Загрузить PDF
Загрузить PDF
Скорость — это быстрота перемещения объекта в заданном направлении. [1]
В общих целях нахождение скорости объекта (v) — простая задача: нужно разделить перемещение (s) в течение определенного времени (s) на это время (t), то есть воспользоваться формулой v = s/t. Однако таким способом получают среднюю скорость тела. Используя некоторые вычисления, можно найти скорость тела в любой точке пути. Такая скорость называется мгновенной скоростью и вычисляется по формуле v = (ds)/(dt), то есть представляет собой производную от формулы для вычисления средней скорости тела.[2]
-
1
Начните с уравнения. Для вычисления мгновенной скорости необходимо знать уравнение, описывающее перемещение тела (его позицию в определенный момент времени),[3]
то есть такое уравнение, на одной стороне которого находится s (перемещение тела), а на другой стороне — члены с переменной t (время).[4]
Например:s = -1.5t2 + 10t + 4
- В этом уравнении:
-
- Перемещение = s. Перемещение — пройденный объектом путь. Например, если тело переместилось на 10 м вперед и на 7 м назад, то общее перемещение тела равно 10 — 7 = 3 м (а на 10 + 7 = 17 м).
- Время = t. Обычно измеряется в секундах.
-
- В этом уравнении:
-
2
Вычислите производную уравнения. Чтобы найти мгновенную скорость тела, чьи перемещения описываются приведенным выше уравнением, нужно вычислить производную этого уравнения. Производная — это уравнение, позволяющее вычислить наклон графика в любой точке (в любой момент времени). Чтобы найти производную, продифференцируйте функцию следующим образом: если y = a*xn, то производная = a*n*xn-1. Это правило применяется к каждому члену многочлена.
- Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:
s = -1.5t2 + 10t + 4
(2)-1.5t(2-1) + (1)10t1 — 1 + (0)4t0
-3t1 + 10t0
-3t + 10
- Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:
-
3
Замените «s» на «ds/dt», чтобы показать, что новое уравнение — это производная от исходного уравнения (то есть производная s от t). Производная — это наклон графика в определенной точке (в определенный момент времени). Например, чтобы найти наклон линии, описываемой функцией s = -1.5t2 + 10t + 4 при t = 5, просто подставьте 5 в уравнение производной.
- В нашем примере уравнение производной должно выглядеть следующим образом:
ds/dt = -3t + 10
- В нашем примере уравнение производной должно выглядеть следующим образом:
-
4
В уравнение производной подставьте соответствующее значение t, чтобы найти мгновенную скорость в определенный момент времени.[5]
Например, если вы хотите найти мгновенную скорость при t = 5, просто подставьте 5 (вместо t) в уравнение производной ds/dt = -3 + 10. Затем решите уравнение:ds/dt = -3t + 10
ds/dt = -3(5) + 10
ds/dt = -15 + 10 = -5 м/с- Обратите внимание на единицу измерения мгновенной скорости: м/с. Так как нам дано значение перемещения в метрах, а время — в секундах, и скорость равна отношению перемещения ко времени, то единица измерения м/с — правильная.
Реклама
-
1
Постройте график перемещения тела. В предыдущей главе вы вычисляли мгновенную скорость по формуле (уравнению производной, позволяющему найти наклон графика в определенной точке).[6]
Построив график перемещения тела, вы можете найти его наклон в любой точке, а следовательно определить мгновенную скорость в определенный момент времени.- По оси Y откладывайте перемещение, а по оси X — время. Координаты точек (x,у) получите через подстановку различных значений t в исходное уравнение перемещение и вычисления соответствующих значений s.
- График может опускаться ниже оси X. Если график перемещения тела опускается ниже оси X, то это значит, что тело движется в обратном направлении от точки начала движения. Как правило, график не распространяется за ось Y (отрицательные значения x) — мы не измеряем скорости объектов, движущихся назад во времени!
-
2
Выберите на графике (кривой) точку P и близкую к ней точку Q. Чтобы найти наклон графика в точке P, используем понятие предела. Предел — состояние, при котором величина секущей, проведенной через 2 точки P и Q, лежащих на кривой, стремится к нулю.
- Например, рассмотрим точки P(1,3) и Q(4,7) и вычислим мгновенную скорость в точке P.
-
3
Найдите наклон отрезка PQ. Наклон отрезка PQ равен отношению разницы значений координат «у» точек P и Q к разнице значений координат «х» точек P и Q. Другими словами, H = (yQ — yP)/(xQ — xP), где H — наклон отрезка PQ. В нашем примере наклон отрезка PQ равен:
H = (yQ — yP)/(xQ — xP)
H = (7 — 3)/(4 — 1)
H = (4)/(3) = 1.33 -
4
Повторите процесс несколько раз, приближая точку Q к точке P. Чем меньше расстояние между двумя точками, тем ближе значение наклона полученных отрезков к наклону графика в точке P. В нашем примере проделаем вычисления для точки Q с координатами (2,4.8), (1.5,3.95) и (1.25,3.49) (координаты точки P остаются прежними):
Q = (2,4.8): H = (4.8 — 3)/(2 — 1)
H = (1.8)/(1) = 1.8Q = (1.5,3.95): H = (3.95 — 3)/(1.5 — 1)
H = (.95)/(.5) = 1.9Q = (1.25,3.49): H = (3.49 — 3)/(1.25 — 1)
H = (.49)/(.25) = 1.96 -
5
Чем меньше расстояние между точками P и Q, тем ближе значение H к наклону графика в точке P При предельно малом расстоянии между точками P и Q, значение H будет равно наклону графика в точке P Так как мы не можем измерить или вычислить предельно малое расстояние между двумя точками, графический способ дает оценочное значение наклона графика в точке Р.
- В нашем примере при приближении Q к P мы получили следующие значения H: 1.8; 1.9 и 1.96. Так как эти числа стремятся к 2, то можно сказать, что наклон графика в точке P равен 2.
- Помните, что наклон графика в данной точке равен производной функции (по которой построен этот график) в этой точке. График отображает перемещение тела с течением времени и, как отмечалось в предыдущем разделе, мгновенная скорость тела равна производной от уравнения перемещения этого тела. Таким образом, можно заявить, что при t = 2 мгновенная скорость равна 2 м/с (это оценочное значение).
Реклама
-
1
Вычислите мгновенную скорость при t = 4, если перемещение тела описывается уравнением s = 5t3 — 3t2 + 2t + 9. Этот пример похож на задачу из первого раздела с той лишь разницей, что здесь дано уравнение третьего порядка (а не второго).
- Сначала вычислим производную этого уравнения:
s = 5t3 — 3t2 + 2t + 9
s = (3)5t(3 — 1) — (2)3t(2 — 1) + (1)2t(1 — 1) + (0)9t0 — 1
15t(2) — 6t(1) + 2t(0)
15t(2) — 6t + 2 - Теперь подставим в уравнение производной значение t = 4:
s = 15t(2) — 6t + 2
15(4)(2) — 6(4) + 2
15(16) — 6(4) + 2
240 — 24 + 2 = 22 м/с
- Сначала вычислим производную этого уравнения:
-
2
Оценим значение мгновенной скорости в точке с координатами (1,3) на графике функции s = 4t2 — t. В этом случае точка P имеет координаты (1,3) и необходимо найти несколько координат точки Q, лежащий близко к точке P. Затем вычислим H и найдем оценочные значения мгновенной скорости.
- Сначала найдем координаты Q при t = 2, 1.5, 1.1 и 1.01.
s = 4t2 — t
t = 2: s = 4(2)2 — (2)
4(4) — 2 = 16 — 2 = 14, so Q = (2,14)t = 1.5: s = 4(1.5)2 — (1.5)
4(2.25) — 1.5 = 9 — 1.5 = 7.5, so Q = (1.5,7.5)t = 1.1: s = 4(1.1)2 — (1.1)
4(1.21) — 1.1 = 4.84 — 1.1 = 3.74, so Q = (1.1,3.74)t = 1.01: s = 4(1.01)2 — (1.01)
4(1.0201) — 1.01 = 4.0804 — 1.01 = 3.0704, so Q = (1.01,3.0704) - Теперь вычислим H:
Q = (2,14): H = (14 — 3)/(2 — 1)
H = (11)/(1) = 11Q = (1.5,7.5): H = (7.5 — 3)/(1.5 — 1)
H = (4.5)/(.5) = 9Q = (1.1,3.74): H = (3.74 — 3)/(1.1 — 1)
H = (.74)/(.1) = 7.3Q = (1.01,3.0704): H = (3.0704 — 3)/(1.01 — 1)
H = (.0704)/(.01) = 7.04 - Так как полученные значения H стремятся к 7, то можно сказать, что мгновенная скорость тела в точке (1,3) равна 7 м/с (оценочное значение).
Реклама
- Сначала найдем координаты Q при t = 2, 1.5, 1.1 и 1.01.
Советы
- Чтобы найти ускорение (изменение скорости с течением времени), используйте метод из первой части, чтобы получить производную функции перемещения. Затем возьмите еще раз производную от полученной производной. Это даст вам уравнение для нахождения ускорения в данный момент времени — все, что вам нужно сделать, это подставить значение для времени.
- Уравнение, описывающее зависимость у (перемещение) от x (время), может быть очень простым, например: у = 6x + 3. В этом случае наклон является постоянным и не надо брать производную, чтобы его найти. Согласно теории линейных графиков, их наклон равен коэффициенту при переменной x, то есть в нашем примере =6.
- Перемещение подобно расстоянию, но оно имеет определенное направление, что делает его векторной величиной. Перемещение может быть отрицательным, в то время как расстояние будет только положительным.
Реклама
Об этой статье
Эту страницу просматривали 83 497 раз.
Была ли эта статья полезной?
Скоростью точки называют кинематическую меру ее движения, равную производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета.
Скорость относительно выбранной системы отсчета это одна из основных характеристик движения точки.
Вектор скорости направлен по касательной к траектории точки в сторону движения.
Рассмотрим перемещение точки за малый промежуток времени Δt:
тогда
средняя скорость точки за промежуток времени Dt.
Наш видеоурок по теме:
Другие видео
Скорость точки в данный момент времени
Скорость точки при векторном способе задания движения
Положение движущейся точки М относительно системы отсчета в момент времени t1 определяется радиус-вектором r.
Рис. 1
В другой момент времени t1=t+Δt точка займет положение М1 с радиус-вектором r1.
За время Δt радиус-вектор движущейся точки изменится на
Средней скоростью vср называется отношение изменения радиус-вектора Δr к изменению времени Δt.
Скорость точки равна первой производной по времени от ее радиус-вектора.
Скорость точки при координатном способе задания движения
Разложим радиус-вектор и скорость на составляющие, параллельные осям координат. Получим
После дифференцирования
Отсюда следует
Проекция скорости точки на какую-либо координатную ось равна первой производной по времени от соответствующей координаты этой точки.
Модуль скорости и направляющие косинусы равны:
Если точка движется в плоскости, то, выбрав оси координат Ox и Oy в этой плоскости, получим:
Для прямолинейного движения точки координатную ось, например ось Ox, направляем по траектории. Тогда
Скорость точки при естественном способе задания движения
Пусть скорость точки задана естественным способом, т.е. заданы траектория точки и закон ее движения по траектории s=f(t).
Рис. 2
Вычислим скорость точки. Используем радиус-вектор r. движущейся точки, начало которого находится в неподвижной точке O1
— единичный вектор, направленный по касательной к траектории в сторону возрастающих расстояний.
При ds>0 направления векторов τ и dr совпадают.
Если точка движется в сторону убывающих расстояний, то ds<0 и направления векторов τ и dr противоположны.
При
вектор скорости направлен по τ, т.е. в сторону возрастающих расстояний;
при
он имеет направление, противоположное τ, т.е. в сторону убывающих расстояний.
— алгебраическая скорость точки, проекция скорости v на положительное направление касательной к траектории.
Естественное задание движения точки полностью определяет скорость по величине и направлению.
Примеры решения задач >
Ускорение точки >
Сохранить или поделиться с друзьями
Вы находитесь тут:
На нашем сайте Вы можете получить решение задач и онлайн помощь
Подробнее
Download Article
Download Article
Velocity is defined as the speed of an object in a given direction.[1]
In many common situations, to find velocity, we use the equation v = s/t, where v equals velocity, s equals the total displacement from the object’s starting position, and t equals the time elapsed. However, this technically only gives the object’s average velocity over its path. Using calculus, it’s possible to calculate an object’s velocity at any moment along its path. This is called instantaneous velocity and it is defined by the equation v = (ds)/(dt), or, in other words, the derivative of the object’s average velocity equation.[2]
-
1
Start with an equation for velocity in terms of displacement. To get an object’s instantaneous velocity, first we have to have an equation that tells us its position (in terms of displacement) at a certain point in time. This means the equation must have the variable s on one side by itself and t on the other (but not necessarily by itself), like this:
s = -1.5t2 + 10t + 4
- In this equation, the variables are:
-
-
Displacement = s . The distance the object has traveled from its starting position.[3]
For example, if an object goes 10 meters forward and 7 meters backward, its total displacement is 10 — 7 = 3 meters (not 10 + 7 = 17 meters). - Time = t . Self explanatory. Typically measured in seconds.
-
Displacement = s . The distance the object has traveled from its starting position.[3]
-
- In this equation, the variables are:
-
2
Take the equation’s derivative. The derivative of an equation is just a different equation that tells you its slope at any given point in time. To find the derivative of your displacement formula, differentiate the function with this general rule for finding derivatives: If y = a*xn, Derivative = a*n*xn-1.This rule is applied to every term on the «t» side of the equation.[4]
- In other words, start by going through the «t» side of your equation from left to right. Every time you reach a «t», subtract 1 from the exponent and multiply the entire term by the original exponent. Any constant terms (terms which don’t contain «t») will disappear because they be multiplied by 0. This process isn’t actually as hard as it sounds — let’s derive the equation in the step above as an example:
s = -1.5t2 + 10t + 4
(2)-1.5t(2-1) + (1)10t1 — 1 + (0)4t0
-3t1 + 10t0
-3t + 10
Advertisement
- In other words, start by going through the «t» side of your equation from left to right. Every time you reach a «t», subtract 1 from the exponent and multiply the entire term by the original exponent. Any constant terms (terms which don’t contain «t») will disappear because they be multiplied by 0. This process isn’t actually as hard as it sounds — let’s derive the equation in the step above as an example:
-
3
Replace «s» with «ds/dt.» To show that our new equation is a derivative of the first one, we replace «s» with the notation «ds/dt». Technically, this notation means «the derivative of s with respect to t.» A simpler way to think of this is just that ds/dt is just the slope of any given point in the first equation. For example, to find the slope of the line made by s = -1.5t2 + 10t + 4 at t = 5, we would just plug «5» into t in its derivative.
