ВВЕДЕНИЕ
Многие вещи нам непонятны не потому, что
наши понятия слабы;
но потому, что сии вещи не входят в круг наших
понятий.
Козьма Прутков
Основная цель изучения математики в средних
специальных учебных заведениях состоит в том,
чтобы дать студентам набор математических
знаний и навыков, необходимых для изучения
других программных дисциплин, использующих в той
или иной мере математику, для умения выполнять
практические расчеты, для формирования и
развития логического мышления.
В данной работе последовательно вводятся все
базовые понятия раздела математики «Основы
теории вероятностей и математической
статистики», предусмотренные программой и
Государственными образовательными стандартами
среднего профессионального образования
(Министерство образования Российской Федерации.
М., 2002г.), формулируются основные теоремы, большая
часть которых не доказывается. Рассматриваются
основные задачи и методы их решения и технологии
применения этих методов к решению практических
задач. Изложение сопровождается подробными
комментариями и многочисленными примерами.
Методические указания могут быть использованы
для первичного ознакомления с изучаемым
материалом, при конспектировании лекций, для
подготовки к практическим занятиям, для
закрепления полученных знаний, умений и навыков.
Кроме того, пособие будет полезно и студентам-
старшекурсникам как справочное пособие,
позволяющее быстро восстановить в памяти то, что
было изучено ранее.
В конце работы приведены примеры и задания,
которые студенты могут выполнять в режиме
самоконтроля.
Методические указания предназначены для
студентов заочной и дневной форм обучения.
ОСНОВНЫЕ ПОНЯТИЯ
Теория вероятностей изучает объективные
закономерности массовых случайных событий. Она
является теоретической базой для математической
статистики, занимающейся разработкой методов
сбора, описания и обработки результатов
наблюдений. Путем наблюдений (испытаний,
экспериментов), т.е. опыта в широком смысле слова,
происходит познание явлений действительного
мира.
В своей практической деятельности мы часто
встречаемся с явлениями, исход которых
невозможно предсказать, результат которых
зависит от случая.
Случайное явление можно охарактеризовать
отношением числа его наступлений к числу
испытаний, в каждом из которых при одинаковых
условиях всех испытаний оно могло наступить или
не наступить.
Теория вероятностей есть раздел математики, в
котором изучаются случайные явления (события) и
выявляются закономерности при массовом их
повторении.
Математическая статистика — это раздел
математики, который имеет своим предметом
изучения методов сбора, систематизации,
обработки и использования статистических данных
для получения научно обоснованных выводов и
принятия решений.
При этом под статистическими данными
понимается совокупность чисел, которые
представляют количественные характеристики
интересующих нас признаков изучаемых объектов.
Статистические данные получаются в результате
специально поставленных опытов, наблюдений.
Статистические данные по своей сущности
зависят от многих случайных факторов, поэтому
математическая статистика тесно связана с
теорией вероятностей, которая является ее
теоретической основой.
I. ВЕРОЯТНОСТЬ. ТЕОРЕМЫ СЛОЖЕНИЯ И
УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ
1.1. Основные понятия комбинаторики
В разделе математики, который называется
комбинаторикой, решаются некоторые задачи,
связанные с рассмотрением множеств и
составлением различных комбинаций из элементов
этих множеств. Например, если взять 10 различных
цифр 0, 1, 2, 3,: , 9 и составлять из них комбинации, то
будем получать различные числа, например 143, 431,
5671, 1207, 43 и т.п.
Мы видим, что некоторые из таких комбинаций
отличаются только порядком цифр (например, 143 и
431), другие — входящими в них цифрами (например, 5671
и 1207), третьи различаются и числом цифр (например,
143 и 43).
Таким образом, полученные комбинации
удовлетворяют различным условиям.
В зависимости от правил составления можно
выделить три типа комбинаций: перестановки,
размещения, сочетания.
Предварительно познакомимся с понятием факториала.
Произведение всех натуральных чисел от 1 до n
включительно называют n-факториалом и
пишут .
Пример 1.
Вычислить: а) ; б)
; в)
.
Решение. а) .
б) Так как и
, то можно
вынести за скобки
Тогда получим
.
в) .
Перестановки.
Комбинация из n элементов, которые отличаются
друг от друга только порядком элементов,
называются перестановками.
Перестановки обозначаются символом Рn,
где n- число элементов, входящих в каждую
перестановку. (Р — первая буква французского
слова permutation— перестановка).
Число перестановок можно вычислить по формуле
или с помощью факториала:
Запомним, что 0!=1 и 1!=1.
Пример 2. Сколькими способами можно
расставлять на одной полке шесть различных книг?
Решение. Искомое число способов равно числу
перестановок из 6 элементов, т.е.
.
Размещения.
Размещениями из m элементов в n в каждом
называются такие соединения, которые отличаются
друг от друга либо самими элементами (хотя бы
одним), либо порядком из расположения.
Размещения обозначаются символом , где m—
число всех имеющихся элементов, n— число
элементов в каждой комбинации. (А-первая
буква французского слова arrangement, что означает
«размещение, приведение в порядок»).
При этом полагают, что nm.
Число размещений можно вычислить по формуле
,
т.е. число всех возможных размещений из m
элементов по n равно произведению n последовательных
целых чисел, из которых большее есть m.
Запишем эту формулу в факториальной форме:
.
Пример 3. Сколько вариантов распределения
трех путевок в санатории различного профиля
можно составить для пяти претендентов?
Решение. Искомое число вариантов равно числу
размещений из 5 элементов по 3 элемента, т.е.
.
Сочетания.
Сочетаниями называются все возможные
комбинации из m элементов по n, которые
отличаются друг от друга по крайней мере хотя бы
одним элементом (здесь m и n-натуральные
числа, причем n m).
Число сочетаний из m элементов по n
обозначаются
(С-первая буква французского слова combination
— сочетание).
В общем случае число из m элементов по n
равно числу размещений из m элементов по n,
деленному на число перестановок из n
элементов:
Используя для чисел размещений и перестановок
факториальные формулы, получим:
Пример 4. В бригаде из 25 человек нужно
выделить четырех для работы на определенном
участке. Сколькими способами это можно сделать?
Решение. Так как порядок выбранных четырех
человек не имеет значения, то это можно сделать способами.
Находим по первой формуле
.
Кроме того, при решении задач используются
следующие формулы, выражающие основные свойства
сочетаний:
(по определению полагают и
);
.
1.2. Решение комбинаторных задач
Задача 1. На факультете изучается 16 предметов.
На понедельник нужно в расписание поставить 3
предмета. Сколькими способами можно это сделать?
Решение. Способов постановки в расписание трех
предметов из 16 столько, сколько можно составить
размещений из 16 элементов по 3.
.
Задача 2. Из 15 объектов нужно отобрать 10
объектов. Сколькими способами это можно сделать?
Решение.
Задача 3. В соревнованиях участвовало четыре
команды. Сколько вариантов распределения мест
между ними возможно?
Решение.
.
Задача 4. Сколькими способами можно составить
дозор из трех солдат и одного офицера, если
имеется 80 солдат и 3 офицера?
Решение. Солдат в дозор можно выбрать
способами, а офицеров способами. Так как с каждой командой
из солдат может пойти любой офицер, то всего
имеется
способов.
Задача 5. Найти , если известно, что
.
Решение.
Так как , то
получим
,
,
,
,
.
По определению сочетания следует, что ,
. Т.о.
.
Ответ: 9
1.3. Понятие о случайном событии. Виды
событий. Вероятность события
Всякое действие, явление, наблюдение с
несколькими различными исходами, реализуемое
при данном комплексе условий, будем называть испытанием.
Результат этого действия или наблюдения
называется событием.
Если событие при заданных условиях может
произойти или не произойти, то оно называется случайным.
В том случае, когда событие должно непременно
произойти, его называют достоверным, а в
том случае, когда оно заведомо не может
произойти,- невозможным.
События называются несовместными, если
каждый раз возможно появление только одного из
них.
События называются совместными, если в
данных условиях появление одного из этих событий
не исключает появление другого при том же
испытании.
События называются противоположными,
если в условиях испытания они, являясь
единственными его исходами, несовместны.
События принято обозначать заглавными буквами
латинского алфавита: А, В, С, Д, : .
Полной системой событий А1, А2, А3,
: , Аn называется совокупность
несовместных событий, наступление хотя бы одного
из которых обязательно при данном испытании.
Если полная система состоит из двух
несовместных событий, то такие события
называются противоположными и обозначаются А и .
Пример. В коробке находится 30
пронумерованных шаров. Установить, какие из
следующих событий являются невозможными,
достоверными, противоположными:
достали пронумерованный шар (А);
достали шар с четным номером (В);
достали шар с нечетным номером (С);
достали шар без номера (Д).
Какие из них образуют полную группу?
Решение. А — достоверное событие; Д —
невозможное событие;
В и С — противоположные события.
Полную группу событий составляют А и Д, В
и С.
Вероятность события, рассматривается как
мера объективной возможности появления
случайного события.
1.4. Классическое определение вероятности
Число, являющееся выражением меры объективной
возможности наступления события, называется вероятностью
этого события и обозначается символом Р(А).
Определение. Вероятностью события А
называется отношение числа исходов m,
благоприятствующих наступлению данного события А,
к числу n всех исходов (несовместных,
единственно возможных и равновозможных), т.е. .
Следовательно, для нахождения вероятности
события необходимо, рассмотрев различные исходы
испытания, подсчитать все возможные
несовместные исходы n, выбрать число
интересующих нас исходов m и вычислить отношение
m к n.
Из этого определения вытекают следующие
свойства:
Вероятность любого испытания есть
неотрицательное число, не превосходящее единицы.
Действительно, число m искомых событий
заключено в пределах . Разделив обе части на n, получим
.
2. Вероятность достоверного события равна
единице, т.к. .
3. Вероятность невозможного события равна нулю,
поскольку .
Задача 1. В лотерее из 1000 билетов имеются 200
выигрышных. Вынимают наугад один билет. Чему
равна вероятность того, что этот билет
выигрышный?
Решение. Общее число различных исходов есть n=1000.
Число исходов, благоприятствующих получению
выигрыша, составляет m=200. Согласно формуле,
получим
.
Задача 2. В партии из 18 деталей находятся 4
бракованных. Наугад выбирают 5 деталей. Найти
вероятность того, что из этих 5 деталей две
окажутся бракованными.
Решение. Число всех равновозможных независимых
исходов n равно числу сочетаний из 18 по 5 т.е.
Подсчитаем число m, благоприятствующих событию
А. Среди 5 взятых наугад деталей должно быть 3
качественных и 2 бракованных. Число способов
выборки двух бракованных деталей из 4 имеющихся
бракованных равно числу сочетаний из 4 по 2:
.
Число способов выборки трех качественных
деталей из 14 имеющихся качественных равно
.
Любая группа качественных деталей может
комбинироваться с любой группой бракованных
деталей, поэтому общее число комбинаций m
составляет
.
Искомая вероятность события А равна отношению
числа исходов m, благоприятствующих этому
событию, к числу n всех равновозможных
независимых исходов:
.
1.5. Теорема сложения вероятностей
несовместных событий
Суммой конечного числа событий называется
событие, состоящее в наступлении хотя бы одного
из них.
Сумму двух событий обозначают символом А+В, а
сумму n событий символом А1+А2+ : +Аn.
Теорема сложения вероятностей.
Вероятность суммы двух несовместных событий
равна сумме
вероятностей этих событий.
или
Следствие 1. Если событие А1, А2, :
,Аn образуют полную систему, то сумма
вероятностей этих событий равна единице.
.
Следствие 2. Сумма вероятностей
противоположных событий и
равна единице.
.
Задача 1. Имеется 100 лотерейных билетов.
Известно, что на 5 билетов попадает выигрыш по 20000
руб., на 10 — по 15000 руб, на 15 — по 10000 руб., на 25 — по 2000
руб. и на остальные ничего. Найти вероятность
того, что на купленный билет будет получен
выигрыш не менее 10000 руб.
Решение. Пусть А, В, и С- события, состоящие в том,
что на купленный билет падает выигрыш, равный
соответственно 20000, 15000 и 10000 руб. так как события
А, В и С несовместны, то
.
Задача 2. На заочное отделение техникума
поступают контрольные работы по математике из
городов А, В и С. Вероятность поступления
контрольной работы из города А равна 0,6, из
города В — 0,1. Найти вероятность того, что
очередная контрольная работа поступит из города С.
Решение. События «контрольная работа
поступила из города А«, «контрольная работа
поступила из города В» и «контрольная работа
поступила из города С» образуют полную систему,
поэтому сумма их вероятностей равна единице:
, т.е.
.
Задача 3. Вероятность того, что день будет
ясным, . Найти
вероятность
того, что день будет облачным.
Решение. События «день ясный» и «день
облачный» противоположные, поэтому
, т.е
.
1.6. Теорема умножения вероятностей
независимых событий
При совместном рассмотрении двух случайных
событий А и В возникает вопрос:
Как связаны события А и В друг с другом,
как наступление одного из них влияет на
возможность наступления другого?
Простейшим примером связи между двумя
событиями служит причинная связь, когда
наступление одного из событий обязательно
приводит к наступлению другого, или наоборот,
когда наступление одного исключает возможность
наступления другого.
Для характеристики зависимости одних событий
от других вводится понятие условной
вероятности.
Определение. Пусть А и В — два
случайных события одного и того же испытания.
Тогда условной вероятностью события А или
вероятностью события А при условии, что
наступило событие В, называется число .
Обозначив условную вероятность , получим формулу
,
.
Задача 1. Вычислить вероятность того, что в
семье, где есть один ребенок- мальчик, родится
второй мальчик.
Решение. Пусть событие А состоит в том, что в
семье два мальчика, а событие В — что один
мальчик.
Рассмотрим все возможные исходы: мальчик и
мальчик; мальчик и девочка; девочка и мальчик;
девочка и девочка.
Тогда ,
и по формуле находим
.
Событие А называется независимым от
события В, если наступление события В не
оказывает никакого влияния на вероятность
наступления события А.
Теорема умножения вероятностей
Вероятность одновременного появления двух
независимых событий равна произведению
вероятностей этих событий:
.
Вероятность появления нескольких событий,
независимых в совокупности, вычисляется по
формуле
.
Задача 2. В первой урне находится 6 черных и 4
белых шара, во второй- 5 черных и 7 белых шаров. Из
каждой урны извлекают по одному шару. Какова
вероятность того, что оба шара окажутся белыми.
Решение. Пусть — из первой урны извлечен белый шар;
— из второй урны извлечен
белый шар. Очевидно, что события и
независимы.
Так как ,
, то по формуле
находим
.
Задача 3. Прибор состоит из двух элементов,
работающих независимо. Вероятность выхода из
строя первого элемента равна 0,2; вероятность
выхода из строя второго элемента равна 0,3. Найти
вероятность того, что: а) оба элемента выйдут из
строя; б) оба элемента будут работать.
Решение. Пусть событие А— выход из строя
первого элемента, событие В— выход их строя
второго элемента. Эти события независимы (по
условию).
а) Одновременное появление А и В есть
событие АВ. Следовательно,
.
б) Если работает первый элемент, то имеет место
событие
(противоположное событию А— выходу этого
элемента из строя); если работает второй элемент-
событие В. Найдем вероятности событий и
:
;
.
Тогда событие, состоящее в том, что будут
работать оба элемента, есть и, значит,
.
Полный вариант статьи.
-
Основные формулы комбинаторики: размещения, перестановки, сочетания.
Комбинации
из n элементов по m элементам, которые
отличаются или самими элементами, или
порядком их следования, называются размещениями.
Формула размещения:

