Как найти сумму двух смешанных чисел дроби

Сложение смешанных чисел

  • Калькулятор сложения смешанных чисел

Чтобы сложить смешанные числа, надо сложить отдельно их целые и их дробные части и полученные результаты сложить.

Пример.

сложение смешанных дробей с одинаковыми знаменателями

Условились считать, что любое натуральное число имеет дробную часть, равную нулю, а любая правильная дробь имеет целую часть, равную нулю. Поэтому складывать правильные дроби и натуральные числа со смешанными числами можно по правилу сложения смешанных чисел.

Так как натуральное число имеет дробную часть, равную нулю, то при сложении смешанного числа с натуральным числом, складывается только целая часть c натуральным числом, а дробная часть остаётся без изменений:

Так как правильная дробь имеет целую часть, равную нулю, то при сложении смешанного числа с правильной дробью, складывается только дробная часть с правильной дробью, а целая часть остаётся без изменений:

При сложении дробных частей двух смешанных чисел или дробной части смешанного числа с правильной дробью может получиться неправильная дробь. В этом случае неправильную дробь нужно представить в виде смешанного числа:

Если дробные части смешанных чисел имеют разные знаменатели, то сначала их нужно привести к общему знаменателю:

сложение смешанных дробей с разными знаменателями

Также, смешанные числа можно записать в виде неправильных дробей и выполнить сложение, а в конце (если требуется по условию задания) записать результат в виде смешанного числа:

Калькулятор сложения смешанных чисел

Данный калькулятор поможет вам выполнить сложение смешанных чисел. Просто введите слагаемые и нажмите кнопку Вычислить. Данный калькулятор позволяет также выполнять сложение: натурального числа и дроби, смешанного числа и дроби, натурального и смешанного числа, натуральных чисел.

Чтобы сложить смешанные числа, надо записать их в виде неправильных дробей, а затем сложить как обыкновенные дроби.
Часто удобней вначале сложить целые части, а затем дробные части, избегаю преобразования в неправильную дробь.

Пример Сложить смешанные числа сложение смешанных дробей 8 3/20 на 11 9/30

показано как находить сумму смешанных чисел 8 3/20 плюс 11 9/30

Сократим дробь дробь 27/60 с помощью нахождения наибольшего общего делителя числителя и знаменателя
и деления полученного числа на числитель и знаменатель, НОД(27,60)=3,
получим сократим дробь 27/60, получим 9/20.

Пример Найти сумму смешанных чисел сложить смешанные числа 5 7/8 и 2 5/12

найти сумму смешанных чисел 5 7/8 и 2 5/12.

В результате сложения также получим смешанное число.

Сложение нескольких дробей

Пример Сложить 3 дроби сложить 3 дроби 3/8, 1/12 и 5/14

показано как найти сумму трех дробей 3/8, 1/12 и 5/14.

Сложение обыкновенных и десятичных дробей

Пример Найти сумму найти сумму дроби 5/6 и десятичной дроби 0.75

Для сложения десятичных и обыкновенных дробей нужно преобразовать их к одному формату. В данном примере преобразуем десятичную дробь
0.75 в обыкновенную дробь преобразуем 0.75 в дробь 3/4.

нахождение суммы дроби 5/6 и десятичной дроби 0.75.

Сложение и вычитание дробей

Навигация по странице:

  • Сложение дробей
    • Сложение дробей с одинаковыми знаменателями
    • Сложение обыкновенных дробей
    • Сложение смешаных чисел
  • Вычитание дробей
    • Вычитание дробей с одинаковыми знаменателями
    • Вычитание обыкновенных дробей
    • Вычитание смешаных чисел

Сложение дробей

Сложение дробей с одинаковыми знаменателями.

Определение.

Чтобы сложить две дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменений:

a  +  b  =  a + b
c c c

Примеры сложения дробей с одинаковыми знаменателями

Пример 1.

Найти сумму двух дробей с одинаковыми знаменателями:

1  +  2  =  1 + 2  =  3
5 5 5 5

Пример 2.

Найти сумму двух дробей с одинаковыми знаменателями:

3  +  2  =  3 + 2  =  5
7 7 7 7

Сложение обыкновенных дробей.

Примеры сложения обыкновенных дробей

Пример 3.

Найти сумму двух дробей:

1  +  1  =  1·2  +  1  =  2  +  1  =  2 + 1  =  3  =  3  =  1
3 6 3·2 6 6 6 6 6 3·2 2

Пример 4.

Найти сумму двух дробей:

29  +  44  =  29·3  +  44·2  =  87  +  88  =  87 + 88  = 
30 45 30·3 45·2 90 90 90

 =  175  =  35·5  =  35  =  18 + 17  = 1 17
90 18·5 18 18 18

Сложение смешанных чисел

Примеры сложения смешанных чисел

Пример 5.