- In our running example, our finished equation should now look like this:
ds/dt = -3t + 10
- In our running example, our finished equation should now look like this:
-
4
Plug in a t value for your new equation to find instantaneous velocity.[5]
Now that you have your derivative equation, finding the instantaneous velocity at any point in time is easy. All you need to do is pick a value for t and plug it into your derivative equation. For example, if we want to find the instantaneous velocity at t = 5, we would just substitute «5» for t in the derivative ds/dt = -3 + 10. Then, we’d just solve the equation like this:ds/dt = -3t + 10
ds/dt = -3(5) + 10
ds/dt = -15 + 10 = -5 meters/second- Note that we use the label «meters/second» above. Since we’re dealing with displacement in terms of meters and time in terms of seconds and velocity in general is just displacement over time, this label is appropriate.
Advertisement
-
1
Graph your object’s displacement over time. In the section above, we mentioned that derivatives are just formulas that let us find the slope at any point for the equation you take the derivative for.[6]
In fact, if you represent an object’s displacement with a line on a graph, the slope of the line at any given point is equal to the object’s instantaneous velocity at that point.[7]
- To graph an object’s displacement, use the x axis to represent time and the y axis to represent displacement. Then, just plot points by plugging values for t into your displacement equation, getting s values for your answers, and marking the t,s (x,y) points on the graph.
- Note that the graph can extend below the x axis. If the line representing your object’s motion drops below the x axis, this represents your object moving behind where it started. Generally, your graph won’t extend behind the y axis — we don’t often measure velocity for objects moving backward in time!
-
2
Choose one point P and a point Q that is near it on the line. To find a line’s slope at a single point P, we use a trick called «taking a limit.» Taking a limit involves taking two points (P, plus Q, a point near it) on the curved line and finding the slope of the line linking them over and over again as the distance between P and Q gets smaller.
- Let’s say that our displacement line contains the points (1,3) and (4,7). In this case, if we want to find the slope at (1,3), we can set (1,3) = P and (4,7) = Q.
-
3
Find the slope between P and Q. The slope between P and Q is the difference in y-values for P and Q over the difference in x-values for P and Q. In other words, H = (yQ — yP)/(xQ — xP), where H is the slope between the two points. In our example, the slope between P and Q is:
H = (yQ — yP)/(xQ — xP)
H = (7 — 3)/(4 — 1)
H = (4)/(3) = 1.33 -
4
Repeat several times, moving Q nearer to P. Your goal here is to make the distance between P and Q smaller and smaller until it gets close to a single point. The smaller the distance between P and Q gets, the closer the slope of your tiny line segments will be to the slope at point P. Let’s do this a few times for our example equation, using the points (2,4.8), (1.5,3.95), and (1.25,3.49) for Q and our original point of (1,3) for P:
Q = (2,4.8): H = (4.8 — 3)/(2 — 1)
H = (1.8)/(1) = 1.8Q = (1.5,3.95): H = (3.95 — 3)/(1.5 — 1)
H = (.95)/(.5) = 1.9Q = (1.25,3.49): H = (3.49 — 3)/(1.25 — 1)
H = (.49)/(.25) = 1.96 -
5
Estimate the slope for an infinitely small interval on the line. As Q gets closer and closer to P, H will get closer and closer to the slope at point P. Eventually, at an infinitely small interval, H will equal the slope at P. Because we aren’t able to measure or calculate an infinitely small interval, we just estimate the slope at P once it’s clear from the points we’ve tried.[8]
- In our example, as we moved Q closer to P, we got values of 1.8, 1.9, and 1.96 for H. Since these numbers appear to be approaching 2, we can say that 2 is a good estimate for the slope at P.
- Remember that the slope at a given point on a line is equal to the derivative of the line’s equation at that point. Since our line is showing our object’s displacement over time and, as we saw in the section above, an object’s instantaneous velocity is the derivative of its displacement at a given point, we can also say that 2 meters/second is a good estimate for the instantaneous velocity at t = 1.
Advertisement
-
1
Find the instantaneous velocity at t = 4 given the displacement equation s = 5t3 — 3t2 + 2t + 9. This is just like our example in the first section, except that we’re dealing with a cubic equation rather than a quadratic equation, so we can solve it in the same way.
- First, we’ll take our equation’s derivative:
s = 5t3 — 3t2 + 2t + 9
s = (3)5t(3 — 1) — (2)3t(2 — 1) + (1)2t(1 — 1) + (0)9t0 — 1
15t(2) — 6t(1) + 2t(0)
15t(2) — 6t + 2 - Then, we’ll plug in our value for t (4):
s = 15t(2) — 6t + 2
15(4)(2) — 6(4) + 2
15(16) — 6(4) + 2
240 — 24 + 2 = 218 meters/second
- First, we’ll take our equation’s derivative:
-
2
Use graphical estimation to find the instantaneous velocity at (1,3) for the displacement equation s = 4t2 — t. For this problem, we’ll use (1,3) as our P point, but we’ll have to find a few other points near it to use as our Q points. Then, it’s just a matter of finding our H values and making an estimation.
- First, let’s find Q points at t = 2, 1.5, 1.1 and 1.01.
s = 4t2 — t
t = 2: s = 4(2)2 — (2)
4(4) — 2 = 16 — 2 = 14, so Q = (2,14)t = 1.5: s = 4(1.5)2 — (1.5)
4(2.25) — 1.5 = 9 — 1.5 = 7.5, so Q = (1.5,7.5)t = 1.1: s = 4(1.1)2 — (1.1)
4(1.21) — 1.1 = 4.84 — 1.1 = 3.74, so Q = (1.1,3.74)t = 1.01: s = 4(1.01)2 — (1.01)
4(1.0201) — 1.01 = 4.0804 — 1.01 = 3.0704, so Q = (1.01,3.0704) - Next, let’s get our H values:
Q = (2,14): H = (14 — 3)/(2 — 1)
H = (11)/(1) = 11Q = (1.5,7.5): H = (7.5 — 3)/(1.5 — 1)
H = (4.5)/(.5) = 9Q = (1.1,3.74): H = (3.74 — 3)/(1.1 — 1)
H = (.74)/(.1) = 7.3Q = (1.01,3.0704): H = (3.0704 — 3)/(1.01 — 1)
H = (.0704)/(.01) = 7.04 - Since our H values seem to be getting very close to 7, we can say that 7 meters/second is a good estimate for the instantaneous velocity at (1,3).
- First, let’s find Q points at t = 2, 1.5, 1.1 and 1.01.
Advertisement
Add New Question
-
Question
What is the difference between instantaneous and average velocity?
Instantaneous is at that moment, whereas average is the mean of the entire time span.
-
Question
How do I calculate instantaneous acceleration?
Instantaneous acceleration can be considered as the value of the derivative of the instantaneous velocity. For example:
s = 5(t^3) — 3(t^2) + 2t + 9
v = 15(t^2) — 6t + 2
a = 30t — 6If we want to know the instantaneous acceleration at t = 4, then a(4) = 30 * 4 — 6 = 114 m/(s^2)
-
Question
When is instantaneous velocity and average velocity the same?
Instantaneous velocity tells you the velocity of an object at a single moment in time. If the object is moving with a constant velocity, then the average velocity and instantaneous velocity will be the same. In all situations, they are not likely to be the same.
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
-
To find acceleration (the change in velocity over time), use the method in part one to get a derivative equation for your displacement function. Then, take another derivative, this time of your derivative equation. This will give you an equation for finding acceleration at a given time — all you have to do is plug in your value for time.
-
The equation which relates Y (displacement) to X (time) might be really simple, like, for instance, Y= 6x + 3. In this case the slope is constant and it is not necessary to find a derivative to find the slope, which is, following the Y = mx + b basic model for linear graphs, 6.
-
Displacement is like distance but it has a set direction, this makes displacement a vector and speed a scalar. Displacement can be negative while distance will only be positive.
Thanks for submitting a tip for review!
Advertisement
References
About This Article
Article SummaryX
To calculate instantaneous velocity, start with an equation for velocity in terms of displacement, which should have an «s» on one side for displacement and a «t» on the other for time. Then, take the equation’s derivative and replace the «s» with the notation «ds» over «dt.» Finally, plug in a «t» value and solve the equation to find the instantaneous velocity at any point in time. To learn how to estimate instantaneous velocity graphically, scroll down!
Did this summary help you?
Thanks to all authors for creating a page that has been read 1,051,180 times.
Did this article help you?
-
Кинематика
2.1. Траектория, скорость, ускорение материальной точки
Траектория
точки.
Геометрическое
место последовательных положений
движущейся точки называется ее
траекторией.
Если в интервале времени
траектория
прямая линия, то движение в этом интервале
называется прямолинейным,
в противном случае движение называется
криволинейным.
С
Рис.
2.1
корость точки.
Пусть
положение движущейся точки М
относительно произвольно выбранного
неподвижного центра О
определяется в момент времени t
радиус-вектором
,
который соединяет движущуюся точку М
с центром О
(рис.
2.1).
За
время
радиус-вектор изменится на
.
Мгновенная
скорость точки
в момент времени t
определяется как предел средней скорости
при t
→ 0,
т. е.
.
(2.1)
Производная
по времени от функций обозначается
точкой над символом этой функции, а
вторая производная – двумя точками.
Вектор
скорости приложен в точке М,
направлен в сторону ее движения по
предельному направлению вектора
→
0, т. е. совпадает
с касательной к траектории в точке М.
Размерность скорости в СИ:
= длина/время = м/с. Часто скорость выражают
в км/ч = 0,28 м/с.
|
Скорость |
Ускорение
точки. Пусть
движущаяся точка М
в момент времени t
имеет скорость
(рис.
2.2). В момент времени
=
t + Δt
эта точка занимает положение
,
имея скорость
.
Чтобы изобразить приращение скорости
за время Δt,
перенесем вектор скорости
параллельно самому себе в точку М,
тогда
.
Ускорением
точки
в момент времени t
называют предел, к которому стремится
среднее ускорение при Δt
→ 0, т. е.

Рис.
2.2
. (2.2)
Вектор
ускорения
всегда направлен внутрь вогнутости под
любым углом к касательной к траектории
движения (рис. 2.2). Размерность ускорения
в СИ:
= длина/время2
= м/с2.
|
Ускорение – это векторная изменения |
Движение
точки на плоскости
К
Рис.
2.3
Рис.
2.5
оординатный способ задания движения
точки. Зададим радиус-вектор
в декартовой системе координат
Оху:
.
Тогда
движение точки можно задать уравнениями
(2.3)
Уравнения
(2.3) являются уравнениями движения точки,
а также уравнениями траектории точки,
заданными параметрически. Уравнение
траектории в системе координат
будет иметь вид функции
(рис. 2.3). Для получения этой зависимости
следует из уравнений (2.3) исключить
параметр
.
Уравнение
траектории в явном виде будет иметь вид
функции
.
Скорость
и ускорение точки по модулю и направлению
вычисляются по формулам:
|
|
Содержание
контрольных работ для студентов на тему
«кинематика точки» дано в приложении
(контрольная работа 1, задача 1).
Пример
2.1. Движение
точки M
по плоскости Оху
задано уравнениями движения
.
(а)
Значения
х и
у – в
метрах. Построить траекторию движущейся
точки, вычислить скорость и ускорение
точки в моменты времени
и
.
Решение.
Для
построения
траектории движущейся точки в декартовой
системе координат определим область,
в которой движется точка, т. е. область
значений
и
.1
Так как
и
,
получаем:
Выделяем
область, ограниченную полученными
неравенствами, за эту область точка при
движении не выходит (рис. 2.4) Исключим
параметр t
из
уравнений движения (a).
Для этого делим первое уравнение на 2,
второе – на 4, возводим их в квадрат и
складываем между собой:

Учитывая,
что
,
получим:
. (б)
Траекторией
движущейся точки является эллипс (рис.
2.4). Подставляя в (а) значение
,
находим:
;
м.
Точка
в начальный момент времени занимает
положение
.
Определим
направление движения точки. Уравнения
движения (а) заданы возрастающей функцией
и убывающей функцией
,
поэтому при увеличении t
координата «х» возрастает, а «у»
убывает, следовательно, точка движется
по эллипсу по часовой стрелке.
|
Р |
Определим
(в)
Определим |
(г)
При
из (а) получаем, что точка М
имеет координаты х1
= 2,
у1
= 0, т. е.
занимает положение (рис. 2.4) М1.
Подставляя в (в) и (г) время
,
получим

Откладываем
значение скорости (рис. 2.5, а)
и ускорения (рис. 2.5, б)
точки М1
на траектории.
При
из (а) получаем, координаты точки
:
.
Вычислим, используя
(в) и (г), модуль и направление векторов
скорости и ускорения.
|
|
|
|
а |
б |
|
Рис. 2.5 |
Имеем:

для
ускорения


,
.
Откладываем
значение скорости (рис. 2.5, а)
и ускорения (рис. 2.5, б)
точки
на
траектории.
Вектор
скорости точки совпадает по направлению
с касательной к траектории в точках
и
,
а вектор ускорения в точках
и
направлен во внутрь вогнутости траектории
(к центру О).
Ответ:
V1=
8 м/с,
a1=
8 м/с2;
V2=
6,3 м/с, a2=
12,6 м/с2.
Естественный
способ задания движения точки.
|
Р |
При – траектория – начало ; – уравнение |
Примером
естественного способа задания движения
является движение поезда: траектория
и направление движения определены
рельсами, а уравнение движения задано
таблицей – расписанием движения поезда.
Движение
точки рассматривается в координатах
.
Единичный вектор
направлен по вектору скорости, единичный
вектор
перпендикулярен вектору
,
направлен по главной нормали кривой в
сторону ее вогнутости (рис. 2.6).
Скорость
точки
направлена по касательной и равна
Ускорение
точки
при
естественном способе задания движения
раскладывается на два – касательное
ускорение
,
и нормальное ускорение
:
.
Касательное
ускорение
характеризует изменение величины
скорости, нормальное
– изменение направления вектора
скорости.
|
Естественный , – касательное
– нормальное
|
Связь координатного
и естественного способов заданий
движения точки
|
|
|
Рис. 2.7 |
Известно,
что если
точка движется в плоскости О
,
элемент дуги
связан
с приращениями координат теоремой
Пифагора (рис. 2.7):
При
имеем
,
тогда
дифференциал дуги
связан с дифференциалами функций
и
(рис.2.7):
,

(знак
+ или
совпадает со знаком
,
так как
).
Пример
2.2.
Точка
движется в плоскости
.
Уравнение движения точки задано
координатами
,
,
где
и
выражены в см,
в с.
Исходные
данные:
(см);
(см).
Требуется:
-
Записать
уравнение траектории в явном виде:
(или
). -
Построить
траекторию. -
Определить
положение точки в начальный момент
времени
и момент времени
с, направление движения точки по
траектории. -
Вычислить
вектор скорости
и вектор ускорения
точки в начальный (
)
и конечный (с) моменты времени.
-
Задать
движение точки естественным способом
(вывести закон
). -
Геометрически
и аналитически определить нормальную
и касательную
составляющие ускорения точки в начальный
и конечный моменты времени. -
Найти
радиус кривизны траектории в начальный
и конечный моменты времени.
Решение
-
Выводим
уравнение траектории в явном виде.

Из
первого уравнения системы:
;
из второго уравнения системы:
.
Получаем:
;
;
;
,
или
.
Таким
образом, получаем уравнение параболы
.
-
Строим
траекторию в масштабе
(рис. 2.8).
Ветви
параболы вытянуты вдоль оси
.
Вершина параболы:
;
см
С (−1;0).
|
, |
± |
± |
|
, |
0,5 |
5 |
-
Определяем
положение точки в заданные моменты
времени.
;
М0
(−1; 0);
с;
М1
(0,5; 1).

Рис. 2.8
Направление
движения точки по траектории в промежуток
времени от
с до
с определяем по уравнениям движения
и
:
-
– функция
убывающая, но она в выражении со знаком«–», значит, координата
возрастает;
-
– функция
возрастающая, значит, координатавозрастает.
Таким
образом, движение точки по параболе в
указанный промежуток времени происходит
по часовой стрелке (по верхней ветви
параболы) (рис. 2.8).
В
целом, точка совершает колебательные
движения по построенной параболе в
области, указанной пунктиром на графике
(рис. 2.8).
-
Вычисляем
скорость и ускорение для заданных
моментов времени.
Так
как движение точки задано координатным
способом, то скорость
и ускорение
определяются по их проекциям на
координатные оси (рис. 2.9).
Скорость
:
см/с;
см/с;
;
см/с;
см/с;
см/с;
с;
см/с;
см/с;
см/с;

Рис. 2.9
Масштабы:
чертежа в 1 см
0,5 см; скоростей в 1 см
0,233 см/с; ускорений в 1 см
0,236 см/с2.
Ускорение
:
см/с2;
см/с2;
;
см/с2;
см/с2;
см/с2;
с;
см/с2;
см/с2;
см/с2.
Выводим
закон движения точки в естественной
форме, имеем:
.
Для
промежутка времени от
с до
с имеем:
;
=
=
,
см.
-
Вычисляем
нормальное и касательное ускорения.
а)
Аналитически:
;
см/с2;
см/с2;
с;
см/с2,
=
см/с2.
Так
как
,
,
движение точки в момент времени
с ускоренное.
б)
Графическое решение предполагает
выполнение геометрического равенства
для
соответствующего момента времени (рис.
2.9).
-
Вычисляем
радиус кривизны траектории.
Из
формулы
получаем для каждого времени
:
;
см;
с;
см.
Ответ:
|
см |
см/с |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
−1 |
0 |
0,5 |
1 |
0 |
1,05 |
1,05 |
2,7 |
0,9 |
2,8 |
|
см/с2 |
|||||||||
|
|
|
|
|
|
|
||||
|
3,3 |
0 |
3,3 |
1,6 |
−0,3 |
1,6 |
||||
|
см/с2 |
см |
||||||||
|
|
|
|
|
|
|
||||
|
граф. |
анал. |
граф. |
анал. |
граф. |
анал. |
граф. |
анал. |
||
|
0 |
0 |
3,3 |
3,3 |
1,45 |
1,45 |
0,68 |
0,68 |
0,33 |
11,53 |
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Предмет кинематики:
Кинематикой называют раздел теоретической механики, в котором изучают механическое движение, рассматриваемое без учета сил, приложенных к движущимся объектам
Арифметика наряду с некоторыми другими науками, занимающимися исчислением, является наиболее отвлеченной из математических наук. Для нее достаточно одного понятия «число», и она не нуждается ни в каких других фундаментальных понятиях.
