Простейшие задачи Как найти вектор по двум точкам?
Если
даны две точки плоскости
и
,
то вектор
имеет
следующие координаты:
Если
даны две точки пространства
и
,
то вектор
имеет
следующие координаты:
То
есть, из
координат конца вектора нужно
вычесть соответствующие координаты начала
вектора.
Пример
Даны
две точки плоскости
и
.
Найти координаты вектора
Решение: по
соответствующей формуле:
Как
вариант, можно было использовать
следующую запись:
Можно
и так:

Обязательно
нужно понимать различие
между координатами точек и координатами
векторов:
Координаты
точек –
это обычные координаты в прямоугольной
системе координат. Каждая точка обладает
строгим местом на плоскости, и перемещать
их куда-либо нельзя.
Координаты
же вектора –
это его разложение по базису
,
в данном случае
.
Любой вектор является свободным, поэтому
при необходимости мы легко можем отложить
его от какой-нибудь другой точки
плоскости. Интересно, что для векторов
можно вообще не строить оси, прямоугольную
систему координат, нужен лишь базис, в
данном случае ортонормированный базис
плоскости
.
Записи
координат точек и координат векторов
вроде бы схожи:
,
а смысл
координат абсолютно разный,
и следует хорошо понимать эту разницу.
Пример
Даны
точки
.
Найти векторы
.

Как найти длину отрезка?
Если
даны две точки плоскости
и
,
то длину отрезка
можно
вычислить по формуле
Если
даны две точки пространства
и
,
то длину отрезка
можно
вычислить по формуле
Примечание: Формулы
останутся корректными, если переставить
местами соответствующие координаты:
и
,
но более стандартен первый вариант
Пример
Даны
точки
и
.
Найти длину отрезка
.
Ответ:
Если
дан вектор плоскости
,
то его длина вычисляется по формуле
.
Если
дан вектор пространства
,
то его длина вычисляется по формуле
.
Пример
Даны
точки
и
.
Найти длину вектора
.
Решение: Сначала
найдём вектор
:
По
формуле
вычислим
длину вектора:
Ответ:
Пример
а)
Даны точки
и
.
Найти длину вектора
.
б)
Даны векторы
,
,
и
.
Найти их длины.
а) Решение: найдём
вектор
:
Вычислим
длину вектора:
Ответ:
б) Решение:
Вычислим
длины векторов:

Действия с векторами в координатах
1) Правило
сложения векторов.
Рассмотрим два вектора плоскости
и
.
Для того, чтобы сложить векторы,
необходимо сложить
их соответствующие координаты:
.
Частный
случай – формула разности векторов:
.
Аналогичное
правило справедливо для суммы любого
количества векторов, например, найдём
сумму трёх векторов:
Если
речь идёт о векторах в пространстве, то
всё точно так же, только добавится
дополнительная координата. Если даны
векторы
,
то их суммой является вектор
.
2) Правило
умножения вектора на число.
Для того чтобы вектор
умножить
на число
,
необходимо каждую координату данного
вектора умножить на число
:
.
Для
пространственного вектора
правило
такое же:
Пример
Даны
векторы
и
.
Найти
и
Решение: Для
действий с векторами справедлив обычный
алгебраический приоритет: сначала
умножаем, потом складываем:

Ответ:
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
- Формула
- Примеры нахождения координат вектора по точкам
Формула
Чтобы найти координаты вектора $overline{A B}$ на плоскости, если он задан координатами своих начала $Aleft(x_{1} ; y_{1}right)$ и конца $Bleft(x_{2} ; y_{2}right)$, необходимо от координат конца отнять соответствующие координаты начала, то есть
$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1}right)$$
Чтобы найти координаты вектора $overline{A B}$, заданного в пространстве координатами $Aleft(x_{1} ; y_{1} ; z_{1}right)$ и $Bleft(x_{2} ; y_{2} ; z_{2}right)$, необходимо, по аналогии с плоским случаем, из координат конца вычесть координаты начала:
$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1} ; z_{2}-z_{1}right)$$
Примеры нахождения координат вектора по точкам
Пример
Задание. Даны точки
$A(4;-1)$ и $B(2;1)$. Найти координаты векторов $overline{A B}$ и
$overline{B A}$
Решение. Для вектора $overline{A B}$ точка $A$ является началом, а точка $B$ — концом. Тогда координаты вектора $overline{A B}$ равны
$$overline{A B}=(2-4 ; 1-(-1))=(-2 ; 2)$$
Для вектора 
$B$ является началом, а точка
$A$ — концом. Тогда координаты вектора $overline{B A}$ равны
$$overline{B A}=(4-2 ;-1-1)=(2 ;-2)$$
Ответ. $overline{A B}=(-2 ; 2), overline{B A}=(2 ;-2)$
Пример
Задание. Даны три точки в пространстве точки $A(1;-2;0,5)$, $B(3;2;1,5)$ и $C(0;-1;1)$. Найти координаты векторов
$overline{A B}$,
$overline{A C}$,
$overline{B C}$
Решение. Для искомого вектора
$overline{A B}$ точка
$A$ является началом, а точка
$B$ — концом. Тогда координаты вектора
$overline{A B}$ соответственно равны:
$$overline{A B}=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)$$
Для вектора $overline{A C}$ точка
$A$ является началом, а точка
$C$ — концом. Тогда его координаты соответственно равны
$$overline{A C}=(0-1 ;-1-(-2) ; 1-0,5)=(-1 ; 1 ; 0,5)$$
Для вектора $overline{B C}$ точка
$B$ является началом, а точка
$C$ — концом. Его координаты равны
$$overline{B C}=(0-3 ;-1-2 ; 1-1,5)=(-3 ;-3 ;-0,5)$$
Ответ. $overline{A B}=(2 ; 4 ; 1), overline{A C}=(-1 ; 1 ; 0,5), overline{B C}=(-3 ;-3 ;-0,5)$
Читать дальше: как найти сумму векторов.
- Как найти сумму векторов
- Как найти скалярное произведение векторов
- Как найти векторное произведение векторов
- Как найти смешанное произведение векторов
- Как найти вектор коллинеарный вектору
- Как найти вектор перпендикулярный вектору
- Как найти орт вектора
- Как найти разность векторов
- Как найти проекцию вектора
- Как найти длину вектора
- Как найти модуль вектора
- Как найти координаты вектора
- Как найти направляющие косинусы вектора
- Как найти угол между векторами
- Как найти косинус угла между векторами
Нахождение координат вектора через координаты точек
Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i → должно совпадать с осью O x , а направление вектора j → с осью O y .
Векторы i → и j → называют координатными векторами.
Координатные векторы неколлинеарны. Поэтому любой вектор p → можно разложить по векторам p → = x i → + y j → . Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p → по координатным векторам называются координатами вектора p → в данной системе координат.
Координаты вектора записываются в фигурных скобках p → x ; y . На рисунке вектор O A → имеет координаты 2 ; 1 , а вектор b → имеет координаты 3 ; — 2 . Нулевой вектор представляется в виде 0 → 0 ; 0 .
Если векторы a → и b → равны, то и y 1 = y 2 . Запишем это так: a → = x 1 i → + y 1 j → = b → = x 2 i → + y 2 j → , значит x 1 = x 2 , y 1 = y 2 .
Таким образом, координаты равных векторов соответственно равны.
Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на O x y заданы координаты точек начала и конца A B → : A x a , y a , B x b , y b . Найти координаты заданного вектора.
Изобразим координатную ось.
Из формулы сложения векторов имеем O A → + A B → = O B → , где O – начало координат. Отсюда следует, что A B → = O B → — O A → .
O A → и O B → – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения O A → = x a , y a , O B → = x b , y b .
По правилу операций над векторами найдем A B → = O B → — O A → = x b — x a , y b — y a .
Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.
Для нахождения координат вектора, необходимо найти разность его точек конца и начала.
Найти координаты O A → и A B → при значении координат точек A ( 2 , — 3 ) , B ( — 4 , — 1 ) .
Для начала определяется радиус-вектор точки A . O A → = ( 2 , — 3 ) . Чтобы найти A B → , нужно вычесть значение координат точек начала из координат точек конца.
Получаем: A B → = ( — 4 — 2 , — 1 — ( — 3 ) ) = ( — 6 , 2 ) .
Ответ: O A → = ( 2 , — 3 ) , A B → = ( — 6 , — 2 ) .
Задано трехмерное пространство с точкой A = ( 3 , 5 , 7 ) , A B → = ( 2 , 0 , — 2 ) . Найти координаты конца A B → .
Подставляем координаты точки A : A B → = ( x b — 3 , y b — 5 , z b — 7 ) .
По условию известно, что A B → = ( 2 , 0 , — 2 ) .
Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: x b — 3 = 2 y b — 5 = 0 z b — 7 = — 2
Отсюда следует, что координаты точки B A B → равны: x b = 5 y b = 5 z b = 5
Ответ: B ( 5 , 5 , 5 ) .
Заказать задачи по любым предметам можно здесь от 10 минут
Координаты вектора по двум точкам
Чтобы найти координаты вектора по двум точкам нужно найти разность между координатами конца и начала вектора. Пусть даны две точки $ A(x_1;y_1) $ и $ B(x_2;y_2) $Вектор $ overline{AB} $ для плоской задачи можно найти по формуле: $$ overline{AB} = (x_2-x_1; y_2-y_1) $$
В случае, если точки расположены в пространстве $ A(x_1;y_1;z_1) $ и $ B(x_2;y_2;z_2) $, то координаты вектора $ overline{AB} $ расчитываются по формуле: $$ overline{AB} = (x_2-x_1; y_2-y_1; z_2-z_1) $$
Следует обратить внимание, что координаты вычисляются именно с помощью вычитания начальной точки из конечной, но не наоборот. То есть векторы $ overline{AB} $ и $ overline{BA} $ имеют разные координаты: $$ overline{AB} neq overline{BA} $$
| Пример 1 |
| Даны точки $ A(2;1;-3) $ и $ B(1;0;2) $. Найти координаты векторов $ overline{AB} $ и $ overline{BA} $ |
| Решение |
|
Как найти координаты вектора по двум точкам? Согласну правилу нужно из конечной точки вычесть начальную. Так как вектор $ overline{AB} $ имеет начало в точке $ A $, а конец в $ B $, то получаем: $$ overline{AB} = (1-2;0-1;2-(-3)) = (-1; -1; 5) $$ Теперь посмотрим на вектор $ overline{BA} $, в котором начало в точке $ B $, а конец в $ A $. Поэтому имеем: $$ overline{BA} = (2-1;1-0;-3-2)=(1;1;-5) $$ Как видим, векторые разные, и координаты их тоже отличаются. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
| Ответ |
| $$ overline{AB} = (-1;-1;5) $$ $$ overline{BA} = (1;1;-5) $$ |
В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.
- Нахождение координат вектора
- Примеры задач
Нахождение координат вектора
Для того, чтобы найти координаты вектора AB, нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).
Формулы для определения координат вектора
| Для плоских задач | AB = {Bx — Ax; By — Ay} |
| Для трехмерных задач | AB = {Bx — Ax; By — Ay; Bz — Az} |
| Для n-мерных векторов | AB = {B1 — A1; B2 — A2; … Bn — An} |
Примеры задач
Задание 1
Найдем координаты вектора AB, если у его точек следующие координаты: A = (2; 8), B = (5; 12).
Решение:
AB = {5 – 2; 12 – 8} = {3; 4}.
Задание 2
Определим координаты точки B вектора AB = {6; 14}, если координаты точки A = (2; 5).
Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = ABx + Ax = 6 + 2 = 8.
By = ABy + Ay = 14 + 5 = 19.
Таким образом, B = (8; 19).