Найти сумму двух смешанных чисел:

2  +  1 1  =  2·2  +  1 1·3  =  4  +  1 3  =  1 +  4 + 3  = 
3 2 3·2 2·3 6 6 6

 =  1 +  7  =  1 +  6 + 1  =  1 + 1 1  = 2 1
6 6 6 6

Пример 6.

Найти сумму двух смешанных чисел:

1 5  +  2 3  =  1 5·4  +  2 3·3  =  1 20  +  2 9  =  3 +  20 + 9  = 
6 8 6·4 8·3 24 24 24

 =  3 +  29  =  3 +  24 + 5  =  3 + 1 5  = 4 5
24 24 24 24

Вычитание дробей

Вычитание дробей с одинаковыми знаменателями.

Определение.

Чтобы найти разницу двух дробей с одинаковыми знаменателями, нужно вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений:

a  —  b  =  ab
c c c

Примеры вычитания дробей с одинаковыми знаменателями

Пример 7.

Найти разность двух дробей с одинаковыми знаменателями:

3  —  1  =  3 — 1  =  2
5 5 5 5

Пример 8.

Найти разность двух дробей с одинаковыми знаменателями:

8  —  5  =  8 — 5  =  3
41 41 41 41

Вычитание обыкновенных дробей.

Примеры вычитания обыкновенных дробей

Пример 9.

Найти разность двух дробей:

5  —  1  =  5  —  1·3  =  5  —  3  =  5 — 3  =  2  =  2  =  1
6 2 6 2·3 6 6 6 6 2·3 3

Пример 10.

Найти разность двух дробей:

3  —  1  =  3·3  —  1·5  =  9  —  5  =  9 — 5  =  4  =  2·2  =  2
10 6 10·3 6·5 30 30 30 30 15·2 15

Вычитание смешанных чисел.

Примеры вычитания смешанных чисел

Пример 11.

Найти разность двух смешанных чисел:

2 1  —  1 1  =  2 1·3  —  1 1·2  =  (2 — 1)  +  3  —  2  = 
2 3 2·3 3·2 6 6

 =  1  +  3 -2  =  1  +  1  =  1 1
6 6 6

Пример 12.

Найти разность двух смешанных чисел:

3 1  —  1 3  =  3 1·4  —  1 3·3  =  3 4  —  1 9  = 
6 8 6·4 8·3 24 24

 =  2 24 + 4  —  1 9  =  1 +  28 — 9  =  1 +  19  = 1 19
24 24 24 24 24

Пример 13.

Найти разность двух смешанных чисел:

1 1  —  3 2  =  1 1  —  3 2·2  =  1 1  —  3 4  =  (1-3)  +  1 — 4  = 
6 3 6 3·2 6 6 6

 = -2  —  3  =  -2  —  3  =  -2  —  1  =  -2 1
6 2·3 2 2

Для сложения смешанных чисел, надо:

  • найти общий знаменатель и привести к нему дробные части;
  • сложить целые части смешанных чисел, отдельно сложить дробные части;
  • если дробная часть сократима, то её сократить;
  • если дробная часть — неправильная дробь, выделить из неё целую часть и добавить к целой части.

Пример 1.

514+7122=514+724=121+24=1234

.

Числитель и знаменатель дробной части второго числа умножили на (2). Сложили целые части и отдельно сложили дробные части.

Пример 2.

9325+2710=9610+2710=116+710=111310=12310

.

В результате получили дробную часть

1310

 — это неправильная дробь, поэтому из неё выделили целую часть

1310=1+310=1310

 и полученное число прибавили к целой части:

111310=11+1310=11+1310=12310

.

Для вычитания смешанных чисел, надо:

  • привести дробные части к общему знаменателю;
  • при необходимости «занять» единицу из целой части;
  • вычесть отдельно целые части и дробные части;
  • если можно, сократить дробную часть.

Пример 3.

7243−2712=7812−2712=58−712=5112

.

Числитель и знаменатель дробной части второго числа умножили на ( )(4). Вычли целые части, затем вычли дробные части.

Пример 4.

14337−5273=14921−51421=133021−51421=830−1421=81621

.

После приведения к общему знаменателю дробная часть первого числа

921

 меньше дробной части второго числа

1421

. Поэтому целую часть уменьшили на (1), а эту единицу внесли в дробную часть:

14921−51421=1321+921−51421=133021−51421

.

Калькулятор дробей

  1. Главная
  2. /
  3. Математика
  4. /
  5. Арифметика
  6. /
  7. Калькулятор дробей

Если вам необходимо произвести математические операции с дробями воспользуйтесь нашим онлайн калькулятором:

Просто заполните необходимые поля и получите ответ и подробное решение.

Данный калькулятор может работать как с положительными, так и с отрицательными дробями.

При этом нужно помнить, что:

− ac = a− c = − ac

Всегда нужно использовать только последний вариант.

Сложение дробей

С одинаковыми знаменателями

При сложении дробей с одинаковыми знаменателями складываются только числители, а знаменатель остаётся прежним.

Формула


ac + bc = a + bc

Пример

Для примера сложим следующие дроби с равными знаменателями:

27 + 47 = 2 + 47 = 67

С разными знаменателями

При сложении дробей с разными знаменателями для начала необходимо привести дроби к общему знаменателю. А затем сложить числители.

Формула (универсальная)


ac + bd = a⋅d + b⋅cc⋅d

Пример №1

Для примера сложим следующие дроби с разными знаменателями:

12+13=1⋅32⋅3+1⋅23⋅2=36+26=3+26=56

Пример №2

Существуют также частные случаи, когда знаменатель одной дроби можно привести к знаменателю второй. Например:

12+14=1⋅22⋅2+14=24+14=2+14=34

Этот же пример можно решить и применяя вышеуказанную универсальную формулу:

12+14=1⋅42⋅4+1⋅24⋅2=48+28=4+28=68=34

Обратите внимание, что мы сократили дробь:

68=3 ⋅ 24 ⋅ 2=34

Сложение смешанных чисел

Смешанные числа — это такие числа, у которых есть как дробная часть, так и целая.

Преобразуя в неправильную дробь

Для начала смешанное число (дробь) нужно преобразовать в неправильную дробь, а потом можно складывать как в предыдущих примерах.

Формула

a bc + d ef = b + a ⋅ cc + e + d ⋅ ff

Пример

Для примера сложим два смешанных числа:

312+123=1+3⋅22+2+1⋅33=72+53=7⋅32⋅3+5⋅23⋅2=216+106=21+106=316=5⋅6+16=5⋅66 + 16=516

Обратите внимание, что из полученной неправильной дроби мы выделили целую часть:

316=5⋅6+16=5⋅66 + 16=516

Складывая целую и дробную части отдельно

Целую и дробную части смешанных чисел можно складывать по отдельности.

Формула

a bc + d ef = (a + d) + (bc + ef)

Пример

Решим предыдущий пример этим способом:

3 12 + 1 23 = (3+1)+(12+23) = 4+1⋅32⋅3+2⋅23⋅2=4+36+46=4+3+46=4+76=4+116 = 516

Вычитание дробей

Вычитание дробей происходит по тем же принципам, что и сложение.

С одинаковыми знаменателями

Формула


acbc = a − bc

Пример

Для примера вычтем одну дробь из другой с равными знаменателями:

3525=3−25=15

С разными знаменателями

Тут также, как и при сложении, дроби нужно подвести под общий знаменатель, а затем вычитать.

Формула


acbd = a⋅d − b⋅cc⋅d

Пример

Для примера вычтем одну дробь из другой, с разными знаменателями:

3413=3⋅34⋅31⋅43⋅4=912412=9−412=512

Вычитание смешанных чисел

Для начала смешанные числа преобразуем в неправильные дроби, потом приводим полученные дроби к общему знаменателю, а затем вычтем одну из другой. Далее выделяем целую часть если она есть.

Формула

a bcd ef = b + a ⋅ cce + d ⋅ ff

Пример

312123=1+3⋅222+1⋅33=7253=7⋅32⋅35⋅23⋅2=216106=21−106=116=1⋅6+56=1⋅66 + 56=156

Умножение дробей

При умножении дробей неважно одинаковые или разные у них знаменатели. Числитель одной дроби умножается на числитель другой, а знаменатели тоже перемножаются между собой.

Формула


acbe = a ⋅ bc ⋅ e

Давайте рассмотрим несколько примеров:

Пример №1

Умножим дроби с одинаковыми знаменателями:

1323=1⋅23⋅3=29

Пример №2

Умножим дроби с разными знаменателями:

1324=1⋅23⋅4=212=1⋅26⋅2=16

Пример №3

Умножим смешанные числа:

112223=1+1⋅222+2⋅33=3283=3⋅82⋅3=246=4

Деление дробей

При делении одной дроби на другую также неважно одинаковые или разные у них знаменатели. Чтобы разделить одну дробь на другую нужно перемножить числитель первой дроби и знаменатель второй, а знаменатель первой умножить на числитель второй.

Формула


ac : be = a ⋅ ec ⋅ b

Давайте рассмотрим несколько примеров:

Пример №1

Разделим одну дробь на другую с таким же знаменателем:

23:13=2331=2⋅33⋅1=63=2

Пример №2

Делим дроби с разными знаменателями:

12:23=1232=1⋅32⋅2=34

Пример №3

Деление смешанных чисел:

412:223=1+4⋅22:2+2⋅33=92:83=9238=9⋅32⋅8=2716=1⋅16+1116=1⋅1616 + 1116=11116

См. также

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Генеалогическое древо как правильно составить нисходящее
  • Как найти наибольшее значение силы
  • Как найти легкие салаты
  • Как составить дополнительное соглашение в договор аренды нежилого помещения
  • Как называется песня человека исправит боли могила

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии