Чтобы решать задачи на встречное движение, вспомним основные понятия и формулы для решения задач на движение:
(v) — скорость;
и
v2
— скорость первого и второго объектов;
— скорость сближения;
(t) — время;
— время до встречи;
(s) — первоначальное расстояние;
— расстояние между объектами через определённый промежуток времени после начала движения объектов.
Рассмотрим первую ситуацию.
Яра и Юра давно не виделись и договорились встретиться в парке. Расстояние между друзьями составляет (315) км. Юра поехал на автомобиле со скоростью (60) км/ч, а Яра — на автобусе со скоростью (45) км/ч.
Через какое время друзья встретятся?
Начертим схему.
Стрелки на схеме показывают, с какой скоростью едут Юра и Яра. Флажком обозначено место встречи друзей. А дугой показано расстояние между героями — (315) км.
По схеме видно, что друзья едут навстречу друг другу, то есть расстояние между ними сокращается. Перед нами — встречное движение.
Первоначально необходимо найти скорость сближения по формуле:
1. (60 + 45 = 105) км/ч.
Теперь найдём, через какое время произойдёт встреча Юры и Яры:
2. (315 : 105 = 3) ч.
Ответ: через (3) часа друзья встретятся в парке.
Рассмотрим вторую ситуацию.
С двух станций одновременно начали движение два поезда навстречу друг другу. Скорость первого поезда равна (90) км/ ч, а второго — (70) км/ч. Чему равно расстояние между станциями, если встреча поездов произошла через (2) часа после начала отправления?
Начертим схему.
Найдём скорость сближения двух поездов: (90 + 70 = 160) км/ч.
Определим расстояние между станциями до начала отправления поездов: (160 · 2 = 320) км.
Ответ: расстояние между станциями составляет (320) км.
Рассмотрим третью ситуацию.
Тракторист и таксист едут навстречу друг другу из двух сёл, расстояние между которыми составляет (400) км. Скорость трактора — (25) км/ ч, а такси — (50) км/ч. Как изменится расстояние между ними через (1) час? Через (2) часа? Через (4) часа?
Заполним таблицу:
|
(t) ч |
(d) км |
|
(0) |
(400) |
|
(1) |
(400) (– (25 + 50) · 1 = 325) |
|
(2) |
(400) (– (25 + 50) · 2 = 250) |
|
(4) |
(400) (– (25 + 50) · 4 = 100) |
Источники:
Изображения: схема, робот, космонавт, транспорт. © ЯКласс.
Задачи на движение навстречу друг другу (встречное движение) — один из трех основных видов задач на движение.
Если два объекта движутся навстречу друг другу, то они сближаются:
Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:
Скорость сближения больше, чем скорость каждого из них.
Скорость, время и расстояние связаны между собой формулой пути:
Рассмотрим некоторые задачи на встречное движение.
Задача 1
Два велосипедиста выехали навстречу друг другу. Скорость одного из низ 12 км/ч, а другого — 10 км/ч. Через 3 часа они встретились. Какое расстояние было между ними в начале пути?
Решение:
Условие задач на движение удобно оформлять в виде таблицы:
|
v, км/ч |
t, ч |
s, км |
|
|
I велосипедист |
12 |
3 |
? |
|
II велосипедист |
10 |
3 |
? |
1) 12+10=22 (км/ч) скорость сближения велосипедистов
2) 22∙3=66 (км) было между велосипедистами в начале пути.
Ответ: 66 км.
Задача 2
Два поезда идут навстречу друг другу. Скорость одного из них 50 км/ч, скорость другого — 60 км/ч. Сейчас между ними 440 км. Через сколько часов они встретятся?
Решение:
|
v, км/ч |
t, ч |
s, км |
|
|
I поезд |
60 |
? |
? |
|
II поезд |
50 |
? |
? |
1) 60+50=110 (км/ч) скорость сближения поездов
2) 440:110=4 (ч) время, через которое поезда встретятся.
Ответ: через 4 ч.
Задача 3.
Два пешехода находились на расстоянии 20 км друг от друга. Они вышли одновременно навстречу друг другу и встретились через 2 часа. Скорость одного пешехода 6 км/ч. Найти скорость другого пешехода.
|
v, км/ч |
t, ч |
s, км |
|
|
I пешеход |
6 |
2 |
? |
|
II пешеход |
? |
2 |
? |
1) 20:2=10 (км/ч) скорость сближения пешеходов
2) 10-6=4 (км/ч) скорость другого пешехода.
Ответ: 4 км/ч.
Для встречного движения двух поездов скорость относительного движения равна:
V = V1 + V2, где V1 – скорость первого поезда (V1 = 72 км/ч = 72*1000/3600 с = 20 м/с), V2 – скорость встречного поезда (м).
V = S/t, где S – длина встречного поезда (S = 180 м), t – время видимости пассажиром встречного поезда (t = 4 с).
Скорость относительного движения:
V = S/t = 180/4 = 45 м/с.
Скорость встречного поезда:
V2 = V — V1 = 45 — 20 = 25 м/с.
Ответ: Встречный поезд движется со скоростью 25 м/с.
Выбрать другой вопрос
Смотреть ответ
Перейти к выбору ответа
Вопрос посетителя
Пассажир поезда, идущего со скоростью 79.2 км/ч. заметил, что встречный поезд шёл мимо него в течение 12 с. Определите скорость встречного поезда, если его длина — 480 м
Ответ эксперта
Суммарная скорость движения поездов 480 : 12 = 40 м/с или 40 : 1 000 * 3 600 = 144 км/ч. Значит скорость встречного поезда 144 — 79,2 = 64,8 км/ч.


Примеры решения задач по математике
Формулы для нахождения скорости, времени и расстояния
Условные обозначения
V – скорость (см/сек, м/мин, км/час);
S – расстояние (мм, см, м, км);
t – время (сек, мин, час).
Формула нахождения скорости
V = S : t
Формула нахождения расстояния
S = V · t
Формула нахождения времени
t = S : V
Задача №1
Из двух городов А и Б, расстояние между которыми 645 км, одновременно вышли 2 поезда навстречу друг другу. Известно, что скорость первого поезда 62 км/ч.
Найди расстояние, пройденное вторым поездом, если поезда встретились через 5 часов.Решение:
Чтобы узнать пройденный путь первым поездом применим формулу: S = V · t. Запишем формулу в удобной для решения задачи форме: V · t = S
1) 62 · 5 = 310 (км), теперь из расстояния между городами А и Б вычтем пройденный путь первым поездом, тогда мы узнаем расстояние пройденное вторым поездом
2) 645 — 310 = 335 (км)Ответ: расстояние 335 км.
Задача №2
Из двух городов А и Б, расстояние между которыми 600 км, одновременно вышли два поезда навстречу друг другу. Скорость I поезда 65 км/ч.
Определи скорость II поезда, если поезда встретились через 5 часов.Решение:
Чтобы узнать расстояние пройденное первым поездом применим формулу: S = V · t. Запишем формулу в удобной для решения задачи форме: V · t = S
1) 65 · 5 = 325 (км), теперь из расстояния между городами А и Б вычтем пройденный путь первым поездом, чтобы узнать пройденный путь вторым поездом
2) 600 — 325 = 275 (км), теперь узнаем скорость второго поезда, для этого применим формулу V = S : t
3) 275 : 5 = 55 (км/ч)Ответ: скорость второго поезда 55 км/ч.
Задача №3
Из двух городов одновременно выехали навстречу друг другу 2 автомобиля. I машина двигалась со скоростью 85 км/ч и проехала до встречи 170 км.
Сколько километров проехала II машина, если она двигалась со скоростью 93 км/ч?Решение:
Чтобы узнать расстояние пройденное первым поездом применим формулу: t = S : V. Запишем формулу в удобной для решения задачи форме: S : V = t
1) 170 : 85 = 2 (ч), теперь зная время в пути I машины можно вычислить какой путь проехала II машина, для этого применим формулу: S = V · t
2) 93 · 2 = 186 (км)Ответ: II машина проехала 186 км.
Задача №4
Из двух деревень одновременно выехали навстречу друг другу 2 велосипедиста. I двигался со скоростью 45 км/ч и проехал до встречи 135 км.
Найди расстояние между деревнями, если скорость II велосипедиста была 40 км/ч.Решение:
Рассуждаем так: если велосипедисты выехали одновременно и встретились, то они затратили одинаковое время в пути. Тогда, мы уже можем узнать время затраченное I велосипедистом, для этого применим формулу: t = S : V. Запишем формулу в удобной для решения задачи форме: S : V = t
1) 135 : 45 = 3 (ч)
Теперь, когда мы знаем время затраченное на путь велосипедистом I можно узнать пройденный путь велосипедистом II по формуле: S = V · t
2) 40 · 3 = 120 (км)
Когда мы знаем пройденный путь каждого велосипедиста за 3 часа, тогда мы можем узнать расстояние между деревнями, для этого сложим их пройденные пути
3) 135 + 120 = 255 (км)Ответ: расстояние между деревнями 255 км.
Задача №5
Из двух городов, находящихся на расстоянии 585 км, одновременно навстречу друг другу выехали два автомобиля.
Скорость автомобиля I – 60 км/час, автомобиля II – 75 км/час. Вместе с I автомобилем в том же направлении выехал мотоциклист со скоростью 120 км/час.
На каком расстоянии друг от друга были автомобили, когда II автомобиль встретился с мотоциклистом?Решение:
Чтобы узнать сколько времени были в пути мото и автомобиля II применим формулу: t = S : (V1 + V2). Запишем формулу в удобной для решения задачи форме: S : (V1 + V2) = t
1) 585 : (120 + 75) = 3 час
Теперь надо узнать путь пройденный каждым автомобилем за 3 часа, для этого умножим их скорость на время в пути по формуле: V = S : t
2) 60 · 3 = 180 км (авто I)
3) 75 · 3 = 225 км (авто II)
Когда мы знаем пройденный путь автомобиля I и автомобиля II, то вычтем их путь из расстояния между городами, тогда мы узнаем на каком расстоянии были автомобили
4) 585 — 225 — 180 = 180 кмОтвет: На расстоянии 180 км.
Коротко:
Известные и великие математики
ученые древности, средневековья и современности, и их вклад в мировую науку
Николай Иванович Лобачевский
математик, один из создателей неевклидовой геометрии, деятель университетского образования и народного просвещения
Дата рождения: 1 декабря 1792 г. Нижний Новгород
Место рождения: Нижний Новгород
Дата смерти: 24 февраля 1856 г. (63 года), Казань
Биография
В 1802 году Николай Лобачевский отдан в Казанскую гимназию, единственную в те годы во всей восточной части Российской империи, на «казённое разночинское содержание». Окончил гимназию в конце 1806 года, показав хорошие знания, особенно по математике и языкам — латинскому, немецкому, французскому. В проявившемся уже тогда его интересе к математике — большая заслуга преподавателя гимназии Г. И. Карташевского.
Вскоре после поступления Николая в гимназию расширились возможности для получения дальнейшего образования. 5 ноября 1804 года император Александр I подписывает «Утвердительную грамоту» и «Устав Императорского Казанского университета». 14 февраля 1805 года происходит открытие университета. Ряд учителей гимназии, параллельно с исполнением прежних обязанностей, переходит преподавать в университет. Г. И. Карташевский — адъюнктом высшей математики.
Совет университета обратился к родителям воспитывающихся в Казанской гимназии детей с предложением отдать их после окончания курса гимназии для продолжения обучения в университете. Николай в июле 1806 года подвергся испытанию, но неудачно, однако 22 декабря того же года прошёл повторное испытание и 14 февраля 1807 года был зачислен в университет.
В первом полугодии адъюнкт Г. И. Карташевский повторил со студентами общую арифметику, прочитал курс алгебры и перешёл к изложению дифференциального исчисления. Однако 5 декабря 1806 года, из-за конфликта с директором университета И. Ф. Яковкиным, он и ряд других преподавателей были уволены. Преподавать математику было поручено студентам.
Ситуация изменилась только в 1808 году с прибытием в университет видных немецких учёных, которых отобрал и пригласил тогдашний попечитель Казанского учебного округа С. Я. Румовский.
Влияние новых талантливых преподавателей сказалось на интересах Николая. Если в 1808 году он наибольшее внимание уделял химии и фармакологии (которая в то время называлась медицинской наукой), то под влиянием Бартельса заинтересовался физико-математическими науками.
В 1811 году, окончив университет, Лобачевский получил степень магистра по физике и математике с отличием и был оставлен при университете. Начало преподавательской деятельности Лобачевского совпало с коренными преобразованиями в университетской жизни. Организация университета стараниями попечителя М. А. Салтыкова была наконец приведена в соответствие с уставом 1804 года. 7 июля 1816 года Лобачевский по инициативе Салтыкова был утверждён экстраординарным профессором. 3 мая 1827 года 34-летний Лобачевский тайным голосованием был избран ректором университета (11 голосами против 3).
В 1836 году университет посетил царь Николай I, остался доволен и наградил Лобачевского престижным орденом Анны II степени, дававшим право на потомственное дворянство. 29 апреля 1838 года «за заслуги на службе и в науке» Н. И. Лобачевскому было пожаловано дворянство и дан герб. Усилиями Лобачевского Казанский университет становится первоклассным, авторитетным и хорошо оснащённым учебным заведением, одним из лучших в России. Лобачевский был ректором Казанского университета с 1827 по 1846 годы.
16 августа 1846 года Министерство «по указанию Правительствующего сената» отстранило Лобачевского не только от профессорской кафедры, но и от должности ректора. Здоровье его самого было подорвано, слабеет зрение. Последний труд учёного, «Пангеометрия», записали под диктовку ученики слепого учёного в 1855 году. Скончался 24 февраля 1856 года, в тот самый день, в который 30 годами ранее впервые обнародовал свою версию неевклидовой геометрии. Похоронен на Арском кладбище Казани.
Его некоторые научные достижения:
- Метод приближённого решения уравнений
- Получил ряд тонких теорем о тригонометрических рядах
- Уточнил понятие непрерывной функции
- Дал признак сходимости рядов
- Статьи по алгебре, теории вероятностей, механике, физике, астрономии и проблемам образования
В честь Лобачевского названы:
- Нижегородский государственный университет имени Н. И. Лобачевского, Нижний Новгород
- Малая планета (1858) Лобачевский
- Кратер на обратной стороне Луны
- Научная библиотека Казанского университета
- Улицы Лобачевского в различных населённых пунктах государств бывшего СССР
- Один из самолётов Аэрофлота
- Лицей им. Н. И. Лобачевского при КФУ (Казань)


















