{S_{полн} = 2(ab+bc+ac)}
Чтобы найти площадь поверхности параллелепипеда необходимо знать длины трех его ребер. Для вычисления площади поверхности прямоугольного параллелепипеда используется формула, в которой сумма попарных произведений ребер параллелепипеда умножается на 2. По другому формулу можно трактовать как произведение площадей трех граней параллелепипеда (так как произведение ребер — это площадь грани). Кроме того на странице вы найдете калькулятор, с помощью которого в режиме онлайн можно найти площадь полной и боковой поверхности прямоугольного параллелепипеда.
В дополнение на сайте можно найти объем параллелепипеда.
Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники.
Ребро — сторона прямоугольного параллелепипеда. Длина, ширина и высота — это ребра прямоугольного параллелепипеда.
Содержание:
- калькулятор площади поверхности прямоугольного параллелепипеда
- формула площади поверхности прямоугольного параллелепипеда
- формула площади боковой поверхности прямоугольного параллелепипеда
- примеры задач
Формула площади поверхности прямоугольного параллелепипеда
{S_{полн} = 2(ab+bc+ac)}
a — длина прямоугольного параллелепипеда
b — ширина прямоугольного параллелепипеда
c — высота прямоугольного параллелепипеда
Формула площади боковой поверхности прямоугольного параллелепипеда
{S_{бок} = 2(ac+bc)}
a — длина прямоугольного параллелепипеда
b — ширина прямоугольного параллелепипеда
c — высота прямоугольного параллелепипеда
Примеры задач на нахождение площади поверхности прямоугольного параллелепипеда
Задача 1
Найдите площадь поверхности прямоугольного параллелепипеда измерения которого равны 2 4 и 5.
Решение
Для нахождения площади поверхности воспользуемся первой формулой. Подставим в нее значения длины, ширины и высоты параллелепипеда и произведем вычисления.
S_{полн} = 2(ab+bc+ac) = 2(2 cdot 4 + 4 cdot 5 + 2 cdot 5) = 2(8 + 20 + 10) = 2(38) = 76 : см^2
Ответ: 76 см²
Проверим ответ с помощью калькулятора .
Задача 2
Найдите площадь поверхности прямоугольного параллелепипеда, если его измерения равны 3см 5см и 6см.
Решение
Задача аналогична предыдущей, поэтому повторим действия, подставив новые значения измерений параллелепипеда.
S_{полн} = 2(ab+bc+ac) = 2(3 cdot 5 + 5 cdot 6 + 3 cdot 6) = 2(15 + 30 + 18) = 2(63) = 126 : см^2
Ответ: 126 см²
Для проверки ответа используем калькулятор .
Задача 3
Найдите площадь поверхности прямоугольного параллелепипеда измерения которого равны 9м 24м 11м.
Решение
Еще одна типовая задача. Для ее решения также воспользуемся первой формулой.
S_{полн} = 2(ab+bc+ac) = 2(9 cdot 24 + 24 cdot 11 + 9 cdot 11) = 2(216 + 264 + 99) = 2(579) = 1158 : см^2
Ответ: 1158 см²
Проверка .
Задача 4
Найдите площадь боковой поверхности прямоугольного параллелепипеда у которого a=4см, b=5см, c=7см.
Решение
В этой задаче нам необхожимо найти площадь боковой поверхности. Поэтому мы будем использовать для ее решения вторую формулу.
S_{бок} = 2(ac+bc) = 2(4 cdot 7 + 5 cdot 7) = 2(28 + 35) = 2(63) = 126 : см^2
Ответ: 126 см²
Как всегда ответ можно проверить с помощью калькулятора .
Прямоугольным параллелепипедом называется трехмерное тело, у которого противоположные грани параллельны и являются прямоугольниками. Проще говоря, прямоугольный параллелепипед представляет собой вытянутый куб.
Онлайн-калькулятор площади поверхности параллелепипеда
Прямоугольный параллелепипед можно охарактеризовать тремя числами — длинами его сторон: aa, bb, cc.
Формула площади поверхности параллелепипеда
Чтобы найти полную площадь поверхности параллелепипеда, нужно сложить площади всех его граней. Граней у параллелепипеда шесть, поэтому:
S=S1+S2+S3+S4+S5+S6S=S_1+S_2+S_3+S_4+S_5+S_6
Но так как противоположные грани прямоугольного параллелепипеда равны между собой, то: S1=S2S_1=S_2, S3=S4S_3=S_4, S5=S6S_5=S_6.
Поскольку гранями данного параллелепипеда являются прямоугольники, то их площади равны соответственно:
S1=S2=abS_1=S_2=ab
S3=S4=bcS_3=S_4=bc
S5=S6=acS_5=S_6=ac
Итак, полная площадь поверхности параллелепипеда:
S=2(ab+bc+ac)S=2(ab+bc+ac)
Из этой формулы следует, что если a=b=ca=b=c, то получим: S=6a2S=6a^2. Это и есть формула для площади поверхности куба со стороной aa.
Найдите площадь поверхности прямоугольного параллелепипеда со сторонами 2 см.2text{ см.}, 4 см.4text{ см.}, 6 см.6text{ см.}
Решение
a=2a=2
b=4b=4
c=6c=6
S=2(ab+bc+ac)=2(2⋅4+4⋅6+2⋅6)=88 (см. кв.)S=2(ab+bc+ac)=2(2cdot4+4cdot6+2cdot6)=88text{ (см. кв.)}
Ответ: 88 см. кв.88text{ см. кв.}
Найдите площадь поверхности прямоугольного параллелепипеда высотой 3 см.3text{ см.}, в основании которого лежит квадрат со стороной 1 см.1text{ см.}
Решение
a=b=1a=b=1
c=3c=3
S=2(ab+bc+ac)=2(1+3+3)=14 (см. кв.)S=2(ab+bc+ac)=2(1+3+3)=14text{ (см. кв.)}
Ответ: 14 см. кв.14text{ см. кв.}
Не знаете, где заказать задачу по геометрии? Обратитесь к нашим экспертам в данной области!
Тест по теме «Площадь поверхности параллелепипеда»
а) Найди сумму площадей всех граней прямоугольного параллелепипеда, если его измерения равны 5 см, 2 см и 3 см.
б) Напиши формулу площади поверхности прямоугольного параллелепипеда с измерениями a, b и c.
в) Напиши формулу площади поверхности куба со стороной a.
reshalka.com
ГДЗ учебник по математике 3 класс Петерсон. 31 урок. Формула объема прямоугольного параллелепипеда. Номер №7
Решение а
(5 * 3 + 5 * 2 + 3 * 2) * 2 = (15 + 10 + 6) * 2 = 31 * 2 = 62
(
с
м
2
)
− площадь всех граней.
Ответ: 62
с
м
2
Решение б
S = (a * b + a * c + c * b) * 2
Решение в
S = (a * a) * 6
В данной публикации мы рассмотрим, как можно вычислить площадь поверхности прямоугольного параллелепипеда и разберем пример решения задачи для закрепления материала.
- Формула вычисления площади
- Пример задачи
Формула вычисления площади
Площадь (S) поверхности прямоугольного параллелепипеда вычисляется следующим образом:
S = 2 (ab + bc + ac)
Формула получена следующим образом:
- Гранями прямоугольного параллелепипеда являются прямоугольники, причем противоположные грани равны между собой:
- два основания: со сторонами a и b;
- четыре боковые грани: со стороной a/b и высотой c.
- Сложив площади всех граней, каждая из которых равна произведению сторон разной длины, получаем: S = ab + ab + bc + bc + ac + ac = 2 (ab + bc + ac).
Пример задачи
Вычислите площадь поверхности прямоугольного параллелепипеда, если известно, что его длина равна 6 см, ширина – 4 см, а высота – 7 см.
Решение:
Воспользуемся формулой выше, подставив в нее известные значения:
S = 2 ⋅ (6 см ⋅ 4 см + 6 см ⋅ 7 см + 4 см ⋅ 7 см) = 188 см2.
- Главная
- Справочники
- Справочник по математике 5-9 класс
- Геометрия
- Прямоугольный параллелепипед. Пирамида.
Многогранник — это поверхность, составленная из многоугольников. Грани многогранника — это многоугольники, из которых он составлен. При этом никакие две соседние грани многогранника не лежат в одной плоскости. Стороны граней — это рёбра многогранника, а их концы — это его вершины. На рисунке ниже изображены многогранники.
Один из самых простых многогранников — это прямоугольный параллелепипед. Он составлен из шести прямоугольников, т.е. он ограничен шестью гранями.
ABCDA1B1C1D1 — прямоугольный параллелепипед. Ребра прямоугольного параллелепипеда — это стороны граней (в нашем случае: AB, BC, CD, DA, A1B1, B1C1, C1D1, D1A1, AA1, BB1, CC1, DD1 ). А его вершины — это вершины граней (в нашем случае: A, B, C, D, A1, B1, C1, D1). То есть мы получили, что у прямоугольного параллелепипеда 8 вершин и 12 рёбер. Грани прямоугольного параллелепипеда, которые не имеют общих вершин, называют противолежащими (в нашем случае это пары: ABB1A1 и DCC1D1, ABCD и A1B1C1D1, ADD1A1 и ВСС1В1). Противолежащие грани параллелепипеда равны.
Площадью поверхности параллелепипеда называют сумму площадей всех его граней.
Измерения прямоугольного параллелепипеда — это длина трех рёбер, имеющих общую вершину. Например, ребра ВВ1, В1А1, В1С1 являются измерениями ABCDA1B1C1D1:
Измерения имеют названия: длина, ширина, высота. Данные названия введены, чтобы различать измерения:
Диагональ параллелепипеда — это отрезок, соединяющий две его вершины, не принадлежащие одной грани. Например, AC1 — диагональ ABCDA1B1C1D1:
Частным случаем прямоугольного параллелепипеда является куб. Куб — это прямоугольный параллелепипед, все измерения которого равны:
EFHGE1F1H1G1 — куб, его высота, ширина и длина равны. Гранями куба являются 6 равных квадратов.
Рассмотрим следующую фигуру:
Данная фигура состоит из шести прямоугольников, которые попарно равны (выделены одним цветом). Если мы согнём по линиям данную фигуру и склеим, то получим модель прямоугольного параллелепипеда, противоположные грани которого будут одного цвета. Рассматриваемую фигуру называют развёрткой прямоугольного параллелепипеда. Как сказано выше, куб состоит из 6 равных квадратов, значит, его развертка будет иметь следующий вид:
В данном случае куб «разрезали» по 6 горизонтальным ребрам и 1 вертикальному, при этом противоположные грани выделены одним цветом. Таким образом, «разрезая» любой многогранник по ребрам так, чтобы все грани оказались в одной плоскости, можно получить его развертку. Развертки многогранников нужны, например, для создания их объемных моделей.
Вторым многогранником, который мы рассмотрим, является пирамида. Пирамида — это многогранник, в основании которого лежит многоугольник, а боковые грани являются треугольниками, имеющими общую вершину, которая является вершиной пирамиды.
Рёбра основания пирамиды — это стороны основания пирамиды. Боковые рёбра пирамиды — это стороны боковых граней, которые не принадлежат основанию. Пирамида называется в соответствии с числом сторон многоугольника, который является его основанием. Например, на рисунке ниже изображены треугольная пирамида (тетраэдром) и пятиугольная пирамида.

Если мы «разрежем» по боковым рёбрам пятиугольную пирамиду, то получим следующий многоугольник, который будет являться развёрткой данной пирамиды:
Советуем посмотреть:
Отрезок
Ломаная
Четырехугольники
Единицы измерения площадей. Свойства площадей
Прямоугольник, его периметр и площадь. Ось симметрии фигуры
Квадрат. Периметр и площадь квадрата.
Многоугольники. Правильные многоугольники. Равенство фигур.
Плоскость
Прямая
Луч
Шкалы и координаты
Объем прямоугольного параллелепипеда
Куб. Площадь поверхности куба
Куб. Объем куба
Угол. Обозначение углов
Прямой и развернутый угол
Чертежный треугольник
Измерение углов. Транспортир. Виды углов
Треугольник и его виды
Окружность, круг, шар
Цилиндр, конус
Отрезок-xx
Геометрия
Правило встречается в следующих упражнениях:
5 класс
Задание 812,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 819,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 828,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1191,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1520,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 9,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник, часть 1
Номер 637,
Мерзляк, Полонский, Якир, Учебник
Номер 1053,
Мерзляк, Полонский, Якир, Учебник
Номер 14,
Мерзляк, Полонский, Якир, Учебник
Номер 5,
Мерзляк, Полонский, Якир, Учебник
6 класс
Номер 365,
Мерзляк, Полонский, Якир, Учебник
Номер 1114,
Мерзляк, Полонский, Якир, Учебник
Номер 3,
Мерзляк, Полонский, Якир, Учебник
Задание 495,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 519,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 535,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 558,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 771,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1038,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1041,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
7 класс
Номер 230,
Мерзляк, Полонский, Якир, Учебник
Номер 757,
Мерзляк, Полонский, Якир, Учебник
8 класс
Номер 296,
Мерзляк, Полонский, Якир, Учебник
Номер 316,
Мерзляк, Полонский, Якир, Учебник
