Геометрия не может ограничиться одним понятием числа. Она основывается также и на понятиях, связанных с геометрической формой (длина, поверхность, объем, угол). Геометрия часто пользуется понятием движения; линию геометрия определяет как след точки. Но если точка оставила след, то, следовательно, она передвигалась; фигура, образовавшая тело вращения, поворачивалась вокруг оси, т. е. тоже находилась в движении. Однако геометрию не интересует, совершалось ли это движение в течение многих тысячелетий или же в малые доли секунды. Понятие времени чуждо геометрии. Размерностью геометрических величин является размерность длины L в той или иной степени (площадь измеряется в L2, объем—в L3, размерность угла
К понятиям числа и геометрической формы добавляется новое понятие — «время» в науке, изучающей геометрические свойства движения и называемой кинематикой.
«В мире нет ничего, кроме движущейся материи, и движущаяся материя не может двигаться иначе, как в пространстве и во времени». Механическое движение, как и все прочие виды движения (теплота, электричество, ядерные процессы, органическая жизнь и пр.), не может происходить вне времени. Напомним, что под механическим движением мы понимаем один из видов движения материи, выражающийся в изменении с течением времени взаимных положений тел или частей тела. Положение тел, а также их механическое движение может быть отмечено лишь относительно других реальных или условных тел. Так, например, положение корабля может быть отмечено относительно берегов или относительно сетки географических долгот и широт; чтобы дать положение летящего самолета, можно указать направление, в котором этот самолет находится, и расстояние до него или же дать его координаты х, у и z относительно системы осей, определенным образом ориентированных в пространстве; чтобы дать положение поезда, можно назвать железную дорогу, по которой он движется, и его расстояние от станции. Реальное или условное твердое тело, по отношению к которому определяется положение других движущихся тел, называют системой отсчета.
Кинематика изучает изменения в положении тел по отношению к системе отсчета. Она дает возможность разобраться в многообразии видов механического движения и установить пространственные и временные меры движения (путь, скорость и т. п.), но не дает возможности предсказать, как будет двигаться тело под действием приложенных сил, или определить, какие силы должны быть приложены к телу для того, чтобы оно совершало то или иное движение. Понятие «силы» чуждо кинематике.
Формулы размерности кинематических величин содержат размерности длины L и времени Т, размерность же силы F или массы M в размерность кинематических величин не входит.
Кинематика является разделом теоретической механики, в котором изучают механическое движение, рассматриваемое без учета сил, приложенных к движущимся объектам. Изучение же механического движения в связи с силами, приложенными к движущимся объектам, составляет предмет динамики.
Кинематика наряду со статикой является необходимой предпосылкой динамики и, следовательно, всех других механических дисциплин. Но кинематика имеет также и непосредственное применение в технике. Техника широко пользуется законами и формулами кинематики. Большое значение кинематика имеет в теории механизмов и машин (TMM) .
История развития кинематики
Кинематика как самостоятельный раздел теоретический механики возникла в XIX столетии
Многие сведения из кинематики были известны еще в глубокой древности. Так, например, в сочинении «Механические проблемы», принадлежащем Аристотелю или кому-либо из его учеников, дан закон сложения двух прямолинейных равномерных движений. В древней астрономии пользовались равномерным круговым движением точки и знали, что проекция этой точки на прямую, лежащую в той же плоскости, совершает гармоническое колебание. Но появление отрывочных сведений еще не является возникновением науки. И хотя основателем кинематики иногда называют Галилея, кинематика как самостоятельный раздел теоретической механики возникла лишь в XIXв.
Упомянем о некоторых из открытий Галилея в области кинематики.
Галилей показал, что пути, проходимые движущимся телом, не всегда пропорциональны времени, и в своих исследованиях он пользовался понятием скорости. Но во времена Галилея считали возможным делить друг на друга только отвлеченные или одноименные числа, и потому Галилей не дал формулы скорости точки как отношения пройденного пути ко времени:
Тем более он не мог дать формулы скорости в данное мгновение, которая стала возможной лишь после открытия дифференциального исчисления. Обе эти формулы были введены в науку Эйлером в сочинении «Механика, т. е. наука о движении, изложенная аналитическим методом», изданном в Петербурге в 1736 г.
Совершенно новым понятием, к которому пришел Галилей, возможