Вы уже знакомы с прямоугольной системой координат на
плоскости, другими словами прямоугольной координатной плоскостью. Такую
систему координат задают две взаимно перпендикулярные прямые, на каждой
из которых выбрано направление и величина единичного отрезка. Эти
прямые называют осями абсцисс и ординат.
Точку пересечения осей называют точкой начала координат.
Прямоугольную систему координат на плоскости
обозначают Оху.
Каждой точке плоскости сопоставляется только одна
пара чисел, которые называют её координатами. Для определения координат,
из точки нужно провести перпендикуляры к осям, тем самым мы и получим абсциссу
и ординату точки.
Определение:
Если же через точку пространства проведены
три попарно перпендикулярные прямые, а на каждой из них выбрано направление и
единичный отрезок, то говорят, что задана прямоугольная система координат
в пространстве.
Прямые с выбранными на них направлениями называют осями
координат, а точку их пересечения — началом координат.
Как и на плоскости её обычно обозначают буквой О.
Оси координат обозначают так: Ох, Оу, Оz.
И называют осью абсцисс, осью ординат и, новым
является название третьей оси, ось аппликат.
Прямоугольную систему координат в пространстве
обозначают Охуz.
Через каждые 2 оси координат проходят координатные
плоскости: Оху, Оуz и Охz.
Всего таких плоскостей 3.
Каждая ось делится точкой О на два луча. В
соответствии с этим, лучи, направление которых совпадает с направлением оси,
называют положительными полуосями, а оставшиеся лучи — отрицательными
полуосями.
Каждой точке пространства сопоставляется только одна
тройка чисел, которые называют её координатами. Их определяют
аналогично тому, как это делали на плоскости. Только через точку М проводят
плоскости перпендикулярные координатным осям.
Точки пересечения проведённых плоскостей с осями
координат назовём М1, М2 и М3.
Первая координата точки М, то есть её абсцисса,
равна длине отрезка ОМ1.
Вторая координата, которую называют ординатой, равна
длине отрезка ОМ2.
Ну, а третья координата, а точнее аппликата, равна
длине отрезка ОМ3.
Координаты точки записывают в скобках, при этом
первой записывают абсциссу, второй — ординату, а третьей — аппликату.
В данном случае точки М1, М2 и
М3 являются точками положительных полуосей, поэтому и координаты
точки М будут положительными числами.
Рассмотрим примеры различного расположения точек в
прямоугольной системе координат.
Задание:
определить координаты точек А, В, С, D,
Е и F.
После выполнения этого задания можно сделать вывод
о том, что если точка лежит в некоторой координатной плоскости или на
некоторой координатной оси, то её соответствующие координаты будут равны нулю.
Так если точка лежит в координатной плоскости
ОИксИгрек, то её аппликата равна нулю. Если точка лежит в координатной
плоскости ОИксЗэт, то её ордината равна нулю. И если точка лежит в координатной
плоскости ОИгрекЗэт, то её абсцисса равна нулю.
Ну, а в случаях, когда точка лежит на одной из осей,
только одна координата является ненулевой.
Задание:
По координатам точек 𝐴(3;−1;0), 𝐵(0;0;−7),
𝐶(2;0;0),
𝐷(−4;0;3),
𝐸(0;−1;0),
𝐹(1;2;3),
𝐺(0;5−7),
𝐻(−√5;√3;0)
определить, какие из них лежат на той или иной координатной оси или в той или
иной координатной плоскости.
Решение:
Задание:
найти координаты проекций точки 𝐴(2;−3;5)
на каждую из координатных плоскостей и на каждую из координатных осей.
Далее найдём координаты проекций точки А на
координатные плоскости.
Проекцией точки А на координатную плоскость Оху
является основание перпендикуляра, проведённого из точки А к данной
координатной плоскости. При этом координаты полученной проекции будут такими же
как у точки А, только аппликата станет равной нулю.
Аналогично получим проекцию точки А на координатную
плоскость Оуz. Проведём
перпендикуляр из данной точки к данной координатной плоскости. Его основание и
является проекцией точки А на плоскость Оуz.
Координаты данной проекции равны координатам точки А, только абсцисса равна
нулю.
Ну, а проекция точки А на координатную плоскость Охz
будет иметь координаты 2, 0, 5.
Так мы с вами нашли координаты проекций точки А на
координатные оси и на координатные плоскости.
Задание:
𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1−
куб; 𝐴(0;0;0),
𝐵(0;0;1),
𝐷(0;1;0),
𝐴1
(1;0;0). Найти координаты точек 𝐶,
𝐵1,
𝐶1
и 𝐷1.
Решение:
Изобразим прямоугольную систему координат. Отметим точки, являющиеся вершинами
куба, координаты которых известны.
Итоги:
На этом уроке вы познакомились с понятием
прямоугольной системы координат в пространстве. Узнали, что её задают три
взаимно перпендикулярные прямые, на которых выбраны направления и единичные
отрезки. Эти прямые называют координатными осями. Точку пересечения осей
называют точкой начала координат.
Ось Ох называют осью абсцисс, ось Оу называют осью
ординат, и новым для вас является название оси Оz
— ось аппликат. Помимо осей координат в прямоугольной системе координат
присутствуют и координатные плоскости: Оху, Оуz
и Охz.
Всю прямоугольную систему координат в пространстве
обозначают Охуz.
Любой точке пространства соответствует только одна
тройка чисел х, у и z, которые и
являются её координатами. Все координаты точки О начала координат равны нулю.
Марина Николаевна Ковальчук
Эксперт по предмету «Геометрия»
Задать вопрос автору статьи
Прямоугольная система координат
Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.
Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)
Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ
Координаты точки
Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).
Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ
Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).
Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ
«Координаты точки и координаты вектора. Как найти координаты вектора» 👇
Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.
Пример 1
Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.
Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ
Решение.
Точка $O$ начало координат, следовательно, $O=(0,0,0)$.
Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит
$Q=(2,0,0)$, $N=(0,0,1.5)$, $R=(0,2.5,0)$
Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит
$S=(2,0,1.5)$, $L=(2,2.5,0)$, $R=(0,2.5,1.5)$
Точка $P$ имеет координаты $P=(2,2.5,1.5)$
Координаты вектора по двум точкам и формула нахождения
Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $overline{i}$, по направлению оси $Oy$ — единичный вектор $overline{j}$, а единичный вектор $overline{k}$ нужно направлять по оси $Oz$.
Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).
Теорема 1
Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.
Математически это выглядит следующим образом:
$overline{δ}=moverline{α}+noverline{β}+loverline{γ}$
Так как векторы $overline{i}$, $overline{j}$ и $overline{k}$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $overline{δ}$ в этой системе координат, по теореме 1, может принимать следующий вид
$overline{δ}=moverline{i}+noverline{j}+loverline{k}$ (1)
где $n,m,l∈R$.
Определение 1
Три вектора $overline{i}$, $overline{j}$ и $overline{k}$ будут называться координатными векторами.
Определение 2
Коэффициенты перед векторами $overline{i}$, $overline{j}$ и $overline{k}$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть
$overline{δ}=(m,n,l)$
Линейные операции над векторами
Теорема 2
Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.
Доказательство.
Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $overline{α}=(α_1,α_2,α_3)$, $overline{β}=(β_1,β_2 ,β_3)$.
Эти вектора можно записать следующим образом
$overline{α}=α_1overline{i}+ α_2overline{j}+α_3overline{k}$, $overline{β}=β_1overline{i}+ β_2overline{j}+β_3overline{k}$
$overline{α}+overline{β}=α_1overline{i}+α_2overline{j}+α_3overline{k}+β_1overline{i}+ β_2overline{j}+β_3overline{k}=(α_1+β_1 )overline{i}+(α_2+β_2 )overline{j}+(α_3+β_3)overline{k}$
Следовательно
$overline{α}+overline{β}=(α_1+β_1,α_2+β_2,α_3+β_3)$
Теорема доказана.
Замечание 1
Замечание: Аналогично, находится решение разности нескольких векторов.
Теорема 3
Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.
Доказательство.
Возьмем $overline{α}=(α_1,α_2,α_3)$, тогда $overline{α}=α_1overline{i}+α_2overline{j}+α_3overline{k}$, а
$loverline{α}=l(α_1overline{i}+ α_2overline{j}+α_3overline{k})=lα_1overline{i}+ lα_2overline{j}+lα_3overline{k}$
Значит
$koverline{α}=(lα_1,lα_2,lα_3)$
Теорема доказана.
Пример 2
Пусть $overline{α}=(3,0,4)$, $overline{β}=(2,-1,1)$. Найти $overline{α}+overline{β}$, $overline{α}-overline{β}$ и $3overline{α}$.
Решение.
$overline{α}+overline{β}=(3+2,0+(-1),4+1)=(5,-1,5)$
$overline{α}-overline{β}=(3-2,0-(-1),4-1)=(1,1,3)$
$3overline{α}=(3cdot 3,3cdot 0,3cdot 4)=(9,0,12)$
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.
Пожалуйста, добавьте нас в исключения блокировщика.
на главную
Как найти координаты точки
Поддержать сайт
Каждой точке координатной плоскости соответствуют две координаты.
Координаты точки на плоскости — это пара чисел, в которой на
первом месте стоит
абсцисса, а на
втором —
ордината точки.
Рассмотрим как в системе координат (на координатной плоскости):
- находить координаты точки;
- найти положение точки.
Чтобы найти координаты точки на плоскости, нужно опустить из этой точки
перпендикуляры на оси координат.
Точка пересечения с осью «x» называется абсциссой точки «А»,
а с осью y называется ординатой точки «А».
Обозначают координаты точки, как указано выше (·) A (2; 3).
Пример (·) A (2; 3) и (·) B (3; 2).
Запомните!
На первом месте записывают абсциссу (координату по оси «x»), а на втором —
ординату (координату по оси «y») точки.
Особые случаи расположения точек
- Если точка лежит на оси «Oy»,
то её абсцисса равна 0. Например,
точка С (0, 2). - Если точка лежит на оси «Ox», то её ордината равна 0.
Например,
точка F (3, 0). - Начало координат — точка O имеет координаты, равные нулю O (0,0).
- Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.
- Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.
- Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).
- Координаты любой точки, лежащей на оси ординат имеют вид (0, y).
Как найти положение точки по её координатам
Найти точку в системе координат можно двумя способами.
Первый способ
Чтобы определить положение точки по её координатам,
например, точки D (−4 , 2), надо:
- Отметить на оси «Ox», точку с координатой
«−4», и провести через неё прямую перпендикулярную оси «Ox». - Отметить на оси «Oy»,
точку с координатой 2, и провести через неё прямую перпендикулярную
оси «Oy». - Точка пересечения перпендикуляров (·) D — искомая точка.
У неё абсцисса равна «−4», а ордината равна 2.
Второй способ
Чтобы найти точку D (−4 , 2) надо:
- Сместиться по оси «x» влево на
4 единицы, так как у нас
перед 4
стоит «−». - Подняться из этой точки параллельно оси y вверх на 2 единицы, так
как у нас перед 2 стоит «+».
Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на
листе формата A4 в клеточку, можно скачать и использовать
готовую систему координат на нашем сайте.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».

