Как найти вектор a по декартовым координатам
Ключевые слова: вектор, координаты, длина вектора
Прямые x, y, z называются координатными осями (или осями координат),
точка их пересечения – началом координат,
а плоскости , и – координатными плоскостями.
Точка разбивает каждую координатную ось на две полупрямые, которые называются положительной и отрицательной полуосями.
Координатой точки по оси будем называть число, равное по абсолютной величине длине отрезка : положительное, если точка лежит на положительной полуоси , и отрицательное, если она лежит на отрицательной полуоси.
Аналогично можно определить координаты и точки . Координаты точки записываются в скобках рядом с названием этой точки: .
Единичным вектором или ортом называется вектор, длина которого равна единице и который направлен вдоль какой-либо координатной оси.
- Единичный вектор, направленный вдоль оси , обозначается $$vec i$$.
- Единичный вектор, направленный вдоль оси обозначается $$vec j$$.
- Единичный вектор, направленный вдоль оси , обозначается $$vec k$$.
Вектора $$vec i$$, $$vec j$$, $$vec k$$ называются координатными векторами.
- Любой вектор $$vec a$$ можно разложить по координатным векторам: $$vec a = x cdot vec i+y cdot vec j+z cdot k$$.
- Коэффициенты разложения определяются единственным образом и называются координатами вектора $$vec a$$ в данной системе координат.
Свойства векторов, заданных координатами
- Координаты нулевого вектора равны нулю.
- Координаты равных векторов соответственно равны.
- Координаты вектора суммы двух векторов равны сумме соответствующих координат этих векторов.
- Координаты вектора разности двух векторов равны разностям соответствующих координат этих векторов.
- Координаты вектора произведения данного вектора на число равны произведениям соответствующих координат этого вектора на данное число.
Координаты вектора в декартовой системе координат (ДСК)
Для начала дадим определение координат вектора в заданной системе координат. Чтобы ввести данное понятие, определим что мы называем прямоугольной или декартовой системой координат.
Прямоугольная система координат представляет из себя прямолинейную систему координат с взаимно перпендикулярными осями на плоскости или в пространстве.
С помощью введения прямоугольной системы координат на плоскости или в трехмерном пространстве становится возможным описывание геометрических фигур вместе с их свойствами при помощи уравнений и неравенств, то есть использовать алгебраические методы при решении геометрических задач.
Тем самым, мы можем привязать к заданной системе координат векторы. Это значительно расширит наши возможности при решении определенных задач
Прямоугольная система координат на плоскости обычно обозначается O x y , где O x и O y – оси коорднат. Ось O x называют осью абсцисс, а ось O y – осью ординат (в пространстве появляется ещё одна ось O z , которая перпендикулярна и O x и O y ).
Итак, нам дана прямоугольная декартова система координат O x y на плоскости если мы отложим от начала координат векторы i → и j → , направление которых соответственно совпадет с положительными направлениями осей O x и O y , и их длина будет равна условной единице, мы получим координатные векторы. То есть в данном случае i → и j → являются координатными векторами.
Координатные векторы
Векторы i → и j → называются координатными векторами для заданной системы координат.
Откладываем от начала координат произвольный вектор a → . Опираясь на геометрическое определение операций над векторами, вектор a → может быть представлен в виде a → = a x · i → + a y · j → , где коэффициенты a x и a y — единственные в своем роде, их единственность достаточно просто доказать методом от противного.
Разложение вектора
Разложением вектора a → по координатным векторам i → и j → на плоскости называется представление вида a → = a x · i → + a y · j → .
Коэффициенты a x и a y называются координатами вектора в данной системе координат на плоскости.
Координаты вектора в данной системе координат принято записывать в круглых скобках, через запятую, при этом заданные координаты следует отделять от обозначения вектора знаком равенства. К примеру, запись a → = ( 2 ; — 3 ) означает, что вектор a → имеет координаты ( 2 ; — 3 ) в данной системе координат и может быть представлен в виде разложения по координатным векторам i → и j → как a → = 2 · i → — 3 · j → .
Следует обратить внимание, что порядок записи координат, имеет важное значение, если вы запишите координаты вектора в другом порядке, вы получите совершенно другой вектор.
Опираясь на определения координат вектора и их разложения становится очевидным, что единичные векторы i → и j → имеют координаты ( 1 ; 0 ) и ( 0 ; 1 ) соответственно, и они могут быть представлены в виде следующих разложений i → = 1 · i → + 0 · j → ; j → = 0 · i → + 1 · j → .
Также имеет место быть нулевой вектор 0 → с координатами ( 0 ; 0 ) и разложением 0 → = 0 · i → + 0 · j → .
Равные и противоположные векторы
Векторы a → и b → равны тогда, когда их соответствующие координаты равны.
Противоположным вектором называется вектор противоположный данному.
Отсюда следует, что координаты такого вектора будут противоположны координатам данного вектора, то есть, — a → = ( — a x ; — a y ) .
Все вышеизложенное можно аналогично определить и для прямоугольной системы координат, заданной в трехмерном пространстве. В такой системе координат имеет место быть тройка координатных векторов i → , j → , k → , а произвольный вектор a → раскладывается не по двум, а уже по трем координатам, причем единственным образом и имеет вид a → = a x · i → + a y · j → + a z · k → , а коэффициенты этого разложения ( a x ; a y ; a z ) называются координатами вектора в данной (трехмерной) системе координат.
Следовательно, координатные векторы в трехмерном пространстве принимают также значение 1 и имеют координаты i → = ( 1 ; 0 ; 0 ) , j → = ( 0 ; 1 ; 0 ) , k → = ( 0 ; 0 ; 1 ) , координаты нулевого вектора также равны нулю 0 → = ( 0 ; 0 ; 0 ) , и в таком случае два вектора будут считаться равными, если все три соответствующие координаты векторов между собой равны a → = b → ⇔ a x = b x , a y = b y , a z = b z , и координаты противоположного вектора a → противоположны соответствующим координатам вектора a → , то есть, — a → = ( — a x ; — a y ; — a z ) .
Координаты радиус-вектора точки
Чтобы ввести данное определение, требуется показать в данной системе координат связь координат точки и координат вектора.
Пусть нам дана некоторая прямоугольная декартова система координат O x y и на ней задана произвольная точка M с координатами M ( x M ; y M ) .
Вектор O M → называется радиус-вектором точки M .
Определим, какие координаты в данной системе координат имеет радиус-вектор точки
Вектор O M → имеет вид суммы O M → = O M x → + O M y → = x M · i → + y M · j → , где точки M x и M y это проекции точки М на координатные прямые Ox и Oy соответственно (данные рассуждения следуют из определения проекция точки на прямую), а i → и j → — координатные векторы, следовательно, вектор O M → имеет координаты ( x M ; y M ) в данной системе координат.
Иначе говоря, координаты радиус-вектора точки М равны соответствующим координатам точки М в прямоугольной декартовой системе координат.
Аналогично в трехмерном пространстве радиус-вектор точки M ( x M ; y M ; z M ) разлагается по координатным векторам как O M → = O M x → + O M y → + O M z → = x M · i → + y M · j → + z M · k → , следовательно, O M → = ( x M ; y M ; z M ) .
Декартовы координаты и векторы в пространстве
Декартовы координаты — система координат, состоящая из двух перпендикулярных осей. Положение точки в такой системе формируется с помощью двух чисел, определяющих расстояние от центра координат по каждой из осей.
Здесь мы будем рассматривать трехмерный случай. Введем, для начала, следующие данные.
Рассмотрим два следующих случая:
Из этого всего следует, что ( overrightarrow=koverrightarrow ) .
Из этого всего следует, что ( overrightarrow=koverrightarrow ) .
Теорема 1 Произвольный вектор ( overrightarrow
) можно разложить по трем некомпланарным векторам ( overrightarrow, overrightarrow ) и ( overrightarrow ) с единственными коэффициентами разложения.
Математически это можно записать следующим образом
Существование: Пусть нам даны три некомпланарных вектора ( overrightarrow, overrightarrow ) и ( overrightarrow ) . Выберем произвольную точку ( O ) и построим следующие векторы:
( overrightarrow=overrightarrow, overrightarrow=overrightarrow, overrightarrow=overrightarrow и overrightarrow
=overrightarrow )
Рассмотрим следующий рисунок:
Рисунок 1.
Произведем следующие дополнительные построения. Проведем через точку ( P ) прямую, которая будет параллельна вектору ( overrightarrow ) . Пусть эта прямая пересекает плоскость ( OAB ) в точке ( P_1 ) . Далее, проведем через точку ( P_1 ) прямую, которая будет параллельна вектору ( overrightarrow ) . Пусть эта прямая пересекает прямую ( OA ) в точке ( P_2 ) (смотри рисунок выше).
Воспользуемся свойством правила треугольника сложения двух векторов ( overrightarrow+overrightarrow=overrightarrow ) , получим:
Так как векторы ( overrightarrow ) и ( overrightarrow ) коллинеарны, то ( overrightarrow=<alpha >_1overrightarrow=<alpha >_1overrightarrow )
Так как векторы ( overrightarrow ) и ( overrightarrow ) коллинеарны, то ( overrightarrow=<alpha >_2overrightarrow=<alpha >_2overrightarrow )
Так как векторы ( overrightarrow ) и ( overrightarrow ) коллинеарны, то ( overrightarrow=<alpha >_3overrightarrow=<alpha >_3overrightarrow )
Тогда, получаем, что ( overrightarrow
=overrightarrow+overrightarrow+overrightarrow=<alpha >_1overrightarrow+<alpha >_2overrightarrow+<alpha >_3overrightarrow )
Существование разложения доказано.
Единственность: Предположим противное. Пусть существует еще одно разложение вектора ( overrightarrow
) по векторам ( overrightarrow, overrightarrow ) и ( overrightarrow ) :
Вычтем эти разложения друг из друга
Из этого получаем
Доказано.
Координаты вектора
Рассмотрим декартову систему координат, которая строится следующим образом. Обозначим начало координат точкой ( O ) , по направлению оси ( Ox ) построим вектор ( overrightarrow ) , по направлению оси ( Oy ) построим вектор ( overrightarrow ) , а в направлении оси ( Oz ) отложим вектор ( overrightarrow ) , длины которых равны единице.
Определение 1 Векторы ( overrightarrow ) , ( overrightarrow ) , ( overrightarrow ) координатные векторы.
Из того что векторы ( overrightarrow ) , ( overrightarrow ) и ( overrightarrow ) не коллинеарны, по теореме 1, следует, что любой вектор можно разложить в виде ( overrightarrow=<alpha >_1overrightarrow+<alpha >_2overrightarrow+<alpha >_3overrightarrow ) .
Определение 2 Коэффициенты в разложении вектора ( overrightarrow=<alpha >_1overrightarrow+<alpha >_2overrightarrow+<alpha >_3overrightarrow ) называют координатами вектора в данной системе координат, то есть ( overrightarrow=<<alpha >_1, <alpha >_2,<alpha >_3> )
Линейные операции над векторами
Теорема 2 Координаты суммы векторов равны сумме соответствующих координат этих векторов.
Докажем теорему для двух векторов. Теорема для большего количества векторов доказывается аналогично. Пусть ( overrightarrow=left ) , ( overrightarrow= ) , тогда
Теорема доказана.
Теорема 3 Координаты разности векторов равны разности соответствующих координат этих векторов.
Докажем теорему для двух векторов. Теорема для большего количества векторов доказывается аналогично. Пусть ( overrightarrow=left ) , ( overrightarrow= ) , тогда
Теорема доказана.
Теорема 4 Координаты произведения вектора на число равны произведению соответствующих координат это число.
Теорема доказана.
http://zaochnik.com/spravochnik/matematika/vektory/koordinaty-vektora-v-dsk/
http://calcsbox.com/post/dekartovy-koordinaty-i-vektory-v-prostranstve.html
Определение
11. Декартова
система координат в пространстве
это три занумерованные взаимно
перпендикулярные числовые оси, с общим
началом отсчета О.
Первая ось обозначается ОХ
и называется осью
абсцисс,
вторая ось ОY
называется осью ординат,
третья ось ОZ
называется осью апликат.
Декартовыми
координатами точки
М
в пространстве
называются
координаты проекций этой точки на оси
ОХ,
ОY,
ОZ.
Обозначение:
М(x;
y;
z).
Теорема
12. 1).
Расстояние
между двумя точками
М1(x1;
y1;
z1)
и М2(x2;
y2;
z2)
находят по формуле:
2). Координаты точки деления отрезка в заданном отношении вычисляют по формулам:
Пусть
рассматривают какой-то процесс и в нем
наблюдают некоторые величины, которые
могут подразделять на два вида: скалярные
и векторные.
Определение
12. Скалярной
величиной
называется величина, которая измеряются
одним числом. Например: длина, площадь,
объем, вес, температура, работа, энергия,
доход –
скалярные величины.
Определение
13. Векторные
величины
измеряются числом и направлением.
Например: сила, скорость, ускорение,
напряженность электрического поля –
векторные величины. Такие величины
удобно задавать направленными
отрезками,
которые имеют длину и направление и
изображаются стрелками. Эти направленные
отрезки называются векторами.
Они обозначаются буквами


c
черточкой сверху или через

где первая буква обозначает
начало
вектора и вторая буква обозначает конец
вектора.
Длина вектораa
или


вектора.
Два
вектора


если они имеют одинаковые длины,
параллельны и направлены в одну сторону,
обозначение:


В данном определении не участвуют точки
приложения векторов

это означает, что вектор не зависит от
своей точки приложения и его можно
перемещать параллельно самому себе. В
этом смысле рассматриваемые векторы
называютсясвободными
векторами.
Вектор, длина которого равна 0, называется
нуль-вектором
и обозначается
через 0,
его направление произвольное.
Определение
14. Произведением
вектора
н

называется вектор
k
, длина
которого равна |k||
и, еслиk
> 0, то его
направление совпадает с направлением

а если k
< 0, то его направление противоположно
направлению

(см. рис. 8). Вектор (1)
называется
противоположным
вектору
и обозначается
—
На рис.8 изображены:



D

B

Рис.8.
Определение
15. Сложение
двух и более
векторов осуществляется по правилу
многоугольника:
первый вектор фиксируется, второй вектор
параллельно самому себе перемещается
в конец первого вектора, затем таким же
образом третий вектор перемещается в
конец второго вектора и т. д. После
размещения всех векторов их суммой
является
вектор, начало которого совпадает с
началом первого вектора и конец совпадает
с концом последнего вектора (см. рис.9).
a2
a3
a1
a4
a1
+a2+a3+a4
Рис.9.
Операция
сложения
определяется также по правилу
параллелограмма:
Пусть




стороны параллелограммаABCD,
тогда



при этом
=

B
C
A
D
Рис.10.
Пример
16. На трех
векторах(

(


построен
параллелепипед.
Указать те его векторы-диагонали, которые
соответственно равны






Решение.
Для первой комбинации выбирают вершину
А1,
в ней помещают вектор,

который равен
В вершинеB1
пристраивают вектор

который в
данном построении равен

Теперь, в вершине C1
пристраивают вектор –

который равен
По правилу многоугольника, получилось,
что

=

Аналогично
показывается, что комбинация
—



D1
N
C1
A1
B1

K

A

Рис.11.
Пример
17. Пусть в
примере 16 токи K,
M,
N
являются серединами ребер


Выразить векторы AN,
NM,
K
через векторы



Решение.
По рис.11 вектор





















Геометрической
проекцией
точки
А
на числовую
ось ОХ
является основание А1
перпендикуляра,
опущенного из А
на эту ось (обозначение:

А
= А1
. Точка А1
имеет на
оси ОХ
некоторую координату х,
эта координата называется алгебраической
проекцией
точки
А на числовую
ось ОХ,
обозначение:
ПрОХ
А
= х.
Геометрической
проекцией вектора
на числовую
ось ОХ
является вектор

гдеА1
=

А
и В1
=

В,
обозначение:



Алгебраической
проекцией вектора
на числовую
ось ОХ
называется число (х2
– х1),
где х1
= ПрОХ
А
и х2
= ПрОХ
В,
обозначение:
ПрОХ
= (х2
– х1).
Ортом
оси ОХ
называется вектор

имеющий длину 1 и направление, одинаковое
с осьюОХ.
Лемма
1. Геометрическая
проекция вектора

алгебраическую проекцию этого вектора
на ОХ:



Доказательство.Рассматривается
случай, изображенный на рис.12.
y

O

x
Рис.
12.
По
определению геометрической проекции,



По определению, алгебраической проекции,ПрОХ
=
ПрОХ A
— ПрОХ
O
= ПрОХ
B
— ПрОХ
O
= ПрОX

С другой
стороны, по предыдущим определениям,
ПрОХ






ПрОХ




что и требовалось доказать. Остальные
случаи рассматриваются аналогично
(см.[1. с.113]). С
помощью этой леммы легко доказываются
следующие свойства проекций векторов.
1).
Геометрическая
проекция суммы векторов равна сумме
геометрических проекций векторов,
входящих в эту сумму:


… +
=

+ … +


2).
Алгебраическая
проекция суммы векторов равна сумме
алгебраических проекций векторов,
входящих в эту сумму:
ПрОХ(
… +
= ПрОХ
+… +
ПрОХ

3).
Геометрическая
проекция произведения вектора на число
k
равна произведению геометрической
проекции этого вектора на число k
:


= k∙

4).
Алгебраическая
проекция произведения вектора на число
k
равна произведению алгебраической
проекции этого вектора на число k
:
ПрОХ(k
= kПрОХ

Определение
16. Пусть
ОХYZ
– декартова система координат в
пространстве и

вектор.Координатами
называются алгебраические проекции
этого вектора на оси координат.
Используются
следующие обозначения для координат
вектора

ах=
ПрОХ

ПрОY

ПрОZ

={ах;
аy;
аz}.
Из
определения алгебраической проекции
следует, что если известны декартовы
координаты начала А(х1;
у1;
z1)
и конца В(х2;
у2;
z2)
вектора


то координаты
этого вектора находятся по формулам:
ах=
х2
– х1,
ау=
у2
– у1,
аz=
z2
– z1,
(18)
т.
е. от
координат конца вычитаются координаты
начала.
Если
М(х,
у,
z)
точка пространства, то вектор

радиусом—вектором
этой точки. Согласно предыдущим формулам,
координаты

:

{х;
у;
z}.
Кроме того, в силу формулы (17), длина
вектора

аy;
аz}
равна корню квадратному из суммы
квадратов его координат:
Из
указанных выше свойств легко выводятся
следующие правила вычисления линейных
операций через координаты векторов.
1).
При умножении
вектора на число k
его координаты умножаются на k:
k
={kах;
kay;
kaz}.
2).
При сложении
векторов их координаты складываются:
+
+
bx;
аy
+
by;
аz
+
bz}.
Орты
координатных осей OX,
OY,
OZ
обозначаются через



Эти векторы имеют следующие координаты:
i
= {1;
0;
0}, j=
{0;
1;
0},k=
{0;
0;
1}.
Тогда,
по лемме 1, произвольный вектор а
={ах;
аy;
аz}
выражается линейно через i,
j,
k
следующим образом:

(20)
Пример
18. Даны
точки А(3;
2; 1) и В(6;
4;
3). Найти
координаты и длину вектора

Решение.
Применяют формулы (17)
(19).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Система координат на плоскости позволяет установить взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел (рис. 331). Координаты вы широко использовали для графического представления зависимостей, при решении систем уравнений, а также в геометрии, чтобы геометрическую задачу свести к задаче алгебраической.
Декартова система координат в пространстве
Чтобы ввести декартову систему координат в пространстве, выберем точку
Б) Вы знаете, что по координатам концов 


Аналогичная формула выражает длину отрезка 

Чтобы доказать эту формулу, рассмотрим плоскости, которые проходят через точки 


и 
Ранее вы доказывали, что координаты середины отрезка равны средним арифметическим соответствующих координат его концов. Это утверждение остаётся истинным и в случае пространства (см. пример 2 в § 6): если 


Пример:
На оси ординат найдём точку, равноудалённую от точек 
Решение:
Пусть 


или 
Ответ:
Пример:
Найдём условие, задающее геометрическое место точек, равноудалённых от начала координат и от точки
Решение:
Согласно геометрическим соображениям искомое множество состоит из всех тех точек, размещённых на серединных перпендикулярах к отрезку 




Ответ: Искомое геометрическое место точек есть плоскость, которая задаётся уравнением
Пример:
Найдём условие, которому удовлетворяют координаты точек плоскости 


Решение:
Пусть 


Поскольку


Ответ:
Вектор. Действия над векторами
А) С векторами вы встречались в курсе физики девятого класса, когда знакомились с векторными величинами. Физическая величина является векторной, если она характеризуется не только числовым значением, но и направлением. Такие величины, как сила, скорость и другие, обозначают направленными отрезками. Длина направленного отрезка (стрелки) характеризует числовое значение векторной величины (её модуль).
Особенностью понятия вектор является то, что все основные определения и свойства, связанные с этим понятием, формулируются почти одинаково как в планиметрии, так и в стереометрии.
Вектор в геометрии представляется направленным отрезком (рис. 336), начало которого считается началом вектора, а конец — концом вектора.
Расстояние между началом направленного отрезка и его концом считается длиной вектора.
Направленные отрезки 








Это напоминает ситуацию с дробями: определённое число может представляться разными дробями, например, дроби 


Если вектор 


Вектор, представленный направленным отрезком 



Если ненулевые векторы 






Ненулевые векторы 



Векторы можно складывать и умножать на число. Чтобы сложить векторы 

и тогда сумма векторов представляется направленным отрезком 
Сложение векторов имеет переместительное свойство, т. е. 




Произведением вектора 














С действием умножения вектора на число связываются два распределительных свойства— 
Б) Если векторы 




Для любых двух векторов существует плоскость, которой они параллельны. Векторы, параллельные одной плоскости, называют компланарными. Если векторы 





Истинно и обратное утверждение: если векторы 


Действительно, если векторы 





Теорема 1. Если векторы 



Доказательство: Сначала докажем существование нужных чисел. Представим векторы 




















Поэтому
Теперь докажем единственность представления. Допустим, что существуют две разные упорядоченные тройки чисел 




Поскольку тройки чисел 





Следствие 1. Из четырёх любых векторов пространства один может быть выражен через три других.
Действительно, если среди данных четырёх векторов пространства есть три некомпланарных, то четвёртый вектор можно через эти три выразить. Далее, если среди данных четырёх векторов пространства любые три компланарны, то может найтись среди них два неколлинеарных, или любых два вектора коллинеарны. В первом случае через эти два неколлинеарных вектора можно выразить третий и к полученному выражению прибавить четвёртый, умноженный на ноль. Во втором случае один из векторов можно выразить через другой и потом прибавить к этому выражению два оставшихся вектора, умноженных на ноль.
Таким образом, теперь вы знаете, что из двух коллинеарных векторов один может быть выражен через другой, из трёх компланарных векторов один может быть выражен через два других, а из четырёх любых векторов один может быть выражен через три других.
Пример №1
На кронштейне, состоящем из подкоса 



Решение:
Сила тяжести выражается вектором 






Поскольку углы 










Ответ. Под воздействием груза подкос сжимается с силой 
Пример №2
В правильной четырёхугольной пирамиде 









Решение:
Поскольку 























Имеем:
Поэтому
Учтём теперь то, что через некомпланарные векторы 






В) Пусть в пространстве выбрана декартова система координат 



Будем говорить, что вектор 





Теорема 2. Если 
Доказательство: Пусть задана декартова система координат 




Поскольку 


Середина отрезка 



Отсюда:

Теорема 3. Если 
Доказательство: Пусть задана декартова система координат 




Поэтому

Значит, вектор 
Докажем второе утверждение теоремы 3. Пусть сначала 













Если же 

Следствие 2. Если 
Пример №3
Дан параллелепипед 




а) векторы 


б) векторы 


Решение:
а) Имеем:
б) Будем рассматривать полученные равенства —





Теперь из последнего равенства выразим 

Далее можно последовательно выразить 


Пример №4
Через диагональ 






Решение:
Векторы 


Учтём, что 


Аналогично, существует такое число 


Значит,
Из условия следует, что векторы 


Поскольку 

Ответ:
Скалярное произведение векторов
А) Скалярным произведением векторов 



Скалярное произведение векторов имеет переместительное свойство 


У нулевого вектора направление не определено, поэтому удобно считать, что нулевой вектор перпендикулярен любому другому вектору.
С учётом этого получается следующее полезное утверждение: два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.
Теорема 1. Скалярное произведение векторов 

равенством
Доказательство: Поскольку 
Находим далее:
Аналогично,
Поэтому
Пример №5
Найдём длину вектора
Имеем: 
Пример №6
Найдём угол 

Имеем:
Поэтому:
Пример №7
Найдём длину вектора 




Имеем:
Поскольку
Поэтому
Б) Вы знаете, что плоскость в пространстве можно задать тремя точками, не лежащими на одной прямой. Поскольку существует единственная плоскость, проходящая через данную точку перпендикулярно данной прямой, то плоскость можно задавать указанием одной из её точек и вектора, ей перпендикулярного.
Теорема 2. Если плоскость проходит через точку 



Доказательство: Если 
проходящей через точку 
то векторы 

Истинно и обратное утверждение.
Теорема 3. Уравнению 

Доказательство: Если есть уравнение 








Поскольку 








Пример №8
Найдём уравнение плоскости, проходящей через точки А(2; 1; 3), В(4; 1, 2) и С(5; 2; 1).
Решение:
Найдём координаты векторов 



Чтобы записать уравнение плоскости 






Теперь можно записать уравнение плоскости, которая проходит через точку

В) Теорема 4. Если плоскость имеет уравнение 

Доказательство: Пусть из точки 




вектором 
или 180°, то 
Находим
поскольку координаты точки 


Пример №9
Найдём расстояние от точки 
Решение:
Используя теорему 4, получаем:
Ответ: 5.
Применение векторов и координат
А) В ряде задач условие содержит сведения о параллельности некоторых прямых или об их точках пересечения, об отношениях длин параллельных отрезков. Для решения таких задач может быть полезным применение векторов, как это было при решении примера 3 из параграфа 12. При решении таких задач достаточно использовать действия сложения векторов и умножения вектора на число. Рассмотрим ещё один пример.
Пример №10
Пусть 





Решение. Выберем в пространстве точку 
следует, что 


векторами
Чтобы доказать, что середины отрезков 

Находим:
А поскольку

то выражения в двух последних скобках принимают одинаковые значения. Требуемое утверждение доказано.
Б) При решении других задач целесообразно пользоваться скалярным умножением векторов. Такими являются задачи, в которых нужно использовать или определять некоторые расстояния или углы.
Пример №11
Найдём угол между скрещивающимися диагоналями соседних боковых граней правильной шестиугольной призмы, у которой боковые грани — квадраты.
Решение:
Пусть нужно найти угол между прямыми 


Выразим векторы 



А поскольку

Ответ:
Скалярное произведение векторов можно использовать и для нахождения угла между плоскостями. Как и при определении угла между прямыми, так и при определении угла 


Пример №12
У правильной шестиугольной призмы 

Решение:
Для получения ответа нужно определить векторы 




Используем прямоугольную декартову систему координат, начало которой находится в центре 











Поскольку 

удовлетворяют условиям 



Для нахождения вектора 






Используем равенство 






Находим:
Ответ:
Для нахождения угла между прямой и плоскостью также можно использовать векторы, из которых один параллелен прямой, а другой перпендикулярен плоскости. Угол 


Пример №13
На рёбрах 







Решение:
Примем точку 

По теореме 3 из параграфа 13 уравнение плоскости 






Прямой 

и
Ответ:
В) В предыдущем параграфе обсуждалось использование координат для вычисления расстояния от точки до прямой. Рассмотрим решение ещё двух задач на нахождение расстояний: от точки до прямой и расстояния между скрещивающимися прямыми.
Пример №14
В правильной шестиугольной пирамиде 








Решение:
Пусть 





Используем прямоугольную декартову систему координат, начало которой находится в центре 















Искомое расстояние есть длина перпендикуляра, опущенного из точки 





то
Теперь находим:
Ответ:
Пример №15
Измерения 









Решение:
Расстояние между скрещивающимися прямыми 




Примем точку 















Теперь запишем уравнение плоскости 



Ответ:
Векторы в пространстве
Это интересно!
Основоположниками аналитической геометрии являются знаменитые ученые Декарт и Ферма. Однако Декарт свои исследования опубликовал первым. А исследования Ферма увидели свет намного позже, после его смерти. Интересно, что подойдя к проблеме с разных сторон, они пришли к одинаковым выводам. Декарт искал уравнение исследуемой кривой, а Ферма для заданного уравнения искал соответствующую кривую.
Применение правил алгебры к геометрии привело к возникновению аналитической геометрии. В последствии аналитическая геометрия была усовершенствована основателем математического анализа Исааком Ньютоном, который писал » … я смог пойти дальше Декарта, только потому, что стоял на плечах гигантов»
Прямоугольная система координат в пространстве
Пусть мяч ударился о пол и отскочил вертикально вверх. Координаты мяча в точке на полу можно определить относительно длины и ширины комнаты двумя значениями. Однако когда мяч отскочил от пола, то его положение уже невозможно определить двумя координатами. Если положение мяча на полу определяется как 
Прямоугольная система координат в пространстве. В пространстве возьмем произвольную точку 







Координатные плоскости обозначаются как и
Каждая координатная плоскость делит пространство на два полупространства и, таким образом, три координатные плоскости вместе делят пространство на восемь частей, каждая из которых называется октантом:
Пусть точка 






Координаты точки в пространстве
1) Плоскость, проходящая через точку 


2) Плоскость, проходящая через точку 


3) Плоскость, проходящая через точку 


Значит, каждой точке 

Упорядоченная тройка 








1) Начало координат:
2) Точка, расположенная на оси
Точка, расположенная на оси
Точка, расположенная на оси
3) Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка 





Знаки координат точки
Знак координаты точки зависит от того, в каком октанте расположена точка. В следующей таблице показаны знаки координат точек в различных октантах.
В первом октанте все знаки координат положительны, в седьмом октанте все знаки отрицательны.
Пример №16
В прямоугольной системе координат в пространстве постройте точки:
Решение: а) для построения точки 







b) для построения точки 







Пример №17
От точки 

Решение: для точки основания перпендикуляра, проведенного из точки 





Пример №18
От точки 




Решение: координата 





Расстояние между двумя точками в пространстве
Расстояние между точками 

Доказательство. Пусть 







Учитывая, что
получаем,
Расстояние от начала координат
В прямоугольной системе координат в пространстве расстояние от точки 

Пример №19
Точки, расположенные на одной прямой, называются коллинеарными точками.
Докажите, что точки 

Решение:
Так как 


Пример №20
Найдите координаты точки, расположенной на оси абсцисс и равноудаленной от точек 
Решение: если точка 






Значит, точка 

Координаты точки, делящей отрезок в некотором отношении
Координаты точки 
и 

Доказательство: пусть точка 











На основе теоремы о пропорциональных отрезках имеем:
Аналогично, используя перпендикуляры к осям 


Координаты середины отрезка
Координаты середины отрезка, соединяющих точки 

Координаты центра тяжести треугольника
Координаты центра тяжести треугольника (точка пересечения медиан) с вершинами в точках 


Пример №21
Даны точки 

координаты точки 

Решение: пусть точка 



точки, делящей отрезок в заданном отношении, получаем:
Пример №22
Даны координаты двух вершин треугольника 

Решение: так как центр тяжести находится в начале координат, то:
Отсюда,
Значит, третьей вершиной треугольника является точка
Векторы в пространстве
Векторной величиной или вектором называется величина, которая определяется не только значением, но и направлением. Изображается вектор направленным отрезком. Длина отрезка, образующего вектор, называется длиной вектора или его модулем.
Вектор можно изобразить в одномерной, двухмерной и трехмерной системе координат.
Вектор, у которого начальная и конечная точки совпадают, называется нулевым вектором. Направление нулевого вектора не определено. Местоположение любой точки (объекта) в пространстве изображается вектором, начало которого совпадает с началом координат, а конец — с данной точкой. Например, на рисунке изображен вектор, показывающий положение мяча в пространстве, который брошен на высоту 3 м на игровой площадке, длина которой равна 4 м, а ширина 2 м.
В пространстве вектор, который определяет место (положение, позицию) точки и соединяет начальную и заданную точку, называется позиционным вектором или радиус — вектором. Каждой точке пространства соответствует единственный позиционный вектор. Положение точки 

Два вектора называются равными если они имеют равные модули и одинаково направлены. Равные векторы, при помощи параллельного переноса, можно расположить друг на друге. Например, на рисунке векторы 






В пространстве, как и на плоскости, можно геометрически построить сумму и разность векторов, и произведение вектора на число.
Найти компоненты и длину вектора, а также выполнить действия над векторами в пространственной Декартовой системе координат можно но правилам, аналогичным для прямоугольной системы координат на плоскости.
Длина вектора
Модуль вектора можно найти, используя формулу нахождения расстояния между двумя точками.
Теорема. Если начало вектора расположено в точке 


Следствие. Длина радиус-вектора равна 
Сложение и вычитание векторов
Сложение и вычитание векторов: суммой (разностью) векторов 



Пример №23
Найдите сумму и разность векторов 
Решение:
Умножение вектора на число
Умножение вектора на число: произведение вектора 

Пример №24
Для вектора 

Решение:
Коллинеарные векторы
Если направленные отрезки, которыми изображены векторы, параллельны или лежат на одной прямой, то вектора называются коллинеарными. Если векторы 





При 
Пример №25
Определите, являются ли расположенные в пространстве векторы 

Решение: так как 


Пример №26
Постройте радиус-вектор, равный вектору
Решение: в _соответствии с правилом треугольника 



По правилу сложения векторов на плоскости 
Пример №27
В трехмерной системе координат задан вектор 



Решение: а)
b) Обозначим вектор, равный вектору 

соответствует радиус-вектор 

радиус-вектор
Так как 
Пример №28
Установите справедливость равенства 

Решение:
Из равенства соответствующих компонентов следует
Векторы, расположенные на одной плоскости или на параллельных плоскостях, называются компланарными векторами. Например, векторы, расположенные на противолежащих гранях куба, компланарны, а векторы, направленные по трем ребрам выходящим из одной вершины, некомпланарны.
Единичный вектор — вектор, длина которого равна единице.
Для любого, отличного от нуля вектора 

Пример №29
Для вектора 



Решение: обозначим единичный вектор через 
Проверим, действительно ли длина этого вектора равна единице:
b) чтобы определить вектор, сонаправленный с вектором 
В прямоугольной системе координат в пространстве векторы, направленные вдоль положительных направлений координатных осей 



— некомпланарны.
Любой позиционный вектор и на плоскости, и в пространстве, можно выразить через орт вектора. На плоскости точке 




Теорема. Любой вектор 

Пример №30
Вектор 


Решение: зная, что 
Пример №31
Запишите разложение вектора 
Решение: по теореме разложения вектора по орт векторам имеем:
Пример №32
а) Запишите в виде 
b) Запишите вектор 
Решение: а) начало позиционного вектора совпадает с началом координат 

Пример №33
Найдите сумму и разность векторов.
Решение:
Скалярное произведение двух векторов
Тележка переместилась на расстояние 








Работа, совершаемая при перемещении груза на расстояние 

Работа является скалярной величиной, однако ее значение зависит от угла между силой, действующей на тело, и вектором перемещения.
Скалярное произведение двух векторов
Углом между любыми двумя ненулевыми векторами 


Скалярное произведение двух ненулевых векторов 

Скалярное произведение записывается как:
Значит,
Свойство скалярного произведения
• Для любого вектора 

Переместительное свойство скалярного произведения.
Для любых векторов 

Свойство группировки скалярного произведения. Для любых векторов 


Распределительное свойство скалярного произведения:
1) Для любых векторов




В частном случае, для скалярного произведения орт векторов получим:
Пример №34
По данным на рисунке найдите скалярное произведение векторов 
Решение:
Пример №35
Упростите выражение 
Решение:
Скалярное произведение двух векторов на координатной плоскости можно найти при помощи координат.
Пусть даны векторы 

Из 
По теореме косинусов получаем

Таким образом, скалярное произведение двух векторов 

Аналогичным образом, скалярное произведение двух векторов 


Пример №36
Зная, что 
Решение:
Угол между двумя векторами
Угол между двумя ненулевыми векторами находится из соотношения 
Пример №37
Найдите косинус угла между векторами 
Решение:
Вывод: два ненулевых вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю:
Пример №38
При каком значении 


Решение: 

Общее уравнение прямой
В системе координат на плоскости уравнение прямой имеет вид 






Так как векторы 

Если ввести обозначение 

Частные случаи:
• 
• 
• 
Пример №39
Запишите уравнение прямой 

Решение: на координатной плоскости построим вектор 

Способ 1.
Пусть точка 








Таким образом,
Способ 2.
Зная нормаль 




Пример №40
Найдите угол между прямыми, заданными уравнениями 
Решение: угол между прямыми можно найти как угол между их нормалями.
Для угла 


Отсюда
Пример №41
Найдите расстояние от точки 
Решение: пусть точка 
Так как векторы 








Отсюда 
Уравнение плоскости
Исследование. Какому множеству точек соответствует одно и тоже уравнение, например 
1. В одномерной системе координат, т.е. на числовой оси, уравнению 
2. В двухмерной системе координат уравнению 


3. В трехмерной системе координат уравнению 





4. В трехмерной системе координат представьте множество точек, удовлетворяющих уравнениям 



Уравнение прямой в двухмерной системе координат имеет вид
Например, уравнение 


В трехмерной системе координат мы можем написать это уравнение в виде: 







Плоскость может быть определена различными способами.
- тремя неколлинеарными точками
- прямой и точкой, не принадлежащей этой прямой
- двумя пересекающимися прямыми
- двумя параллельными прямыми
- точкой и перпендикуляром в этой точке в заданном направлении
Используя последний способ, которым можно задать плоскость, покажем, что уравнение плоскости имеет вид 






А это значит, что 


Обозначим 
Внимание! Три коэффициента при переменных в уравнении плоскости являются компонентами нормали и
Пример №42
Плоскость с нормалью 

Решение: задание можно выполнить двумя способами.
1-ый способ. Возьмем произвольную точку 






Умножим обе части уравнения на 
2-ой способ. Известно, что уравнение плоскости имеет вид 








Пример №43
Дано уравнение плоскости
a) Определите, принадлежат ли точки 
b) Определите координаты точки пересечения плоскости с осями
c) Запишите координаты какой-либо другой точки, принадлежащей данной плоскости.
Решение:
а) Проверка:
Принадлежит плоскости
Принадлежит плоскости
Не принадлежит плоскости
b) Координаты точек пересечения с осями
в точке пересечения с осью 


в точке пересечения с осью 


в точке пересечения с осью 


c) Для определения координаты другой точки на заданной плоскости задайте любые значения двум переменным и найдите третью координату.
Например, при 



- Заказать решение задач по высшей математике
Пример №44
Найдите расстояние от точки 
Решение: пусть точка 









Отсюда 
Это говорит о том, что расстояние от заданной точки 
Взаимное расположение плоскостей
Плоскости 

Плоскости 

Пример №45
Определение параллельности или перпендикулярности плоскостей но уравнению.
a) плоскость 



b) плоскость 



Решение: для того чтобы плоскости 





Значит, плоскости 

Нормали плоскостей 



Уравнение сферы
Определение. Сферой называется множество всех точек, расположенных на расстоянии 



Если точка 
Это уравнение сферы с центром в точке 
Если центр сферы находится в начале координат, то уравнение сферы радиуса 
Как видно из рисунка, пересечение этой сферы с координатной плоскостью 
Пример №46
Запишите уравнение сферы, радиус которой равен г а центр расположен в точке
Решение:
Пример №47
Представьте фигуру, которая получается при пересечении сферы 
Решение: радиус сферы 


Плоскость, имеющая со сферой только одну общую точку, называется плоскостью, касательной к сфере.
Например, плоскость 

Плоскость, касательная к сфере, в точке касания перпендикулярна радиусу сферы.
Преобразования на плоскости и в пространстве
Ремесленники и художники создают узоры, заполняя некоторую площадь без пробела рисунком при помощи преобразований (параллельный перенос, поворот, отображение) или увеличения или уменьшения этого рисунка (гомотетия).
Это знать интересно. Великий голландский художник Эшер, объединив такие разделы математики как симметрия, комбинаторика, стереометрия и топология, создал динамические рисунки, заполняя плоскости цветовыми оттенками. Не имея специального математического образования, Эшер создавал свои произведения, опираясь на интуицию и визуальные представления. Ряду работ, построенных на параллельном переносе, он дал название «Правильное движение плоскости».
https://en.wikipedia.org/wiki/M._C._Escher
Если каждой точке 






Параллельный перенос является движением. Каждому параллельному переносу соответствует один вектор. Справедливо и обратное.
Пример №48
В какую точку переходит точка 
Решение: по определению при данном преобразовании, координаты точки 



Симметрия. В пространстве симметрии относительно точки и прямой дается такое же определение как и на плоскости. В пространстве также рассматривается симметрия относительно плоскости.
Для точки 
Пример №49
Найдите точку, симметричную точке 
Решение: точка 







Поворот. Поворотом фигуры в пространстве вокруг прямой 






Ниже на рисунках представлены примеры различных изображений поворота куба вокруг оси 
Гомотетия
Аналогичным образом в пространстве вводится понятие преобразования подобия. Если при преобразовании фигуры расстояние между двумя точками 


Если для любой точки 








Пример №50
Пусть дана сфера с центром в точке 
Решение: позиционный вектор, соответствующий точке 








Предел
Это интересно!
Предел (лимит) от латинского слова «limes», что означает цель.
Понятие предела независимо друг от друга было введено английским математиком Исааком Ньютоном (1642-1727) и немецким математиком Готфридом Лейбницом (1646-1716). Однако ни Ни Ныотон, ни Лейбниц не смогли полностью объяснить вводимые ими понятия. Точное определение предела было дано французским математиком Коши. А работы немецкого ученого » Вейерштрасса наконец завершили создание этой серьезной теории.
Координаты и векторы в пространстве
В этом параграфе вы ознакомитесь с прямоугольной системой координат в пространстве, научитесь находить координаты точек в пространстве, длину отрезка и координаты его середины. Вы обобщите и расширите свои знания о векторах.
Декартовы координаты точки в пространстве
В предыдущих классах вы ознакомились с прямоугольной (декартовой) системой координат на плоскости — это две перпендикулярные координатные прямые с общим началом отсчета (рис. 38.1).

Систему координат можно ввести и в пространстве. Прямоугольной (декартовой) системой координат в пространстве называют три попарно перпендикулярные координатные прямые с общим началом отсчета (рис. 38.2). Точку, в которой пересекаются три координатные прямые, обозначают буквой О. Ее называют началом координат. Координатные прямые обозначают буквами 

Плоскости, проходящие через пары координатных прямых 


Пространство, в котором задана система координат, называют координатным пространством. Если оси координат обозначены буквами 



Аналогично каждой точке М координатного пространства ставится в соответствие упорядоченная тройка чисел 











Полученную упорядоченную тройку чисел 







Если точка принадлежит координатной плоскости или координатной оси, то некоторые ее координаты равны нулю. Например, точка 


Теорема 38.1. Расстояние между двумя точками 

Теорема 38.2. Каждая координата середины отрезка равна полусумме соответствующих координат его концов, то есть серединой отрезка с концами в точках 
Доказательства теорем 38.1 и 38.2 аналогичны тому, как были доказаны соответствующие теоремы в курсе планиметрии. Например, серединой отрезка с концами в точках 


В таком случае говорят, что точки А и В симметричны относительно начала координат.
Векторы в пространстве
В курсе планиметрии вы изучали векторы на плоскости. Теперь вы начинаете изучать векторы в пространстве. Многие понятия и свойства, связанные с векторами на плоскости, можно почти дословно отнести к векторам в пространстве. Доказательства такого рода утверждений о векторах в пространстве аналогичны доказательствам соответствующих утверждений о векторах на плоскости.
Рассмотрим отрезок АВ. Если мы договоримся точку А считать началом отрезка, а точку В — его концом, то такой отрезок будет характеризоваться не только длиной, но и направлением от точки А до точки В. Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.
Вектор с началом в точке А и концом в точке В обозначают так: 
В отличие от отрезка, концы которого — различные точки, у вектора начало и конец могут совпадать.
Договорились называть вектор, начало и конец которого — одна и та же точка, нулевым вектором или нуль-вектором и обозначать 




Определение. Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
На рисунке 39.2 изображена четырехугольная призма 



Записывают:
Ненулевые коллинеарные векторы бывают сонаправленными и противоположно направленными. Например, на рисунке 39.2 векторы 



Определение. Два ненулевых вектора называют равны ми, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. На рисунке 39.2
Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 39.3, 




На рисунке 39.3, 





Рассмотрим в координатном пространстве вектор 





Равные векторы имеют равные соответствующие координаты, и наоборот, если соответствующие координаты векторов равны, то равны и сами векторы.
Теорем а 39.1. Если точки 







Сложение и вычитание векторов
Пусть в пространстве даны векторы 


Далее от точки В отложим вектор 




Можно показать, что сумма 

Свойства сложения векторов аналогичны свойствам сложения чисел. Для любых векторов 
Сумму трех и большего количества векторов находят так: вначале складывают первый и второй векторы, потом к полученной сумме прибавляют третий вектор и т. д. Например, 

Для сложения двух неколлинеарных векторов 
Отложим от произвольной точки А вектор 





Рассмотрим векторы 
Построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были его ребрами (рис. 40.5). Отрезок OD является диагональю этого параллелепипеда. Докажем, что 





Описанный способ сложения трех векторов, отложенных от одной точки и не лежащих в одной плоскости, называют правилом параллелепипеда.
Определение. Разностью векторов 



Записывают: 
Покажем, как построить вектор, равный разности векторов 








Отметим, что для любых трех точек О, А и В выполняется равенство 
Теорема 40.1. Если координаты векторов 





Умножение вектора на число
Определение. Произведением ненулевого вектора 


1)
2) если 
Записывают: 







Теорема 41.1. Для любых векторов 
Эта теорема позволяет свести вычитание векторов к сложению: чтобы из вектора 










Теорема 41.2. Если векторы 


Теорема 41.3. Если координаты вектора 



Умножение вектора на число обладает следующими свойствами.
Для любых чисел 


Эти свойства позволяют преобразовывать выражения, содержащие сумму векторов, их разность и произведение вектора на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например,
Скалярное произведение векторов
Пусть 


Угол между векторами 





Если 




Векторы 
На рисунке 42.3 изображена треугольная призма, основанием которой является правильный треугольник, а боковое ребро перпендикулярно плоскости основания.
Имеем:
Определение. Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними.
Скалярное произведение векторов 

Если хотя бы один из векторов 




Скалярный квадрат вектора равен квадрату его модуля, то есть 
Теорема 42.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Например, для векторов, изображенных на рисунке 42.3, имеем:
Теорема 42.2. Скалярное произведение векторов 

Теорема 42.3. Косинус угла между ненулевыми векторами 
Некоторые свойства скалярного произведения векторов аналогичны соответствующим свойствам произведения чисел. Например, для любых векторов 

Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, по правилам преобразования алгебраических выражений. Например,
Пример №51
Основанием призмы является равнобедренный треугольник АВС (АВ =АС). Боковое ребро 

Решение:
Пусть 


Запишем:
Поскольку 
Напомню:
Расстояние между точками
Расстояние между двумя точками 
Координаты середины отрезка
Каждая координата середины отрезка равна полусумме соответствующих координат его концов.
Взаимное расположение двух векторов
Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
Равенство векторов
Два ненулевых вектора называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.
Координаты вектора
Если точки 


Модуль вектора
Если вектор 
Действия над векторами
Для любых трех точек А , В и С выполняется равенство
Разностью векторов 



Для любых трех точек О, А и В выполняется равенство 





Если векторы 






Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Если координаты векторов 

- Множества
- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве
Содержание:
- Формула
- Примеры нахождения координат вектора по точкам
Формула
Чтобы найти координаты вектора $overline{A B}$ на плоскости, если он задан координатами своих начала $Aleft(x_{1} ; y_{1}right)$ и конца $Bleft(x_{2} ; y_{2}right)$, необходимо от координат конца отнять соответствующие координаты начала, то есть
$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1}right)$$
Чтобы найти координаты вектора $overline{A B}$, заданного в пространстве координатами $Aleft(x_{1} ; y_{1} ; z_{1}right)$ и $Bleft(x_{2} ; y_{2} ; z_{2}right)$, необходимо, по аналогии с плоским случаем, из координат конца вычесть координаты начала:
$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1} ; z_{2}-z_{1}right)$$
Примеры нахождения координат вектора по точкам
Пример
Задание. Даны точки
$A(4;-1)$ и $B(2;1)$. Найти координаты векторов $overline{A B}$ и
$overline{B A}$
Решение. Для вектора $overline{A B}$ точка $A$ является началом, а точка $B$ — концом. Тогда координаты вектора $overline{A B}$ равны
$$overline{A B}=(2-4 ; 1-(-1))=(-2 ; 2)$$
Для вектора 
$B$ является началом, а точка
$A$ — концом. Тогда координаты вектора $overline{B A}$ равны
$$overline{B A}=(4-2 ;-1-1)=(2 ;-2)$$
Ответ. $overline{A B}=(-2 ; 2), overline{B A}=(2 ;-2)$
Пример
Задание. Даны три точки в пространстве точки $A(1;-2;0,5)$, $B(3;2;1,5)$ и $C(0;-1;1)$. Найти координаты векторов
$overline{A B}$,
$overline{A C}$,
$overline{B C}$
Решение. Для искомого вектора
$overline{A B}$ точка
$A$ является началом, а точка
$B$ — концом. Тогда координаты вектора
$overline{A B}$ соответственно равны:
$$overline{A B}=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)$$
Для вектора $overline{A C}$ точка
$A$ является началом, а точка
$C$ — концом. Тогда его координаты соответственно равны
$$overline{A C}=(0-1 ;-1-(-2) ; 1-0,5)=(-1 ; 1 ; 0,5)$$
Для вектора $overline{B C}$ точка
$B$ является началом, а точка
$C$ — концом. Его координаты равны
$$overline{B C}=(0-3 ;-1-2 ; 1-1,5)=(-3 ;-3 ;-0,5)$$
Ответ. $overline{A B}=(2 ; 4 ; 1), overline{A C}=(-1 ; 1 ; 0,5), overline{B C}=(-3 ;-3 ;-0,5)$
Читать дальше: как найти сумму векторов.
- Как найти сумму векторов
- Как найти скалярное произведение векторов
- Как найти векторное произведение векторов
- Как найти смешанное произведение векторов
- Как найти вектор коллинеарный вектору
- Как найти вектор перпендикулярный вектору
- Как найти орт вектора
- Как найти разность векторов
- Как найти проекцию вектора
- Как найти длину вектора
- Как найти модуль вектора
- Как найти координаты вектора
- Как найти направляющие косинусы вектора
- Как найти угол между векторами
- Как найти косинус угла между векторами
Как найти вектор по точкам
ФОРМУЛА
Чтобы найти координаты вектора (
overline{A B}
)на плоскости, если он задан координатами его начала (
Aleft(x_{1} ; y_{1}right)
) и (
Bleft(x_{2} ; y_{2}right)
) конца, необходимо вычесть соответствующие координаты начала из координат конца, то есть
(
overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1}right)
)
Чтобы найти координаты вектора (
overline{A B}
), заданного в пространстве по координатам (
Aleft(x_{1} ; y_{1} ; z_{1}right)
) и (
Bleft(x_{2} ; y_{2} ; z_{2}right)
), необходимо, по аналогии с плоским случаем, вычесть координаты начала из координат конца:
(
overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1} ; z_{2}-z_{1}right)
)
ПРИМЕРЫ НАХОЖДЕНИЯ КООРДИНАТ ВЕКТОРА ПО ТОЧКАМ
ПРИМЕР
A(4 ;-1)
) и (
B(2 ; 1)
). Найти координаты векторов (
overline{A B}
) и (
overline{B A}
)
overline{A B}
) точка (
mathrm{A}
) является началом, а точка (
B
) — концом. Тогда координаты вектора (
overline{B A}
)равны
(
overline{A B}=(2-4 ; 1-(-1))=(-2 ; 2)
)
Для вектора (
overline{B A}
) точка (
B
) является началом, а точка (
mathrm{A}
) — концом. Тогда координаты вектора (
overline{B A}
)равны
(
overline{B A}=(4-2 ;-1-1)=(2 ;-2)
)
overline{A B}=(-2 ; 2)
)
(
overline{B A}=(2 ;-2)
)
ПРИМЕР
A(1 ;-2 ; 0,5)
) , (
B(3 ; 2 ; 1,5)
) и (
C(0 ;-1 ; 1)
). Найти координаты векторов (
overline{A B}, overline{A C}, overline{B C}
)
overline{A B}
) точка (
mathrm{A}
) является началом, а точка (
B
) — концом. Тогда координаты вектора (
overline{A B}
)соответственно равны:
(
overline{A B}=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)
)
Для вектора (
overline{A C}
)точка (
mathrm{A}
) является началом, а точка (
mathrm{C}
) — концом. Тогда его координаты соответственно равны
(
overline{A C}=(0-1 ;-1-(-2) ; 1-0,5)=(-1 ; 1 ; 0,5)
)
Для вектора (
overline{B C}
) точка (
B
) является началом, а точка (
mathrm{C}
) — концом. Его координаты равны
(
overline{B C}=(0-3 ;-1-2 ; 1-1,5)=(-3 ;-3 ;-0,5)
)
overline{A B}=(2 ; 4 ; 1)
)
(
overline{A C}=(-1 ; 1 ; 0,5)
)
(
overline{B C}=(-3 ;-3 ;-0,5)
)

































































































































































































































































































































































































































































































