
|
Рис. 4.17. Построение третьей проекции |
Рис. 4.18. Точка G в аксонометрической |
|
точки G |
(косоугольной диметрической) проекции |
В зависимости от расположения точки относительно плоскостей проекций различают:
точки общего положения, не принадлежащие плоскостям проекций (к ним относятся все рассмотренные точки предыдущего раздела);
точки частного положения, лежащие в плоскостях проекций 1, 2, 3, на осях проекций x, y, z или в начале координат.
У точки общего положения все три координаты отличны от нуля. Одна или несколько координат точки частного положения равны нулю:
если точка лежит в плоскости проекций, то ее координата по оси, перпендикулярной этой плоскости проекций, равна нулю;
если точка лежит на оси проекций, то две другие ее координаты равны нулю;
если точка лежит в начале координат, то естественно, что все три координаты точки равны нулю.
Рассмотрим некоторые частные случаи положения точки: когда точка лежит в какой-нибудь плоскости проекций или на какой-нибудь оси проекций.
Точка В на рис. 4.19 принадлежит горизонтальной плоскости проекций. Горизонтальная проекция В



дината точки В по оси z равна нулю, и, следовательно, точка Вz лежит в начале координат.
Рис. 4.19. Точка В, лежащая в плоскости 1, — в аксонометрии (слева) и на эпюре (справа)
Точка С на рис. 4.20 лежит на оси y. С самой точкой совпадают ее горизонтальная С

тальная проекция С лежит в начале координат.
Рис. 4.20. Точка С, лежащая на оси у, — в аксонометрии (слева) и на эпюре (справа)

Пример 4. Построить третью проекцию точки Н (–20; 0; 30).
1.Создайте файл типа Чертеж и начертите оси проекций с засечками, расстояние между которыми равны единичному отрезку — 10 мм.
2.Отложите на осях проекций координатные отрезки (рис. 4.21):
ОHx
ОHy 1

ОHz
|
Рис. 4.21. Построение проекций точки Н, лежащей в плоскости |
2 |
|
Отметьте точки Hx, Hz и Hy (yН = 0, следовательно Нy 1 Нy 3 |
О; эту точ- |
|
ку можно отметить просто, как Нy О). |
3. Из точек Hx и Hz проведите линии связи и в пересечении получите точку Н .
Горизонтальная проекция Н
Н

Профильная проекция Н
Н

Точка Н лежит во фронтальной плоскости проекций. На эпюре запись типа H

4.4. Четверти и октанты
Большую часть задач начертательной геометрии можно решить, имея не три, а две проекции геометрических объектов — горизонтальную и фронтальную. Такие чертежи, с двумя проекциями, называют двухпозиционными. Плоскости проекций 1 и 2 являются неограниченными поверхностями и при взаимном пересечении образуют четыре двугранных угла, которые называют четвертями или квадрантами. Четверти принято обозначать римскими цифрами и отсчитывать так, как показано на рис. 4.22.
Рис. 4.22. Обозначение четвертей
На рис. 4.23 точка А находится в I четверти, точка В — во II, точка С — в III, а точка D — в IV четверти. Точка D одинаково удалена от плоскостей проекций 1 и 2, поэтому проекции D

Рис. 4.23. Точки А, В, С и D, заданные в двух проекциях

|
100 |
Глава 4 |
|||||
|
Таблица 4.2. Знаки прямоугольных координат |
||||||
|
в различных четвертях и октантах |
||||||
|
Номер четверти |
x |
y |
z |
|||
|
или октанта |
||||||
|
I |
+ |
+ |
+ |
|||
|
II |
+ |
– |
+ |
|||
|
III |
+ |
– |
– |
|||
|
IV |
+ |
+ |
– |
|||
|
V |
– |
+ |
+ |
|||
|
VI |
– |
– |
+ |
|||
|
VII |
– |
– |
– |
|||
|
VIII |
– |
+ |
– |
|||
Чаще всего на практике имеет место применение первой четверти пространства, поэтому геометрические объекты при решении задач чаще всего располагают именно здесь.
Тем не менее, ряд задач целесообразно решать, имея три проекции объекта, а некоторые задачи вообще невозможно решить без третьей проекции (как, например, в случаях с осевой плоскостью, о чем будет рассказано в дальнейшем изложении). Чертеж, в котором заданы три проекции точек и имеется возможность определить все три координаты этих точек, называют трехпозиционным.
Рис. 4.24. Обозначение октантов

|
Образование проекций |
101 |
|
Плоскости проекций |
1, 2 и 3 при взаимном пересечении делят пространст- |
во на восемь трехгранных углов, или октантов (от лат. octans — восьмая часть). Нумерация октантов в полупространствах приведена на рис. 4.24. Как видно, четверти нумеруются как I—IV октанты.
Знаки координат в каждом из октантов указаны в табл. 4.2. Геометрические элементы, расположенные в I четверти или в I октанте, считаются «видимыми».
Пример 5. Определить, в каких октантах находятся точки D и E (рис. 4.25).
Рис. 4.25. Проекции точек D и Е
1.Начнем с определения положения точки D. Проанализируем расположение ее фронтальной проекции D
с фронтальной проекции, поскольку плоскость 2, в которой лежит эта проекция, не вращается, а принимается за плоскость чертежа). Проекция D
2.Теперь обратимся к горизонтальной проекции D : она лежит в плоскости
проекций 1, совмещенной с плоскостью чертежа. Мысленно повернем на 90
нас направлении. Горизонтальная проекция D

3.Положение точки D можно определить и другим способом, механически
определяя знаки координат. Горизонтальная проекция D
ис помощью табл. 4.2 определяем, что точка D находится в V октанте.
4.Перейдем к точке Е. Ее фронтальная проекция Е
иправее оси z, следовательно, сама точка может лежать или в VII, или
в VIII октантах. Мысленно поворачиваем на 90 горизонтальную проекцию Е
Пример 6. Построить проекции любой точки F, расположенной в III октанте.
1.Создайте файл типа Чертеж и в нем — новый вид (Вид 1). Нанесите и обозначьте оси проекций (их можно скопировать из одного из предыдущих примеров).
2.Все точки, расположенные в III октанте, имеют знаки координат х, у и z — «плюс», «минус», «минус». На произвольном расстоянии от начала координат нанесите (рис. 4.26):
точку Fx в положительном направлении оси х;
точки Fy 1 и Fy 3 в отрицательном направлении осей y 1 и y 3 (на одинаковом расстоянии от начала координат);
точку Fz в отрицательном направлении оси z.
3.Из построенных точек Fx, Fy 1, Fy 3, Fz проведите линии проекционной связи (тип линии — Штриховая), перпендикулярные осям проекций, и на их пересечениях отметьте проекции точки F (рис. 4.27):
|
F = (FxF x) |
(Fy 1F y 1); |
|||
|
|
F |
= (FxF x) |
(FzF z); |
|
|
|
F |
= (Fy 3 F |
y 3) (FzF |
z). |
1 В начертательной геометрии оси и координаты принято давать одинаково — строчными буквами. В КОМПАСе оси и координаты обозначаются тоже одинаково, но прописными буквами. Поскольку в данном контексте идет речь о координатах вообще, они даны строчными буквами.
Соседние файлы в предмете Геополитика
- #
- #
- #
- #
27.03.201875.81 Mб13Пестриков В.М., Морозов Е.М. — Механика разрушения на базе компьютерных технологий. Практикум — 2007.pdf
- #
- #
- #
- #
- #
3.1. Способы задания плоскости на ортогональных чертежах
Положение плоскости в пространстве определяется:
- тремя точками, не лежащими на одной прямой;
- прямой и точкой, взятой вне прямой;
- двумя пересекающимися прямыми;
- двумя параллельными прямыми;
- плоской фигурой.
В соответствии с этим на эпюре плоскость может быть задана:
- проекциями трёх точек, не лежащих на одной прямой (Рисунок 3.1,а);
- проекциями точки и прямой (Рисунок 3.1,б);
- проекциями двух пересекающихся прямых (Рисунок 3.1,в);
- проекциями двух параллельных прямых (Рисунок 3.1,г);
- плоской фигурой (Рисунок 3.1,д);
- следами плоскости;
- линией наибольшего ската плоскости.
Рисунок 3.1 – Способы задания плоскостей
Плоскость общего положения – это плоскость, которая не параллельна и не перпендикулярна ни одной из плоскостей проекций.
Следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с одной из плоскостей проекций.
Плоскость общего положения может иметь три следа: горизонтальный – απ1, фронтальный – απ2 и профильный – απ3, которые она образует при пересечении с известными плоскостями проекций: горизонтальной π1, фронтальной π2 и профильной π3 (Рисунок 3.2).
Рисунок 3.2 – Следы плоскости общего положения
3.2. Плоскости частного положения
Плоскость частного положения – плоскость, перпендикулярная или параллельная плоскости проекций.
Плоскость, перпендикулярная плоскости проекций, называется проецирующей и на эту плоскость проекций она будет проецироваться в виде прямой линии.
Свойство проецирующей плоскости: все точки, линии, плоские фигуры, принадлежащие проецирующей плоскости, имеют проекции на наклонном следе плоскости (Рисунок 3.3).
Рисунок 3.3 – Фронтально-проецирующая плоскость, которой принадлежат: точки А, В, С; линии АС, АВ, ВС; плоскость треугольника АВС
Фронтально-проецирующая плоскость – плоскость, перпендикулярная фронтальной плоскости проекций (Рисунок 3.4, а).
Горизонтально-проецирующая плоскость – плоскость, перпендикулярная горизонтальной плоскости проекций (Рисунок 3.4, б).
Профильно-проецирующая плоскость – плоскость, перпендикулярная профильной плоскости проекций.
Плоскости, параллельные плоскостям проекций, называются плоскостями уровня или дважды проецирующими плоскостями.
Фронтальная плоскость уровня – плоскость, параллельная фронтальной плоскости проекций (Рисунок 3.4, в).
Горизонтальная плоскость уровня – плоскость, параллельная горизонтальной плоскости проекций (Рисунок 3.4, г).
Профильная плоскость уровня – плоскость, параллельная профильной плоскости проекций (Рисунок 3.4, д).
Рисунок 3.4 – Эпюры плоскостей частного положения
3.3. Точка и прямая в плоскости. Принадлежность точки и прямой плоскости
Точка принадлежит плоскости, если она принадлежит какой-либо прямой, лежащей в этой плоскости (Рисунок 3.5). Прямая принадлежит плоскости, если она имеет с плоскостью хотя бы две общие точки (Рисунок 3.6).
Рисунок 3.5 – Принадлежность точки плоскости
α = m // n D ∈ n ⇒ D ∈ α
Рисунок 3.6 – Принадлежность прямой плоскости
left.begin{array}{l}alpha=mparallel n,\Dinalpha\Cinalpha\end{array}right} Longrightarrow CDinalpha
Упражнение
Дана плоскость, заданная четырехугольником (Рисунок 3.7, а). Необходимо достроить горизонтальную проекцию вершины С.
Рисунок 3.7 – Решение задачи
Решение:
- ABCD – плоский четырехугольник, задающий плоскость.
- Проведём в нём диагонали AC и BD (Рисунок 3.7, б), которые являются пересекающимися прямыми, также задающими ту же плоскость.
- Согласно признаку пересекающихся прямых, построим фронтальную проекцию точки пересечения этих прямых — K: A2C2 ∩ B2D2=K2.
- Восстановим линию проекционной связи до пересечения с горизонтальной проекцией прямой BD: на проекции диагонали B1D1 строим К1.
- Через А1К1 проводим проекцию диагонали А1С1.
- Точку С1 получаем, посредством линии проекционной связи до пересечения её с горизонтальной проекцией продолженной диагонали А1К1.
3.4. Главные линии плоскости
В плоскости можно построить бесконечное множество прямых, но есть особые прямые, лежащие в плоскости, называемые главными линиями плоскости (Рисунок 3.8 – 3.11).
Прямой уровня или параллелью плоскости называется прямая, лежащая в данной плоскости и параллельная одной из плоскостей проекций.
Горизонталь или горизонтальная прямая уровня h (первая параллель) – это прямая, лежащая в данной плоскости и параллельная горизонтальной плоскости проекций (π1) (Рисунок 3.8, а; 3.9).
Фронталь или фронтальная прямая уровня f (вторая параллель) – это прямая лежащая в данной плоскости и параллельная фронтальной плоскости проекций (π2) (Рисунок 3.8, б; 3.10).
Профильная прямая уровня p (третья параллель) – это прямая лежащая в данной плоскости и параллельная профильной плоскости проекций (π3) (Рисунок 3.8, в; 3.11).
Рисунок 3.8 а – Горизонтальная прямая уровня в плоскости, заданной треугольником
Рисунок 3.8 б – Фронтальная прямая уровня в плоскости, заданной треугольником
Рисунок 3.8 в – Профильная прямая уровня в плоскости, заданной треугольником
Рисунок 3.9 – Горизонтальная прямая уровня в плоскости, заданной следами
Рисунок 3.10 – Фронтальная прямая уровня в плоскости, заданной следами
Рисунок 3.11 – Профильная прямая уровня в плоскости, заданной следами
3.5. Взаимное положение прямой и плоскости
Прямая по отношению к заданной плоскости может быть параллельной и может с ней иметь общую точку, то есть пересекаться.
3.5.1. Параллельность прямой плоскости
Признак параллельности прямой плоскости: прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей этой плоскости (Рисунок 3.12).
alpha=mcap n\left.begin{array}{l}a_2parallel m_2\a_1parallel m_1\end{array}right} Rightarrow aparallelalpha
Рисунок 3.12 – Параллельность прямой плоскости
3.5.2. Пересечение прямой с плоскостью
Для построения точки пересечения прямой с плоскостью общего положения (Рисунок 3.13), необходимо:
- Заключить прямую а во вспомогательную плоскость β (в качестве вспомогательной плоскости следует выбирать плоскости частного положения);
- Найти линию пересечения вспомогательной плоскости β с заданной плоскостью α;
- Найти точку пересечения заданной прямой а с линией пересечения плоскостей MN.
Рисунок 3.13 – Построение точки встречи прямой с плоскостью
Упражнение
Заданы: прямая АВ общего положения, плоскость σ⊥π1. (Рисунок 3.14). Построить точку пересечения прямой АВ с плоскостью σ.
Решение:
-
- Точка К должна принадлежать прямой АВ ⇒ К1∈А1В и заданной плоскости σ ⇒ К1∈σ, следовательно, К1 находится в точке пересечения проекций А1В1 и σ1;
- Плоскость σ – горизонтально-проецирующая, следовательно, горизонтальной проекцией плоскости σ является прямая σ1 (горизонтальный след плоскости);
- Фронтальную проекцию точки К находим посредством линии проекционной связи: К2∈А2В2.
Рисунок 3.14 – Пересечение прямой общего положения с плоскостью частного положения
Упражнение
Заданы: плоскость σ = ΔАВС – общего положения, прямая EF (Рисунок 3.15).
Требуется построить точку пересечения прямой EF с плоскостью σ.
Рисунок 3.15 – Пересечение прямой с плоскостью
Решение:
- Заключим прямую EF во вспомогательную плоскость, в качестве которой воспользуемся горизонтально-проецирующей плоскостью α (Рисунок 3.15, а);
- Если α⊥π1, то на плоскость проекций π1 плоскость α проецируется в прямую (горизонтальный след плоскости απ1 или α1), совпадающую с E1F1;
- Найдём прямую пересечения (1-2) проецирующей плоскости α с плоскостью σ (решение подобной задачи будет рассмотрено ниже);
- Прямая (1-2) и заданная прямая EF лежат в одной плоскости α и пересекаются в точке K.
Алгоритм решения задачи (Рисунок 3.15, б): Через EF проведем вспомогательную плоскость α:
- left.begin{array}{l}alpha perp pi_1\alphain EF\end{array}right} Longrightarrow alpha_1in E_1F_1
- alphacapsigma=(1-2)left.begin{array}{l}|alpha_1cap A_1C_1=1_1longrightarrow 1_2\|alpha_1cap A_1B_1=2_1longrightarrow 2_2\end{array}right.
- (1_2-2_2)cap E_2F_2=K_2\left.begin{array}{l}Kin EF\Kin (1-2)Rightarrow Kinsigma\end{array}right}Longrightarrow K=EFcap (sigma =triangle ABC)
3.6. Определение видимости методом конкурирующих точек
При оценке положения данной прямой, необходимо определить – точка какого участка прямой расположена ближе (дальше) к нам, как к наблюдателям, при взгляде на плоскость проекций π1 или π2.
Точки, которые принадлежат разным объектам, а на одной из плоскостей проекций их проекции совпадают (то есть, две точки проецируются в одну), называются конкурирующими на этой плоскости проекций.
Необходимо отдельно определить видимость на каждой плоскости проекций.
Видимость на π2 (рис. 3.15)
Выберем точки, конкурирующие на π2 – точки 3 и 4. Пусть точка 3∈ВС∈σ, точка 4∈EF.
Чтобы определить видимость точек на плоскости проекций π2 надо определить расположение этих точек на горизонтальной плоскости проекций при взгляде на π2.
Направление взгляда на π2 показано стрелкой.
По горизонтальным проекциям точек 3 и 4, при взгляде на π2, видно, что точка 41 располагается ближе к наблюдателю, чем 31.
41∈E1F1 ⇒ 4∈EF ⇒ на π2 будет видима точка 4, лежащая на прямой EF, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена перед плоскостью σ и будет видима до точки K – точки пересечения прямой с плоскостью σ.
Видимость на π1.
Для определения видимости выберем точки, конкурирующие на π1 – точки 2 и 5.
Чтобы определить видимость точек на плоскости проекций π1 надо определить расположение этих точек на фронтальной плоскости проекций при взгляде на π1.
Направление взгляда на π1 показано стрелкой.
По фронтальным проекциям точек 2 и 5, при взгляде на π1, видно, что точка 22 располагается ближе к наблюдателю, чем 52.
22∈А2В2 ⇒ 2∈АВ ⇒ на π1 будет видима точка 2, лежащая на прямой АВ, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена под плоскостью σ и будет невидима до точки K – точки пересечения прямой с плоскостью σ.
Видимой из двух конкурирующих точек будет та, у которой координата «Z» или(и) «Y» больше.
3.7. Перпендикулярность прямой плоскости
Признак перпендикулярности прямой плоскости: прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости.
Рисунок 3.16 – Задание прямой, перпендикулярной плоскости
Теорема. Если прямая перпендикулярна плоскости, то на эпюре: горизонтальная проекции прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция прямой перпендикулярна фронтальной проекции фронтали (Рисунок 3.16, б)
Теорема доказывается через теорему о проецировании прямого угла в частном случае.
Если плоскость задана следами, то проекции прямой перпендикулярной плоскости перпендикулярны соответствующим следам плоскости (Рисунок 3.16, а).
Пусть прямая p перпендикулярна плоскости σ=ΔАВС и проходит через точку K.
- Построим горизонталь и фронталь в плоскости σ=ΔАВС : σ=ΔАВС : A-1∈σ; A-1//π1; С-2∈σ; С-2//π2.
- Восстановим из точки K перпендикуляр к заданной плоскости: p1⊥h1 и p2⊥f2, или p1⊥απ1 и p2⊥απ2.
3.8. Взаимное положение двух плоскостей
3.8.1. Параллельность плоскостей
Две плоскости могут быть параллельными и пересекающимися между собой.
Признак параллельности двух плоскостей: две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.
Упражнение
Задана плоскость общего положения α=ΔАВС и точка F∉α (Рисунок 3.17).
Через точку F провести плоскость β, параллельную плоскости α.
Рисунок 3.17 – Построение плоскости, параллельной заданной
Решение: В качестве пересекающихся прямых плоскости α возьмем, например, стороны треугольника АВ и ВС.
- Через точку F проводим прямую m, параллельную, например, АВ.
- Через точку F, или же через любую точку, принадлежащую m, проводим прямую n, параллельную, например, ВС, причём m∩n=F.
- β = m∩n и β//α по определению.
3.8.2. Пересечение плоскостей
Результатом пересечения 2-х плоскостей является прямая. Любая прямая на плоскости или в пространстве может быть однозначно задана двумя точками. Поэтому для того, чтобы построить линию пересечения двух плоскостей, следует найти две точки, общие для обеих плоскостей, после чего соединить их.
Рассмотрим примеры пересечения двух плоскостей при различных способах их задания: следами; тремя точками, не лежащими на одной прямой; параллельными прямыми; пересекающимися прямыми и др.
Упражнение
Две плоскости α и β заданы следами (Рисунок 3.18). Построить линию пересечения плоскостей.
Рисунок 3.18 – Пересечение плоскостей общего положения, заданных следами
Порядок построения линии пересечения плоскостей:
- Найти точку пересечения горизонтальных следов — это точка М (её проекции М1 и М2, при этом М1=М, т.к. М – точка частного положения, принадлежащая плоскости π1).
- Найти точку пересечения фронтальных следов — это точка N (её проекции N1 и N2, при этом N2=N, т.к. N – точка частного положения, принадлежащая плоскости π2).
- Построить линию пересечения плоскостей, соединив одноименные проекции полученных точек: М1N1 и М2N2.
МN – линия пересечения плоскостей.
Упражнение
Задана плоскость σ = ΔАВС, плоскость α – горизонтально- проецирующая (α⊥π1) ⇒α1 – горизонтальный след плоскости (Рисунок 3.19). Построить линию пересечения этих плоскостей.
Решение:
Так как плоскость α пересекает стороны АВ и АС треугольника АВС, то точки пересечения K и L этих сторон с плоскостью α являются общими для обеих заданных плоскостей, что позволит, соединив их, найти искомую линию пересечения.
Точки могут быть найдены как точки пересечения прямых с проецирующей плоскостью: находим горизонтальные проекции точек K и L, то есть K1 и L1 , на пересечении горизонтального следа (α1) заданной плоскости α с горизонтальными проекциями сторон ΔАВС: А1В1 и A1C1. После чего посредством линий проекционной связи находим фронтальные проекции этих точек K2 и L2 на фронтальных проекциях прямых АВ и АС. Соединим одноимённые проекции: K1 и L1; K2 и L2. Линия пересечения заданных плоскостей построена.
Алгоритм решения задачи:
left.begin{array}{l}ABcapsigma=K\ACcapsigma=L\end{array}right} left.begin{array}{l}Rightarrow A_1B_1capsigma_1=K_1 rightarrow K_2\Rightarrow A_1C_1cap sigma_1=L_1 rightarrow L_2\end{array}right.
KL – линия пересечения ΔАВС и σ (α∩σ = KL).
Рисунок 3.19 – Пересечение плоскостей общего и частного положения
Упражнение
Заданы плоскости α = m//n и плоскость σ = ΔАВС (Рисунок 3.20). Построить линию пересечения заданных плоскостей. Решение:
- Чтобы найти точки, общие для обеих заданных плоскостей и задающие линию пересечения плоскостей α и β, необходимо воспользоваться вспомогательными плоскостями частного положения.
- В качестве таких плоскостей выберем две вспомогательные плоскости частного положения, например: σ // τ; σ⊥π2; τ⊥π2.
- Вновь введённые плоскости пересекаются с каждой из заданных плоскостей α и β по прямым, параллельным друг другу, так как σ // τ:
— результатом пересечения плоскостей α, σ и τ являются прямые (4-5) и (6-7); — результатом пересечения плоскостей β, σ и τ являются прямые (3-2) и (1-8).
- Прямые (4-5) и (3-2) лежат в плоскости σ; точка их пересечения М одновременно лежит в плоскостях σ и β, то есть на прямой пересечения этих плоскостей;
- Аналогично находим точку N, общую для плоскостей σ и β.
- Соединив точки M и N, построим прямую пересечения плоскостей σ и β.
Рисунок 3.20 – Пересечение двух плоскостей общего положения (общий случай)
Алгоритм решения задачи:
left.begin{array}{l}alphacapsigma=(4-5)\betacapsigma=(3-2)\end{array}right}\left.begin{array}{l}alphacaptau=(6-7)\betacaptau=(1-8)\end{array}right}left.begin{array}{l}(4_1-5_1)cap(3_1-2_1)=M_1rightarrow M_2\(6_1-7_1)cap(1_1-8_1)=N_1rightarrow N_2\end{array}right}rightarrow\left.begin{array}{l}M_1N_1\M_2N_2\end{array}right}Rightarrowalphacapbeta=MN
Упражнение
Заданы плоскости α = ΔАВС и β = a//b. Построить линию пересечения заданных плоскостей (Рисунок 3.21).
Рисунок 3.21 Решение задачи на пересечение плоскостей
Решение: Воспользуемся вспомогательными секущими плоскостями частного положения. Введём их так, чтобы сократить количество построений. Например, введём плоскость σ⊥π2, заключив прямую a во вспомогательную плоскость σ (σ∈a). Плоскость σ пересекает плоскость α по прямой (1-2), а σ∩β=а. Следовательно (1-2)∩а=K. Точка К принадлежит обеим плоскостям α и β. Следовательно, точка K, является одной из искомых точек, через которые проходит прямая пересечения заданных плоскостей α и β. Для нахождения второй точки, принадлежащей прямой пересечения α и β, заключим прямую b во вспомогательную плоскость τ⊥π2 (τ∈b). Соединив точки K и L, получим прямую пересечения плоскостей α и β.
3.8.3. Взаимно перпендикулярные плоскости
Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой.
Упражнение
Задана плоскость σ⊥π2 и прямая общего положения – DE (Рисунок 3.22)
Требуется построить через DE плоскость τ⊥σ.
Решение.
Проведём перпендикуляр CD к плоскости σ – C2D2⊥σ2 (на основании теоремы о проецировании прямого угла).
Рисунок 3.22 – Построение плоскости, перпендикулярной к заданной плоскости
По теореме о проецировании прямого угла C1D1 должна быть параллельна оси проекций. Пересекающиеся прямые CD∩DE задают плоскость τ. Итак, τ⊥σ. Аналогичные рассуждения, в случае плоскости общего положения.
Упражнение
Задана плоскость α = ΔАВС и точка K вне плоскости α. Требуется построить плоскость β⊥α, проходящую через точку K. Алгоритм решения (Рисунок 3.23):
- Построим горизонталь h и фронталь f в заданной плоскости α = ΔАВС;
- Через точку K проведём перпендикуляр b к плоскости α (по теореме о перпендикуляре к плоскости: если прямая перпендикулярна плоскости, то её проекции перпендикулярны к наклонным проекциям горизонтали и фронтали, лежащих в плоскости: b2⊥f2; b1⊥h1;
- Задаём плоскость β любым способом, например, β = a∩b, таким образом, плоскость, перпендикулярная к заданной, построена: α⊥β.
Рисунок 3.23 – Построение плоскости, перпендикулярной к заданной ΔАВС
3.9. Задачи для самостоятельного решения
1. Задана плоскость α = m//n (Рисунок 3.24). Известно, что K∈α.
Постройте фронтальную проекцию точки К.
Рисунок 3.24
2. Постройте следы прямой, заданной отрезком CB, и определите квадранты, через которые она проходит (Рисунок 3.25).
Рисунок 3.25
3. Постройте проекции квадрата, принадлежащего плоскости α⊥π2, если его диагональ MN //π2 (Рисунок 3.26).
Рисунок 3.26
4. Построить прямоугольник ABCD с большей стороной ВС на прямой m, исходя из условия, что отношение его сторон равно 2 (Рисунок 3.27).
Рисунок 3.27
5. Задана плоскость α=a//b (Рисунок 3.28). Построить плоскость β параллельную плоскости α и удаленную от нее на расстоянии 20 мм.
Рисунок 3.28
6. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D плоскость β⊥α и β⊥π1.
7. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D прямую DE//α и DE//π1.
Содержание:
Плоскостью называется поверхность, образуемая движением прямой линии, которая движется параллельно самой себе по неподвижной направляющей прямой.
Способы задания плоскости
На чертеже плоскость может быть задана (рис. 4.1) несколькими способами:
- а) проекциями трех точек, не лежащих на одной прямой (рис. 4.1, а);
- б) проекциями прямой и точки, нс лежащей на этой прямой (рис. 4.1,0 ;
- в) проекциями двух пересекающихся прямых (рис. 4.1, в);
- г) проекциями двух параллельных прямых (рис. 4.1, г);
- д) проекциями любой плоской фигуры (рис. 4.1, д);
- е) следами плоскости (рис. 4.1, е).
От одного задания плоскости можно перейти к другому. Например, если мы проведем через точки А и В (рис. 4.1, а) прямую, то от задания плоскости тремя точками мы перейдем к заданию плоскости точкой и прямой (рис. 4,1, б) и т.д. В ряде случаев плоскость более наглядно может быть изображена при помощи прямых, по которым она пересекает плоскости проекций. Прямые, по которым плоскость пересекает плоскости проекций, называются следами плоскости (рис. 4.2):
Точки пересечения плоскости с осями проекций 
Чтобы построить след плоскости, необходимо построить одноименные следы двух прямых, лежащих в плоскости (рис. 4.2).
Положение плоскости относительно плоскостей проекций
Относительно плоскостей проекций плоскость может занимать следующие положения:
- Плоскость наклонена ко всем плоскостям проекций.
- Плоскость перпендикулярна плоскости проекций.
- Плоскость параллельна плоскости проекций.
Плоскость, не перпендикулярную и не параллельную ни одной из плоскостей проекций, называют плоскостью общего положения. Такими являются плоскости, изображенные на рис. 4.1, 4.2, а также на рис. 4.3.
Плоскость, которая по мере удаления от наблюдателя повышается, называется восходящей (рис. 4.4). Плоскость, понижающаяся по мере удаления от наблюдателя, называется нисходящей (рис. 4.5).
Чтобы на чертеже различить изображения восходящей и нисходящей плоскостей, проанализируем проекции треугольника, которым она задана. Из чертежа, на котором изображена восходящая плоскость (рис. 4.4), видно, что обе проекции треугольника АВС — горизонтальная 




Плоскости частного положения. Плоскости, перпендикулярные или параллельные к плоскостям проекций, называют плоскостями частного положения.
Плоскость, перпендикулярную к плоскости проекций, называют проецирующей.
Горизонтально-проецирующая плоскость 
Фронтально-проецирующая плоскость 
Профильно-проецирующая плоскость 
Плоскость проецируется в прямую линию на ту плоскость проекций. которой она перпендикулярна. Эту проекцию можно рассматривать и как след плоскости. На эту же плоскость проекций в натуральную величину проецируются углы наклона данной плоскости к двум другим плоскостям проекций.
Проецирующие плоскости обладают собирательным свойством: если точка, линия или фигура расположены в плоскости, перпендикулярной плоскости проекций, то на этой плоскости их проекции совпадают со следом проецирующей плоскости.
Плоскости, параллельные плоскости проекций, называются плоскостями уровня. Плоскости уровня перпендикулярны одновременно двум плоскостям проекций (двояко проецирующие).
Горизонтальная плоскость 
Фронтальная плоскость 
Профильная плоскость 
Любая линия или фигура, лежащая в плоскости уровня, проецируется без искажения на ту плоскость проекций, которой данная плоскость параллельна. На две другие плоскости проекций плоскость уровня проецируется в виде отрезков прямых линий (следов), перпендикулярных оси проекций, разделяющей эти плоскости проекций.
Точка и прямая в плоскости
К числу основных задач, которые решают на плоскости, относят следующие:
- проведение в плоскости прямой;
- построение в плоскости некоторой точки;
- построение недостающей проекции точки, лежащей в плоскости;
- проверка принадлежности точки плоскости.
Решение этих задач основано на известных положениях геометрии: прямая принадлежит плоскости, если она проходит через две точки, принадлежащие плоскости, или если она проходит через одну точку этой плоскости параллельно прямой, лежащей в этой плоскости.
Построение в плоскости прямой линии
Чтобы построить в плоскости прямую линию (рис. 4.12), необходимо отметить две точки, принадлежащие плоскости, например, точки А и К. Затем через них провести прямую
На рис. 4.13 прямая ВК принадлежит плоскости треугольника АВС, так как она проходит через вершину В и параллельна стороне треугольника
Построение в плоскости некоторой точки
Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.
Для построения в плоскости точки в этой плоскости проводят вспомогательную прямую и на ней отмечают точку.
На чертеже плоскости, заданной проекциями точки 



Построение недостающей проекции точки
На рис. 4.15 плоскость задана треугольником 

Проверка принадлежности точки плоскости
Для проверки принадлежности точки плоскости используют вспомогательную прямую. Прямая принадлежит плоскости.
Так, на рис. 4.16 плоскость задана параллельными прямыми АВ и СО, точка — проекциями е и е’ Проекции вспомогательной прямой проводят так, чтобы она проходила через одну из проекций точки. Например, фронтальная проекция вспомогательной прямой 
Главные линии плоскости
Прямых, принадлежащих плоскости, очень много. Среди них есть прямые, занимающие особое, частное положение в плоскости. К ним относятся горизонтали, фронтали, профильные прямые и линии наибольшего наклона к плоскостям проекций. Эти линии называются главными линиями плоскости. Горизонталь — прямая, лежащая в плоскости и параллельная горизонтальной плоскости проекций (рис. 4.17).
Фронтальная проекция горизонтали 
Фронталь — прямая, лежащая в плоскости и параллельная фронтальной плоскости проекций (рис. 4.18). Горизонтальная проекция фронтали 
Профильная прямая — прямая, лежащая в плоскости и параллельная профильной плоскости проекций. Горизонтальная проекция про фильной прямой 
Рассмотренные линии являются линиями наименьшего наклона к плоскостям проекций.
Из трех линий наибольшего наклона к плоскостям проекций отметим линию наибольшего наклона к горизонтальной плоскости. Эту линию называют линией ската.
Линия ската — это прямая, лежащая в плоскости и перпендикулярная ее горизонтальному следу или ее горизонтали (рис. 4.20). Линия наибольшего наклона па чертеже позволяет определить величину двугранного угла между заданной плоскостью и плоскостью проекций. Этот угол будет равен линейному углу, который составляет линия наибольшего наклона со своей проекцией на эту плоскость.
Для определения угла наклона используем метод прямоугольного треугольника (рис. 4.21).

Взаимное положение прямой и плоскости
Взаимное положение прямой и плоскости определяется количеством общих точек:
- а) если прямая имеет две общие точки с плоскостью, то она принадлежит этой плоскости;
- б) если прямая имеет одну общую точку с плоскостью, то прямая пересекает плоскость;
- в) если точка пересечения прямой с плоскостью удалена в бесконечность, то прямая и плоскость параллельны.
Задачи, в которых определяется взаимное расположение различных геометрических фигур относительно друг друга, называются позиционными задачами.
Прямая параллельна плоскости, если она параллельна какойнибудь прямой, лежащей в этой плоскости. Чтобы построить такую прямую, надо в плоскости задать прямую и параллельно ей провести нужную прямую.
Пусть плоскость Р задана треугольником CDE. Через точку А (рис. 4.22) необходимо провести прямую АВ, параллельную плоскости Р.
Для этого через фронтальную проекцию 




Прямая будет также параллельна плоскости, если она лежит в плоскости, параллельной данной.
Построение точки пересечения прямой с плоскостью
Задача на построение точки пересечения прямой с плоскостью широко применяется в начертательной геометрии. Она лежит в основе решения следующих задач:
- на пересечение двух плоскостей;
- на пересечение поверхности с плоскостью;
- на пересечение прямой с поверхностью;
- на взаимное пересечение поверхностей.
Построить точку пересечения прямой с плоскостью — значит найти точку, принадлежащую одновременно заданной прямой и плоскости. Графически такая точка определяется как точка пересечения прямой с линией, лежащей в плоскости.
Плоскость занимает проецирующее положение
Если плоскость занимает проецирующее положение (например, она перпендикулярна фронтальной плоскости проекций, рис. 4.23), то фронтальная проекция точки пересечения должна одновременно принадлежать фронтальному следу плоскости и фронтальной проекции прямой, то есть быть в точке их пересечения. Поэтому сначала определяется фронтальная проекция 

Прямая занимает проецирующее положение
На рис. 4.24 изображена плоскость общего положения 



Прямая и плоскость занимают общее положение
В этом случае линия, лежащая в плоскости и пересекающаяся с данной прямой, может быть получена как линия пересечения вспомогательной секущей плоскости Р, проведенной через прямую АВ, с данной плоскостью 
Точку пересечения прямой с плоскостью строят по следующему плану.
- Через прямую
проводят вспомогательную плоскость Р (лучше проецирующую);
- Строят линию пересечения MN заданной плоскости
и вспомогательной плоскости F;
- Так как прямые АВ и MN лежат в одной плоскости Р, то определяют точку их пересечения (точку К), которая является точкой пересечения прямой АВ с плоскостью
- Определяют взаимную видимость прямой АВ и плоскости

Для определения видимых участков прямой АВ анализируем положение точек на скрещивающихся прямых (конкурирующих точек).
Так, точки М и L находятся на скрещивающихся прямых АВ и CD: 





Взаимное положение плоскостей
Общим случаем взаимного положения двух плоскостей является их пересечение. В частном случае, когда линия пересечения удалена в бесконечность, плоскости становятся параллельными. Параллельные плоскости совпадают при сокращении расстояния между ними до нуля.
Параллельные плоскости
Плоскости будут параллельными, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.
Например, через точку D (рис. 4.27) требуется провести плоскость, параллельную заданной 
Пересекающиеся плоскости
Линия пересечения двух плоскостей определяется
- двумя точками, каждая из которых принадлежит обеим плоскостям;
- одной точкой, принадлежащей двум плоскостям, и известным направлением линии.
В обоих случаях задача заключается в нахождении точек, общих для двух плоскостей.
Пересечение двух проецирующих плоскостей
Если плоскости занимают частное положение, например, как на рис. 4.28, являются горизонтально-проецирующими, то проекцией линии пересечения на плоскость проекций, которой данные плоскости перпендикулярны (в данном случае горизонтальной), будет точка. Фронтальная проекция линии пересечения перпендикулярна оси проекций.
Пересечение проецирующей плоскости и плоскости общего положения
В этом случае одна проекция линии пересечения совпадает с проекцией проецирующей плоскости на той плоскости проекций, которой она перпендикулярна. На рис. 4.29 показано построение проекций линии пересечения фронтально-проецирующей плоскости, заданной следами, а на рис. 4.30 — горизонтально-проецирующей плоскости (треугольник АВС) с плоскостью общего положения (треугольник DEF).
На фронтальной проекции (рис. 4.29) в пересечении следа плоскости 

При взгляде по стрелке на плоскость Н по фронтальной проекции видно, что часть треугольника левее линии пересечения MN 


Пересечения плоскостей общего положения
Общий прием построения линии пересечения таких плоскостей заключается в следующем. Вводим вспомогательную плоскость (посредник) и строим линии пересечения вспомогательной плоскости с двумя заданными (рис. 4.31). В пересечении построенных линий находим общую точку двух плоскостей. Чтобы найти вторую общую точку, повторяем построение с помощью еще одной вспомогательной плоскости.
При решении подобных задач удобнее в качестве посредников применять проецирующие плоскости.
На рис. 4.32 дано построение линии пересечения двух треугольников. Решение выполняем в следующей последовательности. Проводим две вспомогательные фронтально-проецирующие плоскости — плоскость Р через сторону АС и плоскость 

Плоскость 

Анализ взаимной видимости треугольников на плоскостях проекций выполняем с помощью конкурирующих точек.
Для определения видимости на фронтальной плоскости проекций сравниваем фронтально-конкурирующие точки I и 5. Эти точки лежат на скрещивающихся прямых АС и DE. Их фронтальные проекции совпадают. На горизонтальной проекции видно, что при взгляде по стрелке на плоскость V точка 5 расположена ближе к наблюдателю. Поэтому она закрывает точку 1. Следовательно, участок прямой АС левее точки М будет видимым на фронтальной плоскости проекций.

Для определения видимости на горизонтальной плоскости проекций сравниваем горизонтально-конкурирующие точки 6 и 7. Они лежат на скрещивающихся прямых АС и DF. Их горизонтальные проекции совпадают. При взгляде по стрелке на плоскость Н видно, что точка 6 и прямая АС расположены выше точки 7 и прямой DF. Следовательно, участок AM прямой АС на горизонтальной плоскости проекций будет видимым.
Способы преобразования чертежа
Для упрощения решения метрических и позиционных задач применяются различные способы преобразования ортогональных проекций. После таких преобразований новые проекции позволяют решать задачу минимальными графическими средствами.
Способ замены плоскостей проекций
Способ замены плоскостей проекций состоит в том, что одна из плоскостей заменяется новой. Эта плоскость выбирается перпендикулярно оставшейся плоскости проекций. Геометрическая фигура при этом не меняет своего положения в пространстве. Новую плоскость располагают так, чтобы по отношению к ней геометрическая фигура занимала частное положение, удобное для решения задачи. На новую плоскость проекций фигура проецируется с помощью перпендикулярных лучей.
На рис. 4.33 изображен пространственный чертеж отрезка прямой общего положения АВ и его проекции на плоскостях Н и V. Заменив плоскость V новой вертикальной плоскостью 






При замене горизонтальной плоскости проекции Н на новую плоскость координаты 




Четыре основные задачи, решаемые способом замены плоскостей проекций
1. Прямую общего положения преобразовать в прямую, параллельную одной из плоскостей проекций. Такое преобразование позволяет определить натуральную величину отрезка прямой и углы наклона его к плоскостям проекций (рис. 4.35 и 4.36).

При решении задачи новую плоскость, например, 
Через горизонтальные проекции 



При замене горизонтальной плоскости проекций на новую располагаем эту плоскость параллельно отрезку АВ. Так мы определим натуральную величину отрезка и угол наклона его к плоскости V — угол 
В этом случае ось проекций новой плоскости проводим параллельно фронтальной проекции прямой 
2. Прямую, параллельную одной из плоскостей проекций, преобразовать в проецирующую прямую, то есть поставить в положение, перпендикулярное плоскости проекций, чтобы прямая на эту плоскость спроецировалась в точку (рис. 4.37).
Так как данная прямая параллельна горизонтальной плоскости проекций, то для преобразования ее в проецирующую прямую, необходимо заменить фронтальную плоскость V на новую 


Чтобы прямую общего положения АВ (рис. 4.38) преобразовать в проецирующую, проводят две замены, то есть обе задачи, первую и вторую, решают последовательно. Сначала прямую общего положения преобразуют в прямую, параллельную плоскости проекций (прямую уровня), а затем эту прямую преобразуют в проецирующую.

3. Плоскость 
Заменим, например, плоскость V на новую плоскость 







Для преобразования плоскости Р в горизонтально-проецирующую плоскость, необходимо заменить плоскость Н на новую, расположив ее перпендикулярно плоскости V и фронтали плоскости Р (которую предварительно проводим в этой плоскости).
4. Преобразовать плоскость 

На рис. 4.40 изображена фронтально-проецирующая плоскость. Заменим горизонтальную плоскость 





Задача решается аналогично, если плоскость 



Для того чтобы преобразовать плоскость общего положения в плоскость, которая будет параллельна одной из плоскостей проекций, необходимо провести две замены, то есть решить совместно третью и четвертую задачи (рис. 4.42).
Определение расстояния между двумя скрещивающимися прямыми
Пример:
Кратчайшим расстоянием между двумя скрещивающимися прямыми является длина перпендикуляра, проведенного к той и другой прямой. Решение задачи зависит от расположения прямых относительно плоскостей проекций. Рассмотрим пример, когда одна прямая перпендикулярна плоскости проекций (например, AS — горизонтально- проецирующая прямая); вторая (например, ВС) — прямая общего положения, рис. 4.43.
Прямая AS перпендикулярна плоскости Н, поэтому перпендикуляр к ней будет параллелен плоскости Н и на эту плоскость спроецируется в натуральную величину. Для построения горизонтальной проекции перпендикуляра — 






Чтобы определить расстояние между прямыми, занимающими общее положение, необходимо произвести последовательную замену плоскостей таким образом, чтобы в новой системе плоскостей проекций одна из прямых занимала проецирующее положение.
Способ вращения
Способ вращения заключается в том, что положение геометрических элементов приводится в удобное для решения задачи относительно плоскостей проекций вращением вокруг оси, которая проводится перпендикулярно какой-нибудь плоскости проекций; положение плоскостей проекций при этом остается неизменным. На эпюре строят новые проекции повернутых геометрических элементов.
На рис. 4.44 показано вращение точки В вокруг оси 




Точка В опишет при вращении дугу окружности, которая располагается в плоскости 

Ось вращения — проецирующая прямая, перпендикулярная плоскости Н. траектория поворота точки В проецируется на плоскость Н окружностью, а на плоскость V — отрезком прямой линии. Переместив горизонтальную проекцию точки В в новое положение 





Траектория вращения точки проецируется в дугу окружности на плоскость проекций, которой перпендикулярна ось вращения. На плоскость, которой ось вращения параллельна, траектория вращения точки проецируется в отрезок, параллельный оси проекций.
При определении натуральной величины отрезка для упрощения построений ось вращения проводят через конец отрезка. На рис. 4.45, а ось вращения 


На рис. 4.45, б ось вращения проведена перпендикулярно плоскости V через точку С. Ее фронтальная проекция совпала с фронтальной проекцией оси вращения 


На рис. 4.46 показан поворот треугольника АВС (плоскость треугольника АВС перпендикулярна плоскости 



Способ плоскопараллельного перемещения
Способ вращения без указания осей или способ плоскопараллельного перемещения может быть применен в тех же случаях, что и рассмотренный выше способ вращения. Рассмотрим примеры, приведенные на рис. 4.47. Изобразим на плоскости 





На рис. 4.47, б без указания оси вращения показан поворот треугольника АВС в положение, параллельное плоскости Н. Его фронтальная проекция 
Из сказанного следует, что проекции геометрических элементов при вращении не изменяет своей величины на той плоскости проекций, которой перпендикулярна ось вращения. Это происходит потому, что угол наклона прямой или плоскости к плоскости проекций, к которой перпендикулярна ось, не изменяется при перемещении этих геометрических элементов. Взаимное расположение точек при повороте, а значит и форма и величина проекции вращаемого объекта на этой плоскости проекций остаются без изменений. Меняется лишь ее положение.
На этом и основан способ вращения без указания осей. Одну из проекций вычерчиваем в новом положении по отношению к оси проекций Ох, а на другой плоскости проекций проводим прямые, параллельные оси Ох, изображающие на плоскости проекций путь перемещения точек. В пересечении линий проекционной связи, проведенных от проекций точек после поворота, и линий, параллельных оси Ох, получаем точки, определяющие положение второй проекции после поворота.
Способ совмещения
Способ совмещения можно рассматривать как частный случай вращения. Он применяется для определения натуральной величины геометрической фигуры, расположенной в плоскости. Эту плоскость вместе с геометрической фигурой, лежащей в этой плоскости, вращают вокруг одного из следов, совмещая с той плоскостью проекций, в которой лежит этот след. В совмещенном положении геометрическая фигура изображается в натуральную величину. Если геометрическая фигура задана на эпюре без следов, то следы плоскости нужно построить. Рассмотрим пример совмещения только для проецирующей плоскости. Наклонный след плоскости проходит через прямую, в которую проецируется геометрическая фигура, а второй след — перпендикулярно оси проекций.
На рис. 4.48 показано совмещение плоскости 

Вершины треугольника лежат в точках пересечения этих линий.
Горизонтальные проекции горизонталей параллельны горизонтальному следу 


Для построения совмещенного положения плоскости Р с плоскостью V проводим совмещенный горизонтальный след 





Фронтали пересекают горизонтальный след 



Каждая из проведенных фронтален, пересекаясь с соответствующей горизонталью, дает одну из вершин треугольника. Треугольник АВС в совмещенном положении изображается в натуральную величину.
Что такое плоскость
Плоскостью называется поверхность, обладающая тем свойством, что прямая, проходящая через любые две точки этой поверхности, лежит в ней всеми остальными точками.
Задание плоскости на чертежах осуществляется заданием геометрических элементов, определяющих положение этой плоскости в пространстве.
Как задать плоскость
Различают следующие способы задания плоскости:
- — задание равнозначными геометрическими элементами;
- — задание следами этой плоскости;
- — задание плоскими фигурами.
Рассмотрим подробнее каждый из этих способов.
К первому способу относят задание плоскости изображениями (Рис.4.1):
- а) трёх точек, не лежащих на одной прямой;
- б) прямой и точки вне этой прямой;
- в) двух пересекающихся прямых;
- г) двух параллельных прямых.
Следом плоскости на данной плоскости координат называется линия пересечения плоскости с указанной плоскостью координат. Задание плоскости следами обеспечивает наглядность изображения и позволяет наиболее просто решать задачи, связанные с построением изображений геометрических элементов, расположенных в этой плоскости.
Плоскостью общего положения называют плоскость, пересекающую все оси координат.
Покажем на чертеже (Рис.4.2, а) изображения осей координат и отметим на них произвольные точки
Соединяя эти точки прямыми линиями, получим изображение плоскости в виде треугольника, называемого треугольником следов. Сторонами этого треугольника являются линии пересечения плоскости общего положения 
Их называют: горизонтальным следом 


Точки 

Три заданных по величине и знаку параметра плоскости определяют положение её в системе координат.
Изображение следов плоскости в прямоугольных проекциях получают, откладывая на соответствующих осях координат (см. Рис.2, б) значения параметров плоскости. Соединяя точки схода следов 

Для задания положения плоскости достаточно показать на чертеже два следа этой плоскости, так как при этом задаются все три параметра плоскости.
Рассмотрим пример построения следов плоскости общего положения с одним отрицательным параметром.
Пусть задана плоскость (
Соединив попарно эти точки прямыми линиями, получим изображения следов 
Для построения прямоугольных проекций следов плоскости нанесём на чертёж (см. Рис.4.3, б) оси координат. Откладывая заданные значения параметров, отмечаем точки схода следов 
Любую плоскую фигуру можно представить как часть плоскости, ограниченную ломаной или кривой линиями. Следовательно, задавая положения плоской фигуры в пространстве, тем самым мы задаём положение плоскости, частью которой является эта фигура. Положение плоской фигуры в пространстве определяется двумя её проекциями на плоскости координат. Так, чтобы построить проекции плоского многоугольника, достаточно построить проекции его вершин.
Треугольник, параллелограмм и трапеция, расположенные в плоскости общего положения, проецируются на плоскости координат соответственно в виде треугольника, параллелограмма и трапеции.
Это обусловлено тем, что три вершины треугольника как три любые точки, не лежащие на одной прямой, всегда лежат в одной плоскости. Покажем на чертеже (Рис.4.4, а) произвольную горизонтальную проекцию параллелограмма
Фронтальную его проекцию найдём, построив вертикальные проекции вершин и выдерживая лишь проекционные связи между точками и параллель-ность между проекциями соответствующих сторон 
Прямая и точка в плоскости
Известно, что прямая лежит в плоскости, если две точки прямой лежат в этой плоскости. Чтобы построить прямую, лежащую в заданной плоскости, достаточно соединить прямой линией две точки, заведомо лежащие в плоскости. Такими точками могут быть и точки, расположенные на следах плоскости.
Пусть дана плоскость общего положения 













Из изложенного следует, что прямая лежит в плоскости, если её следы лежат на соответствующих следах плоскости.
Построим горизонтальную и фронтальную проекции прямой 











Чтобы построить прямоугольные проекции прямой общего положения, лежащей в плоскости, заданной следами (см. Рис.4.5, б), отмечают на следах плоскости две точки, например 






Чтобы построить точку, лежащую в плоскости, нужно провести вспомогательную прямую, лежащую в плоскости, и на не взять точку. Например, точка 

Рассмотрим частные случаи положения прямой в плоскости общего положения. К таким случаям относят прямые, лежащие в данной плоскости и параллельные какой — либо плоскости координат (линии уровня). Прямая, лежащая в плоскости и параллельная плоскости 
Построим проекции горизонтали плоскости общего положения (Рис.4.6, а, б).
Для этого на следе 






Для построения прямоугольных проекций горизонтали (Рис.4.6, б) достаточно взять на следе 







Прямая, лежащая в плоскости произвольного положения и параллельная плоскости 
Построим косоугольные проекции осей координат и плоскости 






Горизонтальную проекцию фронтали получим, проведя через точку 



Прямая, лежащая в плоскости и параллельная плоскости 
Частные случаи положения плоскости
К частным случаям положения плоскости относят плоскости:
- — перпендикулярные одной из плоскостей координат;
- — параллельные одной из плоскостей координат;
- — проходящие через ось координат;
- — проходящие через начало координат.
Рассмотрим более подробно построение изображений плоскостей, перпендикулярных какой — либо плоскости координат. Такие плоскости называют проецирующими плоскостями.
Возможны три типа плоскостей, перпендикулярных к плоскостям координат, а именно:
- плоскости, перпендикулярные к плоскости
- плоскости, перпендикулярные к плоскости
- плоскости, перпендикулярные к плоскости
Плоскость, перпендикулярная к плоскости 

Построим косоугольную проекцию такой плоскости (см. Рис.4.8, а).
Откладывая на осях координат параметры 










Следы 


Возьмём в плоскости а произвольную точку 

Заметим важное обстоятельство: горизонтальная проекция точки или любого геометрического элемента, расположенного в плоскости 

Плоскость, перпендикулярная к плоскости 



















Рассмотрим построение проекций плоскости, перпендикулярной к плоскости 







В прямоугольных проекциях (см. Рис.4.9, б) след 


Изображение фронтальной проекции 




Плоскость, перпендикулярная к плоскости 
Построим изображение следов плоскости, перпендикулярной к плоскости 



Изображение следа 








Изображения проекций 

Плоскость, перпендикулярная к плоскости 
Взаимное положение прямой и плоскости
Возможны следующие случаи взаимного положения прямой и плоскости:
- — прямая лежит в плоскости;
- — прямая параллельна плоскости;
- — прямая перпендикулярна к плоскости;
- — прямая пересекает плоскость.
Первый случай взаимного положения прямой и плоскости был ранее рассмотрен. Отметим лишь, что прямая лежит в плоскости, если её следы лежат на соответствующих следах плоскости.
Прямая параллельна плоскости, если она параллельна какой — либо прямой, лежащей в плоскости. Задача о проведении прямой, параллельной заданной плоскости, через данную точку — неопределённа, так как в плоскости может быть проведено бесчисленное множество прямых и такое же количество параллельных им прямых может быть проведено через данную точку. Для определённости решения должно быть задано дополнительное условие ( направление прямой или одна из её проекций).
Пример 1. Даны проекции 





Построение осуществляем в такой последовательности. В заданной плоскости строим проекции вспомогательной прямой, параллельной искомой. Для этого проведём 


Пример 2. Через точку 









Прямая перпендикулярна к плоскости, если её прямоугольные проекции перпендикулярны к соответствующим следам этой плоскости.
Для доказательства данного утверждения изобразим плоскости координат и произвольную плоскость 
Пусть прямая 


Проведём через точку 










Аналогичным построением можно показать, что фронтальные и профильные проекции прямой 
Пример 3. Из произвольной точки на плоскости, заданной следами, построить перпендикуляр к ней.
Пусть даны плоскость 









Пример 4. Из точки А восстановить перпендикуляр к плоскости, заданной треугольником 
В данном случае нет необходимости строить следы плоскости, так как известно, что они параллельны соответствующим проекциям горизонтали и фронтали плоскости. Поэтому строим проекции горизонтали AF и фронтали АЕ. Проекции перпендикуляра, восстановленного из точки А к плоскости треугольника, получим, проведя а
Точка 
Случай пересечения прямой с плоскостью будет разобран после изложения следующего параграфа.
Взаимное положение плоскостей
Плоскости могут быть параллельны, взаимно перпендикулярны и могут пересекаться.
Известно, что две параллельные плоскости пересекаются третьей по параллельным прямым. Следы двух параллельных плоскостей — это линии их пересечения с плоскостями координат. Следовательно, соответствующие следы двух параллельных плоскостей — параллельны.
Пример 1. Через точку, заданную проекциями 









Пример 2.Через точку 
Направления следов искомой плоскости 








Отметим, что искомая плоскость может быть изображена двумя пересекающимися прямыми, параллельными сторонами заданного треугольника и проведёнными через точку А.
Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Задача о проведении плоскости, перпендикуляр ной к заданной, через данную точку неопределённа, так как через перпендикуляр, опущенный из точки на плоскость, можно провести бесчисленное множество плоскостей. В качестве дополнительного условия может быть задана, например, прямая, через которую следует провести плоскость, перпендикулярную заданной.
Пример 3.Через прямую 

Искомая плоскость должна проходить через перпендикуляр к плоскости 




Пример 4.Через точку 


В данном случае дополнительным условием является задание типа плоскости. Искомая плоскость должна проходить через перпендикуляр, опущенный из точки А на плоскость 





Необходимо указать, что в общем случае соответствующие следы взаимно перпендикулярных плоскостей не перпендикулярны друг к другу.
Две плоскости пересекаются по прямой линии. Линия пересечения двух плоскостей проходит через точки пересечения одноимённых следов этих плоскостей.
Рассмотрим построение проекций линии пересечения двух плоскостей 

Изображения одноимённых следов этих плоскостей пересекаются в точках М и N (Рис.4.20, а). Прямая MN — линия пересечения плоскостей 

Изображения проекций 
Построим прямоугольные проекции (Рис.4.20, б) следов искомой линии пересечения плоскостей 







Рассмотрим построение проекций линий пересечения двух плоскостей, у которых два одноимённых следа взаимно параллельны.
Пусть даны две пересекающиеся плоскости 















Рассмотрим случай построения проекций линии пересечения плоскостей 



























Характерными являются случаи пересечения двух проецирующих плоскостей. Например, линия пересечения двух горизонтально проецирующих плоскостей 





В случае, когда у двух плоскостей 





















Если пересекаются две профильно — проецирующие плоскости 

Найти её можно двумя способами, либо по общим правилам (см. Рис.4.20), применив для нахождения общей точки 





Если одна из профильно — проецирующих плоскостей 






Рассмотренный случай находит применение, когда находится линия пересечения плоскости общего положения 

Проводим вспомогательную горизонтальную плоскость 




Фронтальные проекции этих линий совпадают с фронтальным следом плоскости 










Пересечение прямой линии с плоскостью
Точку пересечения (встречи) прямой линии с плоскостью определяют тремя последовательными построениями:
- через прямую проводят вспомогательную плоскость (как правило, проецирующую);
- строят линию пересечения заданной и вспомогательной плоскостей;
- отмечают точку пересечения построенной линии заданной прямой, которая и является искомой точкой встречи.
Рассмотрим примеры построения точек пересечения прямых с плоскостями.
Пусть даны косоугольные проекции (Рис.4.29, а) плоскости 


Проведём через прямую АВ горизонтально — проецирующую плоскость 












В прямоугольных проекциях построение точки пересечения прямой с плоскостью осуществляется в аналогичной последовательности.
Пусть даны (см. Рис.4.29, б) плоскость 

















Рассмотрим случай пересечения прямой, перпендикулярной к плоскости координат, с плоскостью общего положения.
Пусть дана плоскость общего положения 


Проведём через прямую АВ вспомогательную горизонтально — проецирующую плоскость. Любая прямая, проведённая через точку, в которую проецируется на плоскость Н заданная прямая, может быть принята за горизонтальный след такой плоскости. С целью упрощения построений этот след проводят так, чтобы вспомогательная плоскость пересекалась бы с заданной по общей горизонтали или фронтали.
Проведём 










Если провести 






Рассмотрим постороение точки встречи прямой 
Проведём через прямую АВ вспомогательную фронтально — проецирующую плоскость 







Горизонтальную проекцию 


Определим видимость проекций с помощью конкурирующих точек.
Если считать, что плоскость CDE непрозрачна, то отрезки прямой, перекрытые треугольником, будут невидимыми и должны быть показаны на чертеже штриховыми линиями. Очевидно, что видимость отрезков прямой изменяется в точке 









Видимость фронтальных проекций 





Задание плоскости
Плоскость на комплексном чертеже можно задать:
- тремя точками, не лежащими на одной прямой (рис. 5.1, а);
- прямой и не принадлежащей ей точкой (рис. 5.1, б);
- двумя пересекающимися прямыми (рис. 5.1, в);
- двумя параллельными прямыми (рис. 5.1, г);
- любой плоской фигурой (рис. 5.1, д);
- следами (рис.5.2)
Часто применяется способ задания плоскости с помощью прямых линий (взаимно пересекающихся или параллельных), по которым данная плоскость пересекается с плоскостями проекций 
Следы плоскости
Линия пересечения какой-либо плоскости с плоскостью проекций (





Каждый из следов плоскости совпадает со своей одноименной проекцией, остальные проекции оказываются лежащими на осях координат. Например, горизонтальный след плоскости Р (рис. 5.2) совпадает со своей горизонтальной проекцией 
Положение плоскости относительно плоскостей проекций
Любая произвольно взятая в пространстве плоскость может занимать общее или частное положение. Плоскостью общего положения называется плоскость, которая не перпендикулярна и не параллельна ни к одной из плоскостей проекций (см. рис. 5.2). Все остальные плоскости относятся к плоскостям частного положения и подразделяются на проецирующие плоскости и плоскости уровня.
Проецирующей называется плоскость, перпендикулярная к одной из плоскостей проекций. Например, горизонтально-проецирующая плоскость 

Горизонтальные проекции всех геометрических объектов (точек, прямых, фигур), лежащих в этой плоскости, совпадают с горизонтальным следом 





Фронтальные проекции всех геометрических объектов (точек, прямых, фигур), лежащих в этой плоскости, совпадают с фронтальным следом плоскости 




Профильно — проецирующая плоскость Т (

Профильные проекции всех геометрических объектов лежащих в этой плоскости, совпадают с профильным следом плоскости 





Профильно-проецирующая плоскость может проходить через ось x (рис. 5.6). Следы такой плоскости 



Плоскостью уровня называется плоскость, перпендикулярная одновременно к двум плоскостям проекций и параллельная третьей. Таких плоскостей может быть три разновидности (рис. 5.7):
Из определения плоскостей уровня следует, что одна из проекций точки, линии, фигуры, принадлежащих этим плоскостям, будет совпадать с одноименным следом плоскости уровня, а другая проекция будет натуральной величиной этих геометрических образов
Признаки принадлежности точки и прямой плоскости. Главные линии плоскости
Для определения принадлежности точки и прямой плоскости, следует руководствоваться следующими положениями:
- точка принадлежит плоскости, если через нее можно провести линию, лежащую в плоскости;
- прямая принадлежит плоскости, если она проходит через две точки, принадлежащие этой плоскости;
- прямая принадлежит плоскости, если она проходит через точку данной плоскости и параллельна прямой, принадлежащей этой плоскости.
Через одну точку на плоскости можно провести бесконечное множество прямых.
Это могут быть произвольные линии и линии, занимающие особое положение по отношению к плоскостям проекций 
Прямая, принадлежащая рассматриваемой плоскости, проведенная параллельно горизонтальной плоскости проекций, называется горизонталью плоскости.
Прямая, принадлежащая рассматриваемой плоскости, проведенная параллельно фронтальной плоскости проекций, называется фронталью плоскости.
Горизонталь и фронталь являются линиями уровня плоскости. Горизонталь плоскости следует начинать строить с фронтальной проекции, т.к. она параллельна оси x, горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости. Все горизонтали плоскости параллельны между собой, можно считать горизонтальный след плоскости нулевой горизонталью (рис. 5.8).
Фронталь плоскости следует начинать строить с горизонтальной проекции, т.к. она параллельна оси x, фронтальная проекция фронтали параллельна фронтальному следу. Фронтальный след плоскости — нулевая фронталь. Все фронтали плоскости параллельны между — собой (рис. 5.9).
К линии уровня относится и профильная прямая, лежащая в заданной плоскости и параллельная 
К линиям уровня плоскости относятся и профильные прямые, лежащая в заданной плоскости и параллельные 
К главным линиям плоскости, кроме линии уровня, относятся линии наибольшего наклона плоскости к плоскости проекций.
Определение угла наклона плоскости к плоскостям проекций
Плоскость общего положения наклонена к плоскостям проекций. Для определения величины угла наклона заданной плоскости к какой- либо плоскости проекции используются линии наибольшего наклона плоскости к плоскости проекций: к 


Линии наибольшего наклона плоскости — это прямые, образующие с плоскостью проекций наибольший угол, проводятся в плоскости перпендикулярно к соответствующим линиям уровня. Линии наибольшего наклона и ее соответствующая проекция образуют линейный угол, которым измеряется величина двухгранного угла, между данной плоскостью и плоскостью проекций (рис. 5.10).
Взаимное положение двух плоскостей
Две плоскости в пространстве по отношению друг к другу могут занимать два положения:
- плоскости пересекаются, при этом линия их пересечения всегда прямая;
- плоскости параллельны друг другу.
Условия пересечения плоскостей
Две произвольные плоскости в пространстве всегда пересекаются по прямой линии. Как известно, две точки вполне определяют положение прямой в пространстве. Следовательно, задача по построению линии пересечения плоскостей сводится к определению положения двух принадлежащих обеим плоскостям точек.
Условия параллельности плоскостей
Две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости:
- если плоскости заданы пересекающимися прямыми, то они будут параллельны в случае, когда одноименные проекции прямых, лежащих в разных плоскостях, будут параллельны;
- если плоскости заданы линиями уровня (фронталями и горизонталями), то они будут параллельны в случае, когда одноименные проекции линий уровня параллельны между собой;
- если плоскости заданы следами, то они параллельны тогда, когда параллельны их одноименные следы;
- если плоскости заданы любым другим способом, то в них необходимо построить пересекающиеся прямые (общего положения, уровня или следы) и сравнить одноименные их проекции. У параллельных плоскостей одноименные проекции пересекающихся прямых взаимно параллельны.
Взаимное положение прямой линии и плоскости
Прямая линия и плоскость в пространстве относительно друг друга могут занимать следующие положения:
- прямая параллельна плоскости (частный случай — прямая лежит в плоскости);
- прямая пересекается с плоскостью (частный случай — прямая перпендикулярна к плоскости).
Иногда на чертеже нельзя непосредственно установить взаимное положение прямой линии и плоскости (рис. 7.1).
В этом случае прибегают к некоторым вспомогательным построениям, в результате которых от вопроса о взаимном положении прямой линии и плоскости переходят к вопросу о взаимном положении двух прямых. В задачах такого типа используют метод введения вспомогательной плоскости.
Заключается он в следующем:
- — через данную прямую m проводят вспомогательную плоскость
. Подбор вспомогательной плоскости производится с учетом построений в ходе решения задачи, чтобы решение задачи было наиболее простым;
Строят линию пересечения плоскостей — заданной 

При этом возможны следующие случаи:
- прямая m параллельна прямой n, следовательно, прямая m параллельна плоскости Σ;
- прямая m пересекает прямую n, следовательно, прямая m пересекает плоскость Σ.
Пересечение прямой линии и плоскости
Если одна из пересекающихся фигур занимает частное положение, то точка пересечения находится значительно проще.
Задание: найти точку пересечения отрезка прямой АВ с проецирующей плоскостью Р (рис. 7.2).

Решение: проанализировав чертеж, легко заметить, что плоскость Р занимает проецирующее положение (плоскость Р перпендикулярна к плоскости
В первую очередь определяем фронтальную проекцию С 2 точки пересечения отрезка прямой АВ с плоскостью Р. Горизонтальная проекция 



При определении видимости горизонтальной проекции прямой необходимо установить, какой участок прямой находится над плоскостью Р, т.е. будет видимым на горизонтальной проекции. Таким участком является часть проекции отрезка, расположенная левее проекции 
Задание: найти точку пересечения проецирующей прямой m с плоскостью 

Решение: из чертежа видно, что плоскость, заданная треугольником ABC, занимает общее положение относительно плоскостей проекции, прямая m является горизонтально проецирующей,


Для нахождения фронтальной проекции точки 

Задание: найти точку пересечения прямой m общего положения с плоскостью общего положения Σ (ABC) (рис. 7.4).
Решение: в данной задаче прямая m и плоскость Σ занимают общее положение относительно плоскостей проекции. Задача решается по следующей схеме:
Видимость прямой m относительно плоскости Σ (АВС) определяется с помощью метода конкурирующих точек.
Метод конкурирующих точек заключается в следующем: Для определения видимости прямой m на горизонтальной плоскости выбирается пара точек 1 и D (см.рис.7.4). У этих точек координаты у одинаковы 

Следовательно, на горизонтальной проекции точка D видима, а 1 невидима.Tак как точка 1 принадлежит прямой m, то левее проекции точка 
Для определения видимости на фронтальной проекции можно воспользоваться парой точек 2 и 3 и рассмотреть вопрос видимости аналогично точкам 1 и D.
Параллельность прямой и плоскости
Прямая и плоскость параллельны, если в плоскости имеется прямая, параллельная заданной прямой.
Задание: построить проекции прямой, проходящей через точку А и параллельной прямой m, принадлежащей плоскости Σ (BCD) (рис. 7.5).

Решение: в условии задачи задана фронтальная проекция 





Прямая линия, перпендикулярная к плоскости
Обратимся к рисунку 8.1, на котором изображена плоскость 
Прямая n перпендикулярна к любой прямой плоскости 

Если
Угол между прямой n фронталью f плоскости проецируется на фронтальную плоскость проекций прямым углом (его сторона 
Если прямая перпендикулярна к плоскости, то ее проекции перпендикулярны к одноименным проекциям линий уровня этой плоскости.
На рисунке 8.2 через точку N проведена прямая m, перпендикулярная к плоскости Σ. Для этого в плоскости Σ (а^b) определены горизонталь h и фронталь f, и горизонтальная проекция перпендикуляра проведена перпендикулярно к горизонтальной проекции горизонтали, а фронтальная проекция — перпендикулярно к фронтальной проекции фронтали: 
Действительно, из чертежа следует, что прямая m перпендикулярна к прямой h, так как угол между горизонтальными проекциями сторон угла прямой и одна сторона его (h) параллельна плоскости
В том случае, когда плоскость задана следами (рис. 8.3), проекции перпендикуляра располагаются перпендикулярно к одноименным следам плоскости: 
Плоскость, перпендикулярную к данной прямой, определяют с помощью пересекающихся линий уровня. На рисунке 8.4 (а — условие, 6 — решение) через точку А проведена плоскость Σ, перпендикулярная к заданной прямой m.
Горизонталь h плоскости проходит через точку А 
На рисунке 8.4 фронталь 

На рисунке 8.5 показана прямая n перпендикулярная горизонтально проецирующей плоскости. Эта прямая является горизонталью. На рисунке 8.6 изображена прямая n, перпендикулярная к фронтально проецирующей плоскости. Эта прямая n является фронталью.
На рисунке 8.7 изображен отрезок прямой (MN), перпендикулярный к профильно проецирующей плоскости Σ. Заметим, что, проведя проекции 
Это не должно нас удивлять, так как (h≡f), а перпендикулярность прямой и плоскости обеспечивается перпендикулярностью этой прямой к двум пересекающимся прямым плоскости. Для решения задачи нужно построить профильный след. Тогдa
Если требуется определить, перпендикулярна ли некоторая прямая m к заданной плоскости Σ, то через какую-нибудь точку М этой прямой следует провести перпендикуляр n к плоскости Σ (рис. 8.8). При совпадении линии m и n прямая m перпендикулярна к плоскости Σ .
Примеры решения задач
Задание: Построить перпендикуляр из точки А на плоскость 
Решение: исходя из принципа перпендикулярности прямой и плоскости (прямая перпендикулярна к плоскости, если она перпендикулярна к двум пересекающимся прямым этой плоскости), необходимо в плоскости провести две пересекающиеся прямые: горизонталь h и фронталь f (рис. 8.9).
Затем из точки А проводим нормаль n к плоскости Σ. На основании теоремы о проецировании прямого угла 

Основание перпендикуляра определяется как точка пересечения его с плоскостью. Для этого нужно провести через нормаль проецирующую плоскость 


Способы задания плоскости на чертеже
Плоскостью называется поверхность, образуемая перемещением прямой линии, которая движется параллельно самой себе по неподвижной направляющей прямой.
Положение плоскости в пространстве и на чертеже (рис. 3.1) можно определить:
- тремя точками, не лежащими на одной прямой;
- прямой и точкой вне ее;
- двумя пересекающимися прямыми;
- двумя параллельными прямыми;
- любой плоской фигурой.
Плоскость, не перпендикулярная ни одной плоскости проекций, называется плоскостью общего положения. На комплексном чертеже проекции элементов, задающих плоскость, занимают общее положение.
Плоскость, перпендикулярная или параллельная одной из плоскостей проекций, называется плоскостью частного положения.
Рисунок 3.1 — Способы задания плоскости на чертеже: 1- тремя точками, 2- прямой и точкой, 3- двумя пересекающимися прямыми, 4- двумя параллельными прямыми, 5- плоской фигурой
Кроме того, плоскость может быть задана следами плоскости. Следом плоскости называется линия пересечения заданной плоскости с любой из плоскостей проекций.
На рис. 3.2 изображена плоскость Р, которая пересекается с плоскостями проекций, и образует следующие следы:
- — горизонтальный след — в пересечении с горизонтальной плоскостью проекций;
- — фронтальный след — в пересечении с фронтальной плоскостью проекций;
- — профильный след — в пересечении с профильной плоскостью проекций.
Рисунок 3.2 — Плоскоть задананная следами
Два следа плоскости сходятся на осях в точках 
Плоскости общего и частного положения
По отношению к плоскостям проекций плоскости могут занимать различное положение.
Плоскость, не перпендикулярную ни к одной из плоскостей проекций называют плоскостью общего положения.
Наглядное изображение плоскости общего положения Р дано на рисунке 3.2, которая задана следами.
Плоскость общего положения пересекает каждую из осей х, у, z.
Следы плоскости общего положения никогда не перпендикулярны к осям проекций.
При построении плоскости следами последние обычно ограничиваются участками, расположенными в первом октанте.
К плоскостям частного положения относят плоскости, перпендикулярные к плоскостям проекций.
Положение плоскости относительно плоскостей проекций
Проецирующие плоскости
Плоскость, перпендикулярная одной из плоскостей проекций, называется проецирующей. Различают:

У проецирующих плоскостей одна проекция вырождается в прямую. Поэтому проекция фигуры, принадлежащей такой плоскости (треугольник ABC), вырождается в прямую (А’В’С).
Проецирующая плоскость однозначно задается на чертеже своей линейной проекцией
Плоскости уровня
Плоскость, параллельная одной из плоскостей проекций, называется плоскостью уровня. Различают (рис. 3.4):
Плоскость уровня является частным случаем проецирующей плоскости, поэтому на чертеже задается своей линейной проекцией
Фигура, принадлежащая плоскости уровня, проецируется на соответствующую плоскость проекций в натуральную величину.
Рисунок 3.4 — Плоскости уровня
Проецирующие плоскости и плоскости уровня находят широкое применение в качестве вспомогательных элементов при решении различных задач начертательной геометрии, а также используются в техническом черчении при построении разрезов и сечений на чертежах.
Решение этих задач основано на известных положениях геометрии:
Главные линии плоскости
К числу прямых, занимающих особое положение в плоскости, относятся горизонтали, фронтали, профильные линии и линии наибольшего наклона.
Прямая, принадлежащая данной плоскости и параллельная горизонтальной плоскости проекций Н называется горизонталью h плоскости.
Прямая, принадлежащая данной плоскости и параллельная фронтальной плоскости проекции V называется фронталью плоскости f.
Профильной линией р плоскости называется прямая, принадлежащая данной плоскости и параллельная профильной плоскости проекций W.
Построение на чертеже проекций профильной линии следует начинать с проведения фронтальной и горизонтальной проекций
Прямая, принадлежащая данной плоскости и перпендикулярная к ее линиям особого положения называется линией наибольшего наклона плоскости.
В любой плоскости можно провести бесчисленное множество главных линий: а) горизонтали; б) фронтали; в) профильные прямые; г) линии наибольшего ската. Линии наибольшего ската — прямые, проведенные в плоскости перпендикулярно к горизонталям этой плоскости.
Построение горизонтали (рис. 3.5) начинают с ее фронтальной проекции 

Построение на чертеже проекций профильной линии следует начинать с проведения фронтальной и горизонтальной проекций; линию ската начинают строить с ее горизонтальной проекции 

а) горизонтали; б) фронтали; в) профили; г) линии наибольшего ската.
Взаимное расположение прямой линии и плоскости
Параллельность прямой и плоскости
Возможны следующие три случая относительного расположения прямой и плоскости: прямая принадлежит плоскости, прямая параллельна плоскости, прямая пересекает плоскость.
На основании свойства плоскости: если прямая линия соединяет две точки данной плоскости, то такая прямая всеми своими точками лежит в этой плоскости. Построение прямых, принадлежащих плоскости рассмотрены на слайде (главные линии плоскости).
Из стереометрии известно: если прямая параллельна плоскости, то она параллельна одной из прямых, лежащих в этой плоскости. На эпюре параллельность прямой m и плоскости ABC доказывается тем, что m» // a», m’ // a’ ; прямая принадлежит плоскости ABC.
Рисунок 3.6 – Прямая параллельная плоскости ∆АВС
Пересечение прямой и плоскости
Для определения точки пересечения прямой m с плоскостью α(∆АВС) выполняют следующие операции.
- Через прямую m проводят проецирующую плоскость β (рис. 20). В данном примере проводят горизонтальную проецирующую плоскость β’.
- Определяют линию n пересечение плоскости β с плоскостью α (∆АВС). На рисунке 20 горизонтальная проекция этой линии n’ совпадает с m’ по построению, а фронтальная n’ определяется проекциями точек 1′ и 2′ на фронтальные проекции А» В» и В»C» сторон треугольника АВС.
- Находят точку K пересечения прямой m с плоскостью α. Фронтальная проекция n» линии пересечения n пересекает m» в точке K».
Поскольку n лежит в плоскости α, то точка K принадлежит как плоскости α, так и прямой m, т.е является точкой их пересечения . Ее горизонтальная проекция K’ определяется проекциями K» на m».
Рисунок 3.7 – Прямая пересекающая плоскость ∆АВС
Видимость прямой и плоскости относительно горизонтальной плоскости проекций определяется с помощью горизонтально конкурирующих точек 2 и 3.
Точка 2 лежит на стороне АС, а 3- на прямой m. Их фронтальные проекции 2» и 3» показывают, что точка 2 находится ниже точки 3 и поэтому на горизонтальной плоскости проекций горизонтальная проекция 2′ точки 2 будет закрыта проекцией 3′ точки 3. Отсюда следует, что проекция А’C’ стороны АС расположена ниже проекции m’ и участок этой прямой с левой стороны до K’ будет видным. Относительную видимость на фронтальной плоскости проекций можно определить с помощью фронтально конкурирующих точек 4 и 5. Как показывают горизонтальные проекции этих точек 4′ и 5′, точка 4 лежит ближе к наблюдателю, чем точка 5,но поскольку последняя принадлежит прямой m, то участок её фронтальной проекции 5»K» невидим.
Перпендикулярность прямой и плоскости
Прямая перпендикулярна плоскости, если она перпендикулярна двум прямым этой плоскости, например её горизонтали и фронтали.
Пример: Провести перпендикуляр из точки К к плоскости треугольника АВС.
Решение задачи начинают с построения горизонтали h(h’,h») и фронтали ƒ(ƒ’,ƒ») плоскости треугольника (см. рис. 3.8). Затем к этим прямым проводят из точки К перпендикуляр n, как показано на рисунке.
Рисунок 3.8 – Прямая перпендикулярная плоскости треугольника ABC
Прямая n перпендикулярна плоскости α(АВС), так как n перпендикулярно f и n перпендикулярно h (на основании свойства ортогонального проецирования).
При построении на комплексном чертеже перпендикуляра к плоскости нужно иметь в виду следующее: если n перпендикулярно α(h∩ƒ), то фронтальная проекция перпендикуляра перпендикулярна фронтальной проекции фронтали, а его горизонтальная проекция – горизонтальной проекции горизонтали (n’ перпендикулярно h’; n» перпендикулярно ƒ»’). Действительно и обратное утверждение.
Если прямая линия пересекает плоскость под прямым углом, то на комплексном чертеже проекции этой прямой располагаются перпендикулярно проекциям соответствующих линий уровня плоскости.
Если, например, на плоскость, заданную треугольником ABC, необходимо опустить перпендикуляр из точки К, то построение выполняют следующим образом.
На плоскости проводят горизонталь h (h», h’) и фронталь f (f ‘, f »). Затем из заданных проекций K’ и K» точки К опускают перпендикуляры соответственно на h’ и f ».
Прямая, проведенная таким образом из точки К, будет перпендикулярна плоскости треугольника ABC (так как прямая, перпендикулярная плоскости должна быть перпендикулярна двум прямым, лежащим в этой плоскости).
Пример задания плоскости
Плоскость может быть задана:
1 .Проекциями трех точек, не лежащих на одной прямой
2. Проекцией прямой и точки, не лежащей на этой прямой
3. Проекциями двух пересекающихся прямых
4. Проекциями двух параллельных прямых
5. Проекциями любой плоской фигуры
6. Следами
Следы плоскости
Прямые, по которым некоторая плоскость пересекает плоскости проекций, называются следами плоскости.
Следы пересекаются в одной точке, лежащей на оси — точка схода следа.
Ph — горизонтальный след плоскости Pv — фронтальный след плоскости Pw — профильный след плоскости Рх, Ру, Pz — точки схода следов
След плоскости — это прямая, принадлежащая данной плоскости и плоскости проекций. А поэтому след на эпюре совпадает с одноименной своей проекцией, а другие его проекции лежат на осях.
Ph — горизонтальный след плоскости совпадает со своей горизонтальной проекцией, фронтальная его проекция лежит на оси X, а профильная — на оси У.
Положение плоскости относительно плоскостей проекций
По положению в пространстве различают плоскости общего и частного положения.
Плоскости общего положения не параллельны и не перпендикулярны ни одной из плоскостей проекций.
Плоскости уровня
Это плоскости, параллельные одной из плоскостей проекций.
1. Плоскость параллельная 
2. Плоскость, параллельная П2- фронтальная плоскость уровня
3. Плоскость, параллельная П3 — профильная плоскость уровня
Проецирующие плоскости
Это плоскости, перпендикулярные одной из плоскостей проекций.
1. Плоскость, перпендикулярная 
2. Плоскость, перпендикулярная 
3. Плоскость, перпендикулярная 
Прямые особого положения
Горизонталь (h) — прямая, лежащая в данной плоскости и и параллельная горизонтальной плоскости проекции.
Фронталь (f) — прямая, лежащая в плоскости и параллельная фронтальной плоскости проекций.
Все горизонтальные проекции горизонтали параллельны горизонтальному следу плоскости.
Все фронтальные проекции фронтали параллельны фронтальному следу плоскости.
Прямая и точка в плоскости
1. Прямая принадлежит плоскости, если она проходит через две точки, принадлежащие плоскости (или через одну точку этой плоскости параллельно прямой, лежащей в данной плоскости).
2. Точка принадлежит плоскости, если она принадлежит любой прямой этой плоскости.
Взаимное положение прямой и плоскости, двух плоскостей
1. Прямая параллельна плоскости, если она параллельна любой прямой, лежащей в данной плоскости.
а // а (через К провести прямую параллельно а)
Алгоритм решения:
1 2 
2. Прямая, перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым данной плоскости.
В качестве таких прямых принимаем фронталь и горизонталь ( исходя из правила проецирования прямого угла).
Перпендикуляр к плоскости перпендикулярен любой прямой, проведенной в этой плоскости.
3. Плоскости параллельны между собой, если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости.
3. Плоскости перпендикулярны, если прямая, принадлежащая одной плоскости, перпендикулярна другой плоскости.
а (А АВС) К(К,;К2) а//В
Задача: через прямую а провести плоскость, перпендикулярную 
X
Искомую плоскость В задаем двумя пересекающимися прямыми а и 

Строим горизонталь 
Исходя из правила построения перпендикуляра к плоскости, проводим прямую
Получаем искомую плоскость
Пересечение прямой линии с плоскостью
Прямая пересекает плоскость в точке, называемой точкой встречи.
Алгоритм решения состоит из трех операций:
- Прямая заключается во вспомогательную плоскость ( в данном случае во фронтально-проецирующую
- Определяется линия пересечения заданной плоскости со вспомогательной
и находят
по линиям связи. На горизонтальной проекции точка пересечения прямой d с
— точка встречи
определяем по линиям связи).
- Выясняется взаимное положение двух прямых: заданной и линии пересечения плоскостей 1 2 .
- Определяются видимые и не видимые участки прямой методом конкурирующих точек.
Взаимное пересечение двух плоскостей
Задачи на определение точки встречи прямой с плоскостью очень важны в
можно решать задачи на определение
Через прямую АС 


По линиям связи определяем
Пересечение 

Аналогично находим точку L. Видимость определяем методом конкурирующих точек по узлам
начертательной геометрии. Пользуясь ими
Расстояние от точки до прямой
Для определения проекции расстояния от точки А до прямой общего положения m через А проведем плоскость, перпендикулярную m
Через m проведем фронтально-проецирующую плоскость L. Найдём точку пересечения прямой m с этой плоскостью 



Полученный отрезок АВ и есть расстояние от точки А до прямой m 
Расстояние от точки до плоскости
Построить плоскость, параллельную 
Кратчайшее расстояние — перпендикуляр. Значит, из Д восстановим перпендикуляр к
Определение плоскости
В геометрии плоскость представляют как бесконечную поверхность, имеющую на всем протяжении одинаковое направление. Плоскость безгранична и бесконечна.
Способы задания плоскости на эпюре
На эпюре плоскость задается проекциями тех элементов, которыми она задана в пространстве. Плоскость (рис. 5.1, 5.2)однозначно определяют:
- три точки, не лежащие на одной прямой α(ABC) (рис 5.1, а);
- пересекающиеся прямые β(b × c) (рис 5.1, б);
- прямая и точка γ(a, D) (рис 5.1, в);
- параллельные прямые δ(l || n) (рис 5.1,г);
Рис. 5.1. Способы задания плоскостей:
а — a (ABC); б -β (b×c); в -γ (a,D); г — δ(l || n)
- следы плоскости — линии пересечения плоскости с плоскостями проекций μ(μ1,μ2) (рис. 5.2)
Рис. 5.2. Задание плоскости следами μ(μ1,μ2):
а — наглядное изображение;
б — комплексный чертеж
- проекции плоской фигуры (треугольника, окружности, и т. д.).
Классификация плоскостей
В зависимости от положения относительно плоскостей проекций различают плоскости общего положения и плоскости частного положения.
Плоскость общего положения — плоскость, наклоненная под произвольными углами к плоскостям проекций (см. рис. 5.1, 5.2).
Плоскости частного положения можно разделить на две группы -проецирующие плоскости и плоскости уровня. Плоскости частного положения чаще всего задаются следами.
Проецирующие плоскости
Плоскости, перпендикулярные одной из плоскостей проекций, называются проецирующими.
Горизонтально-проецирующая плоскость δ(δ1)
Углы наклона горизонтально-проецирующей плоскости к П2 и П3 проецируются на горизонтальную плоскость проекций в натуральную величину.

Рис. 5.3. Горизонтально-проецирующая плоскостью δ(δ1):
а — наглядное изображение;
б — комплексный чертеж
Фронтально-проецирующая плоскость γ(γ2)
Рис. 5.4. Фронтально-проецирующая плоскость у(у2):
а — наглядное изображение;
б — комплексный чертеж
Проекции всех линий и точек, лежащих во фронтально-проецирующей плоскости, совпадают с фронтальным следом этой плоскости. Углы наклона фронтально-проецирующей плоскости τ — к П1 и φ — к П2 проецируются на фронтальную плоскость проекций без искажения.
Профильно-проецирующая плоскость σ(σ3) 
Рис. 5.5. Профильно-проецирующая плоскость σ(σ3):
а — наглядное изображение;
б — комплексный чертеж
Углы наклона профильно-проецирующей плоскости к П1 и П2 проецируются на профильную плоскость проекций без искажения.
Плоскости уровня
Плоскости, параллельные одной из плоскостей проекций, называются плоскостями уровня. Как и проецирующие плоскости, плоскости уровня задаются следами. Все объекты, лежащие в плоскости уровня, проецируются на параллельную плоскость проекций в натуральную величину.
Горизонтальная плоскость уровня ν || П1 — плоскость, параллельная горизонтальной плоскости проекций.
Треугольник ABC, лежащий в горизонтальной плоскости уровня ν(ν2),проецируется на Π1 в натуральную величину (рис. 5.6).
Рис. 5.6. Горизонтальная плоскость уровня ν (ABC):
а — наглядное изображение;
б — комплексный чертеж
Фронтальная плоскостьуровняμ(μ1) || П2 — плоскость, параллельная фронтальной плоскости проекций. На рис. 5.7 показана окружность l с центром в точке О и диаметром AB, лежащая во фронтальной плоскости уровня μ(μ1). Эта окружность проецируется на П2 без искажения.
Рис. 5.7. Фронтальная плоскость уровня μ(μ1):
а — наглядное изображение;
б — комплексный чертеж
Профильная плоскость уровня ω||Π3 — плоскость, параллельная профильной плоскости проекций. Отрезок [AB], лежащий в профильной плоскости уровня ω(ω3) , проецируется на плоскость П3 в натуральную величину (рис. 5.8)
Рис. 5.8. Профильная плоскость уровня ω(ω1):
а — наглядное изображение;
б — комплексный чертеж
Относительное положение двух плоскостей
Две плоскости в пространстве могут совпадать, пересекаться или быть параллельными.
Плоскости параллельны (рис. 5.9), если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.
Рис. 5.9. Параллельные плоскости общего положения:
Проекции плоскости
Из геометрии известно, что плоскость в пространстве определяется тремя точками, не лежащими на одной прямой. В соответствии с этим на чертеже плоскость может быть задана:
- – проекциями трех точек, не лежащих на одной прямой (рис. 3.1, а);
- – проекциями прямой и точки, взятой вне прямой (рис. 3.1, б);
- – проекциями двух параллельных прямых (рис. 3.1, в);
- – проекциями двух пересекающихся прямых (рис. 3.1, г);
- – проекциями замкнутого отсека любой формы – треугольника, четырехугольника и т. д. (рис. 3.2).
Точка и прямая в плоскости
Из геометрии известны теоремы о принадлежности точки и прямой линии плоскости:
1-я теорема: точка принадлежит плоскости, если она принадлежит прямой линии, лежащей в этой плоскости.
2-я теорема: прямая линия принадлежит плоскости, если она проходит через две точки, лежащие в этой плоскости.
На рис. 3.2 показано применение этих теорем для построения горизонтальной проекции точки К(K», K’-?), лежащей в плоскости, заданной треугольником ABC.
Для решения этой задачи требуется выполнить следующий графический алгоритм (графические действия):
1-е действие. Провести в заданной плоскости фронтальную проекцию вспомогательной прямой m(m») через две точки этой плоскости – например, через точку А(A») и заданную фронтальную проекцию точки K(K»); эта прямая пересекает сторону ВС треугольника в точке 1(1″,1′).
2-е действие. Провести горизонтальную проекцию вспомогательной прямой m(m’) через горизонтальные проекции точек А(A’) и 1(1′).
3-е действие. Построить по линии связи искомую горизонтальную проекцию точки K(K’) на горизонтальной проекции вспомогательной прямой m(m’).
На рис. 3.3, а, б показано решение задачи, где требуется достроить горизонтальную проекцию четырехугольника ABCD(A»,B»,C»,D»; A’,B’,C’,D’-?, C’-?). Для решения задачи выполнены следующие графические построения:
- – проведены проекции диагонали AC(A»C», A’C’);
- – проведена фронтальная проекция диагонали BD(B»D»);
- – определены проекции вспомогательной точки 1(1″1′), принадлежащей диагоналям AC и BD;
- – проведена через точки B’ и 1′ горизонтальная проекция диагонали d(d’), на которой должна лежать проекция вершины D(D’);
- – построена по линии связи горизонтальная проекция D’ вершины D по ее принадлежности прямой d(d’);
- – достроена горизонтальная проекция A’B’C’D’ четырехугольника ABCD.
Прямые особого положения в плоскости. Горизонталь h и фронталь f плоскости
Прямые линии, лежащие в плоскости и параллельные фронтальной плоскости проекций V, называются фронталями – f(f»,f’).
Прямые линии, лежащие в плоскости и параллельные горизонтальной плоскости проекций H, называются горизонталями – h(h»,h’).
На рис. 3.4 показано построение в плоскости треугольника DEF проекций фронтали и горизонтали.
Поскольку фронталь плоскости f параллельна фронтальной плоскости проекций V, построение ее проекций следует начинать с горизонтальной проекции фронтали f’, которая должна быть на чертеже параллельна оси x. Фронтальная проекция фронтали f» строится по ее принадлежности заданной плоскости с помощью вспомогательной точки 1(1′,1″).
Поскольку горизонталь плоскости h параллельна горизонтальной плоскости проекций H, построение ее проекций следует начинать с фронтальной проекции горизонтали h», которая должна быть на чертеже параллельна оси x. Горизонтальная проекция горизонтали h’ строится по ее принадлежности заданной плоскости с помощью вспомогательной точки 2(2′,2″).
Прямые линии, лежащие в плоскости и перпендикулярные горизонтали этой плоскости, называются линиями наибольшего наклона (ската) плоскости. Они определяют угол наклона плоскости к плоскости проекций H.
На рис. 3.5, а изображена линия наибольшего ската m в плоскости α, а на рис. 3.5, б – построение ее проекций на чертеже этой плоскости, заданной следами.
- Чертежи на заказ
Понятие о следах плоскости
Следами плоскости называются линии, по которым плоскость пересекается с плоскостями проекций:
- – горизонтальный след – линия пересечения плоскости с плоскостью проекций H;
- – фронтальный след – линия пересечения плоскости с плоскостью проекций V;
- – профильный след – линия пересечения плоскости с плоскостью проекций W.
!!! На чертежах вырожденные в прямые линии проекции плоскостей частного положения совпадают с соответствующими следами этих плоскостей и их можно обозначать как следы (см. рис. 3.6, 3.7, 3.8, 3.9, 3.10 и 3.11) этих плоскостей.
Положение плоскости относительно плоскостей проекций. Плоскости общего положения и плоскости частного положения
Относительно плоскостей проекций V, H и W плоскости в пространстве могут занимать семь различных положений – общее и шесть частных – и имеют соответствующие названия и характерные признаки проекций на чертежах. Следовательно, по заданным проекциям плоскости можно представить ее положение в пространстве, то есть «прочитать» чертеж плоскости.
Плоскость, не перпендикулярная ни одной из плоскостей проекций (см. рис. 3.1, 3.2, 3.3, 3.4, 3.5), называется плоскости общего положения.0
!!! Запомните характерные признаки плоскости общего положения на чертеже – ни одна ее проекция не вырождается в линию, и каждая проекция искажает величину той формы, которой плоскость задана на чертеже.
- Плоскости частного положения, перпендикулярные одной плоскости проекций, называются проецирующими плоскостями.
Фронтально-проецирующая плоскость перпендикулярна фронтальной плоскости проекций V.
На рис. 3.6 плоскость задана двумя пересекающимися прямыми DE и EF; горизонталь плоскости h преобразуется здесь во фронтально-проецирующую прямую (h
!!! Запомните характерные признаки фронтально-проецирующей плоскости на чертеже – ее фронтальная проекция представляет собой прямую (вырожденная проекция βV), наклоненную к оси проекций x, и определяет угол наклона плоскости к плоскости проекций H. Горизонтальная и профильная проекции плоскости представляют собой искаженную по величине форму, которой эта плоскость задана на чертеже.
Горизонтально-проецирующая плоскость перпендикулярна горизонтальной плоскости проекций H.
На рис. 3.7 плоскость задана треугольником ABC; фронталь плоскости f преобразуется в горизонтально-проецирующую прямую (f
!!! Запомните характерные признаки горизонтально-проецирующей плоскости на чертеже – ее горизонтальная проекция представляет собой прямую (вырожденная проекция αV), наклоненную к оси проекций x, и определяет угол наклона плоскости к плоскости проекций V. Фронтальная и профильная (не показана) проекции плоскости представляют собой искаженную по величине форму, которой эта плоскость задана на чертеже.
Профильно-проецирующая плоскость перпендикулярна профильной плоскости проекций W.
На рис. 3.8 плоскость задана двумя параллельными прямыми KL и MN; фронталь и горизонталь плоскости преобразуются в профильно-проецирующие прямые.
!!! Запомните характерные признаки профильно-проецирующей плоскости на чертеже – ее профильная проекция представляет собой прямую (вырожденная проекция δW), наклоненную к осям проекций x и y, и определяет углы наклона плоскости к плоскостям проекций V и H. Фронтальная и горизонтальная проекции этой плоскости представляют собой искаженную по величине форму, которой эта плоскость задана на чертеже.
- Плоскости частного положения, перпендикулярные двум плоскостям проекций и параллельные третьей плоскости проекций называются плоскостями уровня.
Фронтальная плоскость уровня параллельна фронтальной плоскости проекций V и перпендикулярна плоскостям проекций H и W.
На рис. 3.9 фронтальная плоскость уровня задана параллелограммом DEFG; фронтальная проекция этой плоскости является ее натуральной величиной.
!!! Запомните характерные признаки фронтальной плоскости на чертеже – ее горизонтальная и профильная проекции проецируются в прямые (вырожденные проекции βH и βW), параллельные соответственно осям проекций x и z.
Горизонтальная плоскость уровня параллельна горизонтальной плоскости проекций Н и перпендикулярна плоскостям проекций V и W.
На рис. 3.10 горизонтальная плоскость уровня задана треугольником ABC; горизонтальная проекция этой плоскости является ее натуральной величиной.
!!! Запомните характерные признаки горизонтальной плоскости на чертеже – ее фронтальная и профильная проекции проецируются в прямые (вырожденные проекции αV и αW), параллельные соответственно осям проекций x и y.
Профильная плоскость уровня параллельна плоскости проекций W и перпендикулярна плоскостям проекций V и H.
На рис. 3.11 плоскость задана кругом с центром в точке О и ее профильная проекция имеет натуральную величину этого круга.
!!! Запомните характерные признаки профильной плоскости на чертеже – ее фронтальная и горизонтальная п р о е к ц и и представляют собой прямые (вырожденные проекции δV и δH), перпендикулярные оси проекций x и параллельные осям z и y.
Проведение плоскости частного положения через прямую общего положения (заключение прямой линии в плоскость частного положения)
Очень часто для решения различных задач требуется провести через прямую общего положения плоскость частного положения. Это графическое действие называется «заключить» прямую в плоскость частного положения (проецирующую или уровня).
На рис. 3.12, а, б показано графическое оформление этого действия.
На рис. 3.12, а прямая общего положения АВ(A»B», A’B’) заключена во фронтально-проецирующую плоскость β. Это означает, что прямая теперь лежит в этой плоскости и, следовательно, фронтальный след плоскости β(βV) совпадает с фронтальной проекцией АВ(А»В») прямой; графически это действие оформляется продолжением фронтальной проекции прямой с обозначением следа надписью βV (рис. 3.12, б).
!!! Горизонтальная проекция плоскости β не оформляется на чертеже, но подразумевается (показана ограниченным тонкой волнистой линией отсеком произвольной формы, так как плоскость в пространстве не имеет границ).
На рис. 3.12, в прямая общего положения CD(C»D», C’D’) заключена в горизонтально-проецирующую плоскость δ и это действие оформлено обозначением следа надписью δh на продолжении горизонтальной проекции заданной прямой (рассуждения аналогичны).
Структуризация материала третьей лекции в рассмотренном объеме схематически представлена на рис. 3.13 (лист 1). На последующих листах 2 и 3 компактно приведены иллюстрации к этой схеме для визуального закрепления основной части изученного материала при повторении (рис. 3.14 и 3.15).
Положение плоскости относительно плоскостей проекций
Плоскость общего положения. Задание плоскости на чертеже.
Прямой и точкой
Пересекающимися прямыми
Параллельными прямыми
Замкнутым отсеком
а
Плоскости частного положения — проецирующие
Характерные линии плоскости
Горизонтально-проецирующая плоскость: 
Фронтально-проецирующая плоскость: 
Профильно-проецирующая плоскость: 
Плоскости частного положения — уровня
Горизонтальная плоскость уровня: //H(

Фронтальная плоскость уровня: //V(

Профильная плоскость уровня: //W( 

Изображение плоскости на чертеже
Что такое плоскость? Из геометрии известно, что плоскость представляет собой бесконечную поверхность, которая на всем своем протяжении имеет одинаковое направление. Примером получения плоскости в пространстве может служить параллельное перемещение одной прямой по второй неподвижной прямой. Простейшими плоскостями считаются плоские геометрические фигуры (треугольник, круг и т.п.)
Плоскость на чертеже может быть задана (рис. 3.1):
- — проекциями трех точек, не лежащих на одной прямой (см. рис. 3.1, а);
- — проекциями отрезка прямой и точкой, не лежащей на прямой (см. рис. 3.1, б);
- — проекциями двух пересекающихся отрезков прямых (см. рис. 3.1, в);
- — проекциями двух отрезков параллельных прямых (см. рис. 3.1, г);
- — проекциями плоской фигуры (треугольника) (см. рис. 3.1, д);
Соединяя проекции точек на первых четырех рисунках, можно перейти к изображению в виде треугольника или других плоских фигур.
На рис. 3.1, е изображена в пространстве плоскость, заданная треугольником 
Плоскость на чертеже также может быть задана следами плоскости. Следами плоскости называются линии пересечения плоскости с плоскостями проекций (рис. 3.2, а, б).
Плоскость 






На рис. 3.2, а показаны горизонтальный 







Целесообразно следы плоскости обозначить на чертежах по наименованию самих плоскостей проекций 




Построение следов плоскости 













Прямая и точка в плоскости
Прямая принадлежит плоскости, если она проходит через две точки, находящиеся в этой плоскости, или если она проходит через одну точку плоскости и параллельна прямой, принадлежащей данной плоскости (рис. 3.5).
На рис. 3.5, а плоскость 







Точка принадлежит плоскости, если она принадлежит прямой, находящейся в этой плоскости. На рис. 3.6 показано построение проекции точки 
Для решения задачи проводим в плоскости, заданной треугольником 









Чтобы построить проекции точки 



Главные линии плоскости
К главным линиям плоскости относятся горизонтали 


Горизонталью 






На рис. 3.9. показано наглядное изображение плоскости 










Фронталью плоскости 

На рис. 3.11, а показано наглядное изображение плоскости 


Профильной прямой 
В этом случае фронтальная и горизонтальная проекции профильной прямой 


Линиями наибольшего наклона плоскости к плоскостям проекций (горизонтальной, фронтальной и профильной) называются прямые, принадлежащие этой плоскости и перпендикулярные фронталям, горизонталям, профильным прямым плоскости, или же соответствующим следам плоскости. Линию наибольшего наклона к горизонтальной плоскости проекций чаще всего называют линией ската.
Так, если в точку 




Чтобы в плоскости 




Определение угла наклона плоскости к плоскостям проекций 
Положение плоскости относительно плоскостей проекций
Плоскость в пространстве может занимать относительно плоскостей проекций 
Проецирующие плоскости: горизонтально-проецирующая (перпендикулярна к 

В горизонтально-проецирующей плоскости (рис. 3.15, а, б) фронтальный след 





На рис. 3.15, в изображен треугольник 













Фронтально-проецирующие плоскости 


В данном случае (см. рис. 3.16, а и б) горизонтальный след 







Угол 





Профильно-проецирующая плоскость показана на рис. 3.17. На рис. 3.17, а показано наглядное изображение профильно-проецирующей плоскости 




Профильно-проецирующая плоскость, проходящая через ось 

Плоскости уровня. К ним относятся горизонтальная плоскость — параллельная 


На рис. 3.18, а показано наглядное изображение горизонтальной плоскости 




Прямая линия, параллельная плоскости
Прямая линия относительно плоскости может занимать следующие положения: находиться в плоскости, быть параллельной плоскости и пересекаться с плоскостью.
Из геометрии известно, что прямая линия параллельна плоскости, если она параллельна любой прямой, находящейся в этой плоскости. Пусть требуется через точку 

В треугольнике 







Если бы была поставлена задача провести через точку 






В случае построения прямой, параллельной плоскости 



На рис. 4.3, а в плоскости 



На рис. 4.3, б в плоскости 






Прямая линия, перпендикулярная плоскости
Прямая линия перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости (рис. 4.4).
На комплексном чертеже легко построить проекции прямого угла между прямой общего положения и линией уровня (фронталью, горизонталью). На основании свойств прямого угла прямой угол проецируется в натуральную величину, например, на 



Если задать плоскость двумя пересекающимися прямыми 




Для того чтобы прямая была перпендикулярна плоскости, необходимо и достаточно, чтобы на чертеже ее горизонтальная проекция была перпендикулярна горизонтальной проекции горизонтали, а фронтальная проекция прямой — перпендикулярна фронтальной проекции фронтали.
В случае, если плоскость задана следами, то, учитывая, что горизонтальная проекция горизонтали 





Прямая линия, пересекающаяся с плоскостью частного положения
Точку пересечения (встречи) прямой линии с плоскостью частного положения определяют непосредственно из чертежа, без дополнительных построений, так как известно, что следы плоскостей частного положения обладают собирательным свойством, и любая точка, находящаяся в плоскости, обязательно проецируется на один из следов плоскости; вторая проекция точки находится по линии связи. Подробно это рассмотрим на примере пересечения отрезка 

Отрезок 







На рис. 4.8, в приведен пример определения точки пересечения прямой 
Пересечение плоскости частного положения с плоскостью общего положения
Рассмотрим построение линии пересечения плоскости общего положения 

Из наглядного изображения (рис. 4.10, а) видно, что на пересечении горизонтальных следов плоскостей 








Пример построения линии пересечения горизонтально-проецирующей плоскости 
На рис. 4.11, а показано наглядное изображение двух плоскостей с линией пересечения 12, на рис. 4.11, б это показано на чертеже. Горизонтальная проекция линии пересечения 
Построение линии пересечения плоскости общего положения 

Так как плоскость 













Проведение плоскостей частного положения через прямую линию
Для решения задач на определение точек пересечения прямой с различными плоскостями необходимо проводить дополнительные построения, такие, например, как проведение через прямую проецирующих плоскостей или плоскостей уровня. Через прямую общего положения можно провести любую проецирующую плоскость (рис. 4.13, 4.14), а через прямые, параллельные плоскостям проекций, можно провести как проецирующие плоскости, так и плоскости уровня (см. рис. 4.14).
В заключение необходимо определить видимые и невидимые части прямой 



При определении видимости прямой 



















При определении видимости прямой 




















При определении точки пересечения прямой 







Пересечение двух плоскостей общего положения
Линия пересечения двух плоскостей — это прямая, принадлежащая как одной, так и другой плоскости. Но положение любой прямой в пространстве определяется положением двух ее точек. Поэтому для построения линии пересечения двух плоскостей надо найти две точки, каждая из которых принадлежит обеим плоскостям.
Рассмотрим построение линии пересечения двух плоскостей 
На наглядном изображении (см. рис. 4.19, а) показана линия пересечения этих плоскостей — 



Точка 









При построении линии пересечения двух плоскостей общего положения, заданных непрозрачными треугольниками 


Для нахождения точки пересечения стороны 













Точка пересечения стороны 



Видимость участков треугольников определена таким же образом, как и в примере, приведенном на рис. 4.17.
Видимость треугольников относительно горизонтальной плоскости проекций 
















Относительно фронтальной плоскости проекций 










Взаимно параллельные плоскости
Две плоскости в пространстве могут занимать два различных положения: они могут быть параллельны между собой или пересекаться.
Две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Рассмотрим параллельность плоскостей на примере. Пусть требуется через точку 




Через точку 











Если плоскости заданы следами, то признаком параллельности данных плоскостей является параллельность одноименных следов 

Рассмотрим пример построения параллельной плоскости, проходящей через заданную точку. Пусть требуется через точку 


Для решения задачи через точку 
















Следует отметить, что плоскости также пересекаются, если хотя бы одна пара одноименных следов пересекается. На рис. 5.5, а показаны две горизонтально-проецирующие плоскости, 




Взаимно перпендикулярные плоскости
Две плоскости взаимно перпендикулярны:
- — если одна из них проходит через перпендикуляр к другой плоскости (рис. 5.6);
- — если одна из плоскостей проходит перпендикулярно прямой, расположенной в другой плоскости (рис. 5.7).
Иными словами, две плоскости взаимно перпендикулярны, если имеется возможность провести прямую, принадлежащую одной плоскости и одновременно перпендикулярную к другой плоскости.
В первом случае (см. рис. 5.6) плоскость 






Рассмотрим построение взаимно перпендикулярных плоскостей на чертеже. Пусть требуется провести плоскость через отрезок прямой 











Рассмотрим второй случай. Пусть требуется из точки 


Иными словами, чтобы сторона 













На приведенных примерах (рис. 5.10 и рис. 5.11) изображены взаимно перпендикулярные плоскости, которые заданы треугольником 
Плоскость 


Плоскость 



Следует также отметить, что перпендикулярность горизонтальных следов плоскости общего положения 

Это легко доказать, если попытаться провести прямую, принадлежащую плоскости 


Перпендикулярность фронтальных следов плоскости общего положения и фронтально проецирующей также дает основание утверждать о перпендикулярности этих плоскостей. Доказательство аналогичное.
Однако если одноименные следы двух плоскостей общего положения перпендикулярны между собой, то такие плоскости не перпендикулярны (рис. 5.13), т.к. здесь не соблюдается условие перпендикулярности плоскостей. Невозможно провести прямую, принадлежащую одной плоскости, например, 




Взаимно перпендикулярные прямые
Как известно (см. раздел 4.2), легко построить прямой угол между прямой общего положения и прямой уровня (фронталью, горизонталью).
Чтобы построить две взаимно перпендикулярные прямые общего положения, необходимо предварительно выполнить дополнительные построения, т.к. прямой угол между такими прямыми проецируется на плоскости проекций с искажением.
Пусть требуется из точки 
Для решения задачи необходимо выполнить следующее:
Для этого нужно заключить прямую 








На рис. 5.15 приведено решение задачи на проведение через точку 



















Метрические задачи на определение расстояний
Рассмотрим решение задач на определение расстояний от точки до плоскости и до прямой линии общего положения. Пусть требуется определить расстояние от точки 

Из точки 









При определении расстояния от точки 

Отрезок 

На рис. 5.18 показано определение расстояния от точки 
Чтобы провести из точки 












При определении расстояния от точки 











Плоскость в проекциях с числовыми отметками
В проекциях с числовыми отметками плоскость может быть задана:
- тремя точками, не лежащими на одной прямой (рис. 13.7, а);
- прямой и точкой, не лежащей на прямой (см. рис. 13.7, б);
- двумя параллельными прямыми (см. рис. 13.7, в);
- двумя пересекающимися прямыми (см. рис. 13.7, г);
5) масштабом уклона плоскости (рис. 13.8, а и б).
Задание плоскости масштабом уклона является наиболее наглядным и удобным.
Масштабом уклона плоскости называется градуированная проекция линии наибольшего наклона плоскости.
На рис. 13.8, а изображена плоскость 






Иногда необходимо определить положение плоскости относительно меридиана Земли. Для этой цели вводятся понятия: направление простирания плоскости и угол простирания плоскости
За направление простирания плоскости принимают правое направление горизонталей, если смотреть в сторону возрастания отметок.
Угол простирания плоскости — это угол между направлением меридиана и направлением простирания плоскости. Угол отсчитывают от северного конца меридиана против часовой стрелки до направления простирания (см. рис. 13.9, б).
Угол простирания плоскости и ее уклон определяют положение плоскости относительно сторон света.
Прямая в плоскости
В проекциях с числовыми отметками при проектировании инженерных сооружений появляется необходимость решения некоторых вспомогательных задач.
Рассмотрим способы решения этих задач на конкретных примерах.
На рис. 13.10 показано построение произвольной прямой 





На рис. 13.11 показано построение произвольной плоскости 


На рис. 13.12, а показано наглядное изображение плоскости 

Построение выполняем в следующем порядке:
- строим прямой круговой конус с вершиной в произвольной точке В на прямой, образующие которого имеют уклон
равный заданному уклону плоскости;
- горизонтали искомой плоскости будут касательными к одноименным горизонталям конуса;
- образующая касания конуса является линией наибольшего наклона искомой плоскости, а ее горизонтальная проекция — масштабом уклона искомой плоскости.
На рис.13.12, б дано построение плоскости с заданным уклоном 

1) находим интервал 

2) проводим горизонтали конуса — концентрические окружности на расстоянии интервала 
3) градуируем прямую 
4) задача имеет два решения, так как через каждую точку прямой можно провести две различные касательные к окружности.
Взаимное положение двух плоскостей
Если две плоскости 
На рис. 13. 14 дано построение линии пересечения двух плоскостей 


Если две плоскости параллельны, то в проекциях с числовыми отметками масштабы уклонов их будут параллельны, интервалы равны, отметки возрастают в одну сторону (рис. 13.15).
Взаимное положение прямой линии и плоскости
На рис. 13.16 дано наглядное изображение точки пересечения прямой с плоскостью. Для определения точки пересечения прямой с плоскостью необходимо:
- через заданную прямую
провести произвольную вспомогательную плоскость
- найти линию пересечения
заданной
и вспомогательной
плоскостей;
- определить точку пересечения
прямой
с линией пересечения
так как линия
принадлежит плоскости
то точка
— это точка пересечения прямой
с плоскостью
На рис. 13.17 прямая 

Для определения точки пересечения прямой с плоскостью необходимо выполнить следующие построения:
- проградуировать прямую
- проградуировать сторону
треугольника
- построить две горизонтали в
первую провести через точку
и точку с отметкой 5 на прямой
а вторую — через точку с отметкой 4 на прямой
параллельно первой горизонтали;
- заключить прямую
во вспомогательную плоскость
Для этого через точки прямой с отметками 4 и 5 проводим горизонтали таким образом, чтобы они пересекали одноименные горизонтали плоскости
в пределах чертежа. Полученные точки принадлежат линии пересечения
двух плоскостей
- продолжить линию пересечения
до пересечения с прямой
Точка
является точкой пересечения прямой
с плоскостью
Если прямая перпендикулярна плоскости, то ее проекция перпендикулярна горизонталям плоскости или параллельна масштабу уклона плоскости.
Интервал прямой по величине будет обратен интервалу плоскости, и отметки будут возрастать в разных направлениях.
На рис. 13.18 изображены плоскость 


Известно, что горизонтальная проекция перпендикуляра к плоскости составляет прямой угол с одноименными проекциями горизонталей этой плоскости
Рассмотрим прямоугольный треугольник 



Из чертежа 13.18 видно, что 

На рис. 13.19 дан пример определения расстояния от точки 

Построения необходимо выполнять в следующей последовательности:
1. Из точки 


2. Градуируем проекцию перпендикуляра. Для этого определим интервал перпендикуляра по формуле 


Интервал перпендикуляра можно определить другим способом с помощью прямоугольного треугольника. Для этого в любом месте чертежа возьмем произвольную точку 











3. Проведем через перпендикуляр вспомогательную плоскость, изобразив ее горизонталями
4. Строим линию 
5. Находим точку встречи 

Проекции тел и поверхностей
Проекции с числовыми отметками позволяют судить о форме тел по одной горизонтальной проекции и высотным отметкам, указывающим характерные точки поверхности
Многогранники задаются проекциями своих ребер с указанием отметок их вершин (рис. 14.1, а и б).
Если тела ограничены кривыми поверхностями, то они задаются проекциями горизонтальных сечений, которые являются линиями пересечения поверхности данного тела плоскостями, параллельными плоскости По и отстоящими друг от друга на расстоянии, которое называется высотой сечения и может быть равно 1 м, 5 м, 10 м и т.д.(рис. 14.2, а и б).
Земная (топографическая) поверхность — это поверхность случайного вида, образование которой не описывается математическими законами.
Топографическая поверхность изображается проекциями горизонталей, которые представляют собой линии пересечения земной поверхности плоскостями уровня и сопровождаются отметками, указывающими высоту сечения (рис. 14.3, а и б).
Пересечение поверхности плоскостью
Линией пересечения любой поверхности плоскостью называется линия, соединяющая точки пересечения их горизонталей с одинаковыми отметками.
Сечение топографической поверхности вертикальной плоскостью называется профилем
На рис. 14.4, а топографическая поверхность задана горизонталями (17, 1S, 19, 20), плоскость — горизонтальным следом, совпадающим с направлением 

На рис. 14.5 дано построение профиля по линии 
На рис 14.6 топографическая поверхность, заданная горизонталями 11 — 15, пересекается произвольной плоскостью, заданной масштабом уклона
Изображаем плоскость 


Пересечение прямой линии с поверхностью
Чтобы построить точку пересечения прямой 

Для нахождения точки пересечения прямой с поверхностью можно использовать другой способ. На рис. 14.8 дана прямая 
- заключаем прямую в вертикальную плоскость
- строим профиль топографической поверхности;
- спроецировав прямую на вспомогательную вертикальную плоскость, отмечаем фронтальные проекции точек пересечения прямой
с профилем топографической поверхности.
Отметки точек определяем по их фронтальным проекциям
Примеры решения инженерных задач в проекциях с числовыми отметками
При проектировании различных инженерных земляных сооружений, таких как строительные площадки, железные и автомобильные дороги и пр., приходится строить их откосы и линии пересечения этих откосов.
Откосами называются плоскости и поверхности, которые ограничивают строительную площадку со всех сторон и соединяют ее с поверхностью местности.
В том случае, когда уровень строительной площадки выше уровня поверхности местности, площадка выполняется в виде насыпи, а когда ниже, то в виде выемки. Углы наклона (уклона) откосов задаются при проектировании сооружения и зависят от типа грунта.
Пример 1.
Построить откосы строительной площадки и определить линии их пересечения
На рис. 14.9 показан план строительной площадки, ограниченной контуром 
Площадка ограничена отрезками прямых 

Проектирование откосов площадки заключается в проведении плоскостей с заданным уклоном 

Интервалы плоскостей 













Плоскость 




Пример 2.
Построить линии пересечения откосов горизонтальной площадки с отметкой кромки +20 м и дороги, соединяющей площадку с местностью (рис. 14.10).
Уклоны откосов площадки равны 

Из рис. 14.10 видно, что дорога, соединяющая площадку с местностью, является участком прямолинейной наклонной дороги.
Кромки дороги 
Решение задачи сводится к проведению плоскости заданного уклона 


Радиус основания (интервал) этого конуса определяется по формуле:
Поэтому проекция горизонтали 19, проходящей через точку 
Остальные горизонтали этого откоса (плоскости 


Горизонтали откоса (плоскости 
Линию пересечения откоса площадки (плоскости 

Пример 3.
Построить границы земляных работ при проектировании строительной площадки с примыкающим к ней со стороны насыпи прямолинейным участком дороги на топографической поверхности.
На рис. 14.11 дана строительная площадка с отметкой 


Для определения границы земляных работ необходимо выполнить следующие построения:
1. Определить границы выемки и насыпи на пересечении 42-ой горизонтали топографической поверхности с кромками площадки, имеющими отметку 42. Точки пересечения называются точками нулевых работ.
2. Провести горизонтали откосов выемки н насыпи с интервалами 
3. Провести градуирование бровок дороги (42 -39).
Для проведения горизонталей откосов, проходящих через бровки дороги, необходимо провести вспомогательные конусы с радиусами оснований 
4. Построить линии пересечения соседних откосов как точки пересечения горизонталей откосов с одинаковыми отметками.
5. Построить границы земляных работ как линии пересечения откосов выемки и насыпи с топографической поверхностью. Эти линии проходят через точки пересечения горизонталей откосов н горизонталей топографической поверхности с одинаковыми отметками.
- Поверхности
- Изображения и обозначения на чертежах
- Отображение пространственных объектов на плоскость
- Моделирование линии на эпюре Монжа
- Методы проецирования
- Образование проекций
- Точка и прямая
- Прямая линия
Лекция № 2. Точка
1. Проекции точки на две плоскости проекций
Рассмотрим проекции точек на две плоскости, для чего возьмем две перпендикулярные плоскости (рис. 4), которые будем называть горизонтальной фронтальной и плоскостями. Линию пересечения данных плоскостей называют осью проекций. На рассмотренные плоскости спроецируем одну точку А с помощью плоской проекции. Для этого необходимо опустить из данной точки перпендикуляры Аа и A на рассмотренные плоскости.
Проекцию на горизонтальную плоскость называют горизонтальной проекцией точки А, а проекцию а́ на фронтальную плоскость называют фронтальной проекцией.
Точки, которые подлежат проецированию, в начертательной геометрии принято обозначать с помощью больших латинских букв А, В, С. Для обозначения горизонтальных проекций точек применяют малые буквы а, b, с… Фронтальные проекции обозначают малыми буквами со штрихом вверху а́, b́, с́…
Применяется также и обозначение точек римскими цифрами I, II,… а для их проекций — арабскими цифрами 1, 2… и 1́, 2́…
При повороте горизонтальной плоскости на 90° можно получить чертеж, в котором обе плоскости находятся в одной плоскости (рис. 5). Данная картина называется эпюром точки.
Через перпендикулярные прямые Аа и Аа́ проведем плоскость (рис. 4). Полученная плоскость является перпендикулярной фронтальной и горизонтальной плоскостям, потому что содержит перпендикуляры к этим плоскостям. Следовательно, данная плоскость перпендикулярна линии пересечения плоскостей. Полученная прямая пересекает горизонтальную плоскость по прямой аах, а фронтальную плоскость — по прямой а́ах. Прямые аах и а́ах являются перпендикулярными оси пересечения плоскостей. То есть Аааха́ является прямоугольником.
При совмещении горизонтальной и фронтальной плоскостей проекции а и а́ будут лежать на одном перпендикуляре к оси пересечения плоскостей, так как при вращении горизонтальной плоскости перпендикулярность отрезков аах и а́ах не нарушится.
Получаем, что на эпюре проекции а и а́ некоторой точки А всегда лежат на одном перпендикуляре к оси пересечения плоскостей.
Две проекции а и а́ некоторой точки А могут однозначно определить ее положение в пространстве (рис. 4). Это подтверждается тем, что при построении перпендикуляра из проекции а к горизонтальной плоскости он пройдет через точку А. Точно так же перпендикуляр из проекции а́ к фронтальной плоскости пройдет через точку А, т. е. точка А находится одновременно на двух определенных прямых. Точка А является их точкой пересечения, т. е. является определенной.
Рассмотрим прямоугольник Aaaха́ (рис. 5), для которого справедливы следующие утверждения:
1) Расстояние точки А от фронтальной плоскости равно расстоянию ее горизонтальной проекции а от оси пересечения плоскостей, т. е.
Аа́ = аах;
2) расстояние точки А от горизонтальной плоскости проекций равно расстоянию ее фронтальной проекции а́ от оси пересечения плоскостей, т. е.
Аа = а́ах.
Иначе говоря, даже без самой точки на эпюре, используя только две ее проекции, можно узнать, на каком расстоянии от каждой из плоскостей проекций находится данная точка.
Пересечение двух плоскостей проекций разделяет пространство на четыре части, которые называют четвертями (рис. 6).
Ось пересечения плоскостей делит горизонтальную плоскость на две четверти — переднюю и заднюю, а фронтальную плоскость — на верхнюю и нижнюю четверти. Верхнюю часть фронтальной плоскости и переднюю часть горизонтальной плоскости рассматривают как границы первой четверти.
При получении эпюра вращается горизонтальная плоскость и совмещается с фронтальной плоскостью (рис. 7). В этом случае передняя часть горизонтальной плоскости совпадет с нижней частью фронтальной плоскости, а задняя часть горизонтальной плоскости — с верхней частью фронтальной плоскости.
На рисунках 8-11 показаны точки А, В, С, D, располагающиеся в различных четвертях пространства. Точка А расположена в первой четверти, точка В — во второй, точка С — в третьей и точка D — в четвертой.
При расположении точек в первой или четвертой четвертях их горизонтальные проекции находятся на передней части горизонтальной плоскости, а на эпюре они лягут ниже оси пересечения плоскостей. Когда точка расположена во второй или третьей четверти, ее горизонтальная проекция будет лежать на задней части горизонтальной плоскости, а на эпюре будет находиться выше оси пересечения плоскостей.
Фронтальные проекции точек, которые расположены в первой или второй четвертях, будут лежать на верхней части фронтальной плоскости, а на эпюре будут находиться выше оси пересечения плоскостей. Когда точка расположена в третьей или четвертой четверти, ее фронтальная проекция — ниже оси пересечения плоскостей.
Чаще всего при реальных построениях фигуру располагают в первой четверти пространства.
В некоторых частных случаях точка (Е) может лежать на горизонтальной плоскости (рис. 12). В этом случае ее горизонтальная проекция е и сама точка будут совпадать. Фронтальная проекция такой точки будет находиться на оси пересечения плоскостей.
В случае, когда точка К лежит на фронтальной плоскости (рис. 13), ее горизонтальная проекция k лежит на оси пересечения плоскостей, а фронтальная ḱ показывает фактическое местонахождение этой точки.
Для подобных точек признаком того, что она лежит на одной из плоскостей проекций, служит то, что одна ее проекция находится на оси пересечения плоскостей.
Если точка лежит на оси пересечения плоскостей проекций, она и обе ее проекции совпадают.
Когда точка не лежит на плоскостях проекций, она называется точкой общего положения. В дальнейшем, если нет особых отметок, рассматриваемая точка является точкой общего положения.
2. Отсутствие оси проекций
Для пояснения получения на модели проекций точки на перпендикулярные плоскости проекций (рис. 4) необходимо взять кусок плотной бумаги в форме удлиненного прямоугольника. Его нужно согнуть между проекциями. Линия сгиба будет изображать ось пересечения плоскостей. Если после этого согнутый кусок бумаги вновь расправить, получим эпюр, похожий на тот, что изображен на рисунке.
Совмещая две плоскости проекций с плоскостью чертежа, можно не показывать линию сгиба, т. е. не проводить на эпюре ось пересечения плоскостей.
При построениях на эпюре всегда следует располагать проекции а и а́ точки А на одной вертикальной прямой (рис. 14), которая перпендикулярна оси пересечения плоскостей. Поэтому, даже если положение оси пересечения плоскостей остается неопределенным, но ее направление определено, ось пересечения плоскостей может находиться на эпюре только перпендикулярно прямой аа́.
Если на эпюре точки нет оси проекций, как на первом рисунке 14 а, можно представить положение этой точки в пространстве. Для этого проведем в любом месте перпендикулярно прямой аа́ ось проекции, как на втором рисунке (рис. 14) и согнем чертеж по этой оси. Если восстановить перпендикуляры в точках а и а́ до их пересечения, можно получить точку А. При изменении положения оси проекций получаются различные положения точки относительно плоскостей проекций, но неопределенность положения оси проекций не влияет на взаимное расположение нескольких точек или фигур в пространстве.
3. Проекции точки на три плоскости проекций
Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.
Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной.
В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х, общую прямую горизонтальной и профильной плоскостей — осью у, а общую прямую фронтальной и профильной плоскостей — осью z. Точка О, которая принадлежит всем трем плоскостям, называется точкой начала координат.
На рисунке 15а показана точка А
Конец ознакомительного фрагмента.

















































проводят вспомогательную плоскость Р (лучше проецирующую);
и вспомогательной плоскости F;































































































































































и находят
по линиям связи. На горизонтальной проекции точка пересечения прямой d с
— точка встречи
определяем по линиям связи).





































































































































равный заданному уклону плоскости;



провести произвольную вспомогательную плоскость 
заданной
и вспомогательной
плоскостей;
прямой
с линией пересечения
так как линия
принадлежит плоскости
то точка
— это точка пересечения прямой
с плоскостью 



треугольника 
первую провести через точку
и точку с отметкой 5 на прямой
а вторую — через точку с отметкой 4 на прямой
параллельно первой горизонтали;
во вспомогательную плоскость
Для этого через точки прямой с отметками 4 и 5 проводим горизонтали таким образом, чтобы они пересекали одноименные горизонтали плоскости
в пределах чертежа. Полученные точки принадлежат линии пересечения
двух плоскостей 
до пересечения с прямой
Точка
является точкой пересечения прямой
с плоскостью 
















с профилем топографической поверхности.





















