Download Article
Download Article
There are two ways to hook together electrical components. Series circuits use components connected one after the other, while parallel circuits connect components along parallel branches. The way resistors are hooked up determines how they contribute to the total resistance of the circuit.
-
1
Identify a series circuit. A series circuit is a single loop, with no branching paths. All the resistors or other components are arranged in a line.
-
2
Add all resistances together. In a series circuit, the total resistance is equal to the sum of all resistances.[1]
The same current passes through each resistor, so each resistor does its job as you would expect.- For example, a series circuit has a 2 Ω (ohm) resistor, a 5 Ω resistor, and a 7 Ω resistor. The total resistance of the circuit is 2 + 5 + 7 = 14 Ω.
Advertisement
-
3
Start with current and voltage instead. If you don’t know the individual resistance values, you can rely on Ohm’s Law instead: V = IR, or voltage = current x resistance. The first step is to find the circuit’s current and total voltage:
- The current of a series circuit is the same at all points on the circuit.[2]
If you know the current at any point, you can use that value in this equation. - The total voltage is equal to the voltage of the supply (the battery). It is not equal to the voltage across one component.[3]
- The current of a series circuit is the same at all points on the circuit.[2]
-
4
Insert these values into Ohm’s Law. Rearrange V = IR to solve for resistance: R = V / I (resistance = voltage / current). Plug the values you found into this formula to solve for total resistance.
- For example, a series circuit is powered by a 12 volt battery, and the current is measured at 8 amps. The total resistance across the circuit must be RT = 12 volts / 8 amps = 1.5 ohms.
Advertisement
-
1
Understand parallel circuits. A parallel circuit branches into multiple paths, which then join back together. Current flows through each branch of the circuit.
- If your circuit has resistors on the main path (before or after the branched area), or if there are two or more resistors on a single branch, Skip down to the combination circuit instructions instead.
-
2
Calculate the total resistance from the resistance of each branch. Since each resistor only slows current passing through one branch, it only has a small effect on the total resistance of the circuit. The formula for total resistance RT is
, where R1 is the resistance of the first branch, R2 is the resistance of the second branch, and so on up to the last branch Rn.
-
3
Begin with total current and voltage instead. If you don’t know the individual resistances, you’ll need the current and voltage instead:
- In a parallel circuit, the voltage across one branch is the same as the total voltage across the circuit.[4]
As long as you know the voltage across one branch, you’re good to go. The total voltage is also equal to the voltage of the circuit’s power source, such as a battery. - In a parallel circuit, the current may be different along each branch. You need to know the total current, or you won’t be able to solve for total resistance.
- In a parallel circuit, the voltage across one branch is the same as the total voltage across the circuit.[4]
-
4
Use these values in Ohm’s Law. If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm’s Law: R = V / I.
- For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω.
-
5
Watch out for branches with zero resistance. If a branch on the parallel circuit has no resistance, all of the current will flow through that branch. The resistance of the circuit is zero ohms.
- In practical applications, this usually means a resistor has failed or been bypassed (short-circuited), and the high current could damage other parts of the circuit.[5]
- In practical applications, this usually means a resistor has failed or been bypassed (short-circuited), and the high current could damage other parts of the circuit.[5]
Advertisement
-
1
Break down your circuit into series sections and parallel sections. A combination circuit has some components linked together in series (one after the other), and others in parallel (on different branches). Look for areas of your diagram that simplify to a single series or parallel section.[6]
Circle each one to help you keep track of them.- For example, a circuit has a 1 Ω resistor and a 1.5 Ω resistor connected in series. After the second resistor, the circuit splits into two parallel branches, one with a 5 Ω resistor and the other with a 3 Ω resistor.
Circle the two parallel branches to separate them from the rest of the circuit.
- For example, a circuit has a 1 Ω resistor and a 1.5 Ω resistor connected in series. After the second resistor, the circuit splits into two parallel branches, one with a 5 Ω resistor and the other with a 3 Ω resistor.
-
2
Find the resistance of each parallel section. Use the parallel resistance formula
to find the total resistance of a single parallel section of the circuit.[7]
-
3
Simplify your diagram. Once you’ve found the total resistance of a parallel section, you can cross out that whole section on your diagram. Treat that area as a single wire with resistance equal to the value you found.
- In the example above, you can ignore the two branches and treat them as one resistor with resistance 1.875Ω.
-
4
Add up resistances in series. Once you’ve replaced each parallel section with a single resistance, your diagram should be a single loop: a series circuit. The total resistance of a series circuit is equal to the sum of all individual resistances, so just add them up to get your answer.
- The simplified diagram has a 1 Ω resistor, 1.5 Ω resistor, and the section with 1.875 Ω you just calculated. These are all connected in series, so
Ω.
- The simplified diagram has a 1 Ω resistor, 1.5 Ω resistor, and the section with 1.875 Ω you just calculated. These are all connected in series, so
-
5
Use Ohm’s Law to find unknown values. If you do not know the resistance in one component of your circuit, look for ways to calculate it. If you know the voltage V and current I across that component, find its resistance using Ohm’s Law: R = V / I.
Advertisement
-
1
Learn the formula for power. Power is the rate that the circuit consumes energy, and the rate it delivers energy to whatever the circuit is powering (such as a light bulb).[8]
The total power of a circuit is equal to the product of the total voltage and the total current. Or in equation form: P = VI.[9]
- Remember, when solving for total resistance, you need to know the total power of the circuit. It’s not enough to know the power flowing through one component.
-
2
Solve for resistance using power and current. If you know these two values, you can combine two formulas to solve for resistance:
- P = VI (power = voltage x current)
- Ohm’s Law tells us that V = IR.
- Substitute IR for V in the first formula: P = (IR)I = I2R.
- Rearrange to solve for resistance: R = P / I2.
- In a series circuit, the current across one component is the same as the total current. This is not true for a parallel circuit.
-
3
Find resistance from power and voltage. If you only know the power and voltage, you can use a similar approach to find resistance. Remember to use the total voltage across the circuit, or the voltage of the battery powering the circuit:
- P = VI
- Rearrange Ohm’s Law in terms of I: I = V / R.
- Substitute V / R for I in the power formula: P = V(V/R) = V2/R.
- Rearrange to solve for resistance: R = V2/P.
- In a parallel circuit, the voltage across one branch is the same as the total voltage. This is not true for a series circuit: the voltage across one component is not the same as the total voltage.
- Alternatively, you can isolate the circuit and physically test resistance using a multimeter. [10]
Advertisement
Calculator, Practice Problems, and Answers
Add New Question
-
Question
How do I calculate the resistance of 2 resistors when I know the sum of the resistors?
Assuming you mean total resistance, you first need to determine if they are in series or parallel. In series the total resistance simply equals the sum of the resistors. In parallel, the inverse of the total resistance equals the sum of the inverse of each individual resistor. Therefore, you will not be able to calculate total resistance in a parallel circuit if you only know the sum.
-
Question
If V = IR, how do I calculate if one cell = 2V and the resistor is 4 ohm?
I = V/R . This is derived from the equation V =I R. In the question the value of potential difference (v) is mentioned as 2V, i.e, 2 volts. The value of resistance of the resistor is given as 4 ohms. Substitute these values in the first equation; i.e, l = V/R, so, I = 2/4. Therefore, I = 0.5 amps.
-
Question
Can I use frequency to calculate resistance?
Resistance does not change with frequency. However, AC circuits do have a similar quality called reactance which does change with frequency. Learn more here.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
-
The power value P used in these formulas refers to instantaneous power, or power at a specific moment in time. If the circuit uses AC power, the power is changing constantly. Electricians calculate the average power for AC circuits using the formula Paverage = VIcosθ, where cosθ is the power factor of the circuit.[11]
-
Power is measured in watts (W).
-
Voltage is measured in volts (V).
Show More Tips
Advertisement
About This Article
Article SummaryX
To calculate total resistance in series circuits, look for a single loop with no branching paths. Add all of the resistances across the circuit together to calculate the total resistance. If you don’t know the individual values, use the Ohm’s Law equation, where resistance = voltage divided by current. Plug in the values for voltage and current and solve for R to get the total resistance in a circuit. Keep reading the article if you want to learn how to calculate the resistance on a parallel or combination circuit!
Did this summary help you?
Thanks to all authors for creating a page that has been read 1,790,298 times.
Did this article help you?
Загрузить PDF
Загрузить PDF
Полное сопротивление, или импеданс, характеризует сопротивление цепи переменному электрическому току. Данная величина измеряется в омах. Для вычисления полного сопротивления цепи необходимо знать значения всех активных сопротивлений (резисторов) и импеданс всех катушек индуктивности и конденсаторов, входящих в данную цепь, причем их величины меняются в зависимости от того, как меняется проходящий через цепь ток. Импеданс можно рассчитать при помощи простой формулы.
Формулы
- Полное сопротивление Z = R или XLили XC (если присутствует что-то одно)
- Полное сопротивление (последовательное соединение) Z = √(R2 + X2) (если присутствуют R и один тип X)
- Полное сопротивление (последовательное соединение) Z = √(R2 + (|XL — XC|)2) (если присутствуют R, XL, XC)
- Полное сопротивление (любое соединение) = R + jX (j — мнимое число √(-1))
- Сопротивление R = I / ΔV
- Индуктивное сопротивление XL = 2πƒL = ωL
- Емкостное сопротивление XC = 1 / 2πƒL = 1 / ωL
-
1
Импеданс обозначается символом Z и измеряется в омах (Ом). Вы можете измерить импеданс электрической цепи или отдельного элемента. Импеданс характеризует сопротивление цепи переменному электрическому току. Есть два типа сопротивления, которые вносят вклад в импеданс:[1]
- Активное сопротивление (R) зависит от материала и формы элемента. Наибольшим активным сопротивлением обладают резисторы, но и другие элементы цепи обладают небольшим активным сопротивлением.
- Реактивное сопротивление (X) зависит от величины электромагнитного поля. Наибольшим реактивным сопротивлением обладают катушки индуктивности и конденсаторы.
-
2
Сопротивление — это фундаментальная физическая величина, описываемая законом Ома: ΔV = I * R.[2]
Эта формула позволит вам вычислить любую из трех величин, если вы знаете две другие. Например, чтобы вычислить сопротивление, перепишите формулу так: R = I / ΔV. Вы также можете измерить сопротивление при помощи мультиметра.- ΔV — это напряжение (разность потенциалов), измеряемое в вольтах (В).
- I — сила тока, измеряемая в амперах (А).
- R — это сопротивление, измеряемое в омах (Ом).
-
3
Реактивное сопротивление имеет место только в цепях переменного тока. Как и активное сопротивление, реактивное сопротивление измеряется в омах (Ом). Есть два типа реактивного сопротивления:
- Индуктивным сопротивлением XC обладают катушки индуктивности, создающие магнитное поле, которое препятствует изменению направления тока в цепи.[3]
Чем быстрее меняется направление тока, тем больше индуктивное сопротивление. - Емкостным сопротивлением XC обладают конденсаторы, которые накапливают электрический заряд. При изменении направления тока в цепи конденсатор неоднократно обнуляет и накапливает электрический заряд. Чем дольше конденсатор заряжается, тем больше емкостное сопротивление.[4]
Поэтому чем быстрее меняется направление тока, тем меньше емкостное сопротивление.
- Индуктивным сопротивлением XC обладают катушки индуктивности, создающие магнитное поле, которое препятствует изменению направления тока в цепи.[3]
-
4
Вычислите индуктивное сопротивление. Это сопротивление прямо пропорционально быстроте изменения направления тока, то есть частоты тока. Эта частота обозначается символом ƒ и измеряется в герцах (Гц). Формула для расчета индуктивного сопротивления: XL = 2πƒL, где L — индуктивность, измеряемая в генри (Гн).[5]
- Индуктивность L зависит от количества витков в катушке индуктивности.[6]
Также вы можете измерить индуктивность. - Если вы знакомы с единичной окружностью, то представьте, что один цикл переменного тока равен одному полному вращению этой окружности (на 2π радиан). Если умножить это значение на ƒ, которая измеряется в герцах (единиц в секунду), вы получите результат, измеряемый в радианах в секунду. Это единица измерения угловой скорости, которая обозначается через ω. Вы можете переписать формулу для вычисления индуктивного сопротивления так: XL=ωL[7]
- Индуктивность L зависит от количества витков в катушке индуктивности.[6]
-
5
Вычислите емкостное сопротивление. Это сопротивление обратно пропорционально быстроте изменения направления тока, то есть частоты тока. Формула для вычисления емкостного сопротивления: XC = 1 / 2πƒC.[8]
С — это емкость конденсатора, измеряемая в фарадах (Ф).- Вы можете измерить электрическую емкость.
- Эту формулу можно переписать так: XC = 1 / ωL (объяснения см. выше).
Реклама
-
1
Если цепь состоит исключительно из резисторов, то импеданс вычисляется следующим образом. Сначала измерьте сопротивление каждого резистора или посмотрите значения сопротивления на схеме цепи.[9]
- Если резисторы соединены последовательно, то полное сопротивление R = R1 + R2 + R3…
- Если резисторы соединены параллельно, то полное сопротивление R = 1 / R1 + 1 / R2 + 1 / R3 …
-
2
Сложите одинаковые реактивные сопротивления. Если в цепи присутствуют исключительно катушки индуктивности или исключительно конденсаторы, то полное сопротивление равно сумме реактивных сопротивлений. Вычислите его следующим образом:[10]
- Последовательное соединение катушек: Xtotal = XL1 + XL2 + …
- Последовательное соединение конденсаторов: Ctotal = XC1 + XC2 + …
- Параллельное соединение катушек: Xtotal = 1 / (1/XL1 + 1/XL2 …)
- Параллельное соединение конденсаторов: Ctotal = 1 / (1/XC1 + 1/XC2 …)
-
3
Вычтите индуктивные и емкостные сопротивления, чтобы получить общее реактивное сопротивление. Так как при возрастании одного типа сопротивления другое уменьшается, то они, как правило, компенсируют друг друга. Чтобы найти общее реактивное сопротивление, вычтите меньшее сопротивление из большего.[11]
- Или воспользуйтесь формулой: Xtotal = |XC — XL|
-
4
Вычислите импеданс по активному и реактивному сопротивлениям в последовательной цепи. Нельзя просто сложить эти величины, так как они меняются с течением времени, но достигают максимальных значений в разное время.[12]
Поэтому воспользуйтесь формулой:Z = √(R2 + X2).[13]
- Вычисления по этой формуле включают в себя использование векторов, но вы можете воспользоваться теоремой Пифагора, представив R и X в качестве катетов прямоугольного треугольника, а сопротивление Z — как гипотенузу.[14]
[15]
- Вычисления по этой формуле включают в себя использование векторов, но вы можете воспользоваться теоремой Пифагора, представив R и X в качестве катетов прямоугольного треугольника, а сопротивление Z — как гипотенузу.[14]
-
5
Вычислите импеданс по активному и реактивному сопротивлениям в параллельной цепи. В этом случае используются комплексные числа (это единственный способ вычислить полное сопротивление в параллельной цепи, в которой есть как активное, так и реактивное сопротивление).
- Z = R + jX, где j — мнимая единица: √(-1). Используйте j вместо i, чтобы не перепутать мнимую единицу (j) с силой тока (I).
- Складывать эти числа нельзя. Например, полное сопротивление может быть представлено так: 60 Ом + j120 Ом.
- Если у вас есть две последовательные цепи, то вы можете отдельно сложить натуральные числа и отдельно — комплексные. Например, если Z1 = 60 Ом + j120 Ом, а к этой цепи последовательно подключен резистор с Z2 = 20Ω, то Ztotal = 80Ω + j120Ω.
Реклама
Советы
- Общее сопротивление (активное и реактивное сопротивления) также может быть выражено через мнимое число.
Реклама
Об этой статье
Эту страницу просматривали 168 783 раза.
Была ли эта статья полезной?
Что такое полное сопротивление цепи и как его правильно найти
Содержание
- 1 Виды электрических сопротивлений
- 2 Определение эквивалентного сопротивления
- 3 Как определяется ПС при последовательном соединении емкостей и индуктивностей
- 4 Определение ПС при использовании параллельного соединения элементов
- 5 Видео по теме
Для начала нужно понять, что такое электрическое сопротивление. Это физическая величина, которая отражает противодействие движению электротока по схеме или же внутри проводника. Данная величина взаимосвязана с электронапряжением и силой электротока, что отражено в законе Ома, названном так по имени немецкого физика.
Формулировка закона Ома
Виды электрических сопротивлений
Известно о двух видах электронапряжения — постоянном и переменном. В электроцепи постоянного тока присутствует исключительно активное электросопротивление. Таким является любое электросопротивление, поглощающее энергию. В этом случае найти полное сопротивление поможет формулировка закона Ома.
В электроцепях с переменным напряжением есть реактивное электросопротивление, то есть такое, которое энергию не поглощает. Оно делится на емкостное и индуктивное. В реальности не существует электроцепей только с каким-либо одним видом электросопротивления. Наряду с резисторами в них используются емкости и катушки индуктивности. Поэтому в электротехнике вводится такое понятие, как полное сопротивление цепи, представляющееся в виде векторной суммы всех электросопротивлений, присутствующих в данной цепи.
Классификация электроцепей переменного электротока
Величина реактивного электросопротивления зависит от частоты параметров используемой электросети. Формула, с помощью которой можно определить емкостное электросопротивление, выглядит так:
Определение емкостного сопротивления
Здесь ω — угловая частота. Она связана с частотой электросети f и определяется по формуле:
Значение угловой частоты
Индуктивное электросопротивление находим с помощью такого выражения:
Определение индуктивного электросопротивления
В формулах для определения емкостного и индуктивного электросопротивления используются определенные физические величины. Их обозначение и единицы измерения приводятся в таблице ниже. Само электросопротивление измеряется в омах.
Таблица физических величин
Чтобы вычислить полное сопротивление цепи Z, учитывающее все имеющиеся активные и реактивные составляющие, следует воспользоваться формулой:
Вычисление импеданса
Определение эквивалентного сопротивления
В электросхеме может быть использовано несколько нагрузок одного вида, соединенных между собой последовательно или параллельно. В первом случае их электросопротивления складываются. Поэтому эквивалентное сопротивление будет тем больше, чем больше элементов соединено последовательно.
Электроцепь с последовательно соединенными активными проводниками
Если используется параллельное соединение проводников, расчет полного сопротивления цепи выполняется несколько иначе:
Определение эквивалентного электросопротивления при параллельном соединении
В данном случае эквивалентное сопротивление с увеличением количества используемых нагрузок будет уменьшаться. Такое явление можно наблюдать в повседневной жизни: чем больше к электросети подключено потребителей, тем меньшим будет значение эквивалентного электросопротивления и большим электроток нагрузки.
Как определяется ПС при последовательном соединении емкостей и индуктивностей
При наличии реактивной нагрузки в электроцепи будет наблюдаться опережение или отставание электротока от электронапряжения. При подключении индуктивной нагрузки электроток отстает от электронапряжения, а емкостной, наоборот, опережает. То есть, при подключении конденсатора к источнику переменного электротока он будет постоянно перезаряжаться с частотой, соответствующей частоте электросети. Электроток при этом будет увеличиваться раньше, чем электронапряжение. При подключении индуктивного контура наблюдается обратный результат.
Графическое изображение электрических величин при последовательно соединенных элементах электроцепи
Рассмотрим схему с использованием последовательно соединенных резистора и индуктивности.
Электросхема с использованием резистора и индуктивности соединенных последовательно
Для этого участка цепи результирующее электронапряжение в точках А и В можно определить достаточно простым способом — геометрическим сложением векторов UL и UR. Как видно из рисунка, результирующий вектор UАВ — это гипотенуза треугольника. Следовательно, чтобы рассчитать ее, можно применить теорему Пифагора:
Определение результирующего электронапряжения
Если исходить из формулировки закона Ома, то электронапряжение — это произведение электросопротивления и силы электротока. Поскольку последний параметр во всех точках электроцепи имеет одинаковое значение, то квадрат ПС — это сумма квадратов электросопротивлений, называемых активными и реактивным:
Сумма квадратов электросопротивлений
Следовательно, полное сопротивление приведенной цепи Z определяется выражением:
Определение ПС
Кроме расчетов для определения ПС в цепи можно использовать еще и геометрический способ, являющийся построением треугольника, представленного на рисунке 11д. Его катеты — это активное и реактивное электросопротивление для участка цепи. Понятно, что стороны треугольника следует откладывать в одном масштабе.
Полное сопротивление цепи в рассматриваемом случае не будет исключительно активным или реактивным. В него входят обе составляющие. По этой причине угол сдвига по фазе между электротоком и электронапряжением может меняться от 0 до 90 градусов. К какому из этих предельных значений будет приближена величина φ, зависит от вида преобладающего электросопротивления. Если индуктивная составляющая превышает активную, φ стремится к 90 градусам, а преобладающая активная составляющая уменьшает его до нуля.
Теперь рассмотрим электроцепь с присутствующими в ней резистором и конденсатором, соединенными последовательно. Полное сопротивление цепи и в данном случае можно определить, используя построение треугольника.
Электросхема с последовательно соединенными резистором и конденсатором
Как можно увидеть из рисунка, треугольник сопротивлений, построенный для активно-емкостного участка цепи, развернут в другую сторону. Это связано с тем, что электроток в емкости опережает электронапряжение (в активно-индуктивной ветви электроток отстает от электронапряжения). Полное электрическое сопротивление цепи Z в данном случае будет равно:
Определение импеданса при использовании резистора и конденсатора в электроцепи
Если же в электроцепи присутствуют все виды электросопротивлений, то сначала следует найти реактивную составляющую, а потом уже и значение ПС или импеданса.
Электросхема с использованием разных видов электросопротивлений
Общее реактивное электросопротивление для данного участка цепи — это разница между индуктивной и емкостной составляющими, поскольку они по своему характеру являются противоположными друг другу.
Расчет общего реактивного электросопротивления
Полное сопротивление электрической цепи при наличии индуктивной и емкостной составляющей определяется по формуле:
Определение ПС при наличии индуктивности и емкости в электроцепи
Треугольник электросопротивлений при наличии индуктивной и емкостной составляющей показан на рисунке.
Немаловажно понимать, что если одно из электросопротивлений (емкостное или индуктивное) больше другого более, чем в десять раз, то составляющую с наименьшим значением можно оставить без внимания.
Определение ПС при использовании параллельного соединения элементов
На рисунке ниже изображены графики электронапряжений и электротоков, присутствующих на нагрузках при параллельном соединении.
Графики электронапряжений и электротоков при параллельном соединении элементов электроцепи
Чтобы определить полное электрическое сопротивление цепи, включающей резистор и индуктивность или резистор и емкость, соединенные параллельно, необходимо в первую очередь найти проводимость каждой параллельной линии, затем общую проводимость этой цепи между точками А и В. На последнем этапе вычисляется ПС между А и В.
Пример электросхемы с параллельно соединенными элементами
Вычисляемое значение проводимости активного участка цепи равняется 1/R, индуктивного — 1/ ωL. Формула для определения полной проводимости выглядит так:
Полная проводимость участка электроцепи
Приводя к общему знаменателю выражение под знаком корня, получаем следующее выражение:
Формула после преобразования
Отсюда находим формулу для определения ПС для участка цепи с параллельно соединенными резистором и индуктивностью:
Определение ПС при параллельно соединенных элементах
Формула для вычисления ПС при использовании параллельного соединения резистора и емкости имеет такой вид:
Определение ПС при параллельном соединении резистора и емкости
В радиотехнике чаще всего используется параллельное соединение конденсатора и катушки индуктивности, например, в колебательном контуре. Поскольку катушка имеет и индуктивное, и активное сопротивление, то в индуктивную ветвь включается еще резистор.
Схема колебательного контура
Для определения ПС следует воспользоваться формулой:
Определение ПС колебательного контура
Учитывая то, что активное электросопротивление катушки значительно меньше индуктивного, формулу можно представить так:
Формула для расчета ПС колебательного контура
Значение индуктивности и емкости для колебательного контура принято выбирать так, чтобы соблюдалось условие:
Условие для колебательного контура
В данном случае для определения ПС колебательного контура получаем очень простую формулу:
Упрощенная формула для расчета ПС колебательного контура
С целью облегчения расчетов импеданса используют комплексные числа. Действительную часть такого числа представляет активное электросопротивление, а мнимую — реактивное.
Для последовательно соединенных радиоэлементов ПС в комплексном виде можно представить так:
Определение комплексного ПС
В тригонометрической интерпретации модулем комплексного числа является ПС, а аргументом — угол φ.
Треугольник сопротивлений
Следовательно, активную и реактивную составляющие ПС можно найти по формулам:
Определение составляющих ПС
При вычислении ПС или импеданса для параллельно соединенных элементов используют сумму проводимостей — величин, обратных электросопротивлениям.
Треугольник проводимостей
Комплексная проводимость является величиной, обратной комплексному электросопротивлению. Алгебраически она выражается так:
Определение комплексной проводимости
Вычисление импеданса является достаточно сложной задачей, поскольку используется большое количество формул, тригонометрических функций. Поэтому с целью облегчения расчетов можно воспользоваться онлайн калькулятором. Чтобы получить результат, понадобится лишь ввести значение частоты электротока, емкость конденсатора, индуктивность катушки, сопротивление резистора.
Видео по теме
Полное сопротивление цепи переменного тока
В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.
Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.
Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока
На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.
Рисунок 1. Классификация цепей переменного тока.
Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.
Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.
Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.
В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.
Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.
Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.
Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.
По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.
Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

Извлекая квадратный корень из обеих частей этого равенства, получим,

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений
Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.
Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.
В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.
Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) — схема цепи; б) — треугольник сопротивлений.
Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.
Для данного случая:

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.
Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений.
Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).
После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

Или

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.
Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.
Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.
Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.
Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C.
Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z
Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

Приводя к общему знаменателю подкоренное выражение, получим:

откуда:

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.
Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.
Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.
В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).
Рисунок 6. Эквивалентная схема колебательного контура.
Формула полного сопротивления для этого случая будет:

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

где L—индуктивность катушки в Гн;
С—емкость конденсатора в Ф;
R—активное сопротивление катушки в Ом.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Параллельный колебательный контур, формулы расчета
Параллельный колебательный контур в радиотехнике используется как основа частотно-избирательных цепей и встречается намного чаще последовательного. Реальные элементы контура обладают потерями и при анализе цепи используется реалистичная модель из идеальных сосредоточенных элементов в которой потери учитываются с помощью «виртуальных» последовательных активных сопротивлений RL и RC.
Собственная паразитная емкость катушки обычно не учитывается, т. к. она просто суммируется с контурной. Программа Coil64 рассчитывает потери в проводе катушке RL без учета потерь в каркасе, экране, сердечнике и во всех предметах, с которыми взаимодействует окружающая катушку электромагнитная волна. Однако, учитывается скин-эффект и эффект близости. Эти же потери учитывает параметр «конструктивная добротность катушки» — QL. Это не добротность всего контура, а добротность катушки, которая связана с ее сопротивлением потерь следующим соотношением:
![]() |
[1] |
Потери в контурном конденсаторе на порядок меньше и характеризуются добротностью конденсатора. Поскольку потери конденсатора сосредоточены в основном в диэлектрике, можно считать, что его добротность QC и сопротивление потерь RC связаны с параметром, учитывающем потери в диэлектрике tgδ, следующим образом:
![]() |
[2] |
При анализе цепи часто ее преобразуют в эквивалентную параллельную RLC-цепь. В этом случае, заменяя сопротивления проводимостями, мы упрощаем анализ и получаем формулы идентичные формулам последовательного контура. Многие радиолюбители полагают, что последовательные RL и RC просто преобразуются в параллельное R. Это не так:
Как видим активные сопротивления и реактивности при таком преобразовании «перепутались», поэтому для наглядности проведем анализ без использования проводимостей, прямо по исходной схеме. Входное сопротивление двухполюсника получается следующим:
Активная и реактивная (мнимая) составляющие:
При резонансе токи в реактивных элементах (IL, IC) в Q раз больше общего тока цепи (I), поэтому для параллельного контура явление носит название резонанса токов.
Резонансная частота параллельного колебательного контура — это частота, при которой реактивная составляющая входного сопротивления равна нулю, входное сопротивление чисто активно, и, соответственно, фазовый сдвиг между током и напряжением на входных зажимах цепи тоже равен нулю. Приравняв Xвх к нулю и проведя соответствующие преобразования получим следующую формулу для резонансной частоты параллельного колебательного контура:
![]() |
[3] |
Один из важнейших параметров контура — его характеристическое сопротивление:
Формулу резонансной частоты можно представить иначе:
![]() |
[5] |
ω0 — резонансная частота последовательного колебательного контура.
Как видим резонансная частота параллельного колебательного контура равна резонансной частоте последовательного колебательного контура, составленного из тех же элементов, с добавкой поправочного коэффициента √[(L/C — RL^2)/(L/C — RC^2)]. На практике этот коэффициент всегда близок к единице и равен единице если RL=RC или RL=RC=0.
Пример:
Имеем контур с индуктивностью 3μГн и емкостью 42пФ, сопротивление потерь катушки — RL=2 Ом, конденсатора — RC=0.1 Ом. По формуле Томпсона резонансная частота контура равна 14.178649 МГц, точно вычисляем по формуле [1] — 14.178253 МГц. Как видим, активные сопротивления потерь вносят в идеальный контур дополнительную реактивность и уводят его частоту вниз, в данном случае почти на 400 Гц.
Это совсем небольшое отклонение нужно иметь ввиду, но оно намного меньше отклонений, вносимых неучтенными паразитными емкостями. Поэтому при выполнении условий: RL<< ρ, RC<< ρ, что обычно бывает на практике, можно считать, что условия резонанса токов совпадают с условиями резонанса напряжений в последовательном контуре, составленном из тех же элементов L и C,
ω0 = 1/√LC или ƒ0 = 1/(2π√LC)
На этом «родственная схожесть» последовательного и параллельного контуров не заканчивается.
При выполнении тех же условий: RL<< ρ, RC<< ρ
-
RΣ = RL + RC;
Как видим, можно считать, что сопротивления потерь катушки и конденсатора суммируются, поэтому общую добротность контура Q можно определить следующим выражением:
![]() |
[6] |
На резонансной частоте ω0:
![]() |
[7] |
Поскольку реактивные сопротивления взаимно компенсируются, контур на резонансной частоте имеет чисто активное сопротивление равное Rэ (эквивалентное или эффективное сопротивление контура).
Из последней формулы следует, что:
![]() |
[8] |
Т.е. добротность контура равна отношению его характеристического сопротивления к сопротивлению потерь. Иначе говоря, на данной частоте более добротным будет контур с меньшей емкостью и большей индуктивностью. Как же тогда соотносится добротность контура с конструктивной добротностью катушки? Чтобы понять это, следует иметь ввиду, что характеристическое сопротивление контура численно равно модулю реактивного сопротивления индуктивности или емкости на резонансной частоте. Последние, как известно, в этом случае равны и отличаются лишь знаком. Если мы пренебрежем потерями в конденсаторе, тогда формула [8] сводится к формуле [1]. Ведь на резонансной частоте ρ = |XL|, а в сумме RΣ = RL + RC, последнее слагаемое мы не учитываем. Другими словами, если пренебречь потерями в конденсаторе, то добротность контура равна конструктивной добротности катушки. В итоге мы приходим к выводу, что формулы [1] и [8] в этом случае эквивалентны. Если же нам необходимо учесть потери в конденсаторе, то следует использовать формулу [6].
Необходимо отметить два важных момента:
- Coil64 рассчитывает конструктивную добротность для «голой катушки в вакууме». Наличие экрана увеличивает распределенную емкость и уменьшает индуктивность. Характеристическое сопротивление контура падает, добротность уменьшается. Кроме этого добавляются потери на вихревые токи в экране. Каркас катушки также снижает ее добротность и добротность контура соответственно.
- Добротность катушки растет с ростом частоты только на «низких» частотах, далеких от частоты собственного резонанса катушки. При приближении к собственному резонансу добротность достигает максимума на частотах 60-85% от Fsrf и затем плавно снижается. Это происходит от того, что на этих частотах начинает проявляться зависимость индуктивности и собственной емкости катушки от частоты.
Амплитудно-частотная характеристика имеет такой же вид, как и резонансная кривая последовательного контура; ФЧХ представляет собой зеркальное отображение ФЧХ последовательного контура.
Важно понятие полоса пропускания контура Это частотный интервал в пределах которого импеданс Zвх не ниже
1 ⁄ √2 (или 0,707) от максимального на резонансной частоте. Справедлива следующая формула, которую можно использовать для измерения добротности:
В практике представляет интерес величина ослабления контуром нежелательных частот:
![]() |
[10] |
Для расстроек более трех полос пропускания формула упрощается:
где знак не учитывается.
В реальной схеме контур связан с источником колебаний и нагрузкой, которые вносят в него дополнительные потери, снижающие добротность. Эквивалентная добротность Q параллельного колебательного контура:
Q = Q0·Ri ⁄ (Rэ + Ri)
- Q0 — добротность ненагруженного контура
- Ri — входное сопротивление источника
- Rэ — эквивалентное сопротивление ненагруженного котура
Эту формулу можно использовать для учета влияния любых подключенных к контуру сопротивлений (например, нагрузки) на его добротность.
Для уменьшения влияния внешних цепей, а также для трансформации сопротивлений применяют частичное включение нагрузки в контур
Как видно из рисунка это можно сделать различными способами, отводом от катушки, с помощью катушки связи, емкостным делителем. Тогда выходное сопротивление контура:
Rвых = p2Rэ
где p –коэффициент связи. Для емкостного делителя:
p = C1 ⁄ (C1 + C2)
Для индуктивной связи:
p = M ⁄ L
где M — полная взаимоиндуктивность между Lc и L (это относится как к случаю с отводом катушки так и к случаю с катушкой связи). Следует отметить, что коэффициент связи не равен отношению числа витков, как в трансформаторе, поскольку каждый виток катушки Lc пересекается не всеми силовыми линиями катушки контура вследствие рассеяния магнитного поля.
При подключении внешней нагрузки к контуру с помощью частичного включения, результирующая добротность определяется:
Q = Q0·Ru ⁄ (Rэ + Ru)
Ru = p2Ri (Ri – внешняя нагрузка)
Следует отметить, что для максимального коэффициента передачи электромагнитной энергии, выходное сопротивление контура должно быть равно сопротивлению нагрузки. Все вышесказанное справедливо и в случае согласования контура с источником сигнала.

























































