Сложение ускорений, теория и онлайн калькуляторы
Сложение ускорений
Определение
Ускорением ($overline{a}$) называют векторную физическую величину, которая характеризует быстроту изменения скорости движения тела:
[overline{a}={mathop{lim }_{Delta tto 0} frac{Delta overline{v}}{Delta t} }=frac{doverline{v}}{dt}=dot{overline{v}}left(1right).]
Сложное движение материальной точки
Рассмотрим случай, когда материальная точка движется относительно системы координат XYZ, а сама система координат XYZ перемещается относительно системы координат $X_1Y_1Z_1$, являющейся неподвижной (рис.1).
Движение точки А, рассматриваемое одновременно относительно двух систем координат, подвижной и неподвижной называют сложным движением.
При этом перемещение точки относительно неподвижной системы координат называют абсолютным движением. Скорость и ускорение движения точки относительно неподвижных осей называют абсолютной скоростью ($overline{v}$) и абсолютным ускорением ($overline{a}$).
Перемещение материальной точки по отношению к движущейся системе координат называют относительным. Скорость и ускорение точки относительно подвижной системы координат называют относительными. Обозначим их ${overline{v}}_r$ и ${overline{a}}_r$.
Перемещение подвижной системы координат вместе со связанными с ней геометрическими точками относительно неподвижной системы называют переносным движением. При этом переносной скоростью (${overline{v}}_e$) и переносным ускорением (${overline{a}}_e$) точки $A$ называют скорость и ускорение по отношению к неподвижной системе координат точки $A_1$, которая связана с подвижными осями, с которой в данный момент времени совпадает перемещающаяся точка $A$. Точка $A$ в процессе своего движения оказывается в разных местах системы координат XYZ. Точка $A_1$ движется вместе с системой координат XYZ относительно неподвижной системы $X_1Y_1Z_1$, со скоростью ${overline{v}}_{A_1} и $ускорением${ overline{a}}_{A_1}$. Эти величины и есть переносные скорость и ускорение:
[{overline{v}}_e={overline{v}}_{A_1};; {overline{a}}_e={ overline{a}}_{A_1}=frac{d{overline{v}}_{A_1}}{dt}left(1right).]
В практических задачах роль систем координат выполняют подвижные и неподвижные тела. Переносное движение сводится к одному из видов движения: поступательному, вращательному и т.д.
Скорости и ускорения связаны теоремами сложения скоростей и ускорений.
Теорема сложения ускорений
Относительное ускорение определяет быстроту изменения относительной скорости в отношении подвижной системы координат. Значит, его можно выразить при помощи локальной производной по времени от ${overline{v}}_r$ точки:
[{overline{a}}_r=frac{d {overline{v}}_r}{dt}=frac{d^2x}{dt^2}overline{i}+frac{d^2y}{dt^2}overline{j}+ frac{d^2z}{dt^2}overline{k}left(2right),]
где $overline{i}$, $overline{j}$, $overline{k}$ — постоянные единичные орты.
Переносное ускорение в соответствии с (1) равно:
[{overline{a}}_e={ overline{a}}_{A_1}=frac{d}{dt}left[frac{d{overline{r}}_O}{dt}+xfrac{doverline{i}}{dt}+yfrac{doverline{j}}{dt}+zfrac{doverline{k}}{dt}right]=frac{d^2{overline{r}}_O}{dt^2}+xfrac{d^2overline{i}}{dt^2}+yfrac{d^2overline{j}}{dt^2}+zfrac{d^2overline{k}}{dt^2}left(3right),]
где $x=const, y=const, z=const.$
Абсолютное ускорение точки определяет скорость изменения соответствующей скорости относительно неподвижных осей:
[overline{a}=frac{doverline{v}}{dt}=frac{d}{dt}left({overline{v}}_e+{overline{v}}_rright)=frac{d{overline{v}}_e}{dt}+frac{d{overline{v}}_r}{dt}left(4right).]
Производные находят относительно неподвижных осей, следовательно, при дифференцировании скоростей в (4) переменными будут и координаты и орты.
[overline{a}={overline{a}}_e+{overline{a}}_r+2left(frac{dx}{dt}cdot frac{doverline{i}}{dt}+frac{dy}{dt}cdot frac{doverline{j}}{dt}+frac{dz}{dt}cdot frac{doverline{k}}{dt}right)left(5right).]
Слагаемое $2left(frac{dx}{dt}cdot frac{doverline{i}}{dt}+frac{dy}{dt}cdot frac{doverline{j}}{dt}+frac{dz}{dt}cdot frac{doverline{k}}{dt}right)$ называют ускорением Кориолиса (${overline{a}}_k$):
[{overline{a}}_k=2left(frac{dx}{dt}cdot frac{doverline{i}}{dt}+frac{dy}{dt}cdot frac{doverline{j}}{dt}+frac{dz}{dt}cdot frac{doverline{k}}{dt}right)=2left[{overline{omega }}_e{overline{v}}_rright]left(6right),]
где ${overline{omega }}_e$ — вектор переносной угловой скорости; ${overline{v}}_r$ — вектор относительной линейной скорости; в правой части формулы (6) стоит векторное произведение.
И так, теорему сложения ускорений записывают в виде системы векторных уравнений:
[left{ begin{array}{c}
overline{a}={overline{a}}_e+{overline{a}}_r+{overline{a}}_k \
{overline{a}}_k=2left[{overline{omega }}_e{overline{v}}_rright] end{array}
right.left(7right).]
Для того чтобы определить величину и направление ускорения Кориолиса находят величину и направление ${overline{v}}_r$. Далее строят вектор ${overline{omega }}_e$ и переносится в точку $A$. После этого используют правила векторной алгебры для вычисления векторного произведения. Ускорение Кориолиса направлено перпендикулярно плоскости, в которой находятся ${overline{v}}_r$ и ${overline{omega }}_e$ в сторону, из которой кратчайший поворот от ${overline{omega }}_e$ к ${overline{v}}_r,$ виден происходящим против часовой стрелки.
Примеры задач на сложение ускорений
Пример 1
Задание. При каких условиях ускорение Кориолиса равно нулю? Как в случае переносного поступательного движения записывается теорема сложения ускорений?
Решение. Для определения условий равенства нулю ускорения Кориолиса рассмотрим его определение:
[{overline{a}}_k=2left[{overline{omega }}_e{overline{v}}_rright]left(1.1right).]
Модуль $left|{overline{a}}_kright|$ равен:
[left|{overline{a}}_kright|=2left|{overline{omega }}_eright|left|{overline{v}}_rright|{sin alpha left(1.2right), }]
где $alpha $ — угол между векторами ${overline{omega }}_e$ и ${overline{v}}_r$.
Из формулы (1.2) следует, что ${overline{a}}_k$=0, когда:
- $left|{overline{v}}_rright|=0$ или $left|{overline{omega }}_eright|$=0;
- $alpha =0{}^circ $ или $alpha =180{}^circ $, то есть ${overline{v}}_r||{overline{omega }}_e$.
- переносное движение является поступательным. В таком случае движение подвижной системы отсчета не имеет вращательной компоненты, переносная угловая скорость в любой момент времени равна нулю:
[{overline{omega }}_eequiv 0left(1.3right),]
тогда в любой момент времени равно нулю ускорение Кориолиса. Теорема сложения ускорений принимает вид:
[overline{a}={overline{a}}_e+{overline{a}}_rleft(1.4right).]
Так можно найти абсолютное ускорение в случае, который изображен на рис.2, при сложном движении точки A.
Переносным движением является движение стержня BC, которое при выполнении условия:
[BB’=CC’]
является поступательным.
Пример 2
Задание. Каким будет абсолютное ускорение тела, если оно движется вниз по наклонной плоскости с постоянным относительным ускорением $a_r$? Наклонная плоскость, составляющая угол $alpha $ с горизонтом, перемещается прямолинейно параллельно оси X с постоянным ускорением $a_e$.
Решение. Так как движение наклонной плоскости является поступательным, то теорему о сложении ускорений запишем в виде:
[overline{a}={overline{a}}_e+{overline{a}}_rleft(2.1right).]
В проекции на оси неподвижной системы XOY, получим:
[left{ begin{array}{c}
X: a_x=a_e+a_r{cos alpha } \
Y: a_y=-a_r{sin alpha } end{array}
right.left(2.2right).]
По теореме Пифагора найдем величину абсолютного ускорения:
[a=sqrt{a^2_x+a^2_y}=sqrt{{(a_e+a_r{cos alpha })}^2+{a_r}^2{{sin }^2 alpha }}=a^2_e+2a_ea_r{cos alpha + }{a_r}^2.]
Ответ. $a=a^2_e+2a_ea_r{cos alpha + }{a_r}^2$
Читать дальше: спираль Корню.

236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Download Article
Download Article
If you’ve ever watched a bright red Ferrari fly ahead of your Honda Civic after a stoplight, you’ve experienced differing rates of acceleration firsthand. Acceleration is the rate of change in the velocity of an object as it moves. You can calculate this rate of acceleration, measured in meters per second, based on the time it takes you to go from one velocity to another, or based on the mass of an object.[1]
-
1
Define Newton’s Second Law of Motion. Newton’s second law of motion states that when the forces acting on an object are unbalanced, the object will accelerate. This acceleration is dependent upon the net forces that act upon the object and the object’s mass.[2]
Using this law, acceleration can be calculated when a known force is acting on an object of known mass.- Newton’s law can be represented by the equation Fnet = m x a, where Fnet is the total force acting on the object, m is the object’s mass, and a is the acceleration of the object.
- When using this equation, keep your units in the metric system. Use kilograms (kg) for mass, newtons (N) for force, and meters per second squared (m/s2) for acceleration.
-
2
Find the mass of your object. To find the mass of an object, simply place it on a balance or scale and find its mass in grams. If you have a very large object, you may need to find a reference that can provide you with the mass.[3]
Larger objects will likely have a mass with the unit of kilograms (kg).- For this equation, you will want to convert the mass into kilograms. If the mass you have is in grams simply divide that mass by 1000 to convert to kilograms.
Advertisement
-
3
Calculate the net force acting on your object. A net force is an unbalanced force. If you have two forces opposing each other and one is larger than the other, you will have a net force in the direction of the larger force.[4]
Acceleration happens when an unbalanced force acts on an object, causing it to change speeds towards the direction the force is pushing or pulling it.- For example: Let’s say you and your big brother are playing tug-of-war. You pull the rope to the left with a force of 5 newtons while your brother pulls the rope in the opposite direction with a force of 7 newtons. The net force on the rope is 2 newtons to the right, in the direction of your brother.
- In order to properly understand the units, know that 1 newton (N) is equal to 1 kilogram X meter/second squared (kg X m/s2).[5]
-
4
Rearrange the equation F = ma to solve for acceleration. You can change this formula around to solve for acceleration by dividing both sides by the mass, so: a = F/m.[6]
To find the acceleration, simply divide the force by the mass of the object being accelerated.- Force is directly proportional to the acceleration, meaning that a greater force will lead to a greater acceleration.
- Mass is inversely proportional to acceleration, meaning that with a greater mass, the acceleration will decrease.
-
5
Use the formula to solve for acceleration. Acceleration is equal to the net force acting on an object divided by the mass of the object. Once you’ve established the values for your variables, do the simple division to find the acceleration of the object.
- For example: A 10 Newton force acts uniformly on a mass of 2 kilograms. What is the object’s acceleration?
- a = F/m = 10/2 = 5 m/s2
Advertisement
-
1
Define the equation for average acceleration. You can calculate the average acceleration of an object over a period of time based on its velocity (its speed traveling in a specific direction), before and after that time. To do this you need to know equation for acceleration: a = Δv / Δt where a is acceleration, Δv is the change in velocity, and Δt is the amount of time it took for that change to occur.[7]
- The unit for acceleration is meters per second per second or m/s2.[8]
- Acceleration is a vector quantity, meaning it has both a magnitude and a direction.[9]
The magnitude is the total amount of acceleration whereas the direction is the way in which the object is moving. If it is slowing down the acceleration will be negative.
- The unit for acceleration is meters per second per second or m/s2.[8]
-
2
Understand the variables. You can further define Δv and Δt: Δv = vf — vi and Δt = tf — ti where vf is the final velocity, vi is the initial velocity, tf is the ending time, and ti is the starting time.[10]
- Because acceleration has a direction, it is important to always subtract the initial velocity from the final velocity. If you reverse them, the direction of your acceleration will be incorrect.
- Unless otherwise stated in the problem, the starting time is usually 0 seconds.
-
3
Use the formula to find acceleration. First write down your equation and all of the given variables. The equation is a = Δv / Δt = (vf — vi)/(tf — ti). Subtract the initial velocity from the final velocity, then divide the result by the time interval. The final result is your average acceleration over that time.
- If the final velocity is less than the initial velocity, acceleration will turn out to be a negative quantity or the rate at which an object slows down.
- Example 1: A race car accelerates uniformly from 18.5 m/s to 46.1 m/s in 2.47 seconds. What is its average acceleration?
- Write the equation: a = Δv / Δt = (vf — vi)/(tf — ti)
- Define the variables: vf = 46.1 m/s, vi = 18.5 m/s, tf = 2.47 s, ti = 0 s.
- Solve: a = (46.1 – 18.5)/2.47 = 11.17 meters/second2.
- Example 2: A biker traveling at 22.4 m/s comes to halt in 2.55 s after applying brakes. Find his deceleration.
- Write the equation: a = Δv / Δt = (vf — vi)/(tf — ti)
- Define the variables: vf = 0 m/s, vi = 22.4 m/s, tf = 2.55 s, ti = 0 s.
- Solve: a = (0 – 22.4)/2.55 = -8.78 meters/second2.
Advertisement
-
1
Understand the Direction of Acceleration. The physics concept of acceleration doesn’t always match how we would use the term in everyday life. Every acceleration has a direction, usually represented as positive if it’s UP or RIGHT, and negative if DOWN or LEFT. See if your answer makes sense based on this breakdown:
Behavior of a Car How is Velocity Changing? Direction of Acceleration Driver moving right (+) hits gas pedal + → ++ (more positive)
positive
Driver moving right (+) hits brakes ++ → + (less positive)
negative
Driver moving left (-) hits gas pedal — → — (more negative)
negative
Driver moving left (-) hits brakes — → — (less negative)
positive
Driver moves at constant velocity remains the same
acceleration is zero
-
2
Understand the Direction of Force. Remember, a force only causes acceleration in the direction of the force. Some problems may try to trick you with irrelevant values.
- Example Problem: A toy boat with mass 10kg is accelerating north at 2 m/s2. A wind blowing due west exerts a force of 100 Newtons on the boat. What is the boat’s new northward acceleration?
- Solution: Because the force is perpendicular to the direction of motion, it does not have an effect on motion in that direction. The boat continues to accelerate north at 2 m/s2.
-
3
Understand Net Force. If more than one force acts on an object, combine them into a net force before you calculate acceleration. For a problem in two dimensions, this looks something like this:
- Example Problem: April is pulling a 400 kg container right with a force of 150 newtons. Bob stand on the left of the container and pushes with a force of 200 newtons. A wind blowing left exerts a force of 10 newtons. What is the acceleration of the container?
- Solution: This problem uses tricky language to try and catch you. Draw a diagram and you’ll see the forces are 150 newtons right, 200 newtons right, and 10 newtons left. If «right» is the positive direction, the net force is 150 + 200 — 10 = 340 newtons. Acceleration = F / m = 340 newtons / 400 kg = 0.85 m/s2.
Advertisement
Calculator, Practice Problems, and Answers
Add New Question
-
Question
How do you solve acceleration word problems?
Sean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University.
Academic Tutor
Expert Answer
-
Question
What is the SI unit for acceleration?
This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.
wikiHow Staff Editor
Staff Answer
SI units are standardized units that are used internationally in scientific writing. When describing acceleration, use the SI units meters per seconds squared (m/s^2).
-
Question
How do you calculate acceleration without time?
This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.
wikiHow Staff Editor
Staff Answer
If you know that acceleration is constant, you can solve for it without time if you have the initial and final velocity of the object as well as the amount of displacement. Use the formula v^2=u^2+2as where v is the final velocity, u is the initial velocity, a is acceleration, and s is displacement. Solve for a to find acceleration.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
References
About This Article
Article SummaryX
To calculate acceleration, use the equation a = Δv / Δt, where Δv is the change in velocity, and Δt is how long it took for that change to occur. To calculate Δv, use the equation Δv = vf — vi, where vf is final velocity and vi is initial velocity. To caltulate Δt, use the equation Δt = tf — ti, where tf is the ending time and ti is the starting time. Once you’ve calculated Δv and Δt, plug them into the equation a = Δv / Δt to get the acceleration. To learn how to calculate acceleration from a force, read the article!
Did this summary help you?
Thanks to all authors for creating a page that has been read 1,762,907 times.
Reader Success Stories
-
DrDave Alpenschnee
Mar 5, 2018
«I am an Alpine ski instructor, and was interested in how unbalanced forces cause one ski to accelerate more than…» more
Did this article help you?
Скорость, время и ускорение
Расчеты
Три этих физических величины взаимосвязаны между собой процессом движения. Если известны две из этих величин, можно найти третью.
Скорость тела при условии равноускоренного прямолинейного движения определяем по формуле:
V = V0 + а*t
V0 — начальная скорость (при t = 0);
а — ускорение;
t — время.
Итак, чтобы найти скорость, к начальной скорости прибавляем произведение ускорения на время.
Если V0 = 0, то V = а*t.
Чтобы найти время, нужно вначале найти разность между скоростью в данный момент и начальной скоростью, затем полученный результат разделить на ускорение.
t = (V — V0) / а
Ускорение показывает изменение скорости движущегося тела, рассчитывается по двум скоростям и времени. Чтобы вычислить ускорение, следует найти разницу между скоростью в данный момент и начальной скоростью, затем все это разделить на время.
При ускорении:
а = (V — V0) / t
При торможении:
а = (V0 — V) / t
Ускорение — величина векторная, которая задается не только числом, но и направлением, измеряется в метрах в секунду (м/с2).
Чтобы рассчитать среднее ускорение, находим разницу между начальной и конечной скоростями Δv, полученный результат делим на разницу между временем Δt.(начальным и конечным) :
а = Δv / Δt
Быстро и правильно рассчитать величину скорости, ускорения или найти время вам поможет онлайн калькулятор.
Расчет скорости, времени и ускорения
Сложение скоростей и ускорений
Алексей Алексеевич Ивахно
Эксперт по предмету «Физика»
Задать вопрос автору статьи
Движение точки М (или тела) $overrightarrow{r}$ по отношению к основной системе координат называется абсолютным движением. Движение точки М (или тела) $overrightarrow{{mathbf rho }}$ по отношению к подвижной системе координат называется относительным движением. Переносным называется движение ${overrightarrow{r}}_O$ подвижной системы координат относительно основной, неподвижной. Абсолютная скорость $overrightarrow{v}=frac{doverrightarrow{r}}{dt}$ и абсолютное ускорение $overrightarrow{a}=frac{doverrightarrow{v}}{dt}$ точки M — это скорость и ускорение точки M в основной системе координат.
Рисунок 1. Переносное и относительное движение
Закон сложения скоростей
Определение
Вектор скорости материальной точки (тела) относительно неподвижной системы отсчёта $overrightarrow{v}=frac{doverrightarrow{r}}{dt}={overrightarrow{v}}_{АБС}$ (абсолютная скорость) является суммой вектора скорости тела относительно подвижной системы отсчета ${overrightarrow{v}}_r=frac{doverrightarrow{{mathbf rho }}}{dt}={overrightarrow{v}}_{ОТН}$ (относительной скорости) и вектора скорости подвижной системы отсчёта относительно неподвижной ${overrightarrow{v}}_е=frac{doverrightarrow{r_O}}{dt}={overrightarrow{v}}_{ПЕР}$ (переносной скорости):
[{overrightarrow{v}}_{АБС}={overrightarrow{v}}_{ОТН}+{overrightarrow{v}}_{ПЕР}]
Данный закон сложения скоростей справедлив только при скоростях, много меньших скорости света в вакууме. При релятивистских скоростях он имеет другую форму.
Если подвижная система отсчёта является вращающейся, то под переносной скоростью понимается скорость той точки подвижной системы отсчёта, в которой в данный момент находится тело.
Аналогично можно сформулировать и закон сложения ускорений для случая поступательного движения тела относительно подвижной системы отсчёта и подвижной системы отсчёта относительно неподвижной:
Закон сложения ускорений для поступательного движения
«Сложение скоростей и ускорений» 👇
Определение
При поступательном движении тела относительно подвижной системы отсчёта и подвижной системы отсчёта относительно неподвижной, вектор ускорения материальной точки (тела) относительно неподвижной системы отсчёта $overrightarrow{a}=frac{doverrightarrow{v}}{dt}= {overrightarrow{a}}_{АБС}$ (абсолютное ускорение) является суммой вектора ускорения тела относительно подвижной системы отсчета ${overrightarrow{a}}_r=frac{d{overrightarrow{v}}_r}{dt}={overrightarrow{a}}_{ОТН}$ (относительного ускорения) и вектора ускорения подвижной системы отсчёта относительно неподвижной ${overrightarrow{a}}_е=frac{d{overrightarrow{v}}_е}{dt}={overrightarrow{a}}_{ПЕР}$ (переносного ускорения):
[{overrightarrow{a}}_{АБС}={overrightarrow{a}}_{ОТН}+{overrightarrow{a}}_{ПЕР}]
В общем случае, когда движение материальной точки (тела) является криволинейным, его в каждый момент времени можно представить как комбинацию поступательного движения материальной точки (тела) относительно подвижной системы отсчёта со скоростью ${overrightarrow{v}}_r$, и вращательного движения подвижной системы отсчёта относительно неподвижной с угловой скоростью ${overrightarrow{omega }}_e$. В этом случае, при сложении ускорений, наряду с относительным и переносным ускорением необходимо учитывать и ускорение Кориолиса $a_c=2{overrightarrow{omega }}_etimes {overrightarrow{v}}_r$, которое характеризует изменение относительной скорости, вызванное переносным движением, и изменение переносной скорости, вызванное относительным движением.
Теорема Кориолиса
Теорема
Вектор ускорения материальной точки (тела) относительно неподвижной системы отсчёта $overrightarrow{a}=frac{doverrightarrow{v}}{dt}= {overrightarrow{a}}_{АБС}$ (абсолютное ускорение) является суммой вектора ускорения тела относительно подвижной системы отсчета ${overrightarrow{a}}_r=frac{d{overrightarrow{v}}_r}{dt}={overrightarrow{a}}_{ОТН}$ (относительного ускорения), вектора ускорения подвижной системы отсчёта относительно неподвижной ${overrightarrow{a}}_е=frac{d{overrightarrow{v}}_е}{dt}={overrightarrow{a}}_{ПЕР}$ (переносного ускорения), и кориолисова ускорения $a_c=2{overrightarrow{{mathbf omega }}}_etimes {overrightarrow{v}}_r={overrightarrow{a}}_{КОР}$:
[{overrightarrow{a}}_{АБС}={overrightarrow{a}}_{ОТН}+{overrightarrow{a}}_{ПЕР}+{overrightarrow{a}}_{КОР}]
Задача 1
Вторая капля оторвалась от крыши через несколько секунд после того, как оторвалась первая капля. Как движется вторая капля относительно первой? Сопротивлением воздуха пренебречь.
Решение
За неподвижную систему отсчёта возьмём землю, за подвижную систему отсчёта — первую каплю, а за наблюдаемое тело — вторую каплю. Отметим, что подвижная система отсчета движется поступательно. Поскольку сопротивлением воздуха пренебрегаем, то на каждую из капель будет действовать лишь одна сила тяжести, сообщающая каждой капле ускорение (относительно земли), равное ускорению свободного падения g. Следовательно, абсолютное ускорение (ускорение второй капли относительно земли) равно g, и переносное ускорение (ускорение первой капли относительно земли) также равно g. По закону сложения ускорений, относительное ускорение (ускорение второй капли относительно первой) равно нулю, значит, вторая капля движется равномерно относительно первой.
Ответ: вторая капля движется относительно первой равномерно.
Задача 2
Жесткий диск вращается с постоянной угловой скоростью $overrightarrow{{mathbf omega }}$ вокруг оси, укрепленной на столе. По диску движется точка А с постоянной относительно стола скоростью $overrightarrow{v}$. Определить скорость ${overrightarrow{v}}_r$ и ускорение ${overrightarrow{a}}_r$ частицы А относительно диска в момент, когда радиус-вектор, характеризующий ее положение по отношению к оси вращения, равен $overrightarrow{{mathbf rho }}$.
Решение
Относительная скорость точки А $ {overrightarrow{v}}_r=overrightarrow{v}-{overrightarrow{{mathbf omega }}}_etimes overrightarrow{{mathbf rho }}$.
Поскольку скорость точки $overrightarrow{v}$ относительно стола постоянна, то её абсолютное движение равномерно, и $overrightarrow{a}=0$
Отсюда
[{overrightarrow{a}}_r=-left({overrightarrow{a}}_e+{overrightarrow{a}}_cright)=-left(2{overrightarrow{{mathbf omega }}}_etimes {overrightarrow{v}}_r+{{mathbf omega }}^2overrightarrow{{mathbf rho }}right)=2overrightarrow{v}times {overrightarrow{{mathbf omega }}}_e-{{mathbf omega }}^2overrightarrow{{mathbf rho }}]
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата последнего обновления статьи: 16.11.2022
Содержание:
Абсолютная и относительная производные от вектора:
При рассмотрении сложного движения точки в общем случае переносного движения приходится рассматривать изменение векторных величин с течением времени по отношению к системам отсчета, движущимся друг относительно друга. Одно изменение имеет векторная величина относительно подвижной системы отсчета, движущейся относительно другой, неподвижной, и другое — относительно неподвижной системы отсчета. Неподвижной системой отсчета считается система, движение которой относительно других систем отсчета не рассматривается.
Введем обозначения производных от векторных величин при рассмотрении их изменения относительно различных систем отсчета, движущихся друг относительно друга. Для любого вектора
Установим зависимость между полной и относительной производными по времени вектора 

Рис. 87
Изменение вектора 




Первые три слагаемых учитывают изменение вектора 

Производные по времени единичных векторов определим по формулам Пуассона
так как эти векторы не изменяются от поступательного движения со скоростью 



или, учитывая (1),
Получена формула зависимости производных векторов 
Известно, что произвольное движение системы координат как свободного твердого тела можно представить как поступательное движение вместе с полюсом, например с точкой 
Рассмотрим частные случаи.
1. Если вектор 

Это формула для производной от вектора постоянного модуля, доказанная ранее для радиуса-вектора при вращении вокруг неподвижной оси. Она справедлива для любого вектора при произвольном движении подвижной системы осей координат. В рассматриваемом случае 


2. Если вектор 

3. Если 



В частности, если 
Полная и локальная производные также равны друг другу в те моменты времени, в которые вектор 

Сложение скоростей
Если 







Движение подвижной системы осей координат относительно неподвижной можно охарактеризовать скоростью ее поступательного движения 









Рис. 88
Продифференцируем по времени это векторное тождество, учитывая изменения векторов относительно неподвижных осей координат, т. е. вычислим полные производные. Получим
По определению, 




Относительная производная 



Скорость
является скоростью точки свободного твердого тела, скрепленного с подвижной системой координат, с которой в данный момент совпадает точка 

т. е. скорость абсолютного движения точки равна векторной сумме переносной и относительной скоростей.
Сложение ускорений точки в общем случае переносного движения
Абсолютное ускорение точки определим вычислением полной производной по времени от абсолютной скорости (6). Имеем
Для полных производных от векторов 

Учитывая, что
получим для абсолютного ускорения
В этой формуле первые три слагаемых составляют ускорение точки свободного твердого тела в общем случае его движения вместе с подвижной системой осей координат относительно неподвижной. Первое слагаемое 




где
Ускорение 
Формула (9) выражает теорему сложения ускорений точки, или кинематическую теорему Кориолиса: абсолютное ускорение точки является векторной суммой трех ускорений — переносного, относительного и Кориолиса.
Переносное ускорение рассматривалось при изучении движения свободного твердого тела. Относительное ускорение изучалось в кинематике точки. Его можно выразить в двух формах в зависимости от способа задания относительного движения. При координатном способе задания в декартовых координатах
где 

причем
где 

где касательное переносное ускорение
причем 
Абсолютное ускорение в этом случае
Ускорение Кориолиса
Рассмотрим ускорение Кориолиса и его свойства. Оно определяется формулой (10)
Угловую скорость вращательной части движения подвижной системы отсчета, т. е. угловую скорость переносного движения, заменили на 
Ускорение Кориолиса является результатом взаимного влияния двух движений: переносного и относительного. Часть его 

Модуль ускорения Кориолиса в соответствии с (10) определяется выражением
Для определения ускорения Кориолиса очень удобно правило Н. Е. Жуковского. Оно основано на формуле (10). Пусть имеем точку 




Ускорение Кориолиса выразится в форме
Рис. 89
Учитывая (10) и (12′), получаем правило Жуковского: модуль ускорения Кориолиса равен удвоенному произведению угловой скорости переносного вращения на модуль проекции относительной скорости на плоскость, перпендикулярную оси переносного вращения; чтобы получить направление ускорения Кориолиса, следует вектор проекции относительной скорости 

Рассмотрим случаи обращения в нуль ускорения Кориолиса. Из (12) следует, что 
-
, т. е. переносное движение является поступательным;
-
, т. е. в те моменты времени, в которые происходит изменение направления относительного движения;
-
, т. е. когда скорость относительного движения
параллельна угловой скорости переносного вращения
.
Следует отметить, что при различном разложении одного и того же абсолютного движения точки на переносное и относительное получим разные ускорения Кориолиса.
Пример №1
Шар радиусом 






Определить абсолютные скорость и ускорение точки 

Решение. За переносное движение точки примем вращение ее вместе с шаром вокруг оси 
Определим положение точки 




Вычислим угловые скорость и ускорение переносного движения. Получаем 




Так как 





Рис. 90
Абсолютную скорость точки определяем по формуле
Скорость переносного движения при
Скорость относительного движения точки 







В рассматриваемом случае 

Так как переносное движение является вращением шара вокруг неподвижной оси, то абсолютное ускорение точки определяем по формуле
Переносное нормальное ускорение
Ускорение 




Относительное нормальное ускорение
Ускорение 







Ускорение Кориолиса определяем по правилу Жуковского. Его модуль 



После этого находим






Для определения абсолютного ускорения выбираем прямоугольные оси координат 
Числовое значение абсолютного значения
Пример №2
Колечко 

где 


Рис.91
Определить в момент 
Решение. Положение колечка в момент времени 
Примем движение колечка вместе с вращающимся стержнем за переносное. Тогда его движение по стержню будет относительным движением.
Вычислим проекции на оси координат абсолютных скорости и ускорения колечка для произвольного момента времени. Имеем:
Для момента времени 
По проекциям изображаем векторы абсолютных скорости и ускорения в рассматриваемый момент времени (рис. 92). По теореме сложения скоростей для колечка,
Скорость переносного движения 



Но
поэтому
Угловая скорость вращения стержня определяется по формуле
В соответствии с направлением 
В частном случае переносного вращательного движения по теореме сложения ускорений для абсолютного ускорения имеем
Рис. 92
Вычисляем отдельные составляющие абсолютного ускорения 

Ускорение 





Нормальная составляющая относительного ускорения 




Ускорение Кориолиса 












Выбираем оси координат 
Из этих уравнений определяем неизвестные ускорения:
Ускорение 



Рис. 93
Составное (сложное) движение. Относительное и переносное движения
Абсолютным движением называют движение точки или системы точек по отношению к основной системе отсчета.
Абсолютное движение
Механическое движение выражается в изменении с течением времени взаимных положений тел (или частей тела). Такое изменение можно отметить только относительно других тел. Так, река течет вдоль берегов, биллиардный шар катится по биллиардному столу, пароход пересекает экватор. Реальные или условные тела (берега, биллиардный стол, экватор), по отношению к которым мы определяем положения других движущихся тел (воды, шара, парохода) и которые мы принимаем за системы отсчета, тоже не неподвижны. Так, системы отсчета, только что приведенные нами в виде примера, находятся на поверхности нашей планеты и вместе с ней вращаются вокруг земной оси, движутся вокруг Солнца и совершают множество других движений. Но и предметы, не связанные непосредственно с Землей, тоже не неподвижны—Солнце движется относительно звезд, которые движутся относительно друг друга.
Однако для целей механики далеко не всегда нужно иметь неподвижную систему отсчета. Так, например, если мы передвигаем какой-либо груз с носа корабля на корму, то нас может интересовать движение груза по палубе независимо от движения корабля. В подобных случаях в кинематике можно условно принять за неподвижную любую систему отсчета и назвать ее основной системой отсчета. Движение же точки (или системы точек) по отношению к основной системе отсчета называют абсолютным движением.
Относительным движением называют движение точки или системы точек по отношению к подвижной системе отсчета
Относительное движение
Встречаются случаи, когда приходится изучать движение (точки или тела) по отношению к системе отсчета, которая сама передвигается относительно другой системы, принятой за основную. При рассмотрении движения точки или тела по отношению к двум системам отсчета ту из этих систем, которая движется относительно основной системы отсчета, называют подвижной системой отсчета.
Так, например, перемещение корабля в море, измеренное при помощи лага, не учитывает снос корабля морским течением. Лагом измеряют движение корабля относительно воды. Можно представить себе подвижную систему координат, плывущую вместе с водой по течению, т. е. передвигающуюся относительно другой системы отсчета, принятой за основную. Движения корабля можно рассматривать по отношению к двум системам отсчета: по отношению к подвижной системе (связанной с водой) и к основной (связанной с материками, принимаемыми за неподвижные). Движение корабля по отношению к подвижной системе координат, измеряемое лагом, будем называть относительным движением корабля. Вообще относительным движением будем называть движение (точки, тела или системы точек) по отношению к подвижной системе отсчета. Относительное движение изучают обычно в тех случаях, когда приходится учитывать не только движение данного объекта по отношению к подвижной системе отсчета, но и движение самой системы отсчета.
Переносным движением называют движение подвижной системы отсчета по отношению к основной системе отсчета
Переносное движение
Так, в данном примере, чтобы знать движение корабля относительно берегов, надо кроме движения корабля относительно воды знать также и движение самой воды, т. е. движение подвижной системы отсчета относительно основной. Движение подвижной системы отсчета по отношению к основной системе отсчета называют переносным движением.
Во многих задачах кинематики переносным бывает движение среды, в которой находится тот объект, движение которого нужно изучить. В только что рассмотренном примере течение воды действительно переносит корабль. Еще один пример: человек идет по поезду. Движение поезда является переносным движением для человека, а движение человека относительно вагонов является относительным. Поезд переносит (в буквальном смысле слова) человека. Но иногда переносное движение не является движением среды, которая увлекает с собой данный объект. Например, рассматривая движение Земли вокруг ее оси и вокруг Солнца, мы можем первое из этих движений считать относительным, а второе — переносным, хотя нет такой среды, которая вращалась бы вокруг Солнца, увлекая с собой и Землю.
Составным движением называют абсолютное движение точки или системы точек, составляемое из их относительного и переносного движений
Составное движение
В первых двух примерах движение объекта (корабля, человека) состоит из двух движений, которые мы назвали относительным и переносным. В третьем примере Земля совершает движение, которое мы искусственно разложили на относительное и переносное. Часто, чтобы упростить изучение какого-либо сложного движения, это движение искусственно раскладывают на более простые, называя одно из них относительный!, другое—переносным. Независимо от того, состоит ли движение в действительности из относительного и переносного или же мы искусственно, для упрощения расчетов, считаем его состоящим из двух движений, мы будем называть сложным или составным движением абсолютное движение точки или системы точек, состоящее (или составляемое) из относительного движения по отношению к подвижной системе отсчета и переносного движения вместе с подвижной системой отсчета.
Если в cocтавном движении мы мысленно прекратим одно из составляющих движений, то получим второе составляющее движение. При решении некоторых задач бывает удобно пользоваться таким приемом:
- чтобы определить относительное движение, мысленно остановим переносное;
- чтобы определить переносное движение, мысленно остановим относительное.
Возвращаясь к первому из только что разобранных примеров, мысленно остановим морское течение; корабль будет двигаться относительно воды, но не будет относиться течением; останется только одно движение — относительное. Остановим теперь собственный ходкорабля, но предоставим воде продолжать свое течение, и корабль поплывет по течению; останется только одно движение корабля —переносное.
Также легко выделить относительное и переносное движения во втором примере. Остановим мысленно поезд, но предоставим человеку идги по вагону, и получим относительное движение человека; остановим мысленно человека в его движении по поезду, но не будем останавливать поезд, и найдем переносное движение человека.
Движение точки, тела или системы точек часто рассматривают как составное, мысленно раскладывая его на два или несколько движений более простых
Несколько сложнее третий пример (движение Земли)
Здесь нет движения среды, переносящей Землю, подобно морскому течению, переносящему корабль. Мы лишь мысленно приняли движение Земли за составное, искусственно разложили его на переносное и относительное, чтобы упростить его, чтобы более наглядно себе его представить и легче понять. Мы можем вообразить подвижную систему координат, связанную с Землей и движущуюся относительно основной системы, связанной с Солнцем и звездами, и считать, что движение Земли состоит из переносного и относительного. Поскольку движение земного шара (движение по отношению к основной системе) мы искусственно рас: сматриваем как составное, постольку от нас самих зависит, как разложить это движение на переносное и относительное. Мы можем считать, что подвижная система отсчета движется поступательно или вращательно. В зависимости от этого, конечно, изменится и относительное движение. Земля совершает 
Рис. 114
Такой искусственный метод разложения движения на относительное и переносное широко применяют в различных областях механики. Л. Пуансо в предисловии ко второму изданию своей книги «Элементы статики» (1824) писал даже о невозможности представить наглядно движение тел иначе, как в виде одновременного перемещения и вращения.
Очень часто движение раскладывают не на два, а на большее число составляющих движений. Напомним, что мы уже так поступали, изучая движение точки как составное из трех прямолинейных движений, параллельных осям координат.
Теоремы параллелограмма скоростей и параллелограмма ускорений
Относительными скоростью и ускорением точки называют ее скорость и ускорение по отношению к подвижной системе отсчета
Относительные скорость и ускорение
Пусть некоторая точка M (рис. 115) движется относительно системы координат.x’Ey’z’. Если бы эту систему координат мы считали неподвижной, то движение, скорость и ускорение точки по отношению к этим координатам мы называли бы абсолютными. Но пусть система координатных осей x’Ey’z’ по условиям задачи движется относительно основной системы отсчета xОyz. В таком случае скорость и ускорение точки M относительно системы координат x’Ey’z’ называют относительными.
Рис. 115
Итак:
- относительной скоростью точки называют скорость точки по отношению к подвижной системе отсчета1;
- относительным ускорением точки называют ускорение точки по отношению к подвижной системе отсчета.
Мы будем обозначать относительную скорость буквой υ с индексом r (от латинского слова relativus—относительный). Относительное ускорение будем обозначать буквой а с тем же индексом r.
Для обозначения проекций относительных скорости и ускорения будем ставить рядом с индексом r второй индекс. Так, υrx есть проекция относительной скорости на ось Ox; arN—относительное нормальное ускорение.
Переносными скоростью и ускорением точки называют абсолютные скорость и ускорение той точки подвижной системы отсчета, с которой в данное мгновение совпадает движущаяся точка
Переносные скорость и ускорение
Чтобы определить переносное движение точки М, прекратим мысленно ее относительное движение, закрепив ее относительно координатных осей х’Еу’z’ в том положении, которое она занимает в данное мгновение. Таким образом, мы будем считать, что точка M неизменно скреплена с осями х’Еу’z’ , но оси продолжают двигаться относительно основной системы координат xOyz вместе с точкой М. Тогда скорость и ускорение точки M относительно основных осей координат явятся скоростью и ускорением точки M в ее переносном движении.
Итак:
- переносной скоростью точки M называют абсолютную скорость той точки подвижной системы отсчета, с которой в данное мгновение совпадает движущаяся точка М;
- переносным ускорением точки M называют абсолютное ускорение той точки подвижной системы отсчета, с которой в данное мгновение совпадает движущаяся точка М.
Мы будем обозначать переносную скорость точки буквой υ с индексом е (от французского слова entrainer—увлекать за собой), а переносное ускорение—буквой а с тем же индексом. Для обозначения проекций переносных скорости и ускорения на какую-либо ось будем ставить рядом с индексом е индекс, соответствующий оси.
Вектор абсолютной скорости равен сумме векторов относительной и переносной скоростей:
Параллелограмм скоростей
Ознакомившись с понятиями относительной и переносной скоростей точки, найдем зависимость между этими скоростями и абсолютной скоростью, т. е. скоростью точки по отношению к основной системе отсчета.
Пусть подвижная система координат x’Ey’z’ (рис. 116) движется поступательно. В таком случае оси Ex’, Ey’ и Ez’ будут оставаться параллельными своему начальному направлению. Для простоты выкладок пусть эти оси направлены параллельно осям основной системы координат. Тогда во все время движения будем иметь:
Ex’ ||Ox; Ey’||Oy; Ez’||Oz.
Рассмотрим сначала относительное движение точки M и для этого остановим мысленно движение подвижной системы отсчета.
Напишем уравнения движения точки M относительно подвижной системы отсчета:
x’ = x'(t). y’=y'(t), z’ = z'(t). (102)
Продифференцировав по времени и обозначая, как обычно, точкой производные по времени, найдем проекции относительной скорости на подвижные оси координат:
υrx’=x’; υry’=y’; υrz’ = r’.
Так как оси подвижной системы координат параллельны соответствующим осям основной системы, то проекции относительной скорости на оси Ex’, Ey’ и Ez’ соответственно равны проекциям на параллельные им оси Ox, Oy и Oz основной системы отсчета:
υrx=x’; υry = y’; υrz=z’.
Зная проекции относительной скорости, легко найдем по формулам (64) и (62) величину и направление полной относительной скорости.
Чтобы определить переносное движение, мысленно остановим движение точки относительно подвижной системы координат, но предоставим самой подвижной системе x’Ey’z’ продолжать движение.
Напишем по (77) уравнения переносного поступательного движения:
xЕ=x (t); yЕ = y(t), zЕ=z(t).
Продифференцировав равенства (77), получим проекции переносной скорости точки М, которые при поступательном движении системы равны проекциям скорости точки Е:
υex =xE; υey = yE, υez = zE.
Величину и направление вектора полной переносной скорости точки M легко найти по формулам (64) и (62).
Для определения абсолютной скорости точки M найдем сначала ее координаты х, у и г. Применив формулу преобразования начала координатных осей при сохранении направления осей, получим
х-=х’ + хE, y = y’ + yE, z = z, + zE.
Точка M находится в составном движении, следовательно, х, у и г изменяются с течением времени, причем первые члены правых частей этих равенств изменяются согласно (102), а вторые—согласно (77). Продифференцировав по времени, получим проекции абсолютной скорости точки М:
υx = x’+’xE, υy=y’ + yE, υz = z,+ zE
или
υx =υrχ+υeχ, υy =υry+ υey, υz = υrz +υez. (103)
Эти равенства показывают, что проекция абсолютной скорости на какую-либо ось равна сумме проекций относительной и переносной скоростей на ту же ось. Следовательно, вектор абсолютной скорости точки равен сумме векторов относительной скорости и переносной скорости той же точки:

Поэтому доказанную теорему называют теоремой параллелограмма скоростей.
Равенства (103) и (103′) выражают связь между тремя скоростями (абсолютной, относительной и переносной) одной и той же точки и позволяют определить любую из этих скоростей, если известны две другие,Они доказаны в предположении, что переносное движение поступательное, но справедливы при всяком переносном движении, как это будет показано в § 31.
Из равенств (103) непосредственно получаем:
- проекция относительной скорости точки на какую-либо ось равна разности проекций абсолютной и переносной скоростей той же точки на ту же ось;
- проекция переносной скорости точки на какую-либо ось равна разности проекций абсолютной и относительной скоростей той же точки на ту же ось.
Из векторного равенства (103) получаем
Отсюда вытекает следующее правило: чтобы найти относительную скорость точки, надо сложить вектор абсолютной скорости точки с вектором, равным по модулю, но обратным по направлению вектору ее переносной скорости. Аналогично, чтобы найти переносную скорость точки, надо сложить вектор абсолютной скорости точки с вектором, равным по модулю, но обратным по направлению вектору ее относительной скорости.
Пример №3
Вертикально падают дождевые капли со скоростью 2 м/сек. Пешеход идет справа налево со скоростью 1,5 м/сек. Найти скорость дождя по отношению к пешеходу (рис. 117, а).
Решение. В данной задаче за основную систему отсчета примем Землю. Подвижная система отсчета связана с пешеходом. Вертикальная скорость дождя является абсолютной скоростью (υ = 2 м/сек); переносной скоростью υe является скорость подвижной системы отсчета, т. е. скорость человека, направленная влево и равная 1,5 м/сек. Чтобы найти вектор относительной скорости, сложим вектор абсолютной скорости (рис. 117,6) с вектором, который по величине равен переносной скорости, а по направлению противоположен ей, т. е. направлен слева направо:
Вектор относительной скорости составляет с вертикалью угол а, тангенс которого равен
Ответ. υr = 2,5 м/сек, α = 37°.
Пример №4
Корабль плывет на юг со скоростью 42,3 км/ч. Второй корабль идет курсом на юго-восток со скоростью 30 км/ч. Найти величину и направление скорости второго корабля, определяемую наблюдателем, находящимся на палубе первого корабля. При вычислении принять 
Решение. Задача аналогична предыдущей, но решать ее будем не в векторной, а в координатной форме, для чего перепишем (103) в следующем виде:
υrx=υx — υex, υry = υy— υey∙
Построим основную систему координат, связанную с Землей, направив ось Ox на юг, а ось Оу— на восток, (рис. 118). Подвижную систему отсчета свяжем с первым кораблем, так как относительно первого корабля надо определить скорость второго. Проекции абсолютной скорости второго корабля на оси основной системы таковы:
Переносным движением мы называем движение подвижной системы отсчета по отношению к основной. Поэтому в данной задаче переносной скоростью является скорость первого корабля. Ее проекции следующие:
Подставляя эти значения в написанные выше уравнения, найдем проекции относительной скорости:
По проекциям находим модуль:
и направляющие косинусы относительной скорости:
Следовательно, относительная скорость второго корабля составляет углы по 45о C положительным направлением оси Oy и с отрицательным направлением оси Ох, т. е. направлена на северо-восток.
Ответ, υr = 30 км/ч н направлена на северо-восток.
Пример №5
Ширина АВ реки (рис. 119,а) равна 900 м, и берега ее параллельны. Моторная лодка, выйдя из пункта В, держала курс перпендикулярно берегам и достигла противоположного берега через 5 мин, но не в пункте А, находящемся против В, а в пункте С, лежащем на 300 м ниже по течению. Во втором рейсе та же моторная лодка, выйдя из того же пункта В, взяла курс под углом О к BA (начальное направление на пункт D, лежащий на 300 м выше пункта А по течению) и сохраняла свое направление (угол δ), но подошла к правому берегу в пункте Е, лежащем ниже А.
Считая скорость лодки относительно воды постоянной и пренебрегая изменением течения воды у берегов, определить расстояние AE, скорость течения, скорость лодки относительно воды и скорости υ1 и υ2 лодки относительно беретов в обоих рейсах.
Решение. Возьмем начало основной системы координат в точке В, направив ось абсцисс перпендикулярно к берегу по BA, а ось ординат — вниз по течению реки (для решения задачи пользуемся формулами 103). Скорость лодки относительно этой системы является абсолютной. Подвижная система координат движется поступательно вместе с водой и скорость течения реки является переносной скоростью лодки.
Тогда, имея в виду, что АC = 300 м = DA, для первого рейса (рис. 119,6)
υ1 cos δ = υr, υ1 sin δ = υe
и для второго рейса (рис. 119, в)
υ2 cos δ’ =υr cos δ, υ2 sin δ, =υe—vr sin δ.
В первом рейсе лодка держала курс перпендикулярно берегам и в относительном движении проплыла 900 я за 5 мин = 300 сек. Следовательно, υr=3 м/сек.
За то же время ее снесло течением на 300 м, а потому υe=l м/сек.
Подставляя эти значения в уравнения, составленные для первого рейса, и деля второе из этих уравнений на первое, найдем

Из тех же уравнений найдем скорость лодки относительно берегов (т. е. абсолютную скорость) в первом рейсе:
Величина относительной скорости лодки, определенная по ‘данным первого рейса, не изменится и во втором, так как по условию задачи скорость лодки относительно воды постоянна. Также не изменится и переносная скорость лодки — скорость течения реки. Подставляя найденные значения в уравнения, составленные для второго рейса, получим
Из этих уравнении найдем: υ2 = 2,85 м/сек и sin δ’ = 0,018.
Умножая АB = 900 м на tg δ’, найдем AE.
Ответ. υe=l м/сек-, υr=3 м/сек-, υ1 = 3,16 м/сек;
v2 = 2,85 м/сек, АЕ=16 м.
Если переносное движение поступательное, то вектор абсолютного ускорения точки равен сумме векторов ее относительного и переносного ускорений
Параллелограмм ускорений
В отличие от теоремы параллелограмма скоростей, применимой при всяком переносном движении, аналогичная теорема параллелограмма ускорений справедлива только в том случае, если переносное движение поступательное.
Пусть точка совершает составное движение, причем подвижная система отсчета x’Ey’z’ движется поступательно по отношению к основной системе хОуz. Пусть соответствующие оси обеих координатных систем параллельны друг другу, это упростит доказательство.
Проекции относительной скорости точки нами уже определены. Продифференцировав эти равенства по времени, найдем проекции относительного ускорения точки:
arx = χ’; ary=y,; arz=z’.
Величину и направление полного относительного ускорения можно определить по формулам (66) и (67).
Продифференцировав по времени равенства (78), найдем проекции ускорения точки в переносном поступательном движении:
Величину и направление полного переносного ускорения можно определить по формулам (66) и (67), применимым для всякого ускорения точки, независимо от того, является это ускорение абсолютным, относительным или переносным.
Чтобы определить проекции абсолютного ускорения точки (в рассматриваемом случае переносного поступательного движения), надо продифференцировать по времени равенства (103). Получим

Из этих равенств видно, что если переносное движение поступательное, то проекция абсолютного ускорения точки на ось состоит из суммы проекций на ту же ось относительного и переносного ускорений точки. Следовательно, вектор абсолютного ускорения точки в этом случае равен геометрической сумме двух векторов—относительного и переносного ускорений:

В этом заключается теорема параллелограмма ускорений.
Равенства (104) и (104′) выражают связь между абсолютным, относительным и переносным ускорениями точки в случае, если переносное движение поступательное, и позволяют определить какое-либо одно из этих ускорений по двум другим.
Если относительное и переносное движения заданы в естественной форме, то для определения ускорений приходится сначала определять их нормальную и касательную составляющие. Так, для определения относительного ускорения надо определить относительное касательное и относительное нормальное ускорения, а уж потом по формулам (75) и (76)—полное относительное ускорение. Аналогично для определения переносного ускорения определяют переносные касательное и нормальное ускорения, а затем полное переносное ускорение. Для получения полного абсолютного ускорения нужно взять геометрическую сумму полного относительного и полного переносного ускорений, которые составляют между собой, вообще говоря, угол, отличный от прямого.
Приводим схему разложения полного абсолютного ускорения точки для случая переносного поступательного движения. При решении задач на параллелограмм ускорений бывает полезно написать эту схему и заполнять ее справа налево:
Часто определяют абсолютное ускорение по его проекциям ах, ay, az на оси основной системы координат и, получив проекции результирующего вектора 



Эти равенства являются лишь некоторым видоизменением равенств (104).
Если переносное движение не поступательное, то абсолютное ускорение точки состоит из суммы трех векторов: относительного ускорения, переносного ускорения и ускорения Кориолиса. Доказательство теоремы Кориолиса дано в § 31.
Пример №6
Кривошипио-кулнсный механизм приводного молота (рис. 120, а) состоит из прямолинейной поступательно движущейся кулисы АВ, в прорези которой скользит звено C (камень), соединенный шарнирно с кривошипом ОС длины e, вращающимся с постоянной угловой скоростью ω. Найти скорость и ускорение кулисы как функции угла поворота кривошипа.
Решение. Будем рассматривать движение камня C как составное, состоящее из относительного движения по прорези кулисы и переносного движения вместе с кулисой. Для решения воспользуемся формулами (103) и (104). Примем неподвижный шарнир О за начало основной системы координат, направив ось Ox вправо и ось Oy вверх (рис. 120,6). Подвижную систему координат неизменно соединим с кулисой, взяв начало в точке E и направив ось Ex’ по прорези вправо, a Ey’- вверх. Движение подвижной системы координат, как и движение кулисы, поступательное. Ось Ex’ передвигается к неподвижной оси Ох, а ось Ey’ скользит по оси Оу.
Абсолютное движение камня есть круговое поступательное движение по отношению к основной системе координат. Для определения абсолютных скорости и ускорения обратим внимание на то, что точка C (шарнир) принадлежит не только камню, но и кривошипу, а потому абсолютная скорость точки C равна ωr. (см. рис. 120, б), а ее проекции:
υx = ωr cos ωt и υy= ωr sin ωt.
Абсолютное ускорение точки C равно ω2r, а его проекции (рис. 120, в):
ах = — ω2r sin ωt и ay = ω2r cos ωt.
Эти равенства можно было бы получить, продифференцировав предыдущие.
Относительное движение камня — это возвратно-поступательное движение по прорези вправо и влево. Такое движение камня мы видели бы, если бы сами двигались вместе с кулисой, не замечая ее движения. Камень движется по горизонтальной оси Ex’, а потому
υrx= ± υr, υry = 0.
Проекции относительного ускорения:
αrx=±ar, αry = 0.
Переносное движение камня (движение подвижной системы отсчета относительно основной) —возвратно-поступательное движение кулисы вверх и вниз. Поэтому проекции переносных скорости и ускорения на вертикальную ось Oy равны модулям скорости и ускорения со знаком «-(-» или «—», а на горизонтальную ось Ох—равны нулю. Имеем
υex = 0, υey= ± υe и αex = 0, αey=± αe.
Из трех движений камня нас интересует переносное движение (движение кулисы). Определив проекции переносной скорости
υex = υx — υrx , υey= υy — υry
и подставив найденные значения, получим переносную скорость из уравнений
0 = ωr cos ωt — υr, υe = ωr sin ωt.
Таким образом, переносная скорость камня (скорость кулисы) определена.
Для определения переносного ускорения мы могли бы продифференцировать по времени выражение, полученное для переносной скорости (так как переносное движение прямолинейно-поступательное). Но мы применим более общий метод — определим из (104) проекции переносного ускорения:
αex = ax—arx, aey=ay — ary
подставим в эти уравнения найденные нами значения проекций переносного и абсолютного ускорений камня:
0 = — ω2r sin ωt-ar, ae = ω2r cos ωt.
Таким образом, переносное ускорение ае камня равно ω2r cos ωt. Оно же является ускорением кулисы.
Ответ. υ = ωr sιnωt; a = ω2r cos ωt.
Теорема сложения ускорений точки при переносном вращательном движении (теорема Кориолиса)
При составном движении точки в случае непоступательиого переносного движения возникает добавочное ускорение, называемое ускорением Кориолиса:
Величина ускорения Кориолиса
Теорема параллелограмма ускорений пригодна только в частном случае, если подвижная система отсчета движется поступательно. Если же переносное движение не поступательное, то у абсолютного ускорения появляется еще одна составляющая, называемая ускорением Кориолиса, или поворотным ускорением. Выведем формулы, позволяющие определить абсолютное ускорение при всяком составном движении точки.
Пусть точка M (рис. 121) движется относительно подвижной системы x’0y’z’ и это движение определяется какими-либо уравнениями
x’=x'(t), y’=y'(t), z’ = z’ (t).
Рис. 121
Пусть подвижная система отсчета вращается вокруг оси Oz основной системы согласно уравнению T==T (О-
Сохраним и в этом параграфе расположение осей координат (см. рис. 101, стр. 165), при котором оси Oz’ и Oz подвижной и неподвижной систем совпадают между собой и с осью вращения, а плоскость х’Оу’ находится в плоскости хОу. Тогда координаты точки M в основной системе определятся соотношениями

Эти равенства (107) отличаются от уже известных нам равенств (88) тем, что здесь координаты х’, у’ и z’ переменны, тогда как в равенствах (88) они были постоянны.
Если мы мысленно остановим точку M в ее относительном движении, т. е. будем считать ее координаты х’, у’ и z’ постоянными, но сохраним переносное вращение, то, дифференцируя равенства (88) по времени, найдем знакомые нам выражения (89) проекций вращательной скорости, которая в данном случае явится переносной скоростью точки М:
Дифференцируя вторично, найдем проекции переносного ускорения, которые выражаются также известными нам формулами (95):
Чтобы определить относительное движение, мысленно остановим переносное, т. е. будем считать 
Заметим попутно, что, возводя каждое из этих равенств в квадрат, складывая и извлекая квадратный корень, мы определили бы величину относительной скорости (рис. 122). Если же мы возведем в квадрат и сложим лишь два первых равенства, то, извлекая корень, мы получим, очевидно, величину проекции относительной скорости на плоскость хОу:
Напомним, что вектор угловой скорости 
Это соотношение скоро нам понадобится.
Чтобы получить проекции относительного ускорения, надо продифференцировать по времени выражения, полученные для проекций относительной скорости, по-прежнему считая φ постоянной. Имеем
Чтобы определить проекции абсолютной скорости точки М, надо продифференцировать уравнения (107) по времени, считая все величины переменными. Имеем
или

Мы получили теорему параллелограмма скоростей, которая, следовательно, остается в силе и при вращательном переносном движении.
Чтобы определить проекции абсолютного ускорения, возьмем вторые производные, опять-таки считая все величины переменными. Имеем:
или
Таким образом, в выражениях проекций абсолютного ускорения, вдобавок к проекциям относительного и переносного ускорений, появляется еще одно слагаемое, выражающее проекции добавочного ускорения ac:

Это добавочное ускорение называют ускорением Кориолиса.
Определим величину ускорения Кориолиса:
или, заменив корень полученным выше значением, находим окончательно

Мы вывели формулу (109) в предположении, что переносное движение вращательное. Она остается без изменений и при всяком ином непоступательном переносном движении.
Итак, если переносное движение не поступательное, то абсолютное ускорение точки равно геометрической сумме трех составляющих: относительного ускорения, переносного ускорения и ускорения Кориолиса:

В случае, если переносное движение непоступательное, необходимо дополнить ускорением Кориолиса и схему (105), которая принимает следующий вид:

Пользоваться этой схемой при решении задач надо так же, как и схемой (105), заполняя ее справа и геометрически складывая составляющие.
Ускорение Кориолиса существует только при составном движении, если переносное движение непоступательное
При каком движении бывает ускорение Кориолиса
В выражение (109) ускорения Кориолиса входят множителями относительная скорость точки, угловая скорость подвижной системы отсчета и синус угла между векторами этих скоростей. Но относительная скорость бывает только при составном движении. Поэтому и ускорение Кориолиса может быть только при составном движении. Если нет относительной скорости точки, т. е. если υr = 0, то не может быть и ускорения Кориолиса. Однако ускорение Кориолиса бывает не при всяком составном движении точки. Так, если переносное движение поступательное и ω = 0, то нет и ускорения Кориолиса. Из формулы (109) видно, что и в составном движении точки, и при переносном вращательном движении ускорение Кориолиса равно нулю, если относительная скорость параллельна оси вращения. Так, например, корабль, плывущий по меридиану, имеет ускорение Кориолиса, если рассматривать его движение как составное из относительного движения корабля и переносного движения Земли. Это ускорение равно удвоенному произведению скорости корабля на угловую скорость Земли и на синус географической широты (рис. 123) и равнялось нулю в то время, когда корабль пересекал экватор и его относительная скорость была параллельна вектору угловой скорости Земли.
Рис. 123
Физическая причина ускорения Кориолиса заключается в изменении вектора переносной скорости от относительного движения и вектора относительной скорости от переносного движения
Физическая причина ускорения Кориолиса
Постараемся уяснить физические причины, вызывающие ускорение Кориолиса, для чего представим себе два прямолинейных отрезка O1A1 и O2A2 (рис. 124), рис. 123 по которым движутся точки B1 и B2. Штрихами отмечены положения этих отрезков и точек через промежуток времени Δ t. Первый из отрезков движется поступательно, второй вращается вокруг O2.
Рис. 124
Существуют две физические причины ускорения Кориолиса:
1. Переносная скорость точки B1 не зависит от положения ее на отрезке O1A1, так как, по свойству поступательного движения, скорости всех точек прямой O1X1 между собой равны. Напротив, величина переносной скорости точки B2 равна ω.O2B2 и всецело зависит от ее положения. Переносная скорость точки B2 меняется от ее относительного движения. Чем быстрее движется точка B2 по прямой O2A2 и чем быстрее вращается эта прямая, тем значительнее изменяется переносная скорость точки B2. Таким образом, изменение скорости точки в данное мгновение (т. е. ускорение точки), вызванное указанной причиной, пропорционально величине агносительной и угловой скоростей. В этом заключается один из факторов, порождающих ускорение Кориолиса.
2. Направление относительной скорости точки B1 не меняется, так как, по свойству поступательного движения, прямая O1A1 передвигается параллельно самой себе. Напротив, направление относительной скорости точки B2 непрерывно изменяется по мере вращения O2А2. Даже при прямолинейном относительном движении направление относительной скорости изменяется (вследствие переносного вращения). Изменение вектора скорости точки в данное мгновение (ускорение), вызванное этой причиной, тоже пропорционально величине относительной и угловой скоростей, В этом заключается другой фактор, порождающий ускорение Кориолиса. Ускорение Кориолиса как бы поворачивает вектор относительной скорости в направлении переносного вращения. По этой причине его иногда называют поворотным ускорением.
Вектор ускорения Кориолиса перпендикулярен векторам угловой и относительной скоростей
Направление ускорения Кориолиса
При выводе формулы ускорения Кориолиса мы убедились, что проекция этого ускорения на Oz равна нулю. Отсюда следует, что вектор ускорения Кориолиса лежит в плоскости, перпендикулярной к оси вращения, или, иными словами, к вектору угловой скорости, который направлен по оси вращения Oz.
Уточним теперь направление ускорения Кориолиса в плоскости, перпендикулярной к осп вращения, и обозначим углы, составляемые им с осью Ox и Оу, через αc и βc. Направляющими косинусами являются:
Углы, составляемые относительной скоростью точки с теми же осями, обозначим через ar и βr:
Сравнивая направляющие косинусы ускорения Кориолиса с направляющими косинусами относительной скорости, находим, что удовлетворяется известное из аналитической геометрии условие перпендикулярности двух направлений—сумма произведений соответствующих направляющих косинусов равна нулю:
cos ac cos ar + cos βc cos βr = 0,
следовательно, ускорение Кориолиса перпендикулярно не только к угловой, но и к относительной скорости точки М.
Отсюда вытекает следующее правило: для определения направления ускорения Кориолиса надо спроецировать вектор относительной скорости на плоскость, перпендикулярную Oz (оси вращения), и затем повернуть эту проекцию вокруг оси вращения на 90° в сторону переносного вращения. Следовательно, если переносное вращение происходит в положительном направлении, то проекцию υrxy относительной скорости надо повернуть на 90° против хода стрелки часов, а если переносное вращение происходит в отрицательном направлении, то по ходу стрелки. Это определяется самой сущностью поворотного ускорения, поворачивающего вектор относительной скорости в направлении переносного вращения. К тому же результату мы пришли бы, сравнивая знаки направляющих косинусов ускорения Кориолиса и относительной скорости.
Таким образом, ускорение Кориолиса по величине и направлению можно выразить удвоенным векторным произведением угловой скорости и относительной скорости:

Если относительное движение точки происходит в плоскости, перпендикулярной оси переносного вращения, то угол между векторами угловой и относительной скоростей равен 90°, его синус равен единице и выражение ускорения Кориолиса упрощается:

В этом частном, но очень распространенном в технике случае для определения направления ускорения Кориолиса не нужно проецировать вектор относительной скорости точки, а достаточно повернуть его на 90° в плоскости движения точки в сторону переносного вращения. Поясним это следующей задачей.
Пример №7
Стержень OA вращается вокруг оси, перпендикулярной к плоскости чертежа (рис. 125) в точке О. Вдоль стержня движется ползун В. Указать направление ускорения Кориолиса.
Рис. 125
Решение. Ускорение Кориолиса всегда перпендикулярно к угловой скорости к оси вращения и к относительной скорости. Следовательно, ускорение Кориолиса лежит в плоскости чертежа и перпендикулярно к стержню. Четыре возможных случая изображены на рис. 125, а, б, в, г.
Пример №8
Прямая трубка (рис. 126) равномерно вращается с угловой скоростью ω = π рад/сек вокруг осн Oz, перпендикулярной к плоскости чертежа в точке О. Шарик M совершает гармонические колебания вдоль трубки по закону x’ = ОM = A sin πt. Определить ускорение шарика при t=4 сек.
Решение. Будем рассматривать движение шарика как составное, состоящее из движения относительно трубки и движения вместе с трубкой (рис. 126, а). Для решения задачи воспользуемся схемой (110′) (см. стр. 206).
Чтобы определить относительное движение, мысленно остановим переносное вращение трубки. Уравнение относительного движения шарика есть
x’=A sin πt.
Относительная скорость
υr =x’= Aπ2 cos πt.
В относительном движении шарик имеет касательное ускорение
arT =x’=- Aπ2 sin πt.
Относительное движение в данном случае прямолинейное, поэтому относительное нормальное ускорение αrN=0.
Переносное движение обусловлено вращением трубки. Мысленно остановим шарик, предоставив трубке вращаться. Напишем уравнение равномерного вращения трубки, положив φo = 0:
φ=πt.
Переносной скоростью шарика является вращательная скорость той точки среды (трубки), в которой в это мгновение находится шарик:
υe = ωr = Aπ sin πt,
причем в этом выражении время t соответствует тому мгновению, в которое мысленно остановлен шарик, а потому t здесь нельзя рассматривать как переменную величину.
Переносное вращение равномерное, и переносное касательное ускорение равно нулю:
aeT = εr = 0.
Переносное центростремительное ускорение
aeN = ω2r — Aπ2 sin πt,
где t имеет заданное значение, соответствующее данному мгновению, в которое мысленно остановлено относительное движение.
Кроме этих составляющих абсолютного ускорения, имеется ускорение Кориолиса, так как переносное движение вращательное:
ас = 2ωυr = 2Aπ2 cos πt.
Эти составляющие абсолютного ускорения вносим в схему (110′):
В мгновение t = 4 сек имеем:
Таким образом, абсолютное ускорение в это мгновение состоит из ускорения Кориолиса a = ac = 2Aπ2.
При t = 4 сек точка M совпадала с точкой О (x’ = A sin 4π = 0) и имела относительную скорость + Аπ, направленную в положительном направлении Ox’. Чтобы определить направление ускорения Кориолиса, надо повернуть вектор относительной скорости на 90° в сторону вращения трубки, т. е. против хода часовой стрелки.
При t = 4 сек угол поворота трубки φ = 4π и ось Ox’ совпадала с осью Ох. Следовательно, в это мгновение ускорение Кориолиса направлено по положительной оси Оу.
Если мы не станем рассматривать движение шарика как составное, а изучим его непосредственно по отношению к основной системе отсчета, то получим, разумеется, тот же результат.
Составим уравнения движения шарика в основной системе координат (рис. 126, б):
Дифференцируя эти уравнения по времени, найдем проекции скорости:
Дифференцируя по времени второй раз, найдем проекции ускорения:
При t = 4 сек
Мы получили те же значения ускорения точки, не пользуясь ускорением Кориолиса. Из этого примера видно, что ускорение Кориолиса бывает лишь при составном движении точки.
Для определения траектории шарика в основной системе отсчета исключим время из уравнений движения. Из второго уравнения находим 
Это уравнение окружности с центром в точке x = 0, 

Найдем уравнение движения шарика M по этой окружности:
dx = Аπ cos 2πt dt; dy = Аπ sin 2πt dt;
и, интегрируя,
s = Аπt + С = Аπt .
Следовательно, шарик движется по своей траектории равномерно со скоростью υ= Аπ; при t = 4 сек он находится в наинизшей точке окружности, а нормальное ускорение 
Резюмируя, убеждаемся, что движение шарика (как и движение всякого тела) можно представить различными способами и ускорение шарика в заданное мгновение (t = 4 сек) можно выразить различными формулами.
Можно представить его как составное, состоящее из колебаний шарика вдоль трубки и одновременного вращения трубки. Тогда ускорение 2Аπt2 шарика в заданное мгновение является ускорением Кориолиса.
Можно представить то же движение шарика уравнениями в декартовых координатах, а ускорение 2Аπt2— проекциями на оси координат.
Можно, наконец, это движение шарика определить как равномерное движение со скоростью υ = Аπ по окружности радиуса 

Различные способы лишь выражают объективно существующее движение и позволяют определить его характеристики.
Ответ. a = 2Аπt2.
Задача №1
Окружность радиуса г равномерно вращается по ходу стрелки часов с угловой скоростью ω вокруг оси, перпендикулярной к ней в одной из ее точек C (рис. 127, а). По окружности движется точка M со скоростью υr = ωr, обходя окружность против вращения часовой стрелки. Определить ускорение точки М.
Решение. Движение точки будем рассматривать как составное, состоящее из относительного равномерного движения по окружности и переносного равномерного вращения самой окружности.
Напишем схему (110′) и будем заполнять ее справа (см. стр. 208).
Чтобы определить относительное движение точки М, мысленно остановим вращение окружности. Относительная скорость равна υr = ωr и направлена по касательной к окружности. Относительное касательное ускорение αrT = 0, а относительное нормальное направлено к центру О окружности и равно
Чтобы определить переносное движение, мысленно закрепим точку M на окружности. Проведем хорду MC (рис. 127, б) и обозначим через δ угол, составляемый ею с диаметром, проходящим через С. Так как окружность вращается равномерно, то αeT = 0 и
αeN = ω2CM = ω22r cos δ
и направлено по хорде MC к точке С.
Величина ускорения Кориолиса в нашем случае равна
ac = 2ωυr-2ω2r.
Переносное вращение происходит по ходу стрелки часов, следовательно, для определения направления ускорения Кориолиса повернем вектор относительной скорости на 90° по ходу стрелки часов.
Рис. 127
Скорости и ускорения точки изображены на рис. 127, б, а ускорения записаны по схеме (110′):
Чтобы определить абсолютное ускорение точки М, надо сложить его составляющие. Сложив ускорение Кориолиса с противоположным ему по направлению нормальным относительным ускорением, найдем, что результирующий вектор этих двух ускорений равен ω2r и направлен в сторону ускорения Кориолиса:
2ω2r-ω2r = ω2r.
Чтобы сложить этот результирующий вектор с вектором переносного ускорения, воспользуемся теоремой косинусов (рис. 127, в). Имеем
a2 = (ω2r)2+ (2ω2r cos δ)2 — 2 (ω2r) (2ω2r cos δ) cos δ = (ω2r)2.
Как видно из чертежа (рис. 127, в), абсолютное ускорение направлено параллельно ОС независимо от угла δ, т. е. независимо от положения точки M на окружности. Иными словами, независимо от положения точки M на окружности вектор ее абсолютного ускорения равен вектору ускорения центра окружности в его движении вокруг оси С.
Ответ. a = ω2r.
Задача №2
В ручке молочного сепаратора по ее длине просверлен цилиндрический канал, закрытый с одной стороны металлической пластинкой (звонком) (рис. 128). В канале помещен металлический шарик. Если вращать ручку с недостаточной скоростью (менее 45 об/мин), то шарик ударится о звонок и даст соответствующий сигнал. Определить ускорение Кориолиса сигнального шарика, если ручка сепаратора наклонена к своей оси вращения под углом 75°, рабочий вращает ручку, делая 45 об/мин, а шарик движется по каналу по закону х’= 220 sin φ + 357e-φ мм.
Решение. Вектор угловой скорости ручки направлен по оси вращения, а относительная скорость шарика —вдоль канала, составляя с ним угол 75°. Ускорение Кориолиса определяем по формуле (105). Угловая скорость 
Чтобы определить относительную скорость, надо продифференцировать по времени уравнение движения, в котором φ=ωt=1,5πt.
Рис. 128
Таким образом, имеем
αс = 2 • 1, 5π (330π cos φ—535πe — φ) 0,966.
Ответ. Ускорение Кориолиса равно 9420 cos φ—15300e-φ мм/сек2 и направлено перпендикулярно к ручке и к ее оси.
Сложное движение точки и тела
При решении задач, в которых рассматривается сложное движение точки или тела, необходимо уметь правильно расчленить сложное (составное), или так называемое абсолютное движение, на переносное и относительное.
При расчленении сложного движения рекомендуется учитывать следующее. Абсолютное (составное) движение происходит относительно неподвижной системы координат. Обычно эту систему координат связывают с Землей или с неподвижными относительно Земли предметами: зданием, деревом, полотном дороги и т. д.
Переносное движение точки или тела происходит вместе с некоторой материальной средой (телом), внутри или на поверхности которой находится рассматриваемое в задаче тело или рассматриваемая точка. Таким образом, переносное движение — это движение
материальной среды вместе с точкой также относительно неподвижной системы координат.
Относительное движение точки или тела — это перемещение их внутри материальной среды, или по ее поверхности, независящее от движения самой материальной среды.
В тех случаях когда заданы движения двух (или более) тел (точек) относительно неподвижной системы координат и необходимо определить движение одного из этих тел относительно другого, удобно пользоваться теми же приведенными выше соображениями.
Тело, относительно которого требуется рассмотреть движение, мысленно остановим, а неподвижную систему координат заставим двигаться по его закону, но в обратном направлении. Тогда для второго тела это движение станет переносным, а движение второго тела — относительным. После этого очень просто понять, как будет двигаться второе тело по отношению к первому.
Этот последний прием использован при решении задач 177-36 и 184-37 и обычно его используют при рассмотрении планетарных механизмов (см. ниже § 40-9).
Решение всех задач на сложное движение необходимо иллюстрировать рисунком.
Сложение движений точки, когда переносное и относительное движения направлены вдоль одной прямой
При изучении сложного движения точки будем рассматривать только перемещение и скорость.
Если переносное и относительное движения направлены вдоль одной прямой, то:
- перемещение точки в абсолютном движении равно алгебраической сумме перемещений в переносном и относительном движениях;
- скорость точки в абсолютном движении равна алгебраической сумме переносной и относительной скоростей.
Условимся направление переносного перемещения и соответственно направление переносной скорости считать положительными. Тогда относительное перемещение и соответственно относительная скорость будут также положительными, если они направлены в ту же сторону, что и переносное. Если же относительное перемещение (и скорость) имеют направление, противоположное переносному, то будем считать их отрицательными.
Таким образом, при совпадении направлений переносного и относительного движений
При противоположных друг другу направлениях переносного и относительного движений
Задача №3
Вниз по течению реки равномерно плывет лодка, приводимая в движение гребным винтом от мотора. Скорость течения реки 4 км/ч, скорость лодки, сообщаемая ей гребным винтом по отношению к воде, составляет 8 км/ч. Определить скорость лодки относительно берегов и расстояние, которое проходит лодка вдоль берегов за 20 мин.
Решение иллюстрировать рисунком, считая берега реки на данном участке прямолинейными и параллельными.
Решение.
1. Лодку принимаем за материальную точку, а водную массу реки —за материальную среду.
Движение лодки относительно берегов или, иначе говоря, движение лодки, наблюдаемое с берега, — это абсолютное движение.
Переносное движение лодки—ее перемещение вместе с рекой; скорость 
Относительное движение— перемещение лодки по поверхности воды, создаваемое гребным винтом; скорость относительного движения 
2. Так как в данном случае переносное и относительное движения направлены в одну и ту же сторону, то скорость лодки относительно берегов (абсолютная скорость)
3. За время 
4. Иллюстрируем решение задачи следующим образом (рис. 211).
Изобразим на рисунке тот участок водного пространства, который проходит лодка независимо от того, перемещается этот участок воды или нет. За 20 


За эти же 20 мин, или

переместится на расстояние
Таким образом, лодка, находившаяся в начале рассматриваемого движения относительно берегов в точке 

Следовательно, скорость абсолютного движения
Задача №4
Два автомобиля 1 и 2 движутся параллельно друг другу в одну и ту же сторону со скоростями 
1. Ответ «по соображению» получается мгновенно: 
2. Объясним это решение с точки зрения теории сложного движения точки. Условно остановим первый автомобиль. Но тогда, чтобы не изменились условия движения, необходимо мысленно представить, что полотно дороги под вторым автомобилем и вместе с ним получает движение в обратную сторону со скоростью 
Находясь в условном переносном движении со скоростью 
Поэтому результирующая обеих скоростей 
Как видно на рис. 212, а, результирующая направлена в сторону, противоположную скорости
Задача №5
Расстояние s = 90 км между двумя пристанями, расположенными на роке, теплоход проходит без остановки в одном направлении (по течению) за

Решение.
1. Теплоход, который принимаем за материальную точку, двигаясь по течению, имеет абсолютную скорость (скорость относительно берегов):
где 

При движении против течения абсолютная скорость теплохода
2. Движение теплохода по течению описывается уравнением (рис. 213, а)
Движение теплохода против течения происходит по уравнению (рис. 213, б)
2. Решаем полученную систему уравнения. Из (а) и (б)
Сложим правые и левые части этих уравнений:
Вычитаем из верхнего равенства нижнее:
Таким образом, собственная скорость теплохода составляет 24 км/ч и скорость течения реки равна 6 км/ч.
Следующую задачу рекомендуется решить самостоятельно.
Задача №6
Расстояние между двумя пристанями, расположенными на реке, теплоход, двигаясь равномерно без остановки, проходит по течению реки за


Задачу надо решить в общем виде, а потом подставить числовые значения.
Ответ.
Сложение движений точки, когда переносное и относительное движения направлены под углом друг к другу
Когда переносное и относительное движения направлены под углом друг к другу, то перемещения и скорости складываются геометрически.
Таким образом, абсолютная скорость точки 

т. е. либо как диагональ параллелограмма, построенного на переносной и относительной скоростях (рис. 214, а), либо как замыкающий вектор треугольника скоростей (рис. 214, б).
При решении задач на определение скоростей наиболее удобно применять графо-аналитический способ (см. § 3-1 настоящего пособия).
Если применяется правило параллелограмма, то модуль абсолютной скорости определяется по формуле, выведенной из теоремы косинусов
Если применяется правило треугольника, то модуль абсолютной скорости определяется по теореме синусов.
Направление абсолютной скорости по отношению к
В частном случае, когда параллелограмм скоростей превра шается в прямоугольник или когда треугольник скоростей получается прямоугольным, для решения задачи используются тригонометрические функции и теорема Пифагора (см. ниже задачи 181-37, 182-37, 185-37).
Бели в частном случае 
Задача №7
Вертикально падающие капли дождя оставляют на боковых стеклах автомобиля полосы под углом 
Решение.
1. Изобразим движение капли дождя на рисунке (рис. 216). Капли падают вертикально, следовательно, скорость ик какой-либо капли К относительно Земли является скоростью абсолютного (составного) движения. И эту скорость 

2. Получившийся параллелограмм скоростей диагональ делит на два прямоугольных треугольника. Рассмотрев любой из этих треугольников, найдем
Переводим полученную скорость падения капель в м/сек:
Задача №8
От одного берега реки к другому плывет лодка, держа курс перпендикулярно к берегам. Ширина реки 800 м лодка достигает противоположного берега через 12 мин после начала переправы. За это время лодку сносит вниз по течению на расстояние 600 м. Определить скорость течения реки; собственную скорость лодки: скорость лодки относительно берегов. Скорость течения у берегов и на середине реки считать одинаковой.
Решение.
1. Изобразим на рисунке движение лодки (рис. 217). Представим, что лодка отплывает из точки А на правом берегу. Если бы
не было течения, она достигла бы противоположного берега в точке В; известно, что ширина реки 

Обозначим точкой L положение лодки через некоторое время после начала движения. Скорость лодки относительно берегов — абсолютная скорость 

2. Допустим, что нет течения реки, тогда лодка будет перемещаться относительно берегов так же, как и относительно воды, по прямой АВ и ее движение опишется уравнением
где t — время переправы (t=12 мин =0,2 ч).
Отсюда находим собственную скорость лодки (скорость лодки относительно воды — относительную скорость)
3. Если лодка будет плыть, подчиняясь только течению реки, ее движение опишется уравнением
Из этого уравнения найдем скорость течения реки:
4. Теперь из прямоугольного треугольника скоростей (см. рис. 217) легко найти скорость лодки относительно берегов — абсолютную скорость:
Задача №9
Трассы двух воздушных лайнеров пересекаются над поселком А. Первый лайнер летит точно на север, второй лайнер — на юго-восток. Скорости 

Решение 1—методом «остановки» одного из тел.
1. Обозначим точкой А поселок, над которым» в определенный момент находятся оба лайнера. Покажем страны света: С —север, Ю — юг, В —восток и 3 —запад. Изобразим скорости лайнеров относительно Земли: 

2. Так как нужно определить скорость второго лайнера относительно первого, то мысленно первый лайнер остановим над пунктом А, а воздушной среде вместе со вторым лайнером сообщим скорость 


3. Сложив по правилу параллелограмма скорости 

4. Так как скорости лайнеров 


Таким образом, второй лайнер движется относительно первого со скоростью, численно равной и, как видно из рис. 218, б, удаляется от него на юго-юго-запад, т. е. под углом 157°30′ (903 + 45° + 22‘30′) к направлению скорости первого лайнера.
* Когда будет определен этот угол, его нужно сравнить с углом между векторами 
Решение 2 —методом разности скоростей.
1. Из выражения геометрической суммы скоростей
следует, что
2. Для определения скорости второго лайнера относительно первого примем за абсолютную скорость 


3. Чтобы произвести вычитания векторов, необходимо конец вычитаемого вектора 


4. В результате построения имеем равнобедренный треугольник скоростей
Угол 


Задача №10
В кривошипно-кулисном механизме с поступательно движущейся кулисой ВС кривошип ОА (расположенный позади кулисы) длиной l= 400 мм вращается с постоянной угловой скоростью 

Решение.
1. В данном случае движение точки А вместе с кривошипом можно считать сложным, т. е. получающимся в результате сложения:
а) движения точки А вместе с кулисой в ее возвратно-поступательном (переносном) движении вдоль оси х;
б) относительного движения точки А вместе с камнем, движущимся возвратно-поступательно в прорези кулисы в направлении, перпендикулярном к оси х.
2. Абсолютная скорость точки А, модуль которой легко определяется по формуле 


3. Изобразим скорость 


4. 
Таким образом, в данный момент кулиса перемещается вниз со скоростью 2 м,сек.
Чтобы лучше проанализировать движение кулисы, необходимо знать, когда кулиса двигается ускоренно, когда замедленно, при каких положениях кривошипа кулиса имеет максимальную скорость и чему равна эта скорость, при каких положениях кривошипа скорость кулисы равна нулю?
Следующие задачи рекомендуется решить самостоятельно.
Задача №11
Кривошип 0С=30 см вращается равномерно с угловой скоростью 


Задача 187-37. Кривошип ОС = 20 см вращается равномерно с угловой скоростью n = 180 об/мин и приводит в движение качающуюся кулису АВ при помощи ползуна С, двигающегося в прорези кулисы. Определить скорость 

Ответ.
Сложное движение точки в плоскости
постановка задачи. Геометрическая фигура вращается вокруг оси, перпендикулярной ее плоскости по известному закону

План решения:
Сложное движение точки М представляется в виде суммы относительного и переносного. Характерной особенностью этой задачи является то, что траектории относительного, переносного и абсолютного движения лежат в одной плоскости. Ось z, на которую проектируются векторы переносной угловой скорости и переносного углового ускорения, перпендикулярна этой плоскости и направлена на наблюдателя. Угол поворота считается положительным, если со стороны оси 
Искомые величины получаем из векторных равенств:
где 

1. Вычисляем значение дуговой координаты 

2. Дифференцируя 

Вектор 


3. Вычисляем радиус траектории переносного движения 

4. Находим переносную скорость
Вектор 

5. Определяем вектор абсолютной скорости, вычисляя компоненты 
6. Вычисляем относительное ускорение. В случае криволинейной относительной траектории
где
R — радиус кривизны относительной траектории в точке М. Для прямолинейной траектории относительного движения


7. Вычисляем переносное ускорение:
Вектор 



8. Находим ускорение Кориолиса 
Направление вектора ускорения Кориолиса можно определить по правилу Жуковского 


9. Вычисляем абсолютное ускорение по формуле (2) в проекциях на оси координат. Модуль абсолютного ускорения
Задача №12
Прямоугольник ABCD вращается вокруг оси, проходящей через вершину А, по закон

Найти абсолютную скорость и абсолютное ускорение точки М при
Решение
Движение точки М представим в виде относительного движения по круговому каналу и переносного движения вместе с вращающимся прямоугольником.
1. Вычисляем значение дуговой координаты 

Гл.9.Сложное движение точки





2. Дифференцируя 
Вектор 
3. Вычисляем радиус траектории переносного движения
4. Находим переносную скорость 

Отсюда
5. Определяем вектор абсолютной скорости по формуле (1). Модуль абсолютной скорости 
это равенство на неподвижные оси координат х, у (можно воспользоваться также теоремой косинусов):
Тригонометрические функции угла 
Модуль абсолютной скорости




6. Вычисляем относительное ускорение. Ускорение точки, движущейся относительно прямоугольника по окружности, имеет нормальную и тангенциальную составляющую:
Модуль относительного ускорения
Вектор ускорения 


7. Вычисляем переносное ускорение 


Отсюда получаем
Вектор 


8. Находим ускорение Кориолиса 






Направление вектора ускорения Кориолиса получаем по правилу Жуковского — поворотом на 90° вектора относительной скорости

по направлению переносного вращения, т.е. против часовой стрелки (рис. 112).
9. Вычисляем абсолютное ускорение по формуле (2) в проекциях на оси координат (рис. 111):
Находим модуль ускорения:
Ответы заносим в таблицу. Радиус траектории переносного движения — в см, скорости — в см/с, ускорения — в
Сложное движение точки в пространстве
Постановка Задачи. Геометрическая фигура вращается по заданному закону вокруг неподвижной оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка М по известному закону 
План решения:
Искомые величины получаем из векторных равенств
где 

1. Вычисляем значение дуговой координаты 

2. Дифференцируя 




3. Вычисляем радиус траектории переносного движения 
4. Находим модуль переносной скорости 



5. Определяем величину абсолютной скорости
6. Вычисляем относительное ускорение. В случае криволинейной относительной траектории
где 



7. Вычисляем переносное ускорение:
Вектор 



8. Величину вектора ускорения Кориолиса определяем по формуле
Направление вектора ускорения Кориолиса можно определить по правилу Н.Е. Жуковского поворотом на 90° проекции вектора относительной скорости на плоскость, перпендикулярную 
9. Вычисляем абсолютное ускорение по формуле (2) в проекциях на оси координат. Ось 
- Заказать решение задач по теоретической механике
Задача №13
Прямоугольник ABCD вращается вокруг неподвижной оси, проходящей по стороне DC (рис. 113). По круговому каналу радиуса R = 12 см с центром в точке О, расположенному на прямоугольнике, движется точка М по закону

Решение
1. Вычисляем значение дуговой координаты 

Находим центральный угол, соответствующий дуге ВМ:
Изображаем точку в этом положении (рис. 114).
9.2.Сложное движение точки в пространстве
2. Дифференцируя 
3. Траекторией переносного движения является окружность с центром N. Относительна скорость точки М направлена по касательной к этой окружности. Траектория лежит в плоскости ху, перпендикулярной к оси вращения 
4. Находим переносную скорость. Вычисляем угловую скорость вращения прямоугольника ABCD:
Вычисляем переносную скорость
5. Определяем величину абсолютной скорости. Вектор 

6. Вычисляем относительное ускорение. Находим нормальную составляющую ускорения точки, движущейся по окружности радиуса R:
Тангенциальная составляющая
Оба вектора лежат в плоскости 
7. Вычисляем компоненты переносного ускорения. Прямоугольник вращается с угловой скоростью 
Получаем
Вектор 

8. Величину вектора ускорения Кориолиса определяем по формуле 

Угол 

Для того, чтобы найти направление вектора ускорения Кориолиса, воспользуемся правилом Жуковского (рис. 116). Проецируем вектор относительной скорости 


9. Вычисляем абсолютное ускорение по формуле (2) в проекциях на оси координат:
Окончательно, абсолютное ускорение точки М
Ответы заносим в таблицу. Радиус траектории переносного движения — в см, скорости — в см/с, ускорения — в
Движение точки по звену механизма
Постановка Задачи. Плоский шарнирно-стержневой механизм приводится в движение кривошипом, который вращается с заданной угловой скоростью. Вдоль одного из стержней по известному закону движется тючка М. Найти абсолютную скорость и абсолютное ускорение точки М.
План решения:
Представляем движение точки в виде суммы относительного движения по звену механизма и переносного движения вместе со звеном.
1. Вводим неподвижную систему координат ху, совмещая се начало с положением одного из шарниров механизма в заданный момент времени. Вдоль стержня, по которому движется точка, располагаем подвижную ось 

2. Дифференцируя 
Зная угол между осями 

3. Решаем задачу о скоростях точек многозвенного механизма, используя аналитические методы (§ 8.3, с. 179, § 8.5, с. 188). Вычисляем вектор скорости той точки механизма, в которой в данный момент находится подвижная точка М. Эта скорость является переносной скоростью для точки М.
4. Определяем вектор абсолютной скорости, 
5. Решаем задачу об ускорениях точек многозвенного механизма, используя аналитические методы (§ 8.4, с. 183, § 8.5, с. 188). Вычисляем вектор ускорения той точки механизма, в которой в данный момент находится подвижная точка М. Это ускорение является переносным для точки М.
6. Находим ускорение Кориолиса:
где 
7. Находим абсолютное ускорение, 
Задача №14
Плоский шарнирно-стержневой механизм ОABC приводится в движение кривошипом OA =60 см, который вращается с постоянной угловой скоростью 
Положение механизма при 

Решение
Абсолютное движение точки представляем в виде суммы относительного движения по звену АВ и переносного движения вместе с ним. Переносные скорость и ускорение являются соответственно скоростью и ускорением той точки звена, в которой в данный момент располагается точка М.
1. Вводим неподвижную систему координат ху, совмещая ее начало с положением шарнира А механизма в заданный момент времени. Вдоль стержня АВ, по которому движется точка, располагаем подвижную ось 





2. Дифференцируя 
Угол между осями 


3. Решаем задачу о скоростях точек многозвенного механизма, используя уравнения трех угловых скоростей (§ 8.3, с. 179):
где по условию 



равенства
Переписываем это равенство в виде
Получаем
Модуль переносной скорости
4. Определяем проекции.
и модуль абсолютной скорости:
5. Решаем задачу об ускорениях точек многозвенного механизма, используя уравнения трех угловых ускорений (уравнение (2), с. 184), где
Находим 

Раскрывая векторные произведения по аналогии с (1), вычисляем

Модуль переносного ускорения
6. Находим ускорение Кориолиса 
Вычисляем
Модуль ускорения Кориолиса
7. Вычисляем абсолютное ускорение
и его модуль
Результаты заносим в таблицу. Скорости в м/с, ускорения — в 
Механизм с муфтой
Постановка Задами. Плоский механизм с одной степенью свободы состоит из шарнирно соединенных стержней и муфты, скользящей по направляющему стержню и шарнирно закрепленной на другом стержне или на неподвижном шарнире. Задана угловая скорость ведущего звена механизма. Найти скорость муфты относительно направляющего стержня.
План решения:
1. Представляем движение муфты М в виде суммы относительного движения по направляющему стержню механизма и переносного движения вместе с этим стержнем. Траекторией относительного движения муфты является прямая. Задачу решаем, используя координатную запись векторных соотношений для скоростей при плоском движении. Выбираем систему координат и определяем координаты всех шарниров механизма и муфты.
2. Мысленно снимаем муфту с механизма и находим скорости шарниров и угловые скорости звеньев получившегося механизма (§ 8.1, с. 158, § 8.3, с. 179, § 8.5, с. 188).
3. Записываем уравнение сложения скоростей:


Это векторное уравнение содержит две неизвестные величины. Одна из них — искомый модуль вектора относительной скорости 



Если муфта скользит по стержню КМ, угловая скорость 


Если муфта шарнирно закреплена на стержне NM с известной угловой скоростью 

Если муфта закреплена на неподвижном шарнире, то абсолютная скорость равна нулю
3. Решаем векторное уравнение (1). Определяем
Задача №15
Плоский механизм с одной степенью свободы состоит из шарнирно соединенных стержней и муфты D, скользящей по направляющему стержню (кривошипу) OA. Муфта шарнирно закреплена на стержне BD. Кривошип вращается против часовой стрелки с постоянной угловой скоростью 


Решение
1. Представляем движение муфты М в виде суммы относительного движения по направляющему стержню OA и переносного движения вместе с .этим стержнем. Выбираем систему координат и определяем координаты всех шарниров механизма и муфты. Помещаем начато координат в точку С (рис. 120) и вычисляем координаты:
Координаты точки В найдем из системы уравнений
Система имеет два решения (задача о точках пересечения двух окружностей с радиусами АВ и ВС). Выбираем то решение, у которого
Нелинейную систему уравнений удобно решать на компьютере, например, в системе Maple V. Программа решения имеет вид
Числа заносятся в десятичной форме: АВ: =111.0 и т.д.
2. Мысленно снимаем муфту с механизма (рис. 120) и находим скорости шарниров и угловые скорости звеньев получившегося механизма. Записываем уравнения трех угловых скоростей четырехзвенника ОABC (§8.3, с. 179):
При
Получаем решение: 

Компоненты скорости имеют следующие значения:
3. Записываем уравнение сложения скоростей 

Это уравнение содержит две неизвестные величины. Одна из них — искомый модуль вектора относительной скорости 

где 


Замечание. Эту задачу можно решить по крайней мере ещё двумя способами. Во-первых, методами аналитической геометрии можно найти расстояние 


Замечание. В ответах, помимо искомой относительной скорости, даны промежуточные результаты — скорости точек А, Б и D. Причем в вариантах 1,2,7,8 
- Сложение движение твердого тела
- Кинематика сплошной среды
- Аксиомы классической механики
- Дифференциальные уравнения движения материальной точки
- Мгновенный центр скоростей
- Мгновенный центр ускорений
- Мгновенный центр вращения
- Вращение твердого тела вокруг неподвижной точки










































, т. е. переносное движение является поступательным;
, т. е. в те моменты времени, в которые происходит изменение направления относительного движения;
, т. е. когда скорость относительного движения
параллельна угловой скорости переносного вращения
.










































































































































































































































