Для
положения 6
Определим угловые скорости звеньев. Угловые скорости звеньев определяются из следующих соотношений:
.
Подставим
найденное значение относительной
линейной скорости
и известную длину звена механизма
в
записанную формулу:
.
Примечание:
за положительное направление вращения
принято вращение кривошипа.
Для
положения 0
Угловые скорости звеньев определяются из следующих соотношений:
.
Подставим
найденное значение относительной
линейной скорости
и известную длину звена механизма
в
записанную формулу:
.
Таблица
1.3.
Значения
линейных скоростей точек и угловых
скоростей звеньев для 6-го и
0-го
положений механизма.
|
положение |
Отрезки мм |
Линейные м/с |
Угловые |
||||||||||||||||||||
|
Pvc2 |
Pvs |
Pvd2 |
Pve |
Pvd45 |
bс2 |
bs |
bd2 |
be |
d2d45 |
VB |
VC2 |
VC2 |
VC3 |
VC0 |
VA |
VS |
VD2 |
VE |
VD45/D2 |
VD45=VN |
1 |
2=3= |
|
|
6 |
40,5 |
44 |
49 |
57,5 |
28 |
37 |
18,5 |
63,21 |
76,47 |
32 |
1,36 |
0,925 |
1,012 |
0 |
0 |
0 |
1,1 |
1,225 |
1,44 |
0,8 |
0,7 |
13,6 |
3,1 |
|
0 |
54,4 |
54,4 |
54,4 |
54,4 |
0 |
0 |
0 |
0 |
0 |
54,4 |
1,36 |
0 |
1,36 |
0 |
0 |
0 |
1,36 |
1,36 |
1,36 |
1,36 |
0 |
13,6 |
0 |
-
Определение линейных ускорений всех характерных точек механизма
(для
положения 6)
Найдем
ускорение точки B.
Так как ω1=const,
то угловое ускорение 1=0
и тангенциальное ускорение
=0.
Полное
ускорение точки В будет равно нормальному
ускорению:
.
Вектор
нормального ускорения
//АB
и направлен к центру вращения звена 1.
Примем
масштаб построения плана ускорений:
.
На
плане ускорений:
.
Выбираем
точку-полюс плана ускорений Ра,
проводим вектор
//АB.
Определим
ускорение точки С2.
Ускорение
точки С2
определим из совместного решения 2-х
уравнений:
-
— Для звена 2.
-
— Для звена 3.
Решим
первое уравнение:
=
,
где
=
и
//ВС;
=
=
и
ВС.
Решим
второе уравнение:
=
,
где
=
;
=
=
.
Для
определения направления ускорения
нужно
вектор относительной скорости
повернуть на угол 900
по направлению ω2.
—
релятивное ускорение, оно всегда
направлено по кулисе (векторы
и
всегда
взаимно перпендикулярны).
Из
плана получим:
;
;
.
Найдем
ускорения точек S,
D2,
E.
Ускорение
точек найдём так же как и скорость на
основании свойства и пропорциональности
отрезков bc2,
bs, bd2,
be на плане ускорений и размеров звеньев
lBC,
lBS,
lBD,
lBE.
Получим
следующее отношение:
.
Отсюда
находим:
;
;
.
Построив
план с сохранением того же порядка
обхода букв получим:
;
;
.
Найдем
ускорения точек D45,
M,
N.
Точки
D45,
M,
N
принадлежат одному звену, а значит
движутся в одном направлении:
.
Причем,
звенья
2 и 4 образуют поступательную кинематическую
пару:
;
=
.
На
плане отложим
вектор Кориолисова ускорения. Для
определения его направления повернём
вектор скорости
на
900
в сторону мгновенного вращения.
=
=
.
Из
плана:
;
.
Релятивное
ускорение всегда направлено вдоль
кулисы.
«К
построению плана ускорений»
(для
«мертвого» положения механизма)
Анализ
проведем в той же последовательности
Найдем
ускорение точки B.
.
Примем
масштаб построения плана ускорений:
.
На
плане ускорений:
.
Выбираем
точку-полюс плана ускорений Ра,
проводим вектор
//АB.
Определим
ускорение точки С2.
Ускорение
точки С2
определим из совместного решения 2-х
уравнений:
1.
=
— для звена 2.
2.
=
—
для звена 3.
В
мертвом положении ω2=0,
следовательно:
=0
м/с2;
=0
м/с2.
Получаем:
=
;
=
.
Из
плана получим:
;
;
.
Найдем
ускорения точек S,
D2,
E.
Ускорение
точек найдём из отношения:
.
Отсюда
находим:
;
;
;
Построив
план с сохранением того же порядка
обхода букв получим:
;
;
.
Найдем
ускорения точек D45,
M,
N.
.
В
мертвом положении ω5=0,
следовательно:
;
.
Из
плана:
;
.
Соседние файлы в папке 2 рычаги и 13 зубы
- #
- #
- #
- #
Рис.1
В положении механизма, указанном на рис.1, определить аналитически и построить на чертеже :
- положение мгновенных центров скоростей всех звеньев, совершающих плоское движение;
- скорости всех, точек механизма, расположенных в местах соединения звеньев (шарнирах);
- угловые скорости всех звеньев;
- ускорение точки А;
- ускорений других точек механизма методом полюса;
- угловые ускорения звеньев;
- касательное и нормальное ускорения точки В;
- установить характер движения точки В (ускоренное, замедленное, мгновенная остановка).
Дано:
= 30 об./мин.
Определить:
1) = ?
2) = ?
3) = ?
4) = ?
Решение:
I. Определим скорости точек и угловые скорости звеньев механизма (метод мгновенного центра скоростей, мцс)
1.1 Определим угловую скорость ведущего кривошипа OA:
C1: вектор оси
— оси вращения кривошипа OA (см. рис.1),
1.2 Рассмотрим кривошип OA:
C2: в сторону вращения кривошипа OA (см. рис.1)
1.3 рассмотрим уголковый шатун BAF
Точка — мгновенный центр скоростей шатуна BAF
ось — мгновенная ось вращения шатуна BAF.
(1)
Примечание: Так как на Рис.1 звенья механизма изображены в масштабе, то величины (размеры) мгновенных радиусов точек, а именно: и
берутся с рисунка.
C3: вектор скорости по направляющей в сторону поворота шатуна (вниз).
Определим скорость точки B
Угловая скорость шатуна BAF:
(2)
C4: Вектор , т.к. шатун относительно оси
поворачивается по часовой стрелке.
(3)
Примечание: Величина так-же берётся с Рис.1.
Из (3) получаем
C5: вектор и направлен в сторону вращения шатуна BAF.
1.4 Рассмотрим шатун «BE»
Точка — мгновенный центр скоростей шатуна «BE»
Ось — мгновенная ось вращения шатуна «BE»
(4)
Из (4) получаем:
C6: Вектор и направлен по направляющей вверх (см. Рис.1).
Угловая скорость шатуна BE:
(5)
Примечание: Величину берём из рис. 1 с учётом масштаба.
C7: вектор угловой скорости шатуна BE (от нас),
т.к. «отсюда» видим вращение по часовой стрелке относительно оси
1.5 Определим скорость точки M:
а) метод «мгновенного центра скоростей»:
Точка M шатуну BAF, точка
— мгновенный центр скоростей BAF,
— мгновенный радиус точки M.
(6)
Из (6) получаем:
C8: Вектор скорости и направлен в сторону вращения шатуна BAF
б) метод «полюса»: точка А — полюс
(7)
Где — вращательная скорость точки M относительно «полюса» A, вектор направлен перпендикулярно
= 0.342 (величина угла взята с рис.1)
Сравним = 0.68 m/c (мцс) и «метод полюса»
= 0.73 m/c : погрешность расчёта составляет
II. Определение ускорений точек и угловых ускорений звеньев механизма. (методом «полюса»)
2.1 Ускорение точки A, принадлежащей кривошипу OA, который вращается вокруг неподвижной оси 
(8)
(9)
где и
— вращательное и осестремительное ускорения точки A около оси
соответственно.
(10)
С учётом (9) и (10) из (8) получим:
(11)
(12)
тогда их (11) с учётом (12) получим
Рис.2
C9: направлен из точки A к оси
(см.рис.2).
2.2 Рассмотрим шатун BAF
а) определяем ускорение точки F
(13)
где и
— вращательное и осестремительное ускорения точки F вокруг «полюса» A, соответственно.
(14)
C10: Вектор осестремительного ускорения направлен от точки F к «полюсу» A (см.рис.2)
C11: Для вектора вращательного ускорения известна только линия действия (л.д.),
(направление также выбираем условно см.рис.2)
C12: Для вектора — (ускорения «ползуна» F) известна только линия действия (л.д.) — направляющая «OF» (направление также выберем условно)
(15)
Спроектируем векторное равенство (13) на оси координат «XFY»:
на ось :
(16)
на ось :
(17)
C13: (см.рис.2)
, где величину этих углов берём с чертежа (см.рис.2)
Далее перепишем (16) и (17), подставляя числовые значения:
(18)
(19)
Из уравнения (16) получим:
C14: Получили, что , следовательно, условное направление надо поменять на противоположное (см.рис.2)
Из уравнения (17) получим:
C15: Так как , то условное направление верно! (см.рис.2).
Определим угловое ускорение шатуна BAF:
(20)
Направление определяем из векторного произведения
(см.рис.2)
C16: Вектор и, так как
, то шатун «BAF» вращается замедленно ! (см.рис.1)
б) Определим ускорение точки
(метод «полюса»):
(21)
где (см. пункт I.)
C17: Вектор направлен по
от точки B к «полюсу» A (см.рис.2).
С учётом (20) получим, что:
(22)
C18: Вектор (см.рис.2).
Спроектируем векторное равенство (21) на оси :
на ось
(23)
на ось
(24)
угол берём с чертежа (см.рис.2).
Перепишем (23) и (24), подставляя числовые значения:
(25)
(26)
Далее находим абсолютную величину ускорения точки B:
(27)
Направление вектора определяется направляющими косинусами по отношению к осям BXY.
(28)
Соотношение (27) и (28) представляют вектор по величине (27) и направлению (28)
2.3 Рассмотрим шатун «BE»
Запишем для — вектора ускорения точки
шатуну «BE» (по методу «полюса») векторное равенство:
(29)
Спроецируем (29) на оси координат и
(см. рис.2)
(30)
(31)
Далее перепишем (30) и (31), подставляя числовые значения, получим
(32)
(33)
Здесь также значение угла берём с чертежа (см.рис.2)
Из (32) определим величину вектора ускорения точки E
Из (33) определим величину вектора вращательного ускорения точки «E» около «полюса» B:
(34)
Определим величину углового ускорения шатуна BE с учётом (34)
Направление вектора определим из векторного произведения:
(35)
C19: Так как получили (34), что , то следует условное направление вектора изменить на противоположное (рис.2), тогда чтобы удовлетворить векторное произведение (35), вектор
(см. рис.1), а поскольку получили, что
, то, значит, характер вращения шатуна «BE» — ускоренный.
Ответ:
Содержание:
Плоское движение тела:
При изучении темы ПЛОСКОЕ ДВИЖЕНИЕ ТЕЛА раздела КИНЕМАТИКА. вы научитесь применять аналитические и графические методы для определения скоростей и ускорений точек тел и механизмов. Хотя эти знания имеют самостоятельную ценность, особенно необходимы они будут для решения задач динамики тела и системы.
Приведены программы расчета кинематики плоского движения в математической системе Maple V. Анимационные возможности этой системы делают решение наглядным, позволяя глубже понять суть задачи.
Методы решения задачи кинематики плоского движения разнообразны. Выбрать оптимальный путь, который может существенно упростить решение, помогут примеры, приведенные в этой главе.
Скорости точек многозвенного механизма
Постановка задачи. Плоский многозвенный механизм с одной степенью свободы находится в движении. Известна угловая скорость какого-либо его звена или скорость одной из точек механизма. Найти скорости точек механизма и угловые скорости его звеньев.
План решения:
Рассмотрим два простых геометрических способа решения задачи, в которых, в отличие от аналитических методов, определяются модули скоростей и угловых скоростей. Не оговаривая отдельно, всякий раз под угловой скоростью
1-й способ. Мгновенные центры скоростей
1. Определяем положение мгновенного центра скоростей (МЦС) каждого звена. МЦС лежит на пересечении перпендикуляров, проведенных
к скоростям точек, принадлежащих звену (рис. 85). У тех звеньев, у которых МЦС не существует (скорости двух точек параллельны и не перпендикулярны отрезку, их соединяющему), угловая скорость равна нулю, а скорости всех точек равны. Если векторы скоростей перпендикулярны отрезку их соединяющем}’, то имеют место два частных случая положения МЦС (рис. 86, 87).
Если тело (колесо, диск, цилиндр) катится по поверхности без проскальзывания, то МЦС этого тела находится в точке касания.
2. Для каждого звена определяем расстояния от его точек до МЦС этого звена.
3. Записываем систему уравнений для скоростей N точек звена 
Здесь




Этот пункт плана выполняем последовательно для всех звеньев механизма. Очередное звено должно иметь общую точку (шарнир) с предыдущим, для которого угловая скорость найдена или известна.
2-й способ. План скоростей
1. Как и в методе МЦС ведем расчет, переходя от одного звена к другому, шарнирно с ним соединенном}’.
Построение начинаем с вектора, величина и направление которого известны или легко вычисляются. Этот вектор в заданном масштабе откладываем от некоторой произвольной точки О (рис. 91). Его конец определяет первую точку плана скоростей. Точку плана скоростей (конец вектора) отмечаем строчной буквой, соответствующей точке вектора скорости. Пусть первая точка плана скоростей обозначена как b.
2. Рассматриваем очередное звено, на котором имеется точка с уже известной скоростью. Необходимо, чтобы на этом звене была
еще одна точка с известным направлением вектора скорости (например, ползун или точка звена, совершающего вращательное движение). Пусть эта точка обозначена как С (рис. 88).
Справедливо правило, согласно которому неизменяемые отрезки механизма, обозначенные прописными буквами, перпендикулярны отрезкам плана скоростей, обозначенными теми же строчными буквами.
Следующая точка плана скоростей лежит на пересечении двух прямых. Одна прямая определяется направлением скорости точки С, вторая перпендикулярна ВС. Длина полученного отрезка Ос является модулем скорости 
Скорости остальных точек этого звена (если таковые имеются) найдем по правилу подобия неизменяемых фигур механизма и фигур, обозначенных теми же строчными буквами плана скоростей.
Пункт 2 плана выполняем для всех звеньев механизма (рис. 91-95).
3. После построения плана скоростей определяем угловую скорость каждого звена по простой формуле 



Задача №1
Плоский многозвенный механизм с одной степенью свободы приводится в движение кривошипом АВ, который вращается против часовой стрелки с угловой скоростью 
Ползуны С, К, Н движутся горизонтально, 
8.1.Скорости точек многозвенного механизма скорости его звеньев АВ, BD, DG, EH, FO, СК.
Решение
1-й способ. Мгновенные центры скоростей
1. Определяем положение мгновенного центра скоростей каждого звена АВ, BD, DG, СК, EH, FO.
МЦС звеньев АВ и FO искать не требуется. Они совершают вращательное движение вокруг шарниров А и О соответственно. Можно условно считать, что там находятся их МЦС.
Вектор 
Остается точка С. Ползун С движется строго горизонтально. Вектор скорости 




Со стержнем BCD имеют общие точки два стержня: СК и DG. Рассмотрим сначала стержень DG. Направление вектора скорости точки D уже известно. Чтобы определить положение МЦС, надо знать направление вектора еще одной точки на этом звене. Такой точкой является F. Вектор ее скорости перпендикулярен радиусу вращения FO и направлен вертикально. Перпендикуляры к векторам 

Перпендикулярно радиусам 
Переходим к звену ЕН, МЦС которого находим на пересечении перпендикуляров к 



И, наконец, рассматриваем звено СК. Скорости 
2. Определяем расстояния от МЦС звеньев до тех точек этих звеньев, скорости которых надо найти.
Звено BCD
Звено DEFG. Пользуясь подобием 
Звено ЕН (рис. 90). Находим расстояния до МЦС:
8.1.Скорости точек многозвенного механизма
3. Записываем систему уравнений для скоростей трех точек звена BCD, включая точку В с известной скоростью:
Решаем эту систему. Находим
Система уравнений для скоростей точек звена DEFG имеет вид
Из первого уравнения вычисляем угловую скорость:
Получаем скорости точек:
Система уравнений для скоростей точек звена ЕН имеет вид
Отсюда
Звено СК совершает мгновенно-поступательное движение. Следовательно, скорости точек С я К равны: 


Частично проверить решение можно графически. Известно, что концы векторов скоростей точек неизменяемого отрезка лежат на одной прямой. Убеждаемся в этом, проводя прямую через концы векторов 
Аналогично, проверяем скорости 
Результаты расчетов помещаем в таблицы. Скорости даны в см/с, угловые скорости — в рад/с.
2-й способ. План скоростей
1. Построение начинаем с вектора, величина и направление которого известны или легко вычисляются. В нашем случае это 

8.1.Скорости точек многозвенного механизма
Точки плана скоростей (концы векторов) отмечаем соответствующими строчными буквами. Таким образом, положение точки b на плане скоростей известно.
2. Рассматриваем звено BCD (рис. 90), на котором имеется точка В с известной скоростью. Неизменяемые отрезки механизма, обозначенные прописными буквами, перпендикулярны отрезкам плана скоростей, обозначенными теми же строчными буквами,
Следовательно, точка с плана скоростей лежит на одной вертикали с точкой b. Известно направление скорости ползуна С. Точку с находим на пересечении двух прямых. Вектор 
Так получаем точку d плана скоростей и, следовательно, величину и направление вектора
Определяем скорость 



Из соотношения подобия 





Аналогично, определяем скорость


3. Угловые скорости звеньев определяем по простым формулам:
Ускорения точек многозвенного механизма
Постановка Задачи. Плоский шарнирно-стержневой механизм состоит из шарнирно соединенных стержней и ползунов. Механизм приводится в движение кривошипом, который вращается с заданной угловой скоростью. В указанном положении механизма найти ускорения всех его шарниров.
*) Существует еще несколько способов проверки вычисления скоростей точек многозвенного механизма.
8.2. Ускорения точек многозвенного механизма
План решения
1. Определяем угловые скорости звеньев и скорости точек механизма (см. § 8.1).
2. Определяем ускорение шарнира, принадлежащего звену с известным законом движения:
где R — длина звена. Если задан закон изменения утла поворота 
Если угловая скорость звена постоянна, 
3. Для определения ускорения точки В тела, совершающего плоское движение, воспользуемся векторной формулой
Здесь 


Возможны три случая определения ускорения по формуле (1). А. Точка В является ползуном, или направление ее вектора ускорения по каким-либо другим причинам известно. В этом случае формула (1) в проекциях на оси координат представляет собой систему двух линейных уравнений для неизвестного модуля ускорения ав и неизвестного углового ускорения звена
Б. В точке В шарнирно соединены звено АВ и звено ВС, где С — неподвижный шарнир. Таким образом, точка В движется по окружности с центром в С, и ее ускорение можно представить в виде векторной суммы нормального и тангенциального ускорения:
Величину нормального ускорения 



В результате, система уравнений (1-2), записанная в проекциях, дает четыре уравнения для четырех неизвестных 
В. Точка В не удовлетворяет случаям А и Б. В этом случае либо она не является шарниром, либо к ней шарнирно присоединено тело, совершающее плоское (не вращательное и не поступательное) движение. Для решения задачи должны быть известны угловая скорость и угловое ускорение звена, на котором находится точка В. Они могут быть найдены при вычислении скорости и ускорения других точек этого звена. При этих условиях уравнение (1) является векторным уравнением для одной неизвестной 
Этот пункт плана выполняем последовательно для всех звеньев механизма. Очередное звено должно иметь общую точку (шарнир) с предыдущим.
Задача №2
Плоский шарнирно-стержневой механизм состоит из четырех шарнирно соединенных стержней и горизонтально движущегося ползуна С (рис. 96). Механизм приводится в движение кривошипом OA, который вращается с постоянной угловой скоростью 
Решение
1. Определяем угловые скорости звеньев и скорости точек механизма. Находим величину скорости точки А:
Вектор 


8.2. Ускорены точек многозвенного механизма
от точек А, В, М до МЦС:
Скорости точек находим из системы уравнений
В результате решения получаем
Найти скорость точки С не составит труда. Векторы 

2. Определяем ускорение шарнира А, принадлежащего звену OA с известной постоянной угловой скоростью 

3. Находим ускорение точки В. Точка В движется по окружности с центром в неподвижном шарнире D, и ее ускорение можно представить в виде векторной суммы нормального и тангенциального ускорений:
С другой стороны, ускорение точки В выражается через ускорение точки А, лежащей на том же звене АВ. Рассматривая А в качестве полюса, имеем
Сравнивая (3) и (4), получаем, что
В проекциях на оси х, у (рис. 98) векторное уравнение (3) дает систем}’ двух уравнений относительно неизвестных
где
Решаем систему (5):
Окончательно, величина ускорения точки В
8.2. Ускорены точек многозвенного механизма
Вычисление ускорения точки М выполняем по п.ЗВ плана решения. Действительно, угловая скорость и угловое ускорение звена А В уже известны:
Рассматривая А в качестве полюса (рис. 99), записываем векторное уравнение
где

Величина ускорения точки M
Находим ускорение точки С. Скорости точек В я С звена ВС, совершающего мгновенно — поступательное движение, равны, однако, их ускорения различны.
Для определения 

где

Векторное уравнение (7) содержит две неизвестных величины:

Спроецируем (7) на ось 
Находим
Результаты расчетов помещаем в таблицу (скорости в см/с, ускорения в см/
8.3. Уравнение трех угловых скоростей
Постановка задачи. Подобрать длины звеньев шарнирного четырехзвенника так, чтобы в некоторый момент движения угловые скорости его звеньев были бы равны заданным. Положение опорных шарниров четырехзвенника известно.
План решения:
Под угловыми скоростями будем понимать проекции соответствующих векторов на ось 

1. Последовательно нумеруем шарниры и звенья механизма. Выбираем систему координат, помещая ее начало в один из шарниров механизма. Определяем координаты шарниров.
2. Записываем уравнения трех угловых скоростей
где 

3. Решаем систему (1) относительно неизвестных координат. Определяем длины звеньев механизма (расстояния между шарнирами) по формулам
Задача №3
В положении, изображенном на рис. 101, известны угловые скорости шарнирного четырехзвенника О ABC: 


Решение
1. Последовательно нумеруем шарниры и звенья механизма. Номера шарниров указываем индексами у соответствующих букв. Выбираем систему координат, помещая ее начало в шарнир О. Определяем координаты шарниров (рис. 102):
2. Записываем уравнения трех угловых скоростей (1), где по условию

8.3. Уравнение трех угловых скоростей

3. Решаем систему (2) относительно 
Кроме того, 
Уравнение трех угловых ускорений
Постановка задачи. Многозвенный механизм приводится в движение кривошипом, вращающимся с известной угловой скоростью и известным угловым ускорением. Найти угловые скорости и угловые ускорения звеньев механизма.
План решения:
Под угловыми скоростями и ускорениями будем понимать проекции соответствующих векторов на ось 

1. Нумеруем шарниры и звенья механизма. Выбираем систему координат, помещая ее начато в один из шарниров механизма. Определяем координаты шарниров.
2. Выделяем из механизма шарнирные четырехзвенники. Рассмотрим четырехзвенник, шарниры которого последовательно обозначены номерами 
Гл. 8. Плоское движение тела
шарниров. Стержни четырехзвенника имеют номера 
где 




3. Из решения (1) получаем все угловые скорости механизма.
4. Записываем уравнения трех угловых ускорений для каждого четырехзвенника *) :
где 

5. Решаем (2) относительно неизвестных угловых ускорений.
Задача №4
Многозвенный механизм приводится в движение кривошипом OA, вращающимся с угловой скоростью 

Дано:

8.4. Уравнение трех угловых ускорений
Решение
1. Нумеруем шарниры и звенья механизма (рис. 104). Выбираем систему координат, помещая ее начало в шарнир О. Определяем координаты шарниров:
2. Выделяем из механизма шарнирные четырехзвенники (рис. 105, 106). Записываем уравнения трех угловых скоростей для четырехзвенника OABD (рис. 105),
и для четырехзвенника О АСЕ (рис. 106),
(4)
3. Решаем систему четырех линейных уравнений (3), (4). Получаем угловые скорости звеньев:

параллельны и но перпендикулярны АС. Мгновенного центра скоростей звена АС не существует (расположен в «бесконечности»), что соответствует
4. Записываем уравнения трех угловых ускорений для четырех-звенника OABD (рис. 105),
и для четырехзвенника ОАСЕ (рис. 106),
5. Из решения (5,6) получаем угловые ускорения:
Кинематические уравнения плоского движения
Постановка задачи. Составить кинематические уравнения плоского многозвенного механизма.
План решения:
1. Составляем кинематические графы механизма, выбирая наиболее короткие маршруты. Началом и концом графа должна быть точка с известной скоростью. Кинематические графы должны включать в себя все звенья механизма. Некоторые звенья могут входить в разные графы. Обозначения для графов приведены на с. 130.
8.5. Кинематические уравнения плоского движения
2. Записываем по два кинематических уравнения в проекциях на оси координат для каждого графа. Получаем систему дифференциальных уравнений.
3. Упрощаем систему уравнений, используя уравнения связей и тригонометрические формулы приведения.
Задача №5
Механизм состоит из стержней OA, АВ, CD и ползунов С и D. Ползун D движется вверх со скоростью 
Решение
1. Составляем кинематические графы:
2. Записываем для каждого графа (1), (2) по два кинематических уравнения в проекциях на оси координат:
3. Упрощаем систему (3), используя уравнения связей,
Гл. 8. Плоское движение тела
формулы приведения:
Задача №6
Плоский манипулятор состоит из жесткой детали ОАВ, стержней ВС, AM, колеса С и захвата М. Даны длины
Составить кинематические уравнения манипулятора . Решение
1. Составляем кинематические графы:
2. Записываем по два кинематических уравнения в проекциях на оси координат для каждого графа (5):

8.5. Кинематические уравнения плоского движения
3. Упрощаем систему (6), используя уравнения связей,

Замечание 1. В данной задаче скорости точек механизма можно найти для некоторого промежутка времени, а не для фиксированного момента времени, как в аналогичных задачах § 8.1, § 8.3. Решая нелинейную систему дифференциальных уравнений (4), получаем полную картину движения механизма . Для решения системы (4) необходимо дополнить ее начальными условиями:
где константы

Замечание 2. В решении задачи следует использовать наиболее короткие графы. В данном случае вместо графа (2) можно было бы выбрать граф
Система дифференциальных уравнений изменится, однако в форме Коши ее вид останется прежним.

Замечание 3. Метод графов широко используется для решения задач кинематики и динамики. Примеры составления графов представлены также на с. 243, 244 310, 313, 316, 327, 329.
Замечание 4. Для того, чтобы проинтегрировать полученные кинематические уравнения, необходимо скорости ползунов выразить через соответствующие координаты, например, 
Предупреждение типичных ошибок:
- Кинематические графы являются ориентированными графами. Меняя направление маршрута, меняйте и угол. Следующие два графа
- эквивалентны:
- Угловая скорость звена, которому принадлежат точки А и В графа
, не обязательно равна
см., например, с. 243.
- Принцип виртуальных перемещений
- Аксиомы и теоремы статики
- Система сходящихся сил
- Моменты силы относительно точки и оси
- Равновесие вала
- Определение усилий в стержнях, поддерживающих плиту
- Тело на сферической и стержневых опорах
- Приведение системы сил к простейшему виду








































































































, не обязательно равна
см., например, с. 243.