Производная сложной функции
Формула
Пусть есть функция $ y=f(g(x)) $, тогда производную сложной функции можно найти по формуле:
$$ y’=f'(g(x)) cdot g'(x) $$
Проще говоря, нахождение производной сложной функции выполняется «по цепочке». Сначала находим производную от внешней функции без изменения её аргумента и умножаем на производную аргумента. Если аргумент в свою очередь тоже является сложной функцией, то снова берем производную ещё и от него.
Рассмотрим на практике примеры решений производных сложных функций.
Примеры решений
| Пример 1 |
| Найти производную сложной функции: $ y = sqrt{x^2+1} $ |
| Решение |
|
Пользуемся формулой нахождения производной сложной функции. Сначала находим производную внешней функции без учета внутренней функции, а затем и производную от самой внутренней функции: $$ y’=( sqrt{x^2+1} )’= $$ $$ =frac{1}{2sqrt{x^2+1}} cdot (x^2+1)’= $$ $$ =frac{1}{2sqrt{x^2+1}} cdot 2x = frac{x}{sqrt{x^2+1}} $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
| Ответ |
| $$ y’=frac{x}{sqrt{x^2+1}} $$ |
| Пример 2 |
| Найти производную сложной функции: $ y = e^{4x+3} $ |
| Решение |
|
Видим экспоненту в задаче, поэтому берем значение производной для неё из таблицы, а затем вычисляем производную от аргумента: $$ y’=(e^{4x+3})’ = e^{4x+3} cdot (4x+3)’ = $$ $$ = e^{4x+3} cdot 4 = 4e^{4x+3} $$ |
| Ответ |
| $$ y’ = 4e^{4x+3} $$ |
| Пример 3 |
| Найти производную сложной функции: $ y = arctan x^2 $ |
| Решение |
|
Зная значение производной арктангенса из таблицы, находим производную сложной функции: $$ y’ = (arctan x^2)’ = frac{1}{1+(x^2)^2} cdot (x^2)’ = $$ $$ = frac{1}{1+(x^2)^2} cdot 2x = frac{2x}{1+x^4} $$ |
| Ответ |
| $$ y’ = frac{2x}{1+x^4} $$ |
| Пример 4 |
| Найти производную сложной функции: $ y = ln(x^3+2) $ |
| Решение |
|
Перед нами сложная функция, точнее натуральный логарифм от многочлена. Поэтому применим правило. Имеем: $$ y’ = (ln(x^3+2))’ = frac{1}{x^3+2} cdot (x^3+2)’ = $$ $$ = frac{1}{x^3+2} cdot 3x^2 = frac{3x^2}{x^3+2} $$ |
| Ответ |
| $$ y’ = frac{3x^2}{x^3+2} $$ |
| Пример 5 |
| Найти производную от сложной функции: $ y = ln(sin^3x+ e^{cos x}) $ |
| Решение |
|
Сложную функцию представляет натуральный логарифм, аргументом которого является сумма двух функций, обе тоже сложные функции. Вспоминаем формулу и приступаем: $$ y’ = ( ln(sin^3x+e^{cos x}) )’ = $$ $$ =frac{1}{sin^3x+e^{cos x}} cdot (sin^3x+e^{cos x})’ = $$ Производная суммы функций равна сумме производных этих функций: $$ =frac{1}{sin^3x+e^{cos x}} cdot ( (sin^3x)’+(e^{cos x})’) = $$ Первая функция $ (sin^3x)’ $ — это производная от сложной функции: $$ (sin^3x)’ = 3sin^2x cdot (sin x)’ = 3sin^2x cos x $$ Вторая функция $ (e^{cos x})’ $ — это производная сложной функции: $$ (e^{cos x})’ = e^{cos x} cdot (cos x)’ = e^{cos x} cdot (-sin x) $$ Продолжаем нахождение производной исходной функции: $$ = frac{1}{sin^3x+e^{cos x}} cdot (3sin^2x cos x — e^{cos x} sin x) $$ |
| Ответ |
|
$$ y’ = frac{3sin^2x cos x — e^{cos x} sin x}{sin^3x+e^{cos x}} $$ |
F(x) = sin²x – сложная функция, поэтому её производная находится следующим способом:
f'(x) = (sin²x)’ = ((sin x)²)’ = 2sin x * (sin x)’ = 2sin x * cos x = sin 2x
Т.е. сначала мы находим производную функции u², где u = sin x (эта производная равна 2u), a затем умножаем её на производную функции u, где также u = sin x.
В общем виде это можно записать так:
f'(x) = (u²)’ * u’, где u = sin x
Отмена
Мирослав Кудрявин
Отвечено 22 сентября 2019
-
Комментариев (0)
Добавить
Отмена
Формула
Пусть есть функция $ y=f(g(x)) $, тогда производную сложной функции можно найти по формуле:
$$ y’=f'(g(x)) cdot g'(x) $$
Проще говоря, нахождение производной сложной функции выполняется «по цепочке». Сначала находим производную от внешней функции без изменения её аргумента и умножаем на производную аргумента. Если аргумент в свою очередь тоже является сложной функцией, то снова берем производную ещё и от него.
Рассмотрим на практике примеры решений производных сложных функций.
Решение задач от 20 руб подробное написание Рефераты от 200 руб Уникальность 95%
Видео
«Распаковка» сложной функции
Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть — какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.
Сделал?
Теперь правильный ответ: сначала икс «упаковали» в (4)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию (2), и в конце концов всю эту конструкцию засунули в степень пятерки.
То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.
Например, вот такая функция: (y=tg(log_2x )). Смотрим на икс – что с ним происходит сначала? Берется логарифм от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:
(x → log_2x → tg(log_2x ))
Еще пример: (y=cos{(x^3 )}). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: (x → x^3 → cos{(x^3 )}). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть (cos{(x·x·x)})), а там в кубе косинус (x) (то есть, (cosx·cosx·cosx)). Эта разница возникает из-за разных последовательностей «упаковки».
Последний пример (с важной информацией в нем): (y=sin{(2x+5)}). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: (x → 2x+5 → sin{(2x+5)}). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.
Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных — два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) — тоже простая функция. Например, (x^7) – простая функция и (ctg x) — тоже. Значит и все их комбинации являются простыми функциями:
(x^7+ ctg x) — простая, (x^7· ctg x) – простая, (frac{x^7}{ctg x}) – простая и т.д.
Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:

Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций: (y=cos{(sinx)}) (y=5^{x^7}) (y=arctg{11^x}) (y=log_2(1+x)) Ответы опять в конце статьи.
Сложная функция и производная
B классе 10, еще не известно ни о какой производной или её возможном применении для нахождения промежутков монотонности, вы использовали в различных задачах свойства основных элементарных функций. Так, например, чтобы доказать возрастание функции 









По этой ссылке вы найдёте полный курс лекций по высшей математике:
Эти выводы основаны на том, что линейная функция 





Можно сказать, что эта сложная функция у составлена из функций 

Рассмотрим сложную функцию 




Заметим, что приращению 




По условию функция 



(нижние индексы показывают, по какому аргументу находится производная).
Производная сложной функции равна произведению производных внешней и внутренней функции: 
В выводе этой формулы есть небольшая тонкость — функция 



Возможно вам будут полезны данные страницы:
Вторая производная
Это он-лайн сервис в два шага:
- Ввести функцию, для которой надо найти производную
- Ввести найденную первую производную в форму
Перейти: Онлайн сервис «Вторая производная функции» →
Примеры
Найти производную сложной функции вида y=(2x+1)2.
Решение
По условию видно, что f является функцией возведения в квадрат, а g(x)=2x+1 считается линейной функцией.
Применим формулу производной для сложной функции и запишем:
f'(g(x))=((g(x))2)’=2·(g(x))2-1=2·g(x)=2·(2x+1);g'(x)=(2x+1)’=(2x)’+1’=2·x’+=2·1·x1-1=2⇒(f(g(x)))’=f'(g(x))·g'(x)=2·(2x+1)·2=8x+4
Необходимо найти производную с упрощенным исходным видом функции. Получаем:
y=(2x+1)2=4×2+4x+1
Отсюда имеем, что
y’=(4×2+4x+1)’=(4×2)’+(4x)’+1’=4·(x2)’+4·(x)’+==4·2·x2-1+4·1·x1-1=8x+4
Результаты совпали.
При решении задач такого вида важно понимать, где будет располагаться функция вида f и g(x).
Следует найти производные сложных функций вида y=sin2x и y=sin x2.
Решение
Первая запись функции говорит о том, что f является функцией возведения в квадрат, а g(x) – функцией синуса. Тогда получим, что
y’=(sin2x)’=2·sin2-1x·(sin x)’=2·sin x·cos x
Вторая запись показывает, что f является функцией синуса, а g(x)=x2 обозначаем степенную функцию. Отсюда следует, что произведение сложной функции запишем как
y’=(sin x2)’=cos(x2)·(x2)’=cos(x2)·2·x2-1=2·x·cos(x2)
Формула для производной y=f(f1(f2(f3(…(fn(x)))))) запишется как y‘=f‘(f1(f2(f3(…(fn(x))))))·f1‘(f2(f3(…(fn(x)))))··f2‘(f3(…(fn(x))))·…·fn‘(x)
Найти производную функции y=sin(ln3 arctg(2x)).
Решение
Данный пример показывает сложность записи и определения расположения функций. Тогда y=f(f1(f2(f3(f4(x))))) обозначим, где f, f1, f2, f3, f4(x) является функцией синуса, функцией возведения в 3 степень, функцией с логарифмом и основанием е, функцией арктангенса и линейной.
Из формулы определения сложной функции имеем, что
y’=f'(f1(f2(f3(f4(x)))))·f1′(f2(f3(f4(x))))··f2′(f3(f4(x)))·f3′(f4(x))·f4′(x)
Получаем, что следует найти f'(f1(f2(f3(f4(x))))) в качестве производной синуса по таблице производных, тогда f'(f1(f2(f3(f4(x)))))=cos(ln3 arctg(2x)). f1′(f2(f3(f4(x)))) в качестве производной степенной функции, тогда f1′(f2(f3(f4(x))))=3·ln3-1arctg(2x)=3·ln2arctg(2x). f2′(f3(f4(x))) в качестве производной логарифмической, тогда f2′(f3(f4(x)))=1arctg(2x). f3′(f4(x)) в качестве производной арктангенса, тогда f3′(f4(x))=11+(2x)2=11+4×2. При нахождении производной f4(x)=2x произвести вынесение 2 за знак производной с применением формулы производной степенной функции с показателем, который равняется 1, тогда f4′(x)=(2x)’=2·x’=2·1·x1-1=2.
Производим объединение промежуточных результатов и получаем, что
y’=f'(f1(f2(f3(f4(x)))))·f1′(f2(f3(f4(x))))··f2′(f3(f4(x)))·f3′(f4(x))·f4′(x)==cos(ln3 arctg(2x))·3·ln2 arctg(2x)·1arctg(2x)·11+4×2·2==6·cos(ln3 arctg(2x))·ln2 arctg(2x)arctg(2x)·(1+4×2)
Теги
Я
предлагаю решить задачу способом,
который многим знаком. Методом умножения
внешней производной функции на
внутреннюю производную функцию. Не
забывайте, что это функция относится к
сложной функции. Математически это
выглядит так: у`=2
sinx
cosx =sin2x.
Производная
синуса от переменной x равна косинусу
по x.
Эта
функция сложная, потому что в нее входит
и степенная и тригонометрическая
функция. Решать задачу нужно поэтапно.
Вначале необходимо найти производную
от степенной функции, а затем
результат умножают на производную
тригонометрической функции. После
преобразования синуса двойного аргумента
получаем результат, то есть (sin^2x)’
= sin 2x. И еще один совет, для решения
подобных задач необходимо знать таблицу
производных значений.