Пусть
имеются три буквы А,
В и С.
Составим всевозможные комбинации только
из двух букв: АВ,
ВА, АС, СА, ВС, СВ. Эти комбинации отличаются
друг от друга только расположением букв
или самими буквами.
Пример
1
На
третьем курсе изучается 9 предметов.
Сколькими способами можно составить
расписание занятий на один день, если
в учебный день разрешается проводить
занятия только по четырем разным
предметам?
Решение
Различных
способов составления расписания столько,
сколько существует четырехэлементных
комбинаций из девяти элементов, которые
отличаются друг от друга или самими
элементами, или их порядком, т.е.
Ответ: 3024
Комбинации
из n элементов, которые отличаются друг
от друга только порядком элементов,
называются перестановками.
Перестановки обозначаются Рn, где n —
число элементов, входящих в перестановку.
Формула
перестановки:
Рn=n!
Пусть
имеются три буквы А, В и С.
Составим всевозможные комбинации из
этих букв: ABC, АСВ, ВСА, ВАС, CAB, CBA. Эти
комбинации отличаются друг от друга
только расположением букв.
Пример
1
В
турнире участвуют семь команд. Сколько
вариантов распределения мест между
ними возможно?
Решение:
В
итоговой таблице турнира команды будут
отличаться занятыми местами, поэтому
для подсчета вариантов распределения
мест между ними воспользуемся формулой
перестановки:
Р7=7!=1*2*3*4*5*6*7=5040
Ответ: 5040
Комбинации из n элементов
по m элементам, которые отличаются
друг от друга хотя бы одним элементом,
называются сочетаниями.
Формула сочетания:

Пусть
имеются три буквы А, В и С.
Составим всевозможные комбинации только
из двух букв, которые отличаются друг
от друга хотя бы одним элементом: АВ,
АС, ВС. Нетрудно увидеть, что их в два
раза меньше, чем размещений из этих
элементов.
Пример
1
Сколькими
способами можно распределить три путевки
в один санаторий между пятью желающими?
Решение:
Так
как путевки предоставлены в один
санаторий, то варианты распределения
отличаются друг от друга хотя бы одним
желающим. Поэтому число способов
распределения

Ответ: 10.
-
Виды случайных событий.
Случайным
событием
называется результат (исход) наблюдения
какого-нибудь явления при выполнении
некоторого комплекса условий (опыта).
Виды событий:
-
Элементарные
события
— возможно исключающие друг друга
события опыта. -
Невозможное
событие
— не может произойти в результате опыта. -
Достоверное
событие –
в результате опыта обязательно
произойдет. -
Случайное
событие
– при осуществлении некоторых условий
может произойти или не произойти. -
Несовместные
события
– появление одного из них исключает
появление других событий в одном и том
же испытании. -
Совместные
события
– в результате опыта могут появиться
одновременно. -
Равновозможные
события
– одинакова возможность появления в
результате опыта. -
Равносильные
события
– событие А влечет за собой событие В,
а событие В влечет за собой событие А.
-
Алгебра
событий.
-
Суммой
(объединением)
событий А и В называется событие С,
состоящее в появлении события А или
событие В или одновременно событий А
и В. С=А+В -
Произведением
(пересечением)
событий А и В называется событие С,
состоящее в совместном появлении
событий А и В. С=А*В -
Разностью
событий А и В называется событие С,
состоящее в появлении событии А и не
появлении события В. С=А-В
-
Классическое
определение вероятности события.
Свойства вероятности.
Вероятностью
р
события А
называется
отношение числа m-благоприятствующих
случаев к числу всех возможных случаев
n,
образующих полную группу равновозможных
несовместимых событий:
P
(A)=
Свойства
вероятности:
-
Число
появления m-любого
события входит в интервал 0<P<1. -
Вероятность
достоверного события равна 1. -
Вероятность
невозможного события равна 0.
-
Теоремы
сложения вероятностей несовместных
событий.
Теорема
1. Вероятность
появления одного из двух несовместных
событий, безразлично какого, равна сумме
вероятностей этих событий:
Р
(А + В) = Р (А) + Р (В).
Доказательство:
Введем обозначения: n — общее число
возможных элементарных исходов испытания;
m1 —
число исходов, благоприятствующих
событию A; m2—
число исходов, благоприятствующих
событию В.
Число
элементарных исходов, благоприятствующих
наступлению либо события А, либо события
В, равно m1 +
m2.
Следовательно,
Р
(A + В)
= (m1 +
m2)
/ n = m1 /
n + m2 /
n.
Приняв
во внимание, что m1 /
n = Р (А) и m2 /
n = Р (В), окончательно получим
Р
(А + В) = Р (А) + Р (В).
Теорема
2. Сумма
вероятностей событий А1 ,
А2 ,
…, Аn , образующих
полную группу, равна единице:
Р
(A1)
+ Р (А2)
+ … + Р (Аn)
= 1.
Доказательство:
Так
как появление одного из событий полной
группы достоверно, а вероятность
достоверного события равна единице, то
Р
(A1 +
A2 +
… + An)
= 1. (*)
Любые
два события полной группы несовместны,
поэтому можно применить теорему сложения:
Р
(А1 +
А2 +
… + Аn)
= Р (A1)
+ Р (A2)
+ … + Р (Аn).
(**)
Сравнивая
(*) и (**), получим
Р
(А1)
+ Р (А2)
+ … + Р (Аn)
= 1.
Пример:
Консультационный
пункт института получает пакеты с
контрольными работами из городов А, В
и С. Вероятность получения пакета из
города А равна 0,7, из города В — 0,2. Найти
вероятность того, что очередной пакет
будет получен из города С.
Р
е ш е н и е.
События «пакет получен из города А»,
«пакет получен из города В», «пакет
получен из города С» образуют полную
группу, поэтому сумма вероятностей этих
событий равна единице:
0,7
+ 0,2 + p =1.
Отсюда
искомая вероятность
р
= 1 — 0,9 = 0,1.
Теорема
3. Сумма
вероятностей противоположных событий
равна единице:

Доказательство:
Пусть дано А и
.
Тогда А+
будет достоверным. Сумма достоверного
события равно 1. Тогда

З
а м е ч а н и е 1.
Если вероятность одного из двух
противоположных событий обозначена
через р, то вероятность другого события
обозначают через q. Таким образом, в силу
предыдущей теоремы
p
+ q = l
З
а м е ч а н и е 2.
При решении задач на отыскание вероятности
события А часто выгодно сначала вычислить
вероятность противоположного события,
а затем найти искомую вероятность по
формуле
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Комбинации существуют во многих формах, и понимание того, как рассчитать вероятность комбинации, может быть полезным математическим навыком в различных математических и научных профессиях. Вы можете сгенерировать комбинацию случайным образом или установить ее намеренно. Однако навыки расчета вероятности определенного исхода остаются одинаковыми в обоих случаях и могут быть полезными профессиональными инструментами. В этой статье мы обсудим определение комбинации в математике, чем она отличается от перестановки и как рассчитать комбинации в различных формах, которые может принимать комбинация.
Что такое комбинация в математике?
Комбинация — это набор элементов, созданный при определенном наборе условий и ограничений. Комбинация может состоять полностью из уникальных элементов или включать повторяющиеся элементы, и комбинация может потребовать, чтобы эти элементы были в определенном порядке или просто чтобы присутствовали все правильные элементы. В математике понимание параметров комбинации позволяет рассчитать различное количество возможных комбинаций, отвечающих этим требованиям, и, как следствие, вероятность возникновения определенного исхода.
Комбинация против перестановки
Комбинации и перестановки — аналогичные понятия. Однако перестановка имеет дополнительные правила, которые делают ее подмножеством комбинаций. Перестановка — это тип комбинации, в которой важно не только наличие правильных элементов, но и их расположение в правильном порядке.
Например, когда вы выбираете пять шариков наугад из мешка с шариками и определяете, сколько различных комбинаций цветов вы можете нарисовать, не имеет значения, в каком порядке вы их вытаскиваете, что делает эту комбинацию базовой. При попытке открыть замок с тремя цифрами важно не только указать правильные цифры, но и расположить их в правильном порядке. Замок — это комбинация, но это также и перестановка, которая увеличивает общее количество конфигураций и увеличивает сложность.
Как рассчитать вероятность комбинации
Существует несколько типов комбинированных задач, и каждая требует уникального набора вычислений. Понимание того, как определить тип комбинированной проблемы и правильную формулу для решения этой проблемы, является важным навыком для расчета вероятностей. Ниже приведены шаги, которые помогут вам рассчитать вероятность комбинации:
1. Понимать математическую запись комбинаций
Хотя для разных задач комбинированной вероятности требуются разные математические формулы, они содержат одни и те же ключевые понятия и переменные. Важные термины и обозначения для понимания:
-
Факторная запись: Факторная запись — это когда вы ставите восклицательный знак сразу после числа. Это математический символ, представляющий значение, которое вы получаете, когда последовательно умножаете число на каждое целое число, меньшее его, до единицы. Например, «3!» эквивалентно написанию 3 x 2 x 1.
-
Треугольник Паскаля: Использование треугольника Паскаля может помочь вам быстро найти некоторые комбинированные решения. Треугольник Паскаля представляет собой массив чисел, начиная с единицы в верхней строке и заполняя каждую последующую строку сначала двумя числами, затем тремя числами и так далее, чтобы создать форму треугольника. Каждое число в треугольнике равно сумме числа над ним и слева и числа над ним и справа.
-
Переменная n: Переменная n представляет количество вариантов для каждого выбора в комбинации. Например, замок с тремя цифрами, каждая из которых может быть от 0 до 9, имеет значение n, равное 10, потому что для каждого места в комбинации есть 10 возможных цифр.
-
Переменная r: переменная r представляет количество раз, когда вы делаете выбор из потенциальных элементов. Для примера комбинации r будет равно трем, потому что в перестановке замка три цифры.
2. Определите свой стиль сочетания
Чтобы применить правильную формулу при расчете вашей комбинации, важно определить тип расчета, который вы выполняете. Первый ключевой момент заключается в том, вычисляете ли вы перестановку или комбинацию. Затем вы можете определить, может ли одно и то же значение повторяться во время комбинации. Это создает четыре типа расчета, по одному для каждой потенциальной пары комбинации или перестановки и повторения или отсутствия повторения.
3. Выберите соответствующую формулу
После определения стиля комбинации, для которой вы рассчитываете, важно использовать правильную формулу, чтобы найти вероятность определенного результата. Четыре уравнения вероятности комбинации:
-
Перестановка с повторением: Всего перестановок = n ^ r
-
Перестановка без повторения: Всего перестановок для выбора = n! / (н — р)!
-
Комбинация с повторением: Всего комбинаций = n! / (г! х (п — г)!)
-
Комбинация без повторений: Всего комбинаций = (r + n — 1)! / (г! х (п — 1)!)
4. Введите переменные и рассчитайте
Комбинируя правильную формулу с вашими значениями количества вариантов и количества вариантов, вы можете рассчитать общее количество комбинаций или перестановок. Вставьте числа вместо переменных в формулу и вычислите результат. Чтобы преобразовать количество комбинаций или перестановок в вероятность получения конкретных результатов, разделите единицу на результат вашего расчета. Вы также можете преобразовать вероятность в проценты, умножив ее на 100.
Примеры расчета комбинации
Хотя все, что вам нужно для расчета вероятности различных стилей комбинаций, — это формулы, может быть полезно понять математическую логику, лежащую в основе их создания. Эти примеры показывают, почему каждая формула имеет свою уникальную структуру и как использовать каждую из них для выполнения вычислений:
Пример перестановки с повторением
Выяснение того, сколько перестановок существует для комбинации, допускающей повторения, является самым простым из различных вычислений комбинации. Умножьте количество вариантов для каждого элемента перестановки на степень количества элементов.
Например, в сейфе используется вращающийся циферблат со 100 возможными номерами. Для того чтобы открыть сейф нужно правильно повернуться к трем числам в правильном порядке. Есть 100 вариантов для каждого элемента и три элемента, так что вы умножаете 100 на себя три раза. Существует 1 миллион перестановок сейфа.
Всего перестановок = 100 ^ 3 = 1 000 000
Пример перестановки без повторения
Чтобы вычислить количество вариантов для этой перестановки, вы сначала находите значение факториала от общего количества вариантов для каждого элемента, а затем факториал для количества вариантов за вычетом количества выбранных вами элементов. Разделив первый результат на второй, вы получите общее количество перестановок.
Например, у ребенка есть мешочек с пятью шариками, и он вытаскивает наугад три. Вы заинтересованы в том, чтобы определить, сколько перестановок ребенок может выбрать наугад. Сначала вы находите факториал пяти, что равно 120. Затем, поскольку ребенок рисует три шарика, что на два меньше, чем пять, вы находите факториал двух, который равен двум. Разделив 120 на 2, вы определяете, что существует 60 возможных перестановок при вытягивании трех шариков.
Всего перестановок = 5! / (5 — 3)! = 5! / 2! = 120 / 2 = 60
Пример комбинации без повторения
В то время как предыдущая формула рассматривает вытягивание одних и тех же трех шариков в другом порядке как разные результаты, в комбинации они одинаковы. Деление на факториал количества сделанных выборов позволяет удалить дубликаты и найти правильный результат. В примере с мрамором, поскольку каждая комбинация из трех шариков может встречаться в одной из шести перестановок, вы делите 60 на 6, чтобы обнаружить, что существует 10 комбинаций без повторения.
Вы также можете найти количество комбинаций без повторений, используя треугольник Паскаля. Рассматривая верхнюю строку треугольника как нулевую строку, сосчитайте в обратном порядке до строки, соответствующей количеству вариантов для каждого элемента, затем сосчитайте в этой строке количество вариантов, чтобы найти результат.
Всего комбинаций = 5! / (3! х (5 — 3)!) = 5! / (3! х 2!) = 120 / (6 х 2) = 120 / 12 = 10
Пример комбинации с повторением
Чтобы рассчитать комбинацию с повторением, вы можете заменить факториал количества вариантов на факториал суммы количества вариантов и общего количества выборов минус один. Затем замените факториал количества вариантов минус один на факториал количества вариантов минус количество выборов. Полученная формула дает вам количество возможных комбинаций с учетом повторения.
Например, если ребенок кладет вытащенный шарик обратно в мешок после каждого вытягивания, вы можете использовать эту формулу для расчета общего количества возможных комбинаций, выпадающих при вытаскивании трех шариков из мешка. Формула показывает ответ из 35 комбинаций с повторением при вытаскивании шариков из мешка.
Всего комбинаций = (3 + 5 — 1)! / (3! х (5 — 1)!) = 7! / (3! х 4!) = 5040 / (6 х 24) = 5040 / 144 = 35
1.3.3. Сочетания
В учебниках обычно даётся лаконичное и не очень понятное определение сочетаний, поэтому в моих устах формулировка будет не особо
рациональной, но, надеюсь, доходчивой:
Сочетаниями называют различные комбинации из объектов, которые выбраны из множества
различных объектов, и которые отличаются друг от друга хотя бы одним объектом.
Иными словами, отдельно взятое сочетание – это уникальная выборка из элементов, в которой не важен их порядок (расположение). Общее же
количество таких уникальных сочетаний рассчитывается по формуле .
Задача 3
В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?
Решение: прежде всего, обращаю внимание на то, что по логике такого условия, детали считаются различными
– даже если они на самом деле однотипны и визуально одинаковы (в этом случае их можно, например, пронумеровать
).
В задаче речь идёт о выборке из четырёх деталей, в которой не имеет значения их «дальнейшая судьба» – грубо говоря, «просто выбрали 4
штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:
(прерываю решение для промежуточных
объяснений)
И здесь, конечно, не нужно «тягать» значения . В
похожей ситуации я советую использовать следующий приём: в знаменателе выбираем наибольший факториал (в данном случае ) и сокращаем на него дробь. Для этого числитель следует
представить в виде . Распишу очень подробно:
способами можно взять 4 детали из ящика.
Ещё раз: что это значит? Это значит, что из 15 различных деталей можно составить одну тысячу триста шестьдесят
пять уникальных сочетаний из 4 деталей. То есть, каждая такая комбинация из четырёх деталей будет отличаться от
других комбинаций хотя бы одной деталью.
Ответ: 1365 способами
Формуле необходимо уделить самое
пристальное внимание, поскольку она является «хитом» комбинаторики. При этом полезно понимать и без всяких вычислений записывать
«крайние» значения: . Применительно к разобранной
задаче:
– единственным способом можно не выбрать ни одной
детали;
способами можно взять 1 деталь (любую из 15);
способами можно взять 14 деталей (при этом
какая-то одна из 15 останется в ящике);
– единственным способом можно выбрать все
пятнадцать деталей.
Рекомендую вновь обратиться к Приложению Формулы комбинаторики и внимательно ознакомиться с биномом
Ньютона и треугольником Паскаля (пункт 3), по которому очень удобно выполнять проверку вычислений
количества сочетаний при небольших значениях «эн».
Для самостоятельного решения:
Задача 4
а) Сколькими способами из колоды в 36 карт можно выбрать 3 карты?
б) В шахматном турнире участвует человек и каждый с
каждым играет по одной партии. Сколько всего партий сыграно в турнире?
Чем приятны многие комбинаторные задачи, так это краткостью – главное, разобраться в сути. Решения и ответы в конце книги.


| Оглавление |
Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин
Комбинаторика — это раздел математики, в котором изучаются способы выбора и размещения элементов некоторого конечного множества на основании определенных условий. Выбранные (или выбранные и размещенные) группы элементов называются соединениями. Если все элементы полученного множества разные, получаем соединения без повторений, а если элементы повторяются — соединения с повторениями.
Содержание:
В комбинаторике перестановка — это упорядоченный набор без повторений чисел.
Перестановки:
Перестановкой из n элементов называется любое упорядоченное множество из n данных элементов.
Иными словами, это такое множество, для которого указано, какой элемент находится на первом месте, какой — на втором, …, какой — на n-м.
Формула числа перестановок
Пример:
Количество различных шестизначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, не повторяя эти цифры в одном числе, равно
Размещения:
Размещением из n элементов по k называется любое упорядоченное множество из k элементов, состоящее из элементов данного n-элементного множества.
Формулы для нахождения количества соединений с повторениями обязательны только для классов физико-математического профиля.
Формула числа размещений
Пример:
Количество различных трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, если цифры не могут повторяться, равно
Сочетания:
Сочетанием без повторений из n элементов по k называется любое k-элементное подмножество данного n-элементного множества.
Формула числа сочетаний

Пример:
Из 25 учащихся одного класса можно выделить пятерых для дежурства по школе 

Некоторые свойства числа сочетаний без повторений


Схема поиска плана решения простейших комбинаторных задач:
Выбор правила:
Правило суммы
Если элемент А можно выбрать т способами, а элемент В — n способами (при этом выбор элемента А исключает одновременный выбор элемента В), то А или В можно выбрать m + n способами.
Правило произведения
Если элемент А можно выбрать m способами, а после этого элемент В — n способами, то А и В можно выбрать 
Объяснение и обоснование:
Понятие соединения. Правило суммы и произведения:
При решении многих практических задач приходится выбирать из определенной совокупности объектов элементы, имеющие те или иные свойства, размещать их в определенном порядке и т. д. Поскольку в этих задачах речь идет о тех или иных комбинациях объектов, то такие задачи называют комбинаторными. Раздел математики, в котором рассматриваются методы решения комбинаторных задач, называется комбинаторикой. В комбинаторике рассматривается выбор и размещение элементов некоторого конечного множества на основании определенных условий.
Выбранные (или выбранные и размещенные) группы элементов называют соединениями. Если все элементы полученного множества разные, получаем размещения без повторений, а если элементы могут повторяться — размещения с повторениями. В этом параграфе мы рассмотрим соединения без повторений.
Решение многих комбинаторных задач базируется на двух основных правилах — правиле суммы и правиле произведения.
Правило суммы. Если на тарелке лежат 5 груш и 4 яблока, то выбрать один фрукт (грушу или яблоко) можно 9 способами (5 + 4 = 9). В общем виде справедливо такое утверждение:
- если элемент А можно выбрать m способами, а элемент В — n способами (при этом выбор элемента А исключает одновременный выбор элемента В), то А или В можно выбрать m + n способами.
Уточним содержание этого правила, используя понятие множеств и операций над ними.
Пусть множество А состоит из m элементов, а множество В -из n элементов. Если множества А и В не пересекаются (то есть 


Правило произведения. Если в киоске продают ручки 5 видов и тетради 4 видов, то выбрать набор из ручки и тетради (то есть пару — ручка и тетрадь) можно 5æ4 = 20 способами (поскольку с каждой из 5 ручек можно взять любую из 4 тетрадей). В общем виде имеет место такое утверждение:
- если элемент А можно выбрать m способами, а после этого элемент В — n способами, то А и В можно выбрать
способами.
Это утверждение означает, что если для каждого из m элементов А можно взять в пару любой из n элементов В, то количество пар равно произведению 
В терминах множеств полученный результат можно сформулировать следующим образом. Если множество А состоит из т элементов, а множество В — из n элементов, то множество всех упорядоченных пар* (а; b), где первый элемент принадлежит множеству А (а ∈ А), а второй множеству В (b ∈ В), состоит из 
Повторяя приведенные рассуждения несколько раз (или, более строго, используя метод математической индукции), получаем, что правила суммы и произведения можно применять при выборе произвольного конечного количества элементов.
Упорядоченные множества:
При решении комбинаторных задач приходится рассматривать не только множества, в которых элементы можно записывать в любом порядке, но и так называемые упорядоченные множества. Для упорядоченных множеств существенным является порядок следования их элементов, то есть то, какой элемент записан на первом месте, какой на втором и т. д. В частности, если одни и те же элементы записать в разном порядке, то мы получим различные упорядоченные множества. Чтобы различить записи упорядоченного и неупорядоченного множеств, элементы упорядоченного множества часто записывают в круглых скобках, например (1; 2; 3) ≠ (1; 3; 2).
Рассматривая упорядоченные множества, следует учитывать, что одно и то же множество можно упорядочить по-разному. Например, множество из трех чисел {–5; 1; 3} можно упорядочить по возрастанию: (–5; 1; 3), по убыванию: (3; 1; –5), по возрастанию абсолютной величины числа: (1; 3; –5) и т. д.
* Множество всех упорядоченных пар (а; b), где первый элемент принадлежит множеству А (а ∈ А), а второй — множеству В (b ∈ В), называют декартовым произведением множеств А и В и обозначают А × В. Отметим, что декартово произведение В × А также состоит из m*n элементов.
Заметим следующее: для того чтобы задать конечное упорядоченное множество из n элементов, достаточно указать, какой элемент находится на первом месте, какой на втором, …, какой на n-м.
Размещения:
Размещением из n элементов по k называется любое упорядоченное множество из k элементов, состоящее из элементов заданного n-элементного множества.
Например, из множества, содержащего три цифры {1; 5; 7}, можно составить следующие размещения из двух элементов без повторений:
(1; 5), (1; 7), (5; 7), (5; 1), (7; 1), (7; 5).
Количество размещений из n элементов по k обозначается 
Выясним, сколько всего можно составить размещений из n элементов по k без повторений. Составление размещения представим себе как последовательное заполнение k мест, которые будем изображать в виде клеточек (рис. 21.1). На первое место можем выбрать один из n элементов данного множества (то есть элемент для первой клеточки можно выбрать n способами).
Если элементы нельзя повторять, то на второе место можно выбрать только один элемент из оставшихся, то есть из n – 1 элементов. Теперь уже два элемента использованы и на третье место можно выбрать только один из n – 2 элементов и т. д. На k-е место можно выбрать только один из n – (k –1) = n – k +1 элементов (см. рис. 21.1).
Поскольку требуется выбрать элементы и на первое место, и на второе, …, и на k-е, то используем правило произведения и получим следующую формулу числа размещений из n элементов по k:
Например, 
- Учитывается ли порядок следования элементов в соединении?
- Все ли заданные элементы входят в полученное соединение?
Если, например, порядок следования элементов учитывается и из n данных элементов в соединении используется только k элементов, то по определению это — размещение из n элементов по k.
После определения вида соединения следует также выяснить, могут ли элементы в соединении повторяться, то есть выяснить, какую формулу необходимо использовать — для количества соединений без повторений или с повторениями.
Примеры решения задач:
Пример:
На соревнования по легкой атлетике приехала команда из 12 спортсменок. Сколькими способами тренер может определить, кто из них побежит в эстафете 4 × 100 м на первом, втором, третьем и четвертом этапах?
Решение:
Количество способов выбрать из 12 спортсменок четырех для участия в эстафете равно количеству размещений из 12 элементов по 4 (без повторений), то есть
Комментарий:
Для выбора формулы выясняем ответы на вопросы, приведенные выше. Поскольку для спортсменок важно, в каком порядке они будут бежать, то порядок при выборе элементов учитывается. В полученное соединение входят не все 12 заданных элементов. Следовательно, соответствующее соединение — размещение из 12 элементов по 4 (без повторений, поскольку каждая спортсменка может бежать только на одном этапе эстафеты).
Пример:
Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 7, если цифры в числе не повторяются.
Решение:
Количество трехзначных чисел, которые можно составить из семи цифр 1, 2, 3, 4, 5, 6, 7, равно числу размещений из 7 элементов по 3, то есть
Комментарий:
Для выбора формулы выясняем, что для чисел, которые мы будем составлять, порядок следования цифр учитывается и не все элементы выбираются (только 3 из заданных семи). Следовательно, соответствующее соединение — размещение из 7 элементов по 3 (без повторений).
Пример:
Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 0, если цифры в числе не повторяются.
Комментарий:
Выбор формулы проводится таким же образом, как и в задаче 2. Следует учесть, что если число, составленное из трех цифр, начинается цифрой 0, то оно не считается трехзначным. Следовательно, для ответа на вопрос задачи можно сначала из заданных 7 цифр записать все числа, состоящие из 3 цифр (см. задачу 2). Затем из количества полученных чисел вычесть количество чисел, составленных из трех цифр, но начинающихся цифрой 0. В последнем случае мы фактически будем из всех цифр без нуля (их 6) составлять двузначные числа. Тогда их количество равно числу размещений из 6 элементов по 2 (см. решение).
Можно выполнить также непосредственное вычисление, последовательно заполняя три места в трехзначном числе и используя правило произведения. В этом случае для наглядности удобно изображать соответствующие разряды в трехзначном числе в виде клеточек, например так:
Решение:
Количество трехзначных чисел, которые можно составить из семи цифр (среди которых нет цифры 0), если цифры в числе не повторяются, равно числу размещений из 7 элементов по 3, то есть
Но среди данных цифр есть цифра 0, с которой не может начинаться трехзначное число. Поэтому из размещений из 7 элементов по 3 необходимо исключить те размещения, в которых первым элементом является цифра 0. Их количество равно числу размещений из 6 элементов по 2, то есть 
Пример:
Решите уравнение
Решение:
ОДЗ: x ∈ N, 
На ОДЗ это уравнение равносильно уравнениям:
(x – 2) (x – 3) = 6,
x2 – 5x = 0,
x (x – 5) = 0.
Тогда x = 0 или x = 5. В ОДЗ входит только x = 5.
Ответ: 5.
Комментарий:
Уравнения, в запись которых входят выражения, обозначающие количество соответствующих соединений из x элементов, считаются определенными только при натуральных значениях переменной x. Чтобы выражение 


Объяснение и обоснование:
Перестановкой из n элементов называется любое упорядоченное множество из n заданных элементов.
Напомним, что упорядоченное множество — это такое множество, для которого указано, какой элемент находится на первом месте, какой на втором, …, какой на n-м.
Например, переставляя цифры в числе 236 (в котором множество цифр {2; 3; 6} уже упорядоченное), можно составить такие перестановки без повторений: (2; 3; 6), (2; 6; 3), (3; 2; 6), (3; 6; 2), (6; 2; 3), (6; 3; 2) — всего 6 перестановок* .
Количество перестановок без повторений из n элементов обозначается 

Фактически перестановки без повторений из n элементов являются размещениями из n элементов по n без повторений, поэтому

*Отметим, что каждая из перестановок определяет трехзначное число, составленное из цифр 2, 3, 6 таким образом, что цифры в числе не повторяются.
Например,
С помощью факториалов формулу для числа размещений без повторений

запишем в другом виде. Для этого умножим и разделим выражение в формуле (1) на произведение 
Следовательно, формула числа размещений без повторений из n элементов по k может быть записана так:

Для того чтобы этой формулой можно было пользоваться при всех значениях k, в частности при k = n – 1 и k = n, договорились считать, что
1! = 1 и 0! = 1.
Например, по формуле (2)
Обратим внимание, что в тех случаях, когда значение n! оказывается очень большим, ответы оставляют записанными с помощью факториалов. Например,
Примеры решения задач:
Для выбора формулы при решении простейших комбинаторных задач достаточно выяснить следующее:
- Учитывается ли порядок следования элементов в соединении?
- Все ли заданные элементы входят в полученное соединение?
Если, например, порядок следования элементов учитывается и все n заданных элементов используются в соединении, то по определению это перестановки из n элементов.
Пример:
Найдите, сколькими способами можно восемь учащихся построить в колонну по одному.
Решение:
Количество способов равно числу перестановок из 8 элементов, то есть
Комментарий:
Для выбора соответствующей формулы выясняем ответы на вопросы, приведенные выше. Поскольку порядок следования элементов учитывается и все 8 заданных элементов выбираются, то искомые соединения — это перестановки из 8 элементов без повторений. Их количество можно вычислить по формуле
Пример:
Найдите количество различных четырехзначных чисел, которые можно составить из цифр 0, 3, 7, 9 (цифры в числе не повторяются).
Решение:
Из четырех цифр 0, 3, 7, 9, не повторяя заданные цифры, можно получить 

Комментарий:
Поскольку порядок следования элементов учитывается и для получения четырехзначного числа надо использовать все элементы, то искомые соединения — это перестановки из 4 элементов. Их количество — 
Пример:
Имеется десять книг, из которых четыре — учебники. Сколькими способами можно поставить эти книги на полку так, чтобы все учебники стояли рядом?
Решение:
Сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 10, а 7 книг. Это можно сделать 

Комментарий:
Задачу можно решать в два этапа. На первом будем условно считать все учебники одной книгой.
Тогда получим 7 книг (6 не учебников + 1 условная книга — учебник). Порядок следования элементов учитывается и используются все элементы (поставить на полку необходимо все книги). Следовательно, соответствующие соединения — это перестановки из 7 элементов. Их количество — 
На втором этапе решения будем переставлять между собой только учебники. Это можно сделать 
Объяснение и обоснование:
1. Сочетания без повторений:
Сочетанием без повторений из n элементов по k называется любое k-элементное подмножество заданного n-элементного множества.
Например, из множества {a, b, c, d} можно составить следующие сочетания без повторений из трех элементов: {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.
Количество сочетаний без повторений из n элементов по k элементов обозначается символом 
Выясним, сколько всего можно составить сочетаний без повторений из n элементов по k. Для этого используем известные нам формулы числа размещений и перестановок. Составление размещения без повторений из n элементов по k проведем в два этапа. Сначала выберем k разных элементов из заданного n-элементного множества, не учитывая порядок выбора этих элементов (то есть выберем kэлементное подмножество из n-элементного множества — сочетание без повторений из n-элементов по k). По нашему обозначению это можно сделать 





Например, 
Используя формулу (3), можно легко обосновать свойство 1 числа сочетаний без повторений, приведенное в табл. 28.
1) Поскольку 

Для того чтобы формулу (4) можно было использовать и при k = n, договорились считать, что 
Заметим, что формулу (4) можно получить без вычислений с помощью достаточно простых комбинаторных рассуждений.
Когда мы выбираем k предметов из n, то n – k предметов мы оставляем. Если же, напротив, выбранные предметы оставим, а другие n – k -выберем, то получим способ выбора n – k предметов из n. Мы получили взаимно-однозначное соответствие способов выбора k и n – k предметов из n. Значит, количество одних и других способов одинаково. Но количество одних — 


Если в формуле (3) сократить числитель и знаменатель на (n – k)!, то получим формулу, по которой удобно вычислять 

Например,
2. Вычисление числа сочетаний без повторений с помощью треугольника Паскаля:
Для вычисления числа сочетаний без повторений можно применять формулу (3): 

Для обоснования равенства (6) можно записать сумму




Это равенство позволяет последовательно вычислять значения 

Каждая строка этой таблицы начинается с единицы и заканчивается единицей
Если какая-либо строка уже заполнена, например третья, то в четвертой строке надо записать на первом месте единицу. На втором месте запишем число, равное сумме двух чисел третьей строки, стоящих над ним левее и правее (поскольку по формуле (6) 

Примеры решения задач:
Обратим внимание, что, как и раньше, для выбора формулы при решении простейших комбинаторных задач достаточно ответить на вопросы:
- Учитывается ли порядок следования элементов в соединении?
- Все ли заданные элементы входят в полученное соединение?
Чтобы выяснить, является ли заданное соединение сочетанием, достаточно ответить только на первый вопрос (см. схему в табл. 28). Если порядок следования элементов не учитывается, то по определению это сочетание из n элементов по k элементов.
Пример:
Из 12 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать этот выбор?
Решение:
Количество способов выбрать из 12 туристов трех дежурных равно количеству сочетаний из 12 элементов по 3 (без повторений), то есть
Комментарий:
Для выбора соответствующей формулы выясняем ответы на вопросы, приведенные выше. Поскольку порядок следования элементов не учитывается (для дежурных неважно, в каком порядке их выберут), то соответствующее соединение является сочетанием из 12 элементов по 3 (без повторений). Для вычисления можно использовать формулы (3) или (5), в данном случае применяем формулу (3):
Пример:
Из вазы с фруктами, в которой лежат 10 разных яблок и 5 разных груш, требуется выбрать 2 яблока и 3 груши. Сколькими способами можно сделать такой выбор?
Решение:
Выбрать 2 яблока из 10 можно 


Комментарий:
Сначала отдельно выберем 2 яблока из 10 и 3 груши из 5.
Поскольку при выборе яблок или груш порядок следования элементов не учитывается, то соответствующие соединения — сочетания без повторений.
Учитывая, что требуется выбрать 2 яблока и 3 груши, используем правило произведения и перемножим полученные возможности выбора яблок 
Бином Ньютона:
Поскольку 
Общий член разложения степени бинома имеет вид



Свойства биномиальных коэффициентов:
- Число биномиальных коэффициентов (а следовательно, и число слагаемых) в разложении n-й степени бинома равно n + 1.
- Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой (поскольку
)
- Сумма всех биномиальных коэффициентов равна
- Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах.
- Для вычисления биномиальных коэффициентов можно воспользоваться треугольником Паскаля, в котором вычисления коэффициентов основываются на формуле
Объяснение и обоснование:
Бином Ньютона:
Двучлен вида a + x также называют биномом. Из курса алгебры известно, что:
Можно заметить, что коэффициенты разложения степени бинома 

Формулу (7) называют биномом Ньютона. Правая часть этого равенства называется разложением степени бинома

Общий член разложения степени бинома имеет вид
Обосновать формулу (7) можно, например, с помощью метода математической индукции. (Проведите такое обоснование самостоятельно.)
Приведем также комбинаторные рассуждения для обоснования формулы бинома Ньютона.
По определению степени с натуральным показателем 







Именно из-за бинома Ньютона числа 
Записывая степень двучлена по формуле бинома Ньютона для небольших значений n, биномиальные коэффициенты можно вычислять с помощью треугольника Паскаля (см. табл. 30).
Например,
Так как 

Если в формуле бинома Ньютона (8) заменить x на (–x), то получим формулу возведения в степень разности a – x:
Например, 
Свойства биномиальных коэффициентов:
- Число биномиальных коэффициентов (а следовательно, и число слагаемых) в разложении n-й степени бинома равно n + 1, поскольку разложение содержит все степени x от 0 до n (и других слагаемых не содержит).
- Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой, поскольку
- Сумма всех биномиальных коэффициентов равна
Для обоснования полагаем в равенстве (7) значения a = x = 1 и получаем:
Например,
4. Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах.
Для обоснования возьмем в равенстве (7) значения a = 1, x = –1:
Тогда
Примеры решения задач:
Пример:
По формуле бинома Ньютона найдите разложение степени
Комментарий:
Для нахождения коэффициентов разложения можно использовать треугольник Паскаля (табл. 30) или вычислять их по общей формуле. По треугольнику Паскаля коэффициенты равны: 1, 6, 15, 20, 15, 6, 1. Учитывая, что при возведении разности в степень знаки членов разложения чередуются, получаем:
Для упрощения записи ответа можно избавиться от иррациональности в знаменателях полученных выражений (см. решение) или сначала учесть, что ОДЗ данного выражения: x > 0. Тогда 

Решение:
Пример:
В разложении степени 
Решение:
ОДЗ: b > 0. Тогда

Общий член разложения:
По условию член разложения должен содержать 

Тогда член разложения, содержащий 
Комментарий:
На ОДЗ (b > 0) каждое слагаемое в данном двучлене можно записать как степень с дробным показателем. Это позволит проще записать общий член разложения степени
(где k = 0, 1, 2, …, n), выяснить, какой из членов разложения содержит 
Всё о комбинаторике
Пусть имеется несколько множеств элементов:
Вопрос: сколькими способами можно составить новое множество 
Элемент 





Способы выбора трех элементов аbc перечислены в табл. 1.2.
В этой таблице 



Основной комбинаторный принцип. Если некоторый первый выбор можно сделать 



Комбинаторные формулы в прикладных задачах теории вероятностей обычно связывают с выбором 


- а) повторный выбор, при котором выбранный элемент возвращается в генеральную совокупность и может быть выбран вновь;
- б) бесповторный выбор, при котором выбранный элемент в совокупность не возвращается и выборка не содержит повторяющихся элементов.
При повторном выборе каждый по порядку элемент может быть выбран 



В случае бесповторной выборки первый элемент можно выбрать 





Число 


Например, существует 


Выделим особо случай, когда один за другим выбраны все 

называют числом перестановок из 
Например, пять человек могут встать в очередь 


Подсчитаем количество бесповторных выборок объема 






Это число называют числом сочетаний из 



Например, сочетаний из четырех элементов 

Так как из 


Величины 
Из формулы (1.3) следует, что
Биномиальные коэффициенты образуют так называемый треугольник Паскаля, который имеет вид:
В 




Биномиальные коэффициенты обладают свойством симметрии:
Это наглядно демонстрирует треугольник Паскаля. Равенство (1.4) подтверждает тот очевидный факт, что выбор 




При повторном выборе из 













Совокупность из 





Пусть 




Для безошибочного выбора комбинаторной формулы достаточно последовательно ответить на вопросы в следующей схеме:
Например, число словарей, необходимых для непосредственного перевода с одного на другой, для пяти языков определяется из следующих рассуждений. Для составления словаря выбираем из пяти языков (

Комбинаторные задачи с решением
Комбинаторика — раздел математики, занимающийся вопросом выбора и расположения элементов некоторого конечного множества в соответствии с заданными условиями.
Рассмотрим примеры задач комбинаторики.
Пример №1
Сколькими способами можно выбрать путь из начала координат 0(0,0) в точку В(6,4), если каждый шаг равен единице, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(2,3)?
Решение. Весь путь занимает 10 шагов (четыре вверх и шесть вправо). Для планирования пути следует решить, какие именно по счету четыре шага следует сделать вверх, а остальные шесть — вправо. Выбор бесповторный и нас интересует только состав выбора. Поэтому в описанных условиях всего путей из точки О в точку В будет
Рассуждая подобным образом легко видеть, что путей из точки О в точку А существует 

Ответ. 210; 50.
Пример №2
Сколькими способами можно выбрать путь из начала координат 0(0,0) в точку 

Исходные данные к задаче 1.1.
Пример №3
В городе с идеальной прямоугольной планировкой (сеть улиц в этом городе изображена на рис. 1.1) из пункта А выходят 




Решение. Каждый человек пройдет N улиц и окажется на одном из перекрестков 
На каждом перекрестке для каждого человека производится выбор из двух возможностей: идти в направлении 


В пункте 



Ответ.
Пример №4
Сколькими способами можно 

Решение. Поставим эти предметы в ряд. Между ними будет 








Ответ.
Пример 1.4.
Сколькими способами можно распределить 6 яблок, 8 груш и 10 слив между тремя детьми? Сколькими способами это можно сделать так, чтобы каждый ребенок получил по меньшей мере одно яблоко, одну сливу и одну грушу?
Решение. Яблоки в соответствии с формулой (1.5) можно распределить 




Ответ. 83160; 7560.
Пример №5
Сколько цифр в первой тысяче не содержат в своей записи цифры 5?
Решение. Для записи любой из цифр 000, 001, 002, …, 999 необходимо трижды выбрать повторным способом одну из десяти цифр, поэтому и получается всего 

Ответ. 729.
Пример №6
Сколько шестизначных чисел содержат в записи ровно три различных цифры?
Решение. Заметим, что всего шестизначных чисел имеется 

Выбрать три ненулевых цифры можно 




Учтем теперь возможность использования нуля. К нулю нужно добавить две цифры, что можно сделать 



Ответ. 58320.
Пример №7
В саду есть цветы десяти наименований (розы, флоксы, ромашки и т. д.).
а) Сколькими способами можно составить букет из пяти цветков (не принимая во внимание совместимость растений и художественные соображения)?
б) Сколькими способами можно составить букет из пяти различных цветков?
в) Сколькими способами можно составить букет из пяти цветков так, чтобы в букете непременно было хотя бы по одному цветку двух определенных наименований
Решение. а) Если запрета на повторение цветков нет, то мы имеем дело с повторным выбором и нас интересует только состав. Поэтому по формуле (1.5) получаем 
б) Если цветы должны быть разными, то способ выбора бесповторный и букет можно составить 
в) Отберем по одному цветку каждого из двух названных наименований. Три остальных цветка можно выбрать из 10 возможных 
Ответ. а) 2002; б) 504; в) 220.
Пример №8
Имеется 


Решение. Ясно, что яблоки можно разложить 


При ответе на второй вопрос учтем, что следует по одному яблоку сразу положить в каждую из корзин, а остальные 


Ответ.
Пример №9
Требуется найти число натуральных делителей натурального числа 
Решение. Разложим 
где 

Заметим, что при разделении числа 







Так что разложение 


Ответ. 
Пример №10
Сколькими способами легкоатлет, собираясь на тренировку, может выбрать себе пару спортивной обуви, имея 5 пар кроссовок и 2 нары кед?
Очевидно, что выбрать одну из имеющихся пар обуви, кроссовки или кеды, можно 5 + 2 = 7 способами.
Обобщая, приходим к комбинаторному правилу сложения:
Это правило справедливо также для трех и более элементов.
Пример №11
В меню школьной столовой предлагается на выбор 4 вида пирожков и 3 вида сока. Сколько разных вариантов выбора завтрака, состоящего из одного пирожка и одного стакана сока, имеется у учащегося этой школы?
Пирожок можно выбрать 4 способами и к каждому пирожку выбрать сок 3 способами (рис. 76). Следовательно, учащийся имеет 
Обобщая, приходим к комбинаторному правилу умножения:
Это правило справедливо также для трех и более элементов.
Пример №12
Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, если в числе: 1) цифры не повторяются; 2) цифры могут повторяться?
Решение:
1) Первую цифру можем выбрать 4 способами (рис.77). Так как после выбора первой цифры их останется три (ведь цифры в нашем случае повторяться не могут), то вторую цифру можем выбрать 3 способами.И наконец, третью цифру можем выбрать из оставшихся двух — то есть 2 способами. Следовательно, количество искомых трехзначных у чисел будет равно 
2) Применим комбинаторное правило умножения. Так как цифры в числе могут повторяться, то каждую из цифр искомого числа можно выбрать 4 способами (рис. 78), и тогда таких чисел будет 
Ответ. 1) 24 числа; 2) 64 числа.
Отметим, что решить подобные задачи без применения комбинаторного правила умножения можно только путем перебора всех возможных вариантов чисел, удовлетворяющих условию задачи. Но такой способ решения является слишком долгим и громоздким.
Пример №13
Сколько четных пятизначных чисел можно составить из цифр 5, 6, 7, 8, 9, если цифры в числе не повторяются?
Решение:
Четное пятизначное число можно получить, если последней его цифрой будет 6 или 8. Чисел, у которых последней является цифра 6, будет 
а тех, у которых последней является цифра 8, — также 24. По комбинаторному правилу сложения всего четных чисел будет 
Ответ. 48.
Пример №14
Азбука племени АБАБ содержит всего две буквы — «а» и «б». Сколько слов в языке этого племени состоит: 1) из двух букв; 2) из трех букв?
Решение:
1) аа, ба, аб, бб (всего четыре слова); 2) ааа, ааб, аба, абб, ббб, бба, баб, баа (всего восемь слов).
Заметим, что найденное количество слов соответствует комбинаторному правилу умножения. Так как на каждое место есть два «претендента» — «а» и «б», то слов, состоящих из двух букв, будет 

Пример №15
В футбольной команде из 11 игроков надо выбрать капитана и его заместителя. Сколькими способами это можно сделать?
Решение:
Капитаном можно выбрать любого из 11 игроков, а его заместителем — любого из 10 оставшихся игроков. Таким образом (по правилу умножения), имеем 
Пример №16
В Стране Чудес 10 городов и каждые два из них соединяет авиалиния. Сколько авиалиний в этой стране?
Решение. Так как каждая авиалиния соединяет два города, то одним из них может быть любой из 10 городов, а другим — любой из 9 оставшихся. Следовательно, количество авиалиний равно 

Комбинаторные задачи неразрывно связаны с задачами теории вероятностей, еще одного раздела математики.
В ХIII-ХII в. до н. э. встречаются упоминания о вопросах, близких к комбинаторным. Некоторые комбинаторные задачи решали и в Древней Греции. В частности, Аристоксен из Тарента (IV в. до н. э.), ученик Аристотеля, перечислил различные комбинации длинных и коротких слогов в стихотворных размерах. А Папп Александрийский в IV в. н. э. рассматривал число пар и троек, которые можно получить из трех элементов, допуская их повторения. Некоторые элементы комбинаторики были известны и в Индии во II в. до н. э. Индийцы умели вычислять числа, известные нам как коэффициенты формулы бинома Ньютона. Позднее, в VIII в. н. э., арабы нашли и саму эту формулу, и ее коэффициенты, которые сейчас вычисляют с помощью комбинаторных формул или «треугольника Паскаля».
Свой нынешний вид упомянутые комбинаторные формулы приобрели благодаря средневековому ученому Леви бен Гершону (XIV в.) и французскому математику П. Эригону (XVII в.).
В III в. н. э. сирийский философ Порфирий для классификации понятий составил специальную схему, получившую название «древо Порфирия». Сейчас подобные деревья используются для решения определенных задач комбинаторики в разнообразных областях знаний. Некоторые ранее неизвестные комбинаторные задачи рассмотрел Леонардо Пизанский (Фибоначчи) в своей знаменитой «Книге абака» (1202 г.), в частности, о нахождении наименьшего набора различных гирь, позволяющего взвесить груз с любой целочисленной массой, не превышающей заданного числа. Со времен греческих математиков были известны две последовательности, каждый член которых получали по определенному правилу из предыдущих, — арифметическая и геометрическая прогрессии. А Фибоначчи впервые в одной из задач выразил член последовательности через два предыдущих, используя формулу, которую назвали рекуррентной. В дальнейшем метод рекуррентных формул стал одним из мощнейших для решения комбинаторных задач.
Как ни странно, развитию комбинаторики в значительной степени способствовали азартные игры, которые были очень популярны в XVI в. В частности, вопросами определения разнообразных комбинаций в игре в кости в то время занимались такие известные итальянские математики, как Д. Кардано, H. Тарталья и др. А наиболее полно изучил этот вопрос в XVII в. Галилео Галилей.
Современные комбинаторные задачи высокого уровня сложности связаны с объектами в других отраслях математики: определителями, конечными геометриями, группами, математической логикой и т. п.
Правила суммы и произведения
Вспомните, что в математике любые совокупности называют множествами. Объекты, входящие в множества, называют его элементами. Множества обозначают большими латинскими буквами, а их элементы записывают в фигурных скобках. Считают, что все элементы множества различны.
Например,
Множества бывают конечными и бесконечными. Если множество не содержит ни одного элемента, его называют пустым и обозначают символом
Два множества называют равными, если они состоят из одних и тех же элементов.
Если 



Случается, что множества 






элементы, называется объединением множеств 



Разницей множеств 



Говоря «множество», «подмножество», порядок их элементов не учитывают. Говорят, что они не упорядочены. Рассматривают и упорядоченные множества. Так называют множества с фиксированным порядком элементов. Их обозначают не фигурными, а круглыми скобками. Например, из элементов множества 
Как множества, все они равны, как упорядоченные множества — разные.
Существуют задачи, в которых надо определить, сколько различных подмножеств или упорядоченных подмножеств можно образовать из элементов данного множества. Их называют комбинаторными задачами, а раздел математики, в котором рассматривается решение комбинаторных задач, называют комбинаторикой.
Комбинаторика — раздел математики, посвящённый решению задач выбора и расположения элементов некоторого конечного множества в соответствии с заданными правилами.
Рассмотрим два основных правила, с помощью которых решается много комбинаторных задач.
Пример №17
В городе 
Решение:
Обозначим буквой 



Описанную ситуацию можно обобщить в виде утверждения, которое называется правилом суммы.
Если элемент некоторого множества 





Правило суммы распространяется и на большее количество множеств.
Пример №18
Планируя летний отдых, семья определилась с местами его проведения: в Одессе — 1, в Евпатории — 3, в Ялте — 2, в Феодосии — 2. Сколько возможностей выбора летнего отдыха имеет семья?
Решение:
Поскольку все базы отдыха разные, то для решения задачи достаточно найти сумму элементов всех множеств, о которых говорится: 
Пример №19
От пункта 



Решение:
Чтобы пройти от пункта 




Обобщим описанную ситуацию.
Если первый компонент пары можно выбрать 


Это — правило произведения, его часто называют основным правилом комбинаторики. Обратите внимание: речь идёт об упорядоченных парах, составленных из различных компонентов.
Правило произведения распространяется и на упорядоченные тройки, четвёрки и любые другие упорядоченные конечные множества. В частности, если первый компонент упорядоченной тройки можно выбрать 



Описанной ситуации соответствует диаграмма, изображённая на рисунке 137. Такие диаграммы называют деревьями.
Пример №20
Сколько разных поездов можно составить из 6 вагонов, если каждый из вагонов можно поставить на любом месте?
Решение:
Первым можно поставить любой из б вагонов. Имеем 6 выборов. Второй вагон можно выбрать из оставшихся 5 вагонов. Поэтому, согласно правилу умножения, два первых вагона можно выбрать 


Обратите внимание на решение последней задачи. Оно свелось к вычислению произведения всех натуральных чисел от 1 до 6. В комбинаторике подобные произведения вычисляют часто.
Произведение всех натуральных чисел от 1 до 

Например:
Условились считать, что
Языком теории множеств правила суммы и произведения можно сформулировать следующим образом.
Если пересечение множеств 

Если множества 
Если множества 


Пример №21
В розыгрыше на первенство города по баскетболу принимают участие команды из 12 школ. Сколькими способами могут быть распределены первое и второе места?
Решение:
Первое место может получить одна из 12 команд. После того, как определён обладатель первого места, второе место может получить одна из 11 команд. Следовательно, общее количество способов, которыми можно распределить первое и второе места, равно
Ответ. 132.
Пример №22
Сколько четырёхзначных чисел можно составить из цифр 0,1, 2, 3, 4, 5, если ни одна цифра не повторяется?
Решение:
Первой цифрой числа может быть одна из 5 цифр 1, 2, 3, 4, 5. Если первая цифра выбрана, то вторая может быть выбрана 5-ю способами, третья — 4-мя, четвёртая — 3-мя. Согласно правилу умножения общее число способов равно:
Ответ. 300.
Пример №23
Упростите выражение
Решение:
Размещения и перестановки
Задача:
Сколькими способами собрание из 20 человек может избрать председателя и секретаря?
Решение:
Председателя можно выбрать 20-ю способами, секретаря — из остальных 19 человек — 19-ю способами. По правилу произведения председателя и секретаря собрания могут выбрать 
Обобщим задачу. Сколько упорядоченных 








Например, из 4 элементов 
Упорядоченое 



Из предыдущих рассуждений следует, что 
В правой части этого равенства 
Число размещений из 


Примеры:
Пример №24
Сколькими способами можно составить дневное расписание из пяти разных уроков, если класс изучает 10 различных предметов?
Решение:
Речь идёт об упорядоченных 5-элементных подмножествах некоторого множества, состоящего из 10 элементов.
Это размещения.
Ответ. 30 240 способами.
Число размещений из 


Размещение 


Например, из трёх элементов 

Подставив в формулу числа размещений 
Число перестановок из 

Примеры:
Пример №25
Сколькими способами можно составить список из 10 фамилий?
Решение:
Ответ. 3 628 800 способами.
Некоторые комбинаторные задачи сводятся к решению уравнений, в которых переменная указывает на количество элементов в некотором множестве или подмножестве. Рассмотрим несколько таких уравнений.
Пример №26
Решите уравнение
Решение:
Пользуясь формулой размещений, данное уравнение можно заменить таким:
По условию задачи 

Пример №27
Решите уравнение
Решение:
Запишем выражения 
Имеем:
Поскольку по смыслу задачи 



Пример №28
Команда из трёх человек выступает в соревнованиях по художественной гимнастике, в которых принимают участие ещё 27 спортсменок. Сколькими способами могут распределиться места между членами команды, при условии, что на этих соревнованиях ни одно место не делится?
Решение:
Речь идёт об упорядоченных 3-элементных подмножествах множества, состоящего из 30 элементов. Это — размещения.
Пример №29
Сколькими способами можно разместить на полке 5 дисков?
Решение:
Речь идёт об упорядоченных 5-элементных множествах. Искомое количество способов равно
Ответ. 120 способами.
Пример №30
Изображённое на рисунке 140 кольцо раскрашено в 7 цветов. Сколько существует таких колец, раскрашенных теми же цветами только в других последовательностях?
Решение:
Зафиксируем одну какую-нибудь часть кольца, окрашенную одним цветом, б других частей можно раскрасить 
Ответ. 720 колец.
Пример №31
Сколько можно составить различных неправильных дробей, числителями и знаменателями которых есть числа 3,5, 7,9,11,13?
Решение:
Способ 1. Дробей, у которых числитель не равен знаменателю, можно составить 

Неправильными являются также дроби, у которых числитель равен знаменателю. Таких дробей в нашем случае 6. Итак, всего можно составить 
Способ 2. Если знаменатель неправильной дроби 3, то его числителями могут быть все 6 данных чисел. Если знаменатель 5, то числителями неправильной дроби могут быть 5 чисел (5, 7, 9, 11, 13) и т.д. Наконец, если знаменатель — число 13, то существует только 1 неправильная дробь, со знаменателем 13. Всего таких неправильных дробей существует
Ответ. 21 дробь.
Комбинации и бином ньютона
Пусть дано множество из трёх элементов: 

Комбинацией из 



Число комбинаций из 


Сравните: 






число 


То есть, 
Пример №32
Вычислите:
Решение:
Обратите внимание! 

Пример №33
Сколькими способами из 25 учеников можно выбрать на конференцию двух делегатов?
Решение:
Здесь 
Ответ. 300-ми способами.
Докажем, что для натуральных значений 
Доказательство. Пусть дано 










Следовательно, 
Такое комбинаторное тождество можно доказать также, воспользовавшись формулой числа комбинаций.
С комбинациями тесно связана формула бинома Ньютона. Вспомните формулу квадрата двучлена:
Умножив 
Эти три формулы можно записать и так:
Оказывается, для каждого натурального значения 
Это тождество называют формулой бинома Ньютона. а её правую часть разложением бинома Ньютона. Бином — латинское название двучлена. Пользуясь этой формулой, возведём, например, двучлен 
Доказать формулу бинома Ньютона можно методом математической индукции.
Доказательство. Предположим, что формула 

Выражения в скобках преобразованы согласно формулы
Следовательно, если формула бинома Ньютона верна для 



Вычислять коэффициенты разложения бинома Ньютона можно не по формуле числа комбинаций, а пользуясь числовым треугольником Паскаля — своеобразным способом вычисления коэффициентов разложения бинома Ньютона
Треугольник Паскаля можно продолжать как угодно далеко. Это следует из тождества 
Например, прибавляя числа шестой строки (для 



Например:
Пример №34
В турнире по шашкам приняли участие 5 девушек и 7 юношей. Каждый участник сыграл один раз с каждым другим. Сколько партий было: а) между девушками; б) между юношами; в) между юношами и девушками?
Решение:
а) Речь идёт о 2-элементных подмножествах (неупорядоченных) множества, состоящего из 5 элементов. Это — комбинации. 
б) Аналогично
в) Воспользуемся правилом умножения. Поскольку каждой из 5 девушек предстоит сыграть с каждым из 7 юношей, возможных случаев
Пример №35
Для дежурства в столовой приглашают 3-х учеников из 7 класса и 2-х учеников из 10 класса. Сколькими способами это можно сделать, если в 7 классе учится 24 ученика, а в 10 классе — 18.
Решение:
Речь идёт о неупорядоченных подмножествах двух разных множеств. Это — комбинации.
По правилу произведения имеем 
Пример №36
Сколько разных делителей имеет число 1001?
Решение:
Разложим заданное число на простые множители: 



Пример №37
Докажите, что выпуклый 

Решение:
Отрезков, концами которых являются 




Пример №38
Докажите тождество
Сделайте обобщение.
Решение:
Все члены разложения бинома Ньютона 

Пример №39
Найдите номер члена разложения 
Решение:
Воспользуемся формулой общего члена разложения бинома. Имеем:
По условию задачи 



Элементы комбинаторики
Решение многих задач теории вероятностей требует знания элементов комбинаторики, основными понятиями которой являются перестановки, размещения и сочетания.
Определение: Перестановки — это комбинации из одних и тех же элементов, отличающиеся только порядком элементов.
Пример:
Даны три числа 1, 2, 3. Определить количество комбинаций из этих элементов, отличающиеся только порядком элементов.
Решение:
Комбинации из данных элементов, отличающиеся только порядком элементов: 123; 132; 213; 231; 321; 312. Всего таких комбинаций 

Пример:
Даны три числа 1, 2, 3. Определить количество размещений из этих элементов по два, отличающиеся составом или порядком элементов.
Решение:
Комбинации из данных элементов по два, отличающиеся составом или порядком элементов: 12; 21; 23; 32; 13; 31. Всего таких комбинаций 6. Если дано n элементов, то число размещений по m элементов, которые отличаются либо составом элементов, либо их расположением:
Определение: Сочетания — это комбинации, составленные из n различных элементов по m элементов, которые отличаются друг от друга хотя бы одним элементом.
Пример:
Даны три числа 1, 2, 3. Определить количество размещений из этих элементов по два, отличающиеся хотя бы одним элементом.
Решение:
Комбинации из данных элементов по два, отличающиеся хотя бы одним элементом: 12; 23; 13. Всего таких комбинаций 3. Если дано n элементов, то число сочетаний по m элементов, которые отличаются хотя бы одним элементом:
Пример:
Пусть в урне находится n прономерованных шаров. Определить количество способов, которыми можно извлечь из урны эти шары один за другим.
Решение:
Число способов равно числу различных комбинаций из п элементов, отличающихся только порядком элементов, т.е. числу перестановок:
Пример:
Из колоды, содержащей 36 карт, наугад вынимают 3 карты. Найти вероятность того, что среди выбранных карт окажется один туз.
Решение:
Событие А состоит в том, что среди выбранных карт окажется один туз. Это сложное событие состоит из двух событий: выбирается один туз из четырех, а две другие карты выбираются из оставшихся 32 карт. Следовательно, число случаев, благоприятствующих появлению события A, равно 

Арифметика случайных событий
Будем считать, что все события, которые могут произойти в рамках данного эксперимента, располагаются внутри квадрата G, тогда невозможные события располагаются вне квадрата G (Рис. 2):
Рис. 2. Квадрат возможных событий.
Таким образом, достоверное событие определяется внутренней частью квадрата, а невозможное — областью вне квадрата.
Определение: Суммой двух случайных событий А и В называется третье случайное событие С, которое состоит в том, что произойдет (или не произойдет) или событие А, или событие В : С = А + В (Рис. 3).
Определение: Суммой n случайных событий 

Рис. 3. Сумма случайных событий
Замечание: Если в словесном описании сложного события присутствует разделительный союз “или” между элементарными событиями, то речь идет о сумме этих элементарных событий.
Замечание: Суммой события А и ему противоположного события 


Определение: Произведением двух случайных событий А и В называется третье случайное событие С, которое состоит в том, что произойдет (или не произойдет) и событие А, и событие В : 
Рис. 4. Произведение случайных событий.
Определение: Произведением n случайных событий 
Замечание: Если в словесном описании сложного события присутствует соединительный союз “и” между элементарными событиями, то речь идет о произведении этих элементарных событий.
Пример №40
Пусть имеются передатчик и приемник. Приемник удален от передатчика недостаточно большое расстояние, при котором он может при определенных условиях не принять один из сигналов, переданных передатчиком. Пусть передатчик послал три сигнала. Определить следующие сложные события:
- а) приемник принят только второй сигнал (событие А );
- б) приемник принял только один сигнал (событие В);
- в) приемник принял не менее двух сигналов (2 или 3 сигнала — событие С);
- г) приемник не принял ни одного сигнала (событие D);
- д) приемник принял хотя бы один сигнал (событие E).
Решение:
Обозначим через 
Сложное событие А состоит в том, что приемник не принял первый сигнал и принял второй сигнал, и не принял третий сигнал. Так как между элементарными событиями стоит соединительный союз “и”, то речь идет о их произведении, т.е.
Сложное событие В состоит в том, что приемник принял или первый сигнал, или принял второй сигнал, или принял третий сигнал. Так как между элементарными событиями стоит разделительный союз “или”, то речь идет о сумме сложных событии, т.е.
Рассуждая аналогично, получим выражения для остальных событий: 
Теорема сложения вероятностей несовместных событий
Теорема: Если случайные события А и В несовместны, то вероятность их суммы равна сумме вероятностей этих событий, т.е. Р(А + В) = Р(А) + Р(В)
Доказательство: Пусть в данном опыте имеется n равновозможных, элементарных, несовместных событий и пусть в m случаях наступает событие А, а в l случаях-событие В. Тогда появлению события А + В благоприятствует m+l исходов. Поэтому
Следствие: Если имеется N событий, то
Следствие: Если события 

Доказательство: Так как события 

Следствие: Вероятность суммы противоположных событий равна 1.
Доказательство: В силу того, что события А и ему противоположное событие 
Замечание: Если сложное событие состоит из суммы элементарных событий, то перед применением теоремы надо определить совместны или несовместны элементарные события.
Пример:
Пусть в урне находится 5 белых шаров, 3 — красных и 4 — зеленых. Из урны наудачу вынули шар. Какова вероятность того, что данный шар цветной?
Решение:
Событие, состоящее в том, что из урны извлечен красный шар, обозначим через А. Событие, состоящее в том, что из урны извлечен зеленый шар, обозначим через В. Тогда извлечение цветного шара есть событие С. Так как события А и В несовместны, т.е. событие С состоит в том, что из урны извлечен или событие А , или событие В, то С = А + В. Используя теорему о сложении вероятностей несовместных событий, получим:
Зависимые и независимые события. Условная и безусловная вероятности
Определение: Случайные события А и В называются независимыми, если появление одного из них не влияет на вероятность появления другого события, в противном случае события называются зависимыми.
Замечание: В этом определении речь идет не о причинно-следственной связи между событиями, а о вероятностной (появление одного из них не влияет на вероятность появления другого события), которая является более общей зависимостью между событиями.
Пример №41
В хранилище находится 10 исправных и 5 неисправных приборов, причем неизвестно, какие из них исправные, а какие — нет. Обозначим событием А — из хранилища взят исправный прибор, а В — взят неисправный прибор. Пусть вначале взят неисправный прибор. Определить вероятности указанных событий с возвращением неисправного прибора на склад и без возвращения неисправного прибора в хранилище.
Решение:
Если неисправный прибор возвращается в хранилище, то события А и В независимы и их вероятности равны 

Определение: Вероятность случайного события называется безусловной, если при ее вычислении на комплекс условий, в которых рассматривается это случайное событие, не накладывается никаких дополнительных ограничений. Безусловная вероятность обозначается
Определение: Вероятность случайного события называется условной, если она вычисляется при условии, что произошло другое случайное событие. Условная вероятность обозначается
Теорема умножения вероятностей
Т.2. Вероятность совместного появления двух случайных событий А и В равна произведению вероятности одного из них на условную вероятность другого события, вычисленную при условии, что первое событие имело место:
Доказательство: Пусть событие А состоит в том, что брошенная точка наугад в квадрат G попадает в область А, которая имеет площадь 




Рис. 5. Совместное наступление зависимых и независимых случайных событий.
Вероятность совместного наступления событий 


Замечание: Если события А и В независимы, то 
В связи с вышеприведенным замечанием теорема об умножении вероятностей независимых случайных событий имеет вид:
ТЗ. Вероятность совместного наступления независимых событий равна произведению вероятностей этих событий:
Замечание: Независимость случайных событий всегда взаимная. Если 

Следствие: Методом математической индукции теоремы легко обобщается на произведение N зависимых событий:

Замечание: Если сложное событие представляется в виде произведения элементарных событий, то при вычислении вероятности такого события надо определить, зависимы или независимы эти элементарные события.
Что такое комбинаторика
Понятие множества и его элементов:
Множество можно представить как совокупность некоторых объектов, объединенных по определенному признаку. В математике множество — одно из основных неопределяемых понятий. Каждый объект, принадлежащий множеству А, называется элементом этого множества. Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается 
Подмножество
Если каждый элемент множества А является элементом множества В, то говорят, что множество А является подмножеством множества В,
и записывают так: 

Равенство множеств
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Пересечение множеств
Пересечением множеств A и В называют их общую часть, то есть множество С всех элементов, принадлежащих как множеству А, так и множеству В
Объединение множеств
Объединением множеств А и В называют множество С, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (А или В)
Разность множеств
Разностью множеств А и В называется множество С, которое состоит из всех элементов, принадлежащих множеству А и не принадлежащих множеству В
Дополнение множества
Если все рассматриваемые множества являются подмножествами некоторого универсального множества U, то разность U А называется дополнением множества А. Другими словами, дополнением множества А называется множество, состоящее из всех элементов, не принадлежащих множеству А (но принадлежащих универсальному множеству).
Объяснение и обоснование:
Понятие множества
Одним из основных понятий, которые используются в математике, является понятие множества. Для него не дается определения. Можно пояснить, что множеством называют произвольную совокупность объектов, а сами объекты — элементами данного множества. Так, можно говорить о множестве учеников в классе (элементы — ученики), множестве дней недели (элементы — дни недели), множестве натуральных делителей числа 6 (элементы — числа 1, 2, 3, 6) и т. д.
В курсах алгебры и алгебры и начал анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.
Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество М состоит из чисел 1; 2; 3, то его обозначают так: М = {1; 2; 3}. Тот факт, что число 2 входит в это множество (является элементом данного множества М) записывается с помощью специального значка

Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.
Например: множество простых делителей числа 1 — пустое множество.
Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом
Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества А = {7} и М = {1; 2; 3} — конечные потому, что содержат конечное число элементов, а множества N, Z, Q, R — бесконечные.
Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило (характеристическое свойство), которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, А = {-1; 0; 1} (множество задано перечислением элементов), В — множество четных целых чисел (множество задано характеристическим свойством элементов множества). Последнее множество иногда записывают так: 

В общем виде запись множества с помощью характеристического свойства можно обозначить так:
Равенство множеств
Пусть А — множество цифр трехзначного числа 312, то есть А = {3; 1; 2}, а В — множество натуральных чисел, меньших четырех, то есть В = {1; 2; 3}. Поскольку эти множества состоят из одних и тех же элементов, то они считаются равными. Это записывают так: А = В.
Для бесконечных множеств таким способом (сравнивая все элементы) установить их равенство невозможно. Поэтому в общем случае равенство множеств определяется следующим образом.
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, {1; 2; 2} = {1; 2}, поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.
Подмножество
Если каждый элемент множества А является элементом множества В, то говорят, что множество А является подмножеством множества В.
Это записывают следующим образом:
Например,


Полагают, что всегда
Иногда вместо записи 


Сопоставим определение равенства множеств с определением подмножества. Если множества А и В равны, то: 1) каждый элемент множества А является элементом множества В, следовательно, А — подмножество В

два множества равны, если каждое из них является подмножеством другого.
А = В означает то же, что
Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера-Венна). Например, рисунок 118 иллюстрирует определение подмножества, а рисунок 119-отношения между множествами
Операции над множествами
Над множествами можно выполнять определенные действия: находить их пересечение, объединение, разность. Дадим определение этих операций и проиллюстрируем их с помощью кругов.
Пересечением множеств А и В называют их общую часть, то есть множество С всех элементов, принадлежащих как множеству А, так и множеству В.
Пересечение множеств обозначают знаком 
Например, если А = {2; 3; 4}, В = {0; 2; 4; 6}, то
Объединением множеств А и В называют множество С, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (А или В).
Объединение множеств обозначают знаком U (на рисунке 121 приведена иллюстрация и символическая запись определения объединения множеств).
Например, для множеств А и В из предыдущего примера
Разность множеств обозначают знаком . На рисунке 122 приведена иллюстрация и символическая запись определения разности множеств.
Например, если А = {1; 2; 3}, В = {2; 3; 4; 5}, то АВ = {1}, а В А = {4; 5}. Если В — подмножество А, то разность А В называют дополнением множества В до множества А (рис. 123).
Например, если обозначить множество иррациональных чисел через М, то R Q = М: множество М иррациональных чисел дополняет множество Q рациональных чисел до множества R всех действительных чисел.
Все множества, которые мы рассматриваем, являются подмножествами некоторого так называемого универсального множества U. Его обычно изображают в виде прямоугольника, а все остальные множества — в виде кругов внутри этого прямоугольника (рис. 124). Разность U А называется дополнением множества А.
Дополнением множества А называется множество, состоящее из всехэлементов, не принадлежащих множеству А (но принадлежащих универсальному множеству U).
Дополнение множества А обозначается

Комбинаторика и Бином Ньютона
Элементы комбинаторики:
Комбинаторика — раздел математики, в котором изучаются способы выбора и размещения элементов некоторого конечного множества на основании некоторых условий. Выбранные (или выбранные и размещенные) группы элементов называются Соединения с повторениямими.
Если все элементы полученного множества разные — получаем соединения без повторений, а если в полученном множестве элементы повторяются, то получаем соединения с повторениями*.
Перестановки:
Перестановкой из п элементов называется любое упорядоченное множество из
Иными словами, это такое множество, для которого указано, какой элемент находится на первом месте, какой — на втором,…, какой — на п-м.
*Формулы для нахождения количества соединений с повторениями являются обязательными только для классов физико-математического профиля. Формула числа перестановок

Пример:
Количество различных шестизначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, не повторяя эти цифры в одном числе, равно
Размещения:
Размещением из 



Пример:
Количество различных трехзначных чисел, которые можно составить из цифр 1,2,3, 4, 5, 6, если цифры не могут повторяться, равно
Сочетания:
Сочетанием без повторений из





Пример:
Из класса, состоящего из 25 учащихся, можно выделить 5 учащихся для дежурства по школе 

Схема решения комбинаторных задач
Выбор правила:
Правило суммы
Если элемент А можно выбрать 


Правило произведения
Если элемент А можно выбрать 


Учитывается ли порядок следования элементов в соединении?
- Нет
Все ли элементы входят в соединение?
- Перестановки
- Размещения
- Сочетания
без повторений с повторениями без повторений с повторениями без повторений с повторениями
Объяснение и обоснование:
Понятие соединения
При решении многих практических задач приходится выбирать из определенной совокупности объектов элементы, имеющие те или иные свойства, размещать эти элементы в определенном порядке и т. д. Поскольку в этих задачах речь идет о тех или иных комбинациях объектов, то такие задачи называют комбинаторными. Раздел математики, в котором рассматриваются методы решения комбинаторных задач, называется комбинаторикой. В комбинаторике рассматривается выбор и размещение элементов некоторого конечного множества на основании определенных условий.
Выбранные (или выбранные и размещенные) группы элементов называют соединениями. Если все элементы полученного множества разные — получаем размещения без повторений, а если в полученном множестве элементы могут повторяться, то получаем размещения с повторениями. Рассматриваются соединения без повторений, а соединения с повторениями.
Решение многих комбинаторных задач базируется на двух основных правилах — правиле суммы и правиле произведения.
Правило суммы
Если на тарелке лежит 5 груш и 4 яблока, то выбрать один фрукт (то есть грушу или яблоко) можно 9 способами (5 + 4 = 9). В общем виде имеет место такое утверждение:
Правило произведения
Если в киоске продают ручки 5 видов и тетради 4 видов, то выбрать набор из ручки и тетради (то есть пару — ручка и тетрадь) можно 5 • 4 = 20 способами (поскольку с каждой из 5 ручек можно взять любую из 4 тетрадей). В общем виде имеет место такое утверждение:
- если элемент А можно выбрать m способами, а после этого элемент В —
способами, то А и В можно выбрать m • п способами.
Это утверждение означает, что если для каждого из т элементов А можно взять в пару любой из 
Повторяя приведенные рассуждения несколько раз (или, иначе говоря, используя метод математической индукции), получаем, что правила суммы и произведения можно применять при выборе произвольного конечного количества элементов.
Следовательно, если приходится выбирать или первый элемент, или второй, или третий и т. д. элемент, количества способов выбора каждого еле-мента складывают, а когда приходится выбирать набор, в который входят и первый, и второй, и третий, и т. д. элементы, количества способов выбора каждого элемента перемножают.
Упорядоченные множества
При решении комбинаторных задач приходится рассматривать не только множества, в которых элементы можно записывать в любом порядке, но и так называемые упорядоченные множества. Для упорядоченных множеств существенным является порядок следования их элементов, то есть то, какой элемент записан на первом месте, какой на втором и т. д. В частности, если одни и те же элементы записать в разном порядке, то мы получим различные упорядоченные множества. Чтобы различить записи упорядоченного и неупорядоченного множеств, элементы упорядоченного множества часто записывают в круглых скобках, например
Рассматривая упорядоченные множества, следует учитывать, что упорядоченность не является свойством самого неупорядоченного множества (из которого мы получили упорядоченное), поскольку одно и то же множество можно по-разному упорядочить. Например, множество из трех чисел {-5; 1; 3} можно упорядочить по возрастанию: (-5; 1; 3), по убыванию: (3; 1; — 5), по возрастанию абсолютной величины числа: (1; 3; -5) и т. д.
Будем понимать, что для того чтобы задать конечное упорядоченное множество из п элементов, достаточно указать, какой элемент находится на первом месте, какой на втором, …, какой на п-м.
Размещения
Размещением из 



Например, из множества, содержащего три цифры {1; 5; 7}, можно составить следующие размещения из двух элементов без повторений: (1;5),(1;7),(5; 7), (5; 1), (7; 1), (7; 5).
Количество размещений из 




Выясним, сколько всего можно составить размещений из 



Если элементы нельзя повторять, то на второе место можно выбрать только один элемент из оставшихся, то есть из



Поскольку требуется выбрать элементы и на первое место, и на второе, …, и на

Например, 
При решении простейших комбинаторных задач важно правильно выбрать формулу, по которой будут проводиться вычисления. Для этого достаточно выяснить следующее:
- — Учитывается ли порядок следования элементов в соединении?
- — Все ли заданные элементы входят в полученное соединение?
Если, например, порядок следования элементов учитывается и из 



Заметим, что после определения вида соединения следует также выяснить, могут ли элементы в соединении повторяться, то есть выяснить, какую формулу необходимо использовать — для количества соединений без повторений или с повторениями.
Примеры решения задач:
Пример №42
На соревнования по легкой атлетике приехала команда из 12 спортсменок. Сколькими способами тренер может определить, кто из них побежит в эстафете 4 х 100 м на первом, втором, третьем и четвертом этапах?
Решение:

Комментарий:
Для выбора формулы выясняем ответы на вопросы, приведенные выше. Поскольку для спортсменок важно, в каком порядке они будут бежать, то порядок при выборе элементов учитывается. В полученное соединение входят не все 12 заданных элементов. Следовательно, соответствующее соединение — размещение из 12 элементов по 4 (без повторений, поскольку каждая спортсменка может бежать только на одном этапе эстафеты).
Пример №43
Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 7, если цифры в числе не повторяются.
Решение:

Комментарий:
Для выбора формулы выясняем, что для чисел, которые мы будем составлять, порядок следования цифр учитывается и не все элементы выбираются (только 3 из заданных семи). Следовательно, соответствующее соединение — размещение из 7 элементов по 3 (без повторений).
Пример №44
Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 0, если цифры в числе не повторяются.
Комментарий:
Выбор формулы проводится таким же образом, как и в задаче 2. Следует учесть, что если число, составленное из трех цифр, начинается цифрой О, то оно не считается трехзначным. Следовательно, для ответов на вопросы задачи можно сначала из заданных 7 цифр записать все числа, состоящие из 3 цифр (см. пример 2), а затем из количества полученных чисел вычесть количество чисел, составленных из трех цифр, но начинающих цифрой 0. В последнем случае мы фактически будем из всех цифр без нуля (их 6) составлять двузначные числа. Тогда их количество равно числу размещений из 6 элементов по 2 (см. решение).
Также можно выполнить непосредственное вычисление, последовательно заполняя три места в трехзначном числе и используя правило произведения. В этом случае удобно сделать рассуждения наглядными, изображая соответствующие разряды в трехзначном числе в виде клеточек, например, так:
- 6 возможностей
- 6 возможностей
- 5 возможностей
Решение:

Но среди данных цифр есть цифра 0, с которой не может начинаться трехзначное число. Поэтому из размещений из 7 элементов по 3 необходимо исключить те размещения, в которых первым элементом является цифра 0. Их количество равно числу размещений из 6 элементов по 2, то есть 
Пример №45
Решите уравнение 
Решение:


Комментарий:
Уравнения, в запись которых входят выражения, обозначающие количество соответствующих соединений из х элементов, считаются определенными только при натуральных значениях переменной х. В данном случае, чтобы выражение 



Перестановки
Перестановкой из п элементов называется любое упорядоченное множество из 
Напомним, что упорядоченное множество — это такое множество, для которого указано, какой элемент находится на первом месте, какой на втором,…, какой на
Например, переставляя цифры в числе 236 (там множество цифр {2; 3; 6} уже упорядоченное), можно составить такие перестановки без повторений: (2; 3; 6), (2; 6; 3), (3; 2; 6), (3; 6; 2), (6; 2; 3), (6; 3; 2) — всего 6 перестановок*.
Количество перестановок без повторений из









*Отметим, что каждая такая перестановка определяет трехзначное число, составленное из цифр 2,3,6 так, что цифры в числе не повторяются.
Например, 
С помощью факториалов формулу для числа размещений без повторений
можно записать в другом виде. Для этого умножим и разделим выражение в формуле (1) на произведение 
Следовательно, формула числа размещений без повторений из 

Для того чтобы этой формулой можно было пользоваться при всех значениях

Например, по формуле (2)
Обратим внимание, что в тех случаях, когда значение 
Например,
Примеры решения задач:
Напомним, что для выбора формулы при решении простейших комбинаторных задач достаточно выяснить следующее:
- — Учитывается ли порядок следования элементов в соединении?
- — Все ли заданные элементы входят в полученное соединение? Если, например, порядок следования элементов учитывается и все п заданных элементов используются в соединении, то по определению это перестановки из п элементов.
Пример №46
Найдите, сколькими способами можно восемь учащихся построить в колонну по одному.
Решение:

Комментарий:
Для выбора соответствующей формулы выясняем ответы на вопросы, приведенные выше. Поскольку порядок следования элементов учитывается и все 8 заданных элементов выбираются, то соответствующие соединения — это перестановки из 8 элементов без повторений. Их количество можно вычислить по формуле.
Пример №47
Найдите количество разных четырехзначных чисел, которые можно составить из цифр 0, 3, 7, 9 (цифры в числе не повторяются).
Решение:



Комментарий:
Поскольку порядок следования элементов учитывается и для получения четырехзначного числа надо использовать все элементы, то искомые соединения — это перестановки из 4 элементов. Их количество — 

Пример №48
Есть десять книг, из которых четыре — учебники. Сколькими способами можно поставить эти книги на полку так, чтобы все учебники стояли рядом?
Решение:



Комментарий:
Задачу можно решать в два этапа. На первом этапе условно будем считать все учебники за 1 книгу. Тогда получим 7 книг (6 не учебников + 1 условная книга — учебник). Порядок следования элементов учитывается и используются все элементы (поставить на полку необходимо все книги). Следовательно, соответствующие соединения — это перестановки из 7 элементов. Их количество — 
На втором этапе решения будем переставлять между собой только учебники. Это можно сделать 
Сочетания без повторений
Сочетанием без повторений из 



Например, из множества 
Количество сочетаний без повторений из п элементов по к элементов обозначается символом 





Составление размещения без повторений из 



















Например, 
Используя формулу (3), можно легко обосновать свойство 1 числа сочетаний без повторений, приведенное в таблице 21.

Для того чтобы формулу (4) можно было использовать и при 


Если в формуле (3) сократить числитель и знаменатель на


Например,
Вычисление числа сочетаний без повторений с помощью треугольника Паскаля
Для вычисления числа сочетаний без повторений можно применять формулу (3):



Это равенство позволяет последовательно вычислять значения 

Каждая строка этой таблицы начинается с единицы и заканчивается единицей 
Если какая-либо строка уже заполнена, например, третья, то в четвертой строке надо записать на первом месте единицу. На втором месте запишем число, равное сумме двух чисел третьей строки, стоящих над ним левее и правее (поскольку по формуле (6)
На третьем месте запишем число, равное сумме двух следующих чисел третьей строки, стоящих над ним левее и правее
Примеры решения задач:
Обратим внимание, что, как и раньше, для выбора формулы при решении простейших комбинаторных задач достаточно ответить на вопросы:
- Учитывается ли порядок следования элементов в соединении?
- Все ли заданные элементы входят в полученное соединение?
Для выяснения того, что заданное соединение является сочетанием, достаточно ответить только на первый вопрос. Если порядок следования элементов не учитывается, то по определению это сочетания из 

Пример №49
Из 12 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать этот выбор?
Решение:

Комментарий:
Для выбора соответствующей формулы выясняем ответы на вопросы, приведенные выше. Поскольку порядок следования элементов не учитывается (для дежурных неважно, в каком порядке их выберут), то соответствующее соединение является сочетанием из 12 элементов по 3 (без повторений). Для вычисления можно использовать формулы (3) или (5), в данном случае применяем формулу (3):
Пример №50
Из вазы с фруктами, в которой лежит 10 разных яблок и 5 разных груш, требуется выбрать 2 яблока и 3 груши. Сколькими способами можно сделать такой выбор?
Решение:



Комментарий:
Сначала отдельно выберем 2 яблока из 10 и 3 груши из 5. Поскольку при выборе яблок или груш порядок следования элементов не учитывается, то соответствующие соединения — сочетания без повторений.
Учитывая, что требуется выбрать 2 яблока и 3 груши, используем правило произведения и перемножим полученные возможности выбора яблок(

Бином Ньютона
Бином Ньютона:
Поскольку 
Общий член разложения степени бинома имеет вид
Коэффициенты 
Свойства биномиальных коэффициентов:
- Число биномиальных коэффициентов (а следовательно, и число слагаемых в разложении
степени бинома) равно
- Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой (поскольку
- Сумма всех биномиальных коэффициентов равна
- Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах.
- Для вычисления биномиальных коэффициентов можно воспользоваться треугольником Паскаля, в котором вычисления коэффициентов основываются на формуле
Треугольник Паскаля
Степень:
Коэффициенты разложения:
Ориентир:
В каждом ряду по краям стоят единицы, а каждое из остальных чисел равно сумме двух чисел, находящихся над ним справа и слева Например,
Объяснение и обоснование Бинома Ньютона
Двучлен вида а + х также называют биномом. Из курса алгебры известно, что:
Можно заметить, что коэффициенты разложения степени бинома 


Формулу (7) называют биномом Ньютона. Правая часть этого равенства называется разложением степени бинома 

Если раскрыть скобки в выражении 


Чтобы найти значение 

Чтобы найти 
затем, подставив в обе части полученного равенства (9) х = 0, получим: 



и, подставив х = 0 в равенство (10), получим


Подставляя в последнее равенство х = 0, имеем
Ориентир:
В каждом ряду по краям стоят единицы, а каждое из остальных чисел равно сумме двух чисел, находящихся над ним справа и слева
Умножим обе части равенства (11) на 

1, 2, …,
Записывая степень двучлена по формуле бинома Ньютона для небольших значений п, биномиальные коэффициенты можно вычислять по треугольнику Паскаля (табл. 25, см. также табл. 24).
Например,
Так как
а учитывая, что
Если в формуле бинома Ньютона (12) заменить х на (-х), то получим формулу возведения в степень разности а — х:


Свойства биномиальных коэффициентов
1. Число биномиальных коэффициентов (а следовательно, и число слагаемых) в разложении 


2. Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой, поскольку
3. Сумма всех биномиальных коэффициентов равна 2″.

Например,
4. Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах,

Тогда
Примеры решения задач:
Пример №51
По формуле бинома Ньютона найдите разложение степени
Комментарий:
Для нахождения коэффициентов разложения можно использовать треугольник Паскаля или вычислять их по общей формуле. По треугольнику Паскаля коэффициенты равны: 1, 6, 15, 20, 15, б, 1. Учитывая, что при возведении в степень разности знаки членов разложения чередуются, получаем



Решение:
Пример №52
В разложении степени 
Решение:
► ОДЗ: 
Общий член разложения:
По условию член разложения должен содержать

Тогда член разложения, содержащий 
Комментарий:
На ОДЗ (b > 0) каждое слагаемое в заданном двучлене можно записать как степень с дробным показателем. Это позволит проще записать общий член разложения степени




Чтобы упростить запись общего члена разложения, удобно отметить, что
Зачем нужна комбинаторика
Для решения задач с использованием классического определения вероятности необходимо знать основные правила и формулы комбинаторики -раздела математики, изучающего методы решения комбинаторных задач — т.е. задач, связанных с подсчетом числа различных комбинаций.
Пусть 
Правило суммы
Если элемент 





Пример №53
В группе 30 студентов. Известно, что 5 из них на экзамене по математике получили оценку «отлично», 10 — оценку «хорошо», остальные -«удовлетворительно». Сколько существует способов выбрать одного студента, получившего на экзамене оценку «отлично» или «хорошо»?
Решение:
Студент, получивший оценку «отлично» может быть выбран


Правило произведения
Если элемент 







Пример №54
В группе 30 студентов. Необходимо выбрать старосту, его заместителя и профорга. Сколько существует способов это сделать?
Решение:
Старостой может быть выбран любой из 30 студентов, его заместителем – любой из оставшихся 29, а профоргом – любой из оставшихся 28 студентов, т.е. 

Пусть дано множество из n различных элементов. Из этого множества могут быть образованы подмножества из m элементов (0 ≤ m ≤n). Например, из 5 элементов a, b, c, d, e могут быть отобраны комбинации по 2 элемента – ab, bc, cd, ba и т.д., по 3 элемента – abc, cbd, cba и т.д.
Если комбинации из n элементов по m отличаются либо составом элементов, либо порядком их расположения (либо и тем и другим), то такие комбинации называют размещениями из n элементов по m. Число размещений из n элементов по m находится по формуле 
Пример №55
Сколько можно записать двузначных чисел, используя без повторения цифры от 1 до 5?
Решение:
В данном случае двузначное число является комбинацией из пяти цифр по две цифры. Поскольку числа отличаются как составом входящих в них цифр, так и порядком их расположения, то в данном случае двузначные числа являются размещениями из пяти цифр по две. Число таких размещений

Число сочетаний из n элементов по m находится по формуле
Пример №56
Необходимо выбрать в подарок две из пяти имеющихся различных книг. Сколькими способами можно это сделать?
Решение:
Из смысла задачи следует, что порядок выбора книг не имеет значения. Здесь важен только их состав. Поэтому в данном случае комбинации книг представляют собой сочетания из 5 книг по 2. Число таких комбинаций 
Пример №57
Сколько можно записать трехзначных чисел, которые не содержат цифр 0 и 5?
Решение:
В данном случае трехзначное число является комбинацией из восьми цифр (0 и 5 не учитываются) по три цифры. При этом некоторые из цифр (или все) могут повторяться. Поэтому в данном случае трехзначные числа является размещениями с повторениями из восьми цифр по три. Число таких размещений с повторениями 


Пример №58
В почтовом отделении продаются открытки восьми видов. Сколькими способами можно купить в нем три открытки?
Решение:
Учитывая, что порядок выбора открыток не имеет значения, а важен только их состав, причем некоторые из открыток (или все) могут оказаться одинаковыми, искомое число способов находим по формуле числа сочетаний с повторениями 
Пример №59
Порядок выступления 5 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?
Решение:
Каждый вариант жеребьевки отличается только порядком участников конкурса, т.е. является перестановкой из 5 элементов. Их число равно 




Пример №60
Сколько можно составить шестизначных чисел, состоящих из цифр 3, 5, 7, в которых цифра 3 повторяется 3 раза, цифра 5 – 2 раза, цифра 7 – 1 раз?
Решение:
Каждое шестизначное число отличается от другого порядком следования цифр (причем 
- Классическое определение вероятности
- Геометрические вероятности
- Теоремы сложения и умножения вероятностей
- Формула полной вероятности
- Математическая обработка динамических рядов
- Корреляция — определение и вычисление
- Элементы теории ошибок
- Методы математической статистики














способами. 































)





























































































































































































способами, то А и В можно выбрать m • п способами.






































степени бинома) равно









































