон распределения случайной величины γ=(ξ|η≥2) и найти Mγ и
Dγ.
Задача 6
Дан закон
распределения двумерной случайной величины (ξ,η):
| ξ=-1 | ξ=0 | ξ=2 | |
| η=1 | 0,1 | 0,1 | 0,1 |
| η=2 | 0,1 | 0,2 | 0,1 |
| η=3 | 0,1 | 0,1 | 0,1 |
1) Выписать одномерные законы
распределения случайных величин ξ и η, вычислить математические ожидания Mξ,
Mη и дисперсии Dξ, Dη
2) Найти ковариацию cov(ξ,η) и
коэффициент корреляции ρ(ξ,η).
3) Являются ли случайные события |ξ>0|
и |η> ξ | зависимыми?
4) Составить условный закон
распределения случайной величины γ=(ξ|η>0) и найти Mγ и Dγ.
Задача 7
Дано
распределение случайного вектора (X,Y). Найти ковариацию X и Y.
| XY | 1 | 2 | 4 |
| -2 | 0,25 | 0 | 0,25 |
| 1 | 0 | 0,25 | 0 |
| 3 | 0 | 0,25 | 0 |
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 8
Случайные
приращения цен акций двух компаний за день имеют совместное распределение,
заданное таблицей. Найти ковариацию этих случайных величин.
| YX | -1 | 1 |
| -1 | 0,4 | 0,1 |
| 1 | 0,2 | 0,3 |
Задача 9
Найдите
ковариацию Cov(X,Y) для случайного дискретного вектора (X,Y),
распределенного по закону:
| X=-3 | X=0 | X=1 | |
| Y=-2 | 0,3 | ? | 0,1 |
| Y=1 | 0,1 | 0,1 | 0,2 |
Задача 10
Совместный
закон распределения пары
задан таблицей:
| xh | -1 | 0 | 1 |
| -1 | 1/12 | 1/4 | 1/6 |
| 1 | 1/4 | 1/12 | 1/6 |
Найти
закон распределения вероятностей случайной величины xh и вычислить cov(2x-3h,x+2h).
Исследовать вопрос о зависимости случайных величин x и h.
Задача 11
Составить двумерный закон распределения случайной
величины (X,Y), если известны законы независимых составляющих. Чему равен коэффициент
корреляции rxy?
| X | 20 | 25 | 30 | 35 |
| P | 0.1 | 0.1 | 0.4 | 0.4 |
и
Задача 12
Задано
распределение вероятностей дискретной двумерной случайной величины (X,Y):
| XY | 0 | 1 | 2 |
| -1 | ? | 0,1 | 0,2 |
| 1 | 0,1 | 0,2 | 0,3 |
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 13
Совместное
распределение двух дискретных случайных величин ξ и η задано таблицей:
| ξη | -1 | 1 | 2 |
| 0 | 1/7 | 2/7 | 1/7 |
| 1 | 1/7 | 1/7 | 1/7 |
Вычислить
ковариацию cov(ξ-η,η+5ξ). Зависимы ли ξ и η?
Задача 14
Рассчитать
коэффициенты ковариации и корреляции на основе заданного закона распределения
двумерной случайной величины и сделать выводы о тесноте связи между X и Y.
| XY | 2,3 | 2,9 | 3,1 | 3,4 |
| 0,2 | 0,15 | 0,15 | 0 | 0 |
| 2,8 | 0 | 0,25 | 0,05 | 0,01 |
| 3,3 | 0 | 0,09 | 0,2 | 0,1 |
Задача 15
Задан
закон распределения случайного вектора (ξ,η). Найдите ковариацию (ξ,η)
и коэффициент корреляции случайных величин.
| xy | 1 | 4 |
| -10 | 0,1 | 0,2 |
| 0 | 0,3 | 0,1 |
| 20 | 0,2 | 0,1 |
Задача 16
Для
случайных величин, совместное распределение которых задано таблицей
распределения. Найти:
а) законы
распределения ее компонент и их числовые характеристики;
b) условные законы распределения СВ X при условии Y=b и СВ Y при
условии X=a, где a и b – наименьшие значения X и Y.
с)
ковариацию и коэффициент корреляции случайных величин X и Y;
d) составить матрицу ковариаций и матрицу корреляций;
e) вероятность попадания в область, ограниченную линиями y=16-x2 и y=0.
f) установить, являются ли случайные величины X и Y зависимыми;
коррелированными.
| XY | -1 | 0 | 1 | 2 |
| -1 | 0 | 1/6 | 0 | 1/12 |
| 0 | 1/18 | 1/9 | 1/12 | 1/9 |
| 2 | 1/6 | 0 | 1/9 | 1/9 |
Задача 17
Совместный
закон распределения случайных величин X и Y задан таблицей:
|
XY |
0 |
1 |
3 |
|
0 |
0,15 |
0,05 |
0,3 |
|
-1 |
0 |
0,15 |
0,1 |
|
-2 |
0,15 |
0 |
0,1 |
Найдите:
а) закон
распределения случайной величины X и закон распределения
случайной величины Y;
б) EX, EY, DX, DY, cov(2X+3Y, X-Y), а
также математическое ожидание и дисперсию случайной величины V=6X-8Y+3.
Задача 18
Известен
закон распределения двумерной случайной величины (X,Y).
а) найти
законы распределения составляющих и их числовые характеристики (M[X],D[X],M[Y],D[Y]);
б)
составить условные законы распределения составляющих и вычислить
соответствующие мат. ожидания;
в)
построить поле распределения и линию регрессии Y по X и X по Y;
г)
вычислить корреляционный момент (коэффициент ковариации) μxy и
коэффициент корреляции rxy.
|
|
5 | 20 | 35 |
| 100 | — | — | 0.05 |
| 115 | — | 0.2 | 0.15 |
| 130 | 0.15 | 0.35 | — |
| 145 | 0.1 | — | —- |
2.3.
Функции случайных величин
2.3.1.
Функции одномерных случайных величин
Пусть
на вероятностном пространстве (, F, P) задана
случайная величина X. Предположим, что имеется числовая
функция скалярного аргумента x. Случайную величину
назовем функцией от одномерной
случайной величины X. Покажем, как построить закон
распределения функции , зная
закон распределения случайного аргумента X.
1. Пусть
случайная величина X является дискретной.
Функция
от СВДТ X снова
является дискретной случайной величиной, принимающей значения с вероятностями
, где
– множество возможных значений СВДТ X. Тогда для нахождения функции распределения можно
воспользоваться соотношением
.
Однако,
как правило, удобнее вначале составить ряд распределения случайной величины .
Чтобы его построить, необходимо объединить в один столбец все одинаковые
значения ,
приписав этому столбцу суммарную вероятность.
Пример 2.3.1. Закон распределения случайной
величины X имеет вид:
|
X |
–2 |
0 |
2 |
3 |
|
P |
0,2 |
0,3 |
0,1 |
0,4 |
Решение. 1) Найдем возможные значения случайной
величины Y:
,
,
,
.
Тогда
ряд распределения случайной величины Y имеет вид:
|
Y |
–8 |
0 |
8 |
27 |
|
P |
0,2 |
0,3 |
0,1 |
0,4 |
Составим
теперь функцию распределения случайной величины :
2) Найдем вначале значения функции :
,
,
,
.
Составим
теперь функцию распределения случайной величины :
Ответ: 1)
2)
2. Пусть
случайная величина X является непрерывной.
Рассмотрим
вначале случайную величину , где
– гладкая строго монотонная функция скалярного аргумента x, а X – СВНТ с плотностью
.
Тогда плотность распределения случайной величины Y находится
по формуле:
,
где – обратная по отношению к
функция.
Если
же – немонотонная функция на множестве возможных значений X, то следует разбить этот промежуток на такие
интервалы, в которых функция монотонна, и найти плотности распределений
для каждого из интервалов монотонности, а
затем представить в виде суммы
.
В
частности, если функция монотонна в двух интервалах, в которых
соответствующие обратные функции равны и
, то
.
Пример 2.3.2. Найти плотность распределения
СВНТ (
), где
СВНТ X имеет плотность .
Решение. при
гладкая строго монотонная функция. Тогда
обратная функция .
Отсюда .
Таким образом,
.
Ответ: .
Пример 2.3.3. Случайная величина X распределена нормально с параметрами m и (
).
Доказать, что линейная функция , где
,
также распределена нормально, причем ,
.
Решение. Напишем плотность распределения
случайной величины X:

Применим
формулу ,
выведенную в предыдущем примере 2.3.2. Получим

Отсюда
видно, что .
Пример 2.3.4. Случайная величина X распределена по закону Коши
.
Найти
плотность распределения случайной величины .
Решение. гладкая
строго монотонная функция. Тогда обратная функция .
Отсюда 
причем .
Значит, 
Таким
образом,

Ответ: 
Пример 2.3.5. Случайная величина X распределена равномерно в интервале (
).
Найти плотность распределения случайной величины .
Решение. Найдем плотность распределения случайной величины X:
Из
уравнения найдем обратную функцию
.
Поскольку в интервале функция
немонотонна, то необходимо разбить этот интервал
на интервалы и
, в
которых эта функция монотонна. На интервале обратная функция
, на
интервале обратная функция
.
Тогда искомая плотность распределения может быть найдена из равенства
.
Найдем
производные обратных функций:


Тогда
модули производных равны


Учитывая,
что при
,
получим
,
.
Отсюда

Так
как при
, то
. Таким
образом, на интервале искомая плотность распределения равна

этого интервала .
Ответ:
Рассмотрим далее на примерах, как находится функция
распределения случайной величины
, если известна функция распределения
случайной величины X.
Пример 2.3.6. Задана функция
распределения случайной величины X. Найти
функцию распределения случайной величины
, если: 1)
; 2)
.
Решение. 1) По определению функции
распределения .
Поскольку функция – возрастающая, то неравенство
выполняется, если имеет место неравенство
,
поэтому
.
Из
уравнения выразим x:
. Тогда
.
2) По определению функции распределения .
Поскольку функция – убывающая, то неравенство
выполняется, если имеет место неравенство
,
поэтому
.
Из
уравнения выразим x:
. Тогда
.
Ответ: 1) ;
2) .
2.3.2. Числовые
характеристики функций одномерных случайных величин
Если X – случайная величина с известным законом
распределения и , где
– неслучайная функция скалярного аргумента x, то математическое ожидание и дисперсия случайной
величины Y (если они существуют) могут быть
найдены по следующим формулам:
, если
X – СВДТ,
, если
X – СВНТ;
, если
X – СВДТ,
, если
X – СВНТ.
Аналогичные
формулы имеют место и для всех прочих начальных и центральных моментов
распределения случайной величины .
Замечание 1. Таким образом, для вычисления
числовых характеристик функции одномерной случайной величины X необязательно знать закон распределения случайной
величины , а достаточно
знать закон распределения случайного аргумента X.
Замечание 2. Если , то
математическое ожидание случайной величины есть не что иное, как начальный момент s-го порядка, т.е.
.
Аналогично,
если , то
математическое ожидание случайной величины есть центральный момент s-го порядка, т.е.
.
Пример 2.3.7. Закон распределения случайной
величины X имеет вид:
|
X |
–1 |
0 |
1 |
2 |
|
P |
0,1 |
0,2 |
0,3 |
0,4 |
Тогда
;
.
Пример 2.3.8. Случайная величина X задана плотностью распределения
Найти
математическое ожидание и дисперсию функции .
Решение. Найдем вначале математическое
ожидание:
.
Вычислим
теперь дисперсию:
.
Ответ: ,
.
Замечание. Математическое ожидание и дисперсию
функции можно было вычислить, найдя предварительно
плотность распределения случайной величины Y.
Упражнения
2.3.1. Закон распределения случайной
величины X имеет вид:
2.3.2. Число X неисправностей на участке высоковольтной линии в
течение года имеет распределение Пуассона с параметром a ().
Общий материальный ущерб Y от этих неисправностей
пропорционален квадрату их числа: , где
– неслучайная величина. Найти закон
распределения этого ущерба.
2.3.3. СВДТ X имеет
пуассоновское распределение , а
.
Вычислить .
2.3.4. Задана плотность распределения случайной величины X, возможные
значения которой заключены в интервале .
Найти плотность распределения случайной величины Y, если:
1) ;
2) ;
3) .
2.3.5. Задана плотность распределения случайной величины X, возможные
значения которой заключены в интервале .
Найти плотность распределения случайной величины Y, если:
1) ;
2) ;
3) .
Ответы к упражнениям
2.3.1.
|
Y |
|
1 |
|
P |
0,3 |
0,7 |
2.3.2.
2.3.3. 1.
2.3.4. 1) 
;
2) 
;
3) ,
.
2.3.5. 1) ,
;
2) ,
;
3) ,
.
2.3.3.
Функции многомерных случайных величин
Функция
многомерной случайной величины определяется аналогично тому, как определялась
функция одномерной случайной величины. Рассмотрим это на примере двумерной
случайной величины. Пусть на вероятностном пространстве (, F, P) задана
двумерная случайная величина .
Предположим, что имеется числовая функция скалярных аргументов x и y. Случайную величину
назовем функцией от двумерной
случайной величины .
1. Пусть
случайные величины X и Y являются дискретными.
Функция
от двумерной дискретной случайной величины
снова является дискретной случайной величиной,
принимающей значения с вероятностями
, где
– множество возможных значений компоненты X,
– множество возможных значений компоненты Y. Тогда для нахождения функции распределения можно
воспользоваться соотношением
Однако,
как правило, удобнее вначале составить ряд распределения случайной величины .
Чтобы его построить, необходимо исключить все те значения ,
вероятность которых равна нулю, и объединить в один столбец все одинаковые
значения ,
приписав этому столбцу суммарную вероятность.
Пример 2.3.9. Распределение
случайного вектора задано таблицей:
|
Y X |
–1 |
0 |
1 |
|
–1 |
0,07 |
0,1 |
0,13 |
|
1 |
0,2 |
0,23 |
0,27 |
Составить
закон распределения случайной величины .
Решение. Найдем вначале значения функции :
,
,
,
,
,
.
Таким
образом, случайной
величины Z имеет биномиальное распределение .
Ответ: .
2. Пусть
случайные величины X и Y являются непрерывными.
В
случае, когда – двумерная непрерывная случайная величина с плотностью
,
функция распределения случайной величины определяется формулой
.
Область
интегрирования здесь состоит из всех точек x и y, для которых .
Найдя функцию распределения ,
далее можно дифференцированием по z (в тех точках, в которых имеет производную по z) найти плотность
распределения случайной величины Z.
Пример 2.3.10. Случайная точка распределена равномерно в квадрате Q со стороной 1 (рис. 2.3.1 а). Найти
закон распределения площади Z прямоугольника со сторонами X и Y: .
Решение. Очевидно, что в данном случае
случайные величины X и Y независимы
(Советуем убедиться в этом самостоятельно!):

Область
интегрирования заштрихована на рис. 2.3.1 б.

а
б
Рис. 2.3.1.
Тогда

где .
Таким образом, окончательно получим:
Дифференцируя
это выражение по z, получим плотность распределения
случайной величины Z:
Ответ: 
2.3.4.
Задача композиции
Очень
часто встречается функциональная зависимость вида
,
т.е.
возникает задача определения закона распределения суммы компонент случайного
вектора по известному закону совместного распределения
его компонент X и Y. Покажем,
как эта задача решается в двух случаях, когда компоненты X и Y: 1) СВДТ; 2) СВНТ.
1. Пусть X и Y
– СВДТ с
известным законом совместного распределения , где
– множество возможных значений компоненты X,
– множество возможных значений компоненты Y. Тогда закон распределения
записывается в виде

где
суммирование распространяется на все значения индексов i и j, для которых выполняется условие .
Затем, построив ряд распределения случайной величины Z (исключая все те значения ,
вероятность которых равна нулю), можно составить функцию распределения .
Пример 2.3.11. Закон распределения случайного вектора задан таблицей:
Составив
закон распределения случайной величины , найти функцию распределения
и вычислить
,
.
Решение. Найдем вначале значения функции
:
,
,
,
,
,
.
Тогда найдем функцию
распределения :
Вычислим
теперь и
:
,
.
Ответ: 
,
.
2. Пусть X и Y
– СВНТ с
известной плотностью совместного распределения компонент ,
тогда
.
Особо
важным для практики представляется частный случай, когда X и Y – независимые случайные величины, а .
Получается так называемая задача композиции.
1. Пусть X и Y
– независимые СВДТ, тогда
или
.
Пример 2.3.12. Рассматривается случайная
величина Z
– суммарное число
«успехов» в двух независимых опытах с одной и той же вероятностью «успеха» p в каждом опыте. Найти закон
распределения случайной величины Z и составить ее функцию
распределения.
Решение. Пусть X – количество успехов в первом опыте, а Y – количество успехов во втором опыте. По условию
задачи X и Y независимы.
Тогда .
Получается задача композиции. Поскольку случайные величины X и Y принимают только два значения 0 или
1, то случайная величина может принимать четыре значения
,
,
,
с
вероятностями
, qp, pq,
соответственно.
Тогда ряд распределения примет вид
|
Z |
0 |
1 |
2 |
|
P |
|
2pq |
|
Составим
теперь функцию распределения случайной величины :
Ответ:
2. Пусть X и Y
– независимые СВНТ, и
– их плотности. Плотность совместного
распределения равна .
Функция распределения суммы равна
.
Этот
интеграл можно вычислять как повторный:
Дифференцируя
по z, получаем:
.
Две
последние формулы носят название формул свертки. С помощью этих формул можно
выразить функцию распределения и плотность
суммы независимых случайных величин через
плотности и функции распределения слагаемых. Отметим, что в силу симметрии
переменных x и y формулы
свертки можно записать следующим образом:
,
.
Пример 2.3.13. Пусть случайные величины X и Y – независимы, – функция распределения Х, а Y имеет плотность
Составить
функцию распределения и функцию плотности суммы .
Решение. Применяя формулу свертки, имеем
,
т.к.
производная интеграла по переменной z равна значению подынтегральной
функции от верхнего предела, умноженного на производную по z от верхнего предела, минус значение
подынтегральной функции от нижнего предела, умноженного на производную по z от нижнего предела. Отсюда следует
существование плотности
.
Ответ: ,
.
Пример 2.3.14. Случайные величины X и Y независимы и равномерно распределены
на отрезке :
,
. Найти
плотность вероятности случайной величины .
Решение. 1 способ. По условию возможные значения X определяются неравенством ,
возможные значения Y – неравенством .
Отсюда следует, что возможные случайные точки расположены в квадрате ABCD.

а
б
Рис. 2.3.2.
По
определению функции распределения
.
Неравенству
удовлетворяют те точки
плоскости xOy, которые
лежат ниже прямой (эта прямая отсекает на осях Ox и Oy отрезки, равные z). Если же брать только возможные значения x и y, то неравенство
выполняется только для точек, лежащих в
квадрате ABCD ниже прямой .
С
другой стороны, т.к. случайные величины X и Y независимы, то
,
где
область G – часть квадрата ABCD, которая расположена ниже прямой , а
– площадь G. Очевидно,
что величина площади зависит от значения z.
Если , то
,
поэтому . Если
(рис. 2.3.2 а), то
,
поэтому .
Если (рис. 2.3.2 б), то
,
поэтому
.
Если ,
,
поэтому .
Найдем
теперь плотность распределения ,
продифференцировав по z:
График
функции плотности так называемого треугольного
распределения, или распределения Симпсона, показан на рис. 2.3.3.
Рис. 2.3.3.
2 способ. Учтем, что в данном случае
подынтегральное выражение в формуле свертки отлично от нуля лишь в случае, когда
принадлежит отрезку
, а
именно:
, если
;
, если
.
Рассматривая
два случая взаимного расположения отрезков, на которых плотности одновременно
отличны от нуля (рис. 2.3.4), получим:
, если
;
, если
.
Рис. 2.3.4.
Ответ:
Определение. Закон распределения W определенного вида называется композиционно устойчивым, если из того, что две независимые случайные величины X и Y подчиняются закону распределения
данного типа, следует, что их сумма подчиняется закону распределения W того же вида (различаются только параметры этого
закона).
Рассмотрим
примеры композиционно устойчивых распределений.
Пример 2.3.15. Найти закон распределения суммы
двух независимых случайных величин X и Y,
распределенных по закону Пуассона: ,
.
Решение. Найдем вероятность события , где
:
.
Следовательно,
случайная величина распределена по закону Пуассона с параметром
.
Значит, распределение Пуассона композиционно устойчиво.
Ответ: .
Пример 2.3.16. Найти закон распределения суммы
двух независимых случайных величин X и Y,
распределенных по биномиальному закону: ,
.
Решение. Представим случайную величину X в виде:
,
где (
) –
индикатор события A в i-м опыте:
Ряд
распределения случайной величины имеет вид:
Аналогичное
представление сделаем и для случайной величины Y:
,
где (
) –
индикатор события A в j-м опыте:
Ряд
распределения случайной величины имеет вид:
Следовательно,
,
где
каждое из слагаемых является индикаторной случайной величиной распределенной по
одному и тому же закону:
Всего
слагаемых – .
Отсюда следует, что случайная величина распределена по биномиальному закону с
параметрами ; p. Значит, биномиальное распределение композиционно
устойчиво.
Ответ: .
Замечание 1. Если вероятности p в различных сериях опытов (первая серия опытов
описывается случайной величиной X, а вторая серия – случайной
величиной Y) будут различны, то в результате
сложения двух независимых случайных величин X и Y, распределенных по биномиальным законам, получится
случайная величина Z, распределенная не по биномиальному
закону.
Замечание 2. Примеры 2.3.15 и 2.3.16 легко
обобщаются на произвольное число слагаемых (Проделайте выкладки
самостоятельно!).
Пример 2.3.17. Случайные величины X и Y независимы и нормально распределены:
,
.
Найти плотность вероятности случайной величины .
Решение. Пользуясь формулой свертки ,
получим:

Из
курса интегрального исчисления известно, что

В
данном случае 
,

Таким
образом, из структуры плотности следует, что случайная величина имеет нормальное распределение
, где
,
.
Значит, нормальное распределение композиционно устойчиво.
Ответ: , где
,
.
Упражнения
2.3.6. Независимые случайные величины
имеют биномиальное распределение ,
.
Вычислить значение , если
.
2.3.7. Законы распределения случайных
величин X и Y имеют вид:
|
X |
1 |
3 |
Y |
2 |
4 |
|
|
P |
0,3 |
0,7 |
P |
0,6 |
0,4 |
Найти
распределение случайной величины .
2.3.8. Законы распределения случайных
величин X и Y имеют вид:
|
X |
10 |
12 |
16 |
Y |
1 |
2 |
|
|
P |
0,4 |
0,1 |
0,5 |
P |
0,2 |
0,8 |
Найти
распределение случайной величины .
2.3.9. Независимые случайные величины
имеют показательное распределение ,
.
Найти плотность распределения случайной величины .
2.3.10. Независимые случайные величины
имеют равномерное распределение ,
.
Найти функцию распределения и плотность распределения случайной величины .
2.3.11. Независимые случайные величины
имеют равномерное распределение ,
.
Найти функцию распределения и плотность распределения случайной величины .
2.3.12. Случайные величины X и Y независимы и нормально распределены:
,
.
Найти плотность вероятности случайной величины .
Ответы к упражнениям
2.3.6. 0,84.
2.3.7.
2.3.8.
|
Z |
11 |
12 |
13 |
14 |
17 |
18 |
|
P |
0,08 |
0,32 |
0,02 |
0,08 |
0,1 |
0,4 |
2.3.9.
2.3.10. 
2.3.11. 
2.3.12. 
.
2.3.5. Числовые характеристики функций многомерных случайных величин
Сформулированные
в пункте 2.3.2 правила нахождения числовых характеристик функций одномерных
случайных величин естественным образом обобщаются на случай функций от
бóльшего числа переменных. В частности, если – двумерный случайный вектор с известным
законом распределения и , где
– числовая функция скалярных аргументов x и y, то математическое ожидание и
дисперсия случайной величины Z (если они существуют) могут быть
найдены по следующим формулам:
,
если
компоненты X и Y вектора являются СВДТ,
,
если
компоненты X и Y вектора являются СВНТ;
,
если
компоненты X и Y вектора являются СВДТ,
,
если
компоненты X и Y вектора являются СВНТ.
Аналогичные
формулы имеют место и для всех прочих начальных и центральных моментов
распределения случайной величины .
Замечание. Таким образом, для вычисления числовых
характеристик функции многомерной случайной величины необязательно знать закон распределения
случайной величины Z, а достаточно знать закон
распределения случайного вектора .
Пример 2.3.18. Закон распределения случайного
вектора задан таблицей:
Не
составляя закона распределения случайной величины , вычислить
,
.
Решение. Найдем вначале математическое
ожидание:
.
Вычислим
теперь дисперсию:
.
Сравните
найденные числовые характеристики случайной величины с
аналогичными, полученными в примере 2.3.11.
Ответ: ,
.
В пункте 2.2.7
рассматривались условные числовые характеристики случайных векторов. В
частности, определялись условные математические ожидания двумерных случайных
векторов . Напомним, что если случайные величины X и Y дискретны, то условные
математические ожидания вычисляются по формулам:
,
.
Если случайные величины X и Y непрерывны, то условные
математические ожидания вычисляются по формулам:
,
.
Аналогично определяется
условное математическое ожидание функции при условии, что
случайная величина Y приняла определенное значение
(соответственно при условии, что
случайная величина X приняла определенное значение):
,
,
если случайные величины X и Y дискретны;
,
,
если случайные величины X и Y непрерывны.
Также имеют место
следующие формулы полного математического
ожидания:
,
,
если случайные величины X и Y дискретны;
,
,
если случайные величины X и Y непрерывны.
Пример 2.3.19. Число N радиотехнических приборов, сдаваемых покупателями в
гарантийную мастерскую в течение дня, можно представить в виде случайной
величины, хорошо описываемой распределением Пуассона , где a является средним числом приборов, сданных за день.
Вероятность того, что сданный прибор потребует длительного ремонта, равна p. Найти среднее число приборов, требующих длительного
ремонта.
Решение. При фиксированном числе n поступивших приборов количество приборов, требующих
капитального ремонта, представляет собой случайную величину X с биномиальным распределением .
Поэтому ,
.
Поскольку случайная величина N имеет распределение Пуассона , то
.
Тогда по формуле полного математического ожидания
.
Ответ: .
2.3.6. Свойства математического ожидания и дисперсии
Если
существуют соответствующие моменты, то справедливы следующие свойства
математического ожидания и дисперсии:
1. , где
– индикатор события А.
2. Для любых случайных величин X и Y:
(аддитивное свойство математического ожидания).
Замечание. Для любых случайных величин из свойства 2 по индукции выводится:
.
3. Для любой константы c:
,
.
9. Для любых случайных величин X и Y:
(или
).
В
частности, если случайные величины X и Y некоррелированны, то
(мультипликативное свойство математического ожидания).
Замечание. Отметим,
что для случайных величин , где
, для
выполнения свойства
недостаточно условия некоррелированности .
Однако если случайные величины независимы, то последнее равенство верно.
10. Для любых случайных величин X и Y:
.
Замечание. Для любых случайных величин из свойства 11 по индукции выводится:
.
В
частности, если случайные величины X и Y некоррелированны, то
(аддитивное свойство дисперсии).
Замечание. Если случайные величины некоррелированны, то
.
Отметим
также, что поскольку из независимости случайных величин следует их
некоррелированность, то свойство 10 выполняется и для независимых
случайных величин.
Пример 2.3.20. Известно, что случайная величина имеет биномиальное
распределение . Найти
и
.
Решение. По свойству 8 математического ожидания и дисперсии . Поскольку для случайной величины
дисперсия
, где по условию задачи
,
,
, то
.
Вычислим теперь . Опираясь на свойства 2 и 3 математического ожидания
и дисперсии, получим:
.
Поскольку для случайной
величины математическое
ожидание и, по свойству 6,
, то
.
Ответ: ,
.
Пример 2.3.21. Функция распределения СВНТ X имеет вид:
Найти
и
.
Решение. По
условию задачи случайная величина X распределена по экспоненциальному
закону: . Поэтому
,
. Найдем вначале
:
. Тогда:
.
По свойству 8
математического ожидания и дисперсии:
.
Ответ: ,
.
Пример 2.3.22. Известно, что ,
,
. Найти
и
.
Решение. Используя
формулу для дисперсии суммы
,
получим
. Тогда

Ответ: ,
.
Пример 2.3.23. На столе налогового инспектора лежат три декларации от
представителей трех различных групп населения. Вероятности сокрытия доходов при
заполнении декларации для одного представителя каждой группы равны
соответственно 0,05, 0,1 и 0,15. Предположим, что сокрытие доходов
обнаруживается при проверке в 100% случаев. Найти средний доход государства от
проверки этих деклараций, если сумма налагаемого штрафа при обнаружении
сокрытия дохода составляет по группам населения 100, 250 и 500 минимальных
окладов соответственно.
Решение. Рассмотрим случайную величину X, равную
доходу государства от проверки трех деклараций. Тогда X можно представить в виде
,
где
(
) индикаторные случайные величины, т.е.
, если подавший декларацию представитель i-й группы населения скрывает доход, и
– в противном случае.
По условию задачи требуется найти средний доход государства от проверки
налоговых деклараций, т.е. математическое ожидание случайной величины X.
Воспользуемся свойствами математического ожидания для вычисления :
.
Поскольку
для индикаторных случайных величин (
), то
.
Ответ: средний доход государства от проверки
поданных трех деклараций составит 105 минимальных окладов.
Пример 2.3.24. Известно,
что случайные величины X и Y (где X – рост
наугад взятого взрослого мужчины и Y – его вес) удовлетворительно
описываются нормальным законом распределения: ,
. Ковариация этих признаков равна
. Считается, что человек страдает избыточным весом, если
выполняется неравенство . Найти математическое ожидание и дисперсию характеристики
избыточного веса , а также вероятность того, что наугад выбранный мужчина
страдает избыточным весом.
Решение. Так как случайные величины X и Y распределены нормально, то разность также распределена
нормально (Проверьте!). Вычислим параметры этого закона распределения:
;
.
Таким образом, и, следовательно,
.
Ответ: ,
,
.
Упражнения
2.3.13. СВНТ X имеет
плотность вероятности

Найти
и
.
2.3.14. Плотность
вероятности случайной величины X имеет следующий вид:
Найти
и
.
2.3.15. Пусть
существуют дисперсии случайных величин X и Y такие, что . Чему равна ковариация случайных величин
и
?
2.3.16. Известно, что случайная величина ,
,
. Найти
.
2.3.17. Известно, что случайная величина . Пусть
. Найти
.
2.3.18. Известно, что случайные величины ,
. Вычислить
.
2.3.19. Подбрасывают
три игральные кости. Рассматриваются случайные величины: X –
количество костей, на которых выпало шесть очков, Y – количество костей, на которых
выпало пять очков. Найти и закон распределения
случайной величины .
2.3.20. Предприятие имеет две поточные линии по сборке некоторой продукции.
Технологические процессы на линиях связаны между собой. Рассматривая в качестве
случайной величины X – количество единиц продукции,
собранной за день на первой линии, а Y – на второй линии, совместное
распределение этих величин можно задать с помощью таблицы:
Составить
закон распределения случайной величины – суммарного
количества единиц продукции, выпускаемой предприятием за день. Найти и
.
Ответы к упражнениям
2.3.13. ,
.
2.3.14. ,
.
2.3.15. 0.
2.3.16. 0.
2.3.17. 0.
2.3.18. .
2.3.19. ,
.
2.3.20. ,
; закон распределения Z:
2.3.7. Характеристическая
функция
Если
– комплекснозначная
случайная величина, где X и Y – действительные случайные
величины, то
.
Определение. Характеристической функцией случайной
величины X называется комплекснозначная функция
,
где
,
.
В
частности,
, если X – СВДТ;
, если X – СВНТ.
Замечание 1. По
характеристической функции однозначно восстанавливается
функция распределения .
Замечание 2. Характеристическая
функция представляет собой преобразование Фурье плотности вероятности СВНТ X. Поэтому
обратное преобразование Фурье приводит к соотношению
.
Таким
образом, для СВНТ задание равносильно заданию
, и наоборот.
Характеристическая
функция обладает следующими
свойствами:
1.
.
2. .
3. Если существует m-й абсолютный момент , то существуют производные характеристической функции
до m-го порядка
включительно, причем 
.
4. Если , то
.
5. Если , причем
независимы в
совокупности, то .
Замечание. Пользуясь
этим свойством, можно решать задачу определения закона распределения суммы независимых случайных величин (задачи композиции). Действительно, если , то
. Найдя
, можно по характеристической функции восстановить закон
распределения случайной величины Z. Кроме того, по виду можно ответить на
вопрос о композиционной устойчивости распределения.
6. , где черта означает операцию комплексного сопряжения. В
частности, отсюда следует, что если – действительная
функция, то она обязательно четная.
Определение. Характеристической функцией случайного
вектора называется комплекснозначная функция n
действительных переменных , определяемая равенством

Пример 2.3.25. Найти
характеристическую функцию случайной величины X, имеющей биномиальное
распределение (), и с ее
помощью вычислить ,
и
.
Решение. Согласно
определению характеристической функции СВДТ X

По свойству 3 для :
,
.
Отсюда
,
.
Пример 2.3.26. Найти
характеристическую функцию случайной величины X, имеющей пуассоновское
распределение (), и с ее
помощью вычислить ,
и
.
Решение. Согласно
определению характеристической функции СВДТ X
.
По свойству 3 для :
,
.
Отсюда
,
.
Пример 2.3.27. Найти
характеристическую функцию случайной величины X, имеющей геометрическое
распределение (), и с ее
помощью вычислить ,
и
.
Решение. Согласно
определению характеристической функции СВДТ X
.
По свойству 3 для :

.
Отсюда


Пример 2.3.28. Найти
характеристическую функцию случайной величины X, имеющей равномерное распределение
().
Решение. Согласно
определению характеристической функции СВНТ X
.
Замечание. Для случайной величины с помощью характеристической функции можно
вычислить ,
и
. Однако это не очень удобно, поэтому мы этого не
делаем.
Пример 2.3.29. Найти
характеристическую функцию случайной величины X, имеющей показательное
распределение (), и с ее
помощью вычислить ,
и
.
Решение. Согласно
определению характеристической функции СВНТ X

По свойству 3 для :


Отсюда

.
Пример 2.3.30. Найти
характеристическую функцию случайной величины X, имеющей нормальное распределение
(), и с ее
помощью вычислить ,
и
.
Решение. Найдем
вначале характеристическую
функцию случайной величины
. Согласно
определению характеристической функции СВНТ X
Дифференцируя (по t) и применяя метод интегрирования по частям, получим:

Решая это
дифференциальное уравнение с разделяющимися переменными при начальном условии (свойство 2
характеристической функции), находим . Отсюда характеристическая функция случайной величины
имеет вид
.
Рассмотрим теперь случайную величину . Тогда нормированная случайная
величина имеет нормальное
распределение и, следовательно,
характеристическую функцию . Далее, по свойству 4 характеристической функции, для случайной величины
имеем
.
Найдем
теперь математическое ожидание, дисперсию и среднее квадратическое отклонение :


Отсюда
,
.
Пример 2.3.31. Проверить
композиционную устойчивость нормального закона.
Решение. Пусть
независимые случайные величины X и Y имеют нормальное распределение: ,
.
Найдем случайной
величины , учитывая свойство 5 характеристической функции и
опираясь на результаты примера 2.3.30:
.
Откуда видно, что характеристическая функция соответствует
нормальному распределению, причем .
Значит, нормальный закон является композиционно устойчивым.
Упражнения
2.3.21. Задана характеристическая
функция СВНТ X:
.
Найти
плотность распределения случайной величины X.
2.3.22. Случайные величины X и Y независимы и распределены по закону
Пуассона: ,
. С
помощью характеристической функции доказать композиционную устойчивость закона
Пуассона.
2.3.23. Случайные величины X и Y независимы и распределены по
биномиальному закону: ,
. С
помощью характеристической функции доказать композиционную устойчивость
биномиального закона.
2.3.24. Случайные величины X и Y независимы и распределены по одному
закону .
Является ли закон композиционно устойчивым?
Ответы к упражнениям
2.3.21. –
распределение Коши.
2.3.24. Нет.
Биномиальный закон распределения
Если вероятность появления события А в каждом испытании постоянна и равна Р, то число появлений события А — дискретная случайная величина Х, принимающая значения 0, 1, 2, …, с вероятностями
(формула Бернулли), где
,
,
.
Математическое ожидание и дисперсия случайной величины Х, распределенной по биномиальному закону, вычисляется по формулам:
,
.
Распределение Пуассона
Если число испытаний велико, а вероятность появления события Р в каждом испытании очень мала, то вместо формулы Бернулли пользуются приближенной формулой Пуассона

Где Число появлений события в N независимых испытаниях; M принимает значения
.
(среднее число появлений события в N испытаниях).
Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру , который определяет этот закон, т. е.
.
Геометрическое распределение
Дискретная случайная величина имеет геометрическое распределение, если она принимает значения 1, 2, …, M, …(бесконечное, но счетное множество значений) с вероятностями
,
Где .
Определение геометрического распределения корректно, так как сумма вероятностей
Случайная величина , имеющая геометрическое распределение, представляет собой число M испытаний, проведенных по схеме Бернулли, с вероятностью Р наступления события в каждом испытании до первого положительного исхода.
Математическое ожидание и дисперсия случайной величины Х , имеющей геометрическое распределение с параметром Р вычисляются по формулам:
Где
Гипергеометрическое распределение
Пусть имеется N элементов, из которых М элементов обладают некоторым признаком А. Извлекаются случайным образом без возвращения N элементов. Х — дискретная случайная величина, число элементов обладающих признаком А, среди отобранных N элементов. Вероятность, что Х = M определяется по формуле

Математическое ожидание и дисперсия случайной величины, распределенной по гипергеометрическому закону, определяются формулами:
,

Пример 7.2. В аккредитации участвуют 4 коммерческих вуза. Вероятности пройти аккредитацию и получить сертификат для этих вузов, соответственно равны 0,5; 0,4; 0,3; 0,2. Составить закон распределения числа коммерческих вузов, не прошедших аккредитацию. Найти числовые характеристики этого распределения.
Решение. В качестве случайной величины Х выступает число коммерческих вузов, не прошедших аккредитацию. Возможные значения, которые может принять случайная величина Х: 0, 1, 2, 3, 4.
Для составления закона распределения необходимо рассчитать соответствующие вероятности. Обозначим через событие — первый вуз прошел аккредитацию,
— второй,
— третий,
— четвертый. Тогда
;
;
;
. Вероятности для вузов не пройти аккредитацию соответственно равны
;
;
;
.
Тогда имеем:
.
Запишем закон распределения в виде таблицы
|
Х |
0 |
1 |
2 |
3 |
4 |
|
Р |
0,012 |
0,106 |
0,320 |
0,394 |
0,168 |
Проверка: 0,012 + 0,106 + 0,32 + 0,394 + 0,168 = 1.
Вычислим

Вычислим :

.
.
Пример 7.3. Вероятность того, что в библиотеке необходимая студенту книга свободна, равна 0,3. Составить закон распределения числа библиотек, которые последовательно посетит студент, чтобы взять необходимую книгу, если в городе 3 библиотеки.
Решение. В качестве случайной величины Х выступает число библиотек, которые посетит студент, чтобы получить необходимую книгу. Возможные значения, которые примет случайная величина Х: 1, 2, 3.
Обозначим через событие — книга свободна в первой библиотеке,
— во второй,
— в третьей. Тогда
. Вероятность противоположного события, что книга занята
.
Для составления закона распределения рассчитаем соответствующие вероятности:
,
,
Запишем закон распределения в виде таблицы.
Проверка: 0,3 + 0,21 + 0,49 = 1.
Пример 7.4. Из поступающих в ремонт 10 часов 7 нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в чистке, рассматривает их поочередно и, найдя такие часы, прекращает дальнейший просмотр. Составить закон распределения числа просмотренных часов. Найти математическое ожидание и дисперсию этой случайной величины.
Решение. В качестве случайной величины Х выступает число просмотренных часов. Возможные значения, которые примет случайная величина Х: 1, 2, 3, 4. Все значения случайной величины зависимы.
Для составления закона распределения вычислим вероятности того, что случайная величина примет каждое из своих возможных значений. Для расчета вероятностей будем использовать формулу классической вероятности и теорему умножения для зависимых событий.
Пусть событие — первые, взятые наугад, часы, нуждающиеся в чистке,
— вторые,
— третьи,
— четвертые. Тогда имеем:
,
,
,
Запишем закон распределения в виде таблицы
|
Х |
1 |
2 |
3 |
4 |
|
Р |
|
|
|
|
Проверим, что 
.
Вычислим математическое ожидание случайной величины по формуле

Вычислим дисперсию случайной величины по формуле
.
Вычислим ,

Пример 7.5. Известно, что в определенном городе 20 % горожан добираются на работу личным автотранспортом. Случайно выбраны 4 человека. Составить закон распределения числа людей, добирающихся на работу личным автотранспортом. Найти числовые характеристики этого распределения. Написать функцию распределения и построить ее график.
Решение. В качестве случайной величины Х выступает число людей в выборке, которые добираются на работу личным автотранспортом. Возможные значения, которые может принять случайная величина Х: 0, 1, 2, 3, 4.
Вероятность того, что каждый из отобранных людей, которые добираются на работу личным автотранспортом, постоянна и равна . Вероятность противоположного события, т. е. того, что каждый из отобранных людей добирается на работу не личным автотранспортом, равна
. Все 4 испытания независимы. Случайная величина
Подчиняется биномиальному закону распределения вероятностей с параметрами
;
;
. Для составления закона распределения вычислим вероятности того, что случайная величина примет каждое из своих возможных значений.
Расчет искомых вероятностей осуществляется по формуле Бернулли:
.
,
,
,
,
.
Запишем закон распределения в виде таблицы
|
Х |
0 |
1 |
2 |
3 |
4 |
|
Р |
0,4096 |
0,4096 |
0,1536 |
0,0256 |
0,0016 |
Так как все возможные значения случайной величины образуют полную группу событий, то сумма их вероятностей должна быть равна 1.
Проверка: 0,4096 + 0,4096 + 0,1536 + 0,0256 + 0,0016 = 1.
Найдем числовые характеристики дискретной случайной величины: математическое ожидание, дисперсию и среднее квадратическое отклонение. Математическое ожидание может быть рассчитано по формуле

Так как случайная величина подчиняется биноминальному закону, то для расчета математического ожидания можно воспользоваться формулой
.
Дисперсия случайной величины может быть рассчитана по формуле
:
,
.
В данном случае дисперсию можно рассчитать по формуле
.
Рассчитаем среднее квадратическое отклонение случайной величины по формуле
.
Составим функцию распределения случайной величины Х по формуле
.
1. .
2. .
3. .
4. .
5. .
6. .
Запишем функцию распределения
График функции распределения вероятностей имеет ступенчатый вид (рис. 7.3). Скачки равны вероятностям, с которыми случайная величина принимает возможные значения.
![]() |
Рис. 7.3
Пример 7.6. Клиенты банка, не связанные друг с другом, не возвращают кредиты в срок с вероятностью 0,1. Составить закон распределения числа возвращенных в срок кредитов из 5 выданных. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины.
Решение. В качестве случайной величины Х выступает число кредитов, возвращенных клиентами в срок. Возможные значения, которые может принять случайная величина Х: 0, 1, 2, 3, 4, 5.
Вероятность того, что каждый клиент возвратит кредит в срок, постоянна и равна . Вероятность того, что кредит не будет возвращен в срок, равна
. Все 5 испытаний независимы. Случайная величина подчиняется биномиальному распределению с параметрами
;
;
;
. Для составления закона распределения вычислим вероятности того, что случайная величина примет каждое из своих возможных значений. Расчет искомых вероятностей осуществляется по формуле Бернулли
,
,
,
,
,
,
.
Запишем закон распределения в виде таблицы
|
Х |
0 |
1 |
2 |
3 |
4 |
5 |
|
Р |
0,00001 |
0,00045 |
0,0081 |
0,0729 |
0,32805 |
0,59049 |
Математическое ожидание вычислим по формуле
.
Дисперсию вычислим по формуле
.
Пример 7.7. Из 10 телевизоров на выставке оказались 4 телевизора фирмы «Сони». Наудачу для осмотра выбраны 3 телевизора. Составить закон распределения числа телевизоров фирмы «Сони» среди 3 отобранных.
Решение. В качестве случайной величины Х выступает число телевизоров фирмы «Сони». Возможные значения, которые может принять случайная величина Х: 0, 1, 2, 3. Для составления закона распределения вычислим вероятности того, что случайная величина примет каждое из своих возможных значений. Эти вероятности можно рассчитать по формуле классической вероятности :




Запишем закон распределения
|
Х |
0 |
1 |
2 |
3 |
|
Р |
|
|
|
|
Убедимся, что 
Пример 7.8. На двух автоматических станках производятся одинаковые изделия. Даны законы распределения числа бракованных изделий, производимых в течение смены на каждом из них:
Х: для первого
|
Х |
0 |
1 |
2 |
3 |
|
Р |
0,1 |
0,6 |
0,2 |
0,1 |
Y: для второго
|
Y |
|
0 |
1 |
2 |
|
Р |
|
0,5 |
0,3 |
0,2 |
Составить закон распределения числа производимых в течение смены бракованных изделий обоими станками. Проверить свойство математического ожидания суммы случайных величин.
Решение. Для того чтобы составить закон распределения Х + Y необходимо складывать , а соответствующие им вероятности умножить
:
;
,
;
,
;
,
;
,
;
,
;
,
,
,
,
,
,
.
Закон распределения запишем в виде таблицы
|
Х + Y |
0 |
1 |
2 |
3 |
4 |
5 |
|
P |
0,05 |
0,33 |
0,3 |
0,23 |
0,07 |
0,02 |
Проверим свойство математического ожидания :


,
.
Пример 7.9. Дискретная случайная величина Х имеет только два возможных значения: И
, причем
. Вероятность того, что Х примет значение
, равна 0,6. Найти закон распределения величины Х, если математическое ожидание
;
.
Решение. Сумма вероятностей всех возможных значений случайной величины равна единице, поэтому вероятность того, что Х примет значение . Напишем закон распределения Х
|
X |
|
|
|
P |
0,6 |
0,4 |
Для того чтобы отыскать И
необходимо составить два уравнения. Из условия задачи следует, что
,
.
Составим систему уравнений
Решив эту систему, имеем ;
и
;
.
По условию , поэтому задаче удовлетворяет лишь первое решение, т. е.
;
. Тогда закон распределения имеет вид
Пример 7.10. Случайные величины И
Независимы. Найти дисперсию случайной величины
, если известно, что
,
.
Решение. Так как имеют место свойства дисперсии
и
, то получим
.
| < Предыдущая | Следующая > |
|---|















































































































































































































































































































где C –– постоянная величина.
















































































































называется коэффициентом асимметрии и служит характеристикой асимметрии или скошенности распределения случайной величины.

























































на всей числовой прямой.
то есть нормальная кривая расположена над осью Ох.
то есть ось Ох служит горизонтальной асимптотой графика.
симметричен относительно оси Оу). Следовательно, можем записать:






























































































