Оставить комментарий:
Содержание:
Система координат на плоскости позволяет установить взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел (рис. 331). Координаты вы широко использовали для графического представления зависимостей, при решении систем уравнений, а также в геометрии, чтобы геометрическую задачу свести к задаче алгебраической.
Декартова система координат в пространстве
Чтобы ввести декартову систему координат в пространстве, выберем точку
Б) Вы знаете, что по координатам концов 


Аналогичная формула выражает длину отрезка 

Чтобы доказать эту формулу, рассмотрим плоскости, которые проходят через точки 


и 
Ранее вы доказывали, что координаты середины отрезка равны средним арифметическим соответствующих координат его концов. Это утверждение остаётся истинным и в случае пространства (см. пример 2 в § 6): если 


Пример:
На оси ординат найдём точку, равноудалённую от точек 
Решение:
Пусть 


или 
Ответ:
Пример:
Найдём условие, задающее геометрическое место точек, равноудалённых от начала координат и от точки
Решение:
Согласно геометрическим соображениям искомое множество состоит из всех тех точек, размещённых на серединных перпендикулярах к отрезку 




Ответ: Искомое геометрическое место точек есть плоскость, которая задаётся уравнением
Пример:
Найдём условие, которому удовлетворяют координаты точек плоскости 


Решение:
Пусть 


Поскольку


Ответ:
Вектор. Действия над векторами
А) С векторами вы встречались в курсе физики девятого класса, когда знакомились с векторными величинами. Физическая величина является векторной, если она характеризуется не только числовым значением, но и направлением. Такие величины, как сила, скорость и другие, обозначают направленными отрезками. Длина направленного отрезка (стрелки) характеризует числовое значение векторной величины (её модуль).
Особенностью понятия вектор является то, что все основные определения и свойства, связанные с этим понятием, формулируются почти одинаково как в планиметрии, так и в стереометрии.
Вектор в геометрии представляется направленным отрезком (рис. 336), начало которого считается началом вектора, а конец — концом вектора.
Расстояние между началом направленного отрезка и его концом считается длиной вектора.
Направленные отрезки 








Это напоминает ситуацию с дробями: определённое число может представляться разными дробями, например, дроби 


Если вектор 


Вектор, представленный направленным отрезком 



Если ненулевые векторы 






Ненулевые векторы 



Векторы можно складывать и умножать на число. Чтобы сложить векторы 

и тогда сумма векторов представляется направленным отрезком 
Сложение векторов имеет переместительное свойство, т. е. 




Произведением вектора 














С действием умножения вектора на число связываются два распределительных свойства— 
Б) Если векторы 




Для любых двух векторов существует плоскость, которой они параллельны. Векторы, параллельные одной плоскости, называют компланарными. Если векторы 





Истинно и обратное утверждение: если векторы 


Действительно, если векторы 





Теорема 1. Если векторы 



Доказательство: Сначала докажем существование нужных чисел. Представим векторы 




















Поэтому
Теперь докажем единственность представления. Допустим, что существуют две разные упорядоченные тройки чисел 




Поскольку тройки чисел 





Следствие 1. Из четырёх любых векторов пространства один может быть выражен через три других.
Действительно, если среди данных четырёх векторов пространства есть три некомпланарных, то четвёртый вектор можно через эти три выразить. Далее, если среди данных четырёх векторов пространства любые три компланарны, то может найтись среди них два неколлинеарных, или любых два вектора коллинеарны. В первом случае через эти два неколлинеарных вектора можно выразить третий и к полученному выражению прибавить четвёртый, умноженный на ноль. Во втором случае один из векторов можно выразить через другой и потом прибавить к этому выражению два оставшихся вектора, умноженных на ноль.
Таким образом, теперь вы знаете, что из двух коллинеарных векторов один может быть выражен через другой, из трёх компланарных векторов один может быть выражен через два других, а из четырёх любых векторов один может быть выражен через три других.
Пример №1
На кронштейне, состоящем из подкоса 



Решение:
Сила тяжести выражается вектором 






Поскольку углы 










Ответ. Под воздействием груза подкос сжимается с силой 
Пример №2
В правильной четырёхугольной пирамиде 









Решение:
Поскольку 























Имеем:
Поэтому
Учтём теперь то, что через некомпланарные векторы 






В) Пусть в пространстве выбрана декартова система координат 



Будем говорить, что вектор 





Теорема 2. Если 
Доказательство: Пусть задана декартова система координат 




Поскольку 


Середина отрезка 



Отсюда:

Теорема 3. Если 
Доказательство: Пусть задана декартова система координат 




Поэтому

Значит, вектор 
Докажем второе утверждение теоремы 3. Пусть сначала 













Если же 

Следствие 2. Если 
Пример №3
Дан параллелепипед 




а) векторы 


б) векторы 


Решение:
а) Имеем:
б) Будем рассматривать полученные равенства —





Теперь из последнего равенства выразим 

Далее можно последовательно выразить 


Пример №4
Через диагональ 






Решение:
Векторы 


Учтём, что 


Аналогично, существует такое число 


Значит,
Из условия следует, что векторы 


Поскольку 

Ответ:
Скалярное произведение векторов
А) Скалярным произведением векторов 



Скалярное произведение векторов имеет переместительное свойство 


У нулевого вектора направление не определено, поэтому удобно считать, что нулевой вектор перпендикулярен любому другому вектору.
С учётом этого получается следующее полезное утверждение: два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.
Теорема 1. Скалярное произведение векторов 

равенством
Доказательство: Поскольку 
Находим далее:
Аналогично,
Поэтому
Пример №5
Найдём длину вектора
Имеем: 
Пример №6
Найдём угол 

Имеем:
Поэтому:
Пример №7
Найдём длину вектора 




Имеем:
Поскольку
Поэтому
Б) Вы знаете, что плоскость в пространстве можно задать тремя точками, не лежащими на одной прямой. Поскольку существует единственная плоскость, проходящая через данную точку перпендикулярно данной прямой, то плоскость можно задавать указанием одной из её точек и вектора, ей перпендикулярного.
Теорема 2. Если плоскость проходит через точку 



Доказательство: Если 
проходящей через точку 
то векторы 

Истинно и обратное утверждение.
Теорема 3. Уравнению 

Доказательство: Если есть уравнение 








Поскольку 








Пример №8
Найдём уравнение плоскости, проходящей через точки А(2; 1; 3), В(4; 1, 2) и С(5; 2; 1).
Решение:
Найдём координаты векторов 



Чтобы записать уравнение плоскости 






Теперь можно записать уравнение плоскости, которая проходит через точку

В) Теорема 4. Если плоскость имеет уравнение 

Доказательство: Пусть из точки 




вектором 
или 180°, то 
Находим
поскольку координаты точки 


Пример №9
Найдём расстояние от точки 
Решение:
Используя теорему 4, получаем:
Ответ: 5.
Применение векторов и координат
А) В ряде задач условие содержит сведения о параллельности некоторых прямых или об их точках пересечения, об отношениях длин параллельных отрезков. Для решения таких задач может быть полезным применение векторов, как это было при решении примера 3 из параграфа 12. При решении таких задач достаточно использовать действия сложения векторов и умножения вектора на число. Рассмотрим ещё один пример.
Пример №10
Пусть 





Решение. Выберем в пространстве точку 
следует, что 


векторами
Чтобы доказать, что середины отрезков 

Находим:
А поскольку

то выражения в двух последних скобках принимают одинаковые значения. Требуемое утверждение доказано.
Б) При решении других задач целесообразно пользоваться скалярным умножением векторов. Такими являются задачи, в которых нужно использовать или определять некоторые расстояния или углы.
Пример №11
Найдём угол между скрещивающимися диагоналями соседних боковых граней правильной шестиугольной призмы, у которой боковые грани — квадраты.
Решение:
Пусть нужно найти угол между прямыми 


Выразим векторы 



А поскольку

Ответ:
Скалярное произведение векторов можно использовать и для нахождения угла между плоскостями. Как и при определении угла между прямыми, так и при определении угла 


Пример №12
У правильной шестиугольной призмы 

Решение:
Для получения ответа нужно определить векторы 




Используем прямоугольную декартову систему координат, начало которой находится в центре 











Поскольку 

удовлетворяют условиям 



Для нахождения вектора 






Используем равенство 






Находим:
Ответ:
Для нахождения угла между прямой и плоскостью также можно использовать векторы, из которых один параллелен прямой, а другой перпендикулярен плоскости. Угол 


Пример №13
На рёбрах 







Решение:
Примем точку 

По теореме 3 из параграфа 13 уравнение плоскости 






Прямой 

и
Ответ:
В) В предыдущем параграфе обсуждалось использование координат для вычисления расстояния от точки до прямой. Рассмотрим решение ещё двух задач на нахождение расстояний: от точки до прямой и расстояния между скрещивающимися прямыми.
Пример №14
В правильной шестиугольной пирамиде 








Решение:
Пусть 





Используем прямоугольную декартову систему координат, начало которой находится в центре 















Искомое расстояние есть длина перпендикуляра, опущенного из точки 





то
Теперь находим:
Ответ:
Пример №15
Измерения 









Решение:
Расстояние между скрещивающимися прямыми 




Примем точку 















Теперь запишем уравнение плоскости 



Ответ:
Векторы в пространстве
Это интересно!
Основоположниками аналитической геометрии являются знаменитые ученые Декарт и Ферма. Однако Декарт свои исследования опубликовал первым. А исследования Ферма увидели свет намного позже, после его смерти. Интересно, что подойдя к проблеме с разных сторон, они пришли к одинаковым выводам. Декарт искал уравнение исследуемой кривой, а Ферма для заданного уравнения искал соответствующую кривую.
Применение правил алгебры к геометрии привело к возникновению аналитической геометрии. В последствии аналитическая геометрия была усовершенствована основателем математического анализа Исааком Ньютоном, который писал » … я смог пойти дальше Декарта, только потому, что стоял на плечах гигантов»
Прямоугольная система координат в пространстве
Пусть мяч ударился о пол и отскочил вертикально вверх. Координаты мяча в точке на полу можно определить относительно длины и ширины комнаты двумя значениями. Однако когда мяч отскочил от пола, то его положение уже невозможно определить двумя координатами. Если положение мяча на полу определяется как 
Прямоугольная система координат в пространстве. В пространстве возьмем произвольную точку 







Координатные плоскости обозначаются как и
Каждая координатная плоскость делит пространство на два полупространства и, таким образом, три координатные плоскости вместе делят пространство на восемь частей, каждая из которых называется октантом:
Пусть точка 






Координаты точки в пространстве
1) Плоскость, проходящая через точку 


2) Плоскость, проходящая через точку 


3) Плоскость, проходящая через точку 


Значит, каждой точке 

Упорядоченная тройка 








1) Начало координат:
2) Точка, расположенная на оси
Точка, расположенная на оси
Точка, расположенная на оси
3) Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка 





Знаки координат точки
Знак координаты точки зависит от того, в каком октанте расположена точка. В следующей таблице показаны знаки координат точек в различных октантах.
В первом октанте все знаки координат положительны, в седьмом октанте все знаки отрицательны.
Пример №16
В прямоугольной системе координат в пространстве постройте точки:
Решение: а) для построения точки 







b) для построения точки 







Пример №17
От точки 

Решение: для точки основания перпендикуляра, проведенного из точки 





Пример №18
От точки 




Решение: координата 





Расстояние между двумя точками в пространстве
Расстояние между точками 

Доказательство. Пусть 







Учитывая, что
получаем,
Расстояние от начала координат
В прямоугольной системе координат в пространстве расстояние от точки 

Пример №19
Точки, расположенные на одной прямой, называются коллинеарными точками.
Докажите, что точки 

Решение:
Так как 


Пример №20
Найдите координаты точки, расположенной на оси абсцисс и равноудаленной от точек 
Решение: если точка 






Значит, точка 

Координаты точки, делящей отрезок в некотором отношении
Координаты точки 
и 

Доказательство: пусть точка 











На основе теоремы о пропорциональных отрезках имеем:
Аналогично, используя перпендикуляры к осям 


Координаты середины отрезка
Координаты середины отрезка, соединяющих точки 

Координаты центра тяжести треугольника
Координаты центра тяжести треугольника (точка пересечения медиан) с вершинами в точках 


Пример №21
Даны точки 

координаты точки 

Решение: пусть точка 



точки, делящей отрезок в заданном отношении, получаем:
Пример №22
Даны координаты двух вершин треугольника 

Решение: так как центр тяжести находится в начале координат, то:
Отсюда,
Значит, третьей вершиной треугольника является точка
Векторы в пространстве
Векторной величиной или вектором называется величина, которая определяется не только значением, но и направлением. Изображается вектор направленным отрезком. Длина отрезка, образующего вектор, называется длиной вектора или его модулем.
Вектор можно изобразить в одномерной, двухмерной и трехмерной системе координат.
Вектор, у которого начальная и конечная точки совпадают, называется нулевым вектором. Направление нулевого вектора не определено. Местоположение любой точки (объекта) в пространстве изображается вектором, начало которого совпадает с началом координат, а конец — с данной точкой. Например, на рисунке изображен вектор, показывающий положение мяча в пространстве, который брошен на высоту 3 м на игровой площадке, длина которой равна 4 м, а ширина 2 м.
В пространстве вектор, который определяет место (положение, позицию) точки и соединяет начальную и заданную точку, называется позиционным вектором или радиус — вектором. Каждой точке пространства соответствует единственный позиционный вектор. Положение точки 

Два вектора называются равными если они имеют равные модули и одинаково направлены. Равные векторы, при помощи параллельного переноса, можно расположить друг на друге. Например, на рисунке векторы 






В пространстве, как и на плоскости, можно геометрически построить сумму и разность векторов, и произведение вектора на число.
Найти компоненты и длину вектора, а также выполнить действия над векторами в пространственной Декартовой системе координат можно но правилам, аналогичным для прямоугольной системы координат на плоскости.
Длина вектора
Модуль вектора можно найти, используя формулу нахождения расстояния между двумя точками.
Теорема. Если начало вектора расположено в точке 


Следствие. Длина радиус-вектора равна 
Сложение и вычитание векторов
Сложение и вычитание векторов: суммой (разностью) векторов 



Пример №23
Найдите сумму и разность векторов 
Решение:
Умножение вектора на число
Умножение вектора на число: произведение вектора 

Пример №24
Для вектора 

Решение:
Коллинеарные векторы
Если направленные отрезки, которыми изображены векторы, параллельны или лежат на одной прямой, то вектора называются коллинеарными. Если векторы 





При 
Пример №25
Определите, являются ли расположенные в пространстве векторы 

Решение: так как 


Пример №26
Постройте радиус-вектор, равный вектору
Решение: в _соответствии с правилом треугольника 



По правилу сложения векторов на плоскости 
Пример №27
В трехмерной системе координат задан вектор 



Решение: а)
b) Обозначим вектор, равный вектору 

соответствует радиус-вектор 

радиус-вектор
Так как 
Пример №28
Установите справедливость равенства 

Решение:
Из равенства соответствующих компонентов следует
Векторы, расположенные на одной плоскости или на параллельных плоскостях, называются компланарными векторами. Например, векторы, расположенные на противолежащих гранях куба, компланарны, а векторы, направленные по трем ребрам выходящим из одной вершины, некомпланарны.
Единичный вектор — вектор, длина которого равна единице.
Для любого, отличного от нуля вектора 

Пример №29
Для вектора 



Решение: обозначим единичный вектор через 
Проверим, действительно ли длина этого вектора равна единице:
b) чтобы определить вектор, сонаправленный с вектором 
В прямоугольной системе координат в пространстве векторы, направленные вдоль положительных направлений координатных осей 



— некомпланарны.
Любой позиционный вектор и на плоскости, и в пространстве, можно выразить через орт вектора. На плоскости точке 




Теорема. Любой вектор 

Пример №30
Вектор 


Решение: зная, что 
Пример №31
Запишите разложение вектора 
Решение: по теореме разложения вектора по орт векторам имеем:
Пример №32
а) Запишите в виде 
b) Запишите вектор 
Решение: а) начало позиционного вектора совпадает с началом координат 

Пример №33
Найдите сумму и разность векторов.
Решение:
Скалярное произведение двух векторов
Тележка переместилась на расстояние 








Работа, совершаемая при перемещении груза на расстояние 

Работа является скалярной величиной, однако ее значение зависит от угла между силой, действующей на тело, и вектором перемещения.
Скалярное произведение двух векторов
Углом между любыми двумя ненулевыми векторами 


Скалярное произведение двух ненулевых векторов 

Скалярное произведение записывается как:
Значит,
Свойство скалярного произведения
• Для любого вектора 

Переместительное свойство скалярного произведения.
Для любых векторов 

Свойство группировки скалярного произведения. Для любых векторов 


Распределительное свойство скалярного произведения:
1) Для любых векторов




В частном случае, для скалярного произведения орт векторов получим:
Пример №34
По данным на рисунке найдите скалярное произведение векторов 
Решение:
Пример №35
Упростите выражение 
Решение:
Скалярное произведение двух векторов на координатной плоскости можно найти при помощи координат.
Пусть даны векторы 

Из 
По теореме косинусов получаем

Таким образом, скалярное произведение двух векторов 

Аналогичным образом, скалярное произведение двух векторов 


Пример №36
Зная, что 
Решение:
Угол между двумя векторами
Угол между двумя ненулевыми векторами находится из соотношения 
Пример №37
Найдите косинус угла между векторами 
Решение:
Вывод: два ненулевых вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю:
Пример №38
При каком значении 


Решение: 

Общее уравнение прямой
В системе координат на плоскости уравнение прямой имеет вид 






Так как векторы 

Если ввести обозначение 

Частные случаи:
• 
• 
• 
Пример №39
Запишите уравнение прямой 

Решение: на координатной плоскости построим вектор 

Способ 1.
Пусть точка 








Таким образом,
Способ 2.
Зная нормаль 




Пример №40
Найдите угол между прямыми, заданными уравнениями 
Решение: угол между прямыми можно найти как угол между их нормалями.
Для угла 


Отсюда
Пример №41
Найдите расстояние от точки 
Решение: пусть точка 
Так как векторы 








Отсюда 
Уравнение плоскости
Исследование. Какому множеству точек соответствует одно и тоже уравнение, например 
1. В одномерной системе координат, т.е. на числовой оси, уравнению 
2. В двухмерной системе координат уравнению 


3. В трехмерной системе координат уравнению 





4. В трехмерной системе координат представьте множество точек, удовлетворяющих уравнениям 



Уравнение прямой в двухмерной системе координат имеет вид
Например, уравнение 


В трехмерной системе координат мы можем написать это уравнение в виде: 







Плоскость может быть определена различными способами.
- тремя неколлинеарными точками
- прямой и точкой, не принадлежащей этой прямой
- двумя пересекающимися прямыми
- двумя параллельными прямыми
- точкой и перпендикуляром в этой точке в заданном направлении
Используя последний способ, которым можно задать плоскость, покажем, что уравнение плоскости имеет вид 






А это значит, что 


Обозначим 
Внимание! Три коэффициента при переменных в уравнении плоскости являются компонентами нормали и
Пример №42
Плоскость с нормалью 

Решение: задание можно выполнить двумя способами.
1-ый способ. Возьмем произвольную точку 






Умножим обе части уравнения на 
2-ой способ. Известно, что уравнение плоскости имеет вид 








Пример №43
Дано уравнение плоскости
a) Определите, принадлежат ли точки 
b) Определите координаты точки пересечения плоскости с осями
c) Запишите координаты какой-либо другой точки, принадлежащей данной плоскости.
Решение:
а) Проверка:
Принадлежит плоскости
Принадлежит плоскости
Не принадлежит плоскости
b) Координаты точек пересечения с осями
в точке пересечения с осью 


в точке пересечения с осью 


в точке пересечения с осью 


c) Для определения координаты другой точки на заданной плоскости задайте любые значения двум переменным и найдите третью координату.
Например, при 



- Заказать решение задач по высшей математике
Пример №44
Найдите расстояние от точки 
Решение: пусть точка 









Отсюда 
Это говорит о том, что расстояние от заданной точки 
Взаимное расположение плоскостей
Плоскости 

Плоскости 

Пример №45
Определение параллельности или перпендикулярности плоскостей но уравнению.
a) плоскость 



b) плоскость 



Решение: для того чтобы плоскости 





Значит, плоскости 

Нормали плоскостей 



Уравнение сферы
Определение. Сферой называется множество всех точек, расположенных на расстоянии 



Если точка 
Это уравнение сферы с центром в точке 
Если центр сферы находится в начале координат, то уравнение сферы радиуса 
Как видно из рисунка, пересечение этой сферы с координатной плоскостью 
Пример №46
Запишите уравнение сферы, радиус которой равен г а центр расположен в точке
Решение:
Пример №47
Представьте фигуру, которая получается при пересечении сферы 
Решение: радиус сферы 


Плоскость, имеющая со сферой только одну общую точку, называется плоскостью, касательной к сфере.
Например, плоскость 

Плоскость, касательная к сфере, в точке касания перпендикулярна радиусу сферы.
Преобразования на плоскости и в пространстве
Ремесленники и художники создают узоры, заполняя некоторую площадь без пробела рисунком при помощи преобразований (параллельный перенос, поворот, отображение) или увеличения или уменьшения этого рисунка (гомотетия).
Это знать интересно. Великий голландский художник Эшер, объединив такие разделы математики как симметрия, комбинаторика, стереометрия и топология, создал динамические рисунки, заполняя плоскости цветовыми оттенками. Не имея специального математического образования, Эшер создавал свои произведения, опираясь на интуицию и визуальные представления. Ряду работ, построенных на параллельном переносе, он дал название «Правильное движение плоскости».
https://en.wikipedia.org/wiki/M._C._Escher
Если каждой точке 






Параллельный перенос является движением. Каждому параллельному переносу соответствует один вектор. Справедливо и обратное.
Пример №48
В какую точку переходит точка 
Решение: по определению при данном преобразовании, координаты точки 



Симметрия. В пространстве симметрии относительно точки и прямой дается такое же определение как и на плоскости. В пространстве также рассматривается симметрия относительно плоскости.
Для точки 
Пример №49
Найдите точку, симметричную точке 
Решение: точка 







Поворот. Поворотом фигуры в пространстве вокруг прямой 






Ниже на рисунках представлены примеры различных изображений поворота куба вокруг оси 
Гомотетия
Аналогичным образом в пространстве вводится понятие преобразования подобия. Если при преобразовании фигуры расстояние между двумя точками 


Если для любой точки 








Пример №50
Пусть дана сфера с центром в точке 
Решение: позиционный вектор, соответствующий точке 








Предел
Это интересно!
Предел (лимит) от латинского слова «limes», что означает цель.
Понятие предела независимо друг от друга было введено английским математиком Исааком Ньютоном (1642-1727) и немецким математиком Готфридом Лейбницом (1646-1716). Однако ни Ни Ныотон, ни Лейбниц не смогли полностью объяснить вводимые ими понятия. Точное определение предела было дано французским математиком Коши. А работы немецкого ученого » Вейерштрасса наконец завершили создание этой серьезной теории.
Координаты и векторы в пространстве
В этом параграфе вы ознакомитесь с прямоугольной системой координат в пространстве, научитесь находить координаты точек в пространстве, длину отрезка и координаты его середины. Вы обобщите и расширите свои знания о векторах.
Декартовы координаты точки в пространстве
В предыдущих классах вы ознакомились с прямоугольной (декартовой) системой координат на плоскости — это две перпендикулярные координатные прямые с общим началом отсчета (рис. 38.1).

Систему координат можно ввести и в пространстве. Прямоугольной (декартовой) системой координат в пространстве называют три попарно перпендикулярные координатные прямые с общим началом отсчета (рис. 38.2). Точку, в которой пересекаются три координатные прямые, обозначают буквой О. Ее называют началом координат. Координатные прямые обозначают буквами 

Плоскости, проходящие через пары координатных прямых 


Пространство, в котором задана система координат, называют координатным пространством. Если оси координат обозначены буквами 



Аналогично каждой точке М координатного пространства ставится в соответствие упорядоченная тройка чисел 











Полученную упорядоченную тройку чисел 







Если точка принадлежит координатной плоскости или координатной оси, то некоторые ее координаты равны нулю. Например, точка 


Теорема 38.1. Расстояние между двумя точками 

Теорема 38.2. Каждая координата середины отрезка равна полусумме соответствующих координат его концов, то есть серединой отрезка с концами в точках 
Доказательства теорем 38.1 и 38.2 аналогичны тому, как были доказаны соответствующие теоремы в курсе планиметрии. Например, серединой отрезка с концами в точках 


В таком случае говорят, что точки А и В симметричны относительно начала координат.
Векторы в пространстве
В курсе планиметрии вы изучали векторы на плоскости. Теперь вы начинаете изучать векторы в пространстве. Многие понятия и свойства, связанные с векторами на плоскости, можно почти дословно отнести к векторам в пространстве. Доказательства такого рода утверждений о векторах в пространстве аналогичны доказательствам соответствующих утверждений о векторах на плоскости.
Рассмотрим отрезок АВ. Если мы договоримся точку А считать началом отрезка, а точку В — его концом, то такой отрезок будет характеризоваться не только длиной, но и направлением от точки А до точки В. Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.
Вектор с началом в точке А и концом в точке В обозначают так: 
В отличие от отрезка, концы которого — различные точки, у вектора начало и конец могут совпадать.
Договорились называть вектор, начало и конец которого — одна и та же точка, нулевым вектором или нуль-вектором и обозначать 




Определение. Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
На рисунке 39.2 изображена четырехугольная призма 



Записывают:
Ненулевые коллинеарные векторы бывают сонаправленными и противоположно направленными. Например, на рисунке 39.2 векторы 



Определение. Два ненулевых вектора называют равны ми, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. На рисунке 39.2
Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 39.3, 




На рисунке 39.3, 





Рассмотрим в координатном пространстве вектор 





Равные векторы имеют равные соответствующие координаты, и наоборот, если соответствующие координаты векторов равны, то равны и сами векторы.
Теорем а 39.1. Если точки 







Сложение и вычитание векторов
Пусть в пространстве даны векторы 


Далее от точки В отложим вектор 




Можно показать, что сумма 

Свойства сложения векторов аналогичны свойствам сложения чисел. Для любых векторов 
Сумму трех и большего количества векторов находят так: вначале складывают первый и второй векторы, потом к полученной сумме прибавляют третий вектор и т. д. Например, 

Для сложения двух неколлинеарных векторов 
Отложим от произвольной точки А вектор 





Рассмотрим векторы 
Построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были его ребрами (рис. 40.5). Отрезок OD является диагональю этого параллелепипеда. Докажем, что 





Описанный способ сложения трех векторов, отложенных от одной точки и не лежащих в одной плоскости, называют правилом параллелепипеда.
Определение. Разностью векторов 



Записывают: 
Покажем, как построить вектор, равный разности векторов 








Отметим, что для любых трех точек О, А и В выполняется равенство 
Теорема 40.1. Если координаты векторов 





Умножение вектора на число
Определение. Произведением ненулевого вектора 


1)
2) если 
Записывают: 







Теорема 41.1. Для любых векторов 
Эта теорема позволяет свести вычитание векторов к сложению: чтобы из вектора 










Теорема 41.2. Если векторы 


Теорема 41.3. Если координаты вектора 



Умножение вектора на число обладает следующими свойствами.
Для любых чисел 


Эти свойства позволяют преобразовывать выражения, содержащие сумму векторов, их разность и произведение вектора на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например,
Скалярное произведение векторов
Пусть 


Угол между векторами 





Если 




Векторы 
На рисунке 42.3 изображена треугольная призма, основанием которой является правильный треугольник, а боковое ребро перпендикулярно плоскости основания.
Имеем:
Определение. Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними.
Скалярное произведение векторов 

Если хотя бы один из векторов 




Скалярный квадрат вектора равен квадрату его модуля, то есть 
Теорема 42.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Например, для векторов, изображенных на рисунке 42.3, имеем:
Теорема 42.2. Скалярное произведение векторов 

Теорема 42.3. Косинус угла между ненулевыми векторами 
Некоторые свойства скалярного произведения векторов аналогичны соответствующим свойствам произведения чисел. Например, для любых векторов 

Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, по правилам преобразования алгебраических выражений. Например,
Пример №51
Основанием призмы является равнобедренный треугольник АВС (АВ =АС). Боковое ребро 

Решение:
Пусть 


Запишем:
Поскольку 
Напомню:
Расстояние между точками
Расстояние между двумя точками 
Координаты середины отрезка
Каждая координата середины отрезка равна полусумме соответствующих координат его концов.
Взаимное расположение двух векторов
Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
Равенство векторов
Два ненулевых вектора называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.
Координаты вектора
Если точки 


Модуль вектора
Если вектор 
Действия над векторами
Для любых трех точек А , В и С выполняется равенство
Разностью векторов 



Для любых трех точек О, А и В выполняется равенство 





Если векторы 






Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Если координаты векторов 

- Множества
- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве
















































































































































































































































































































































































































































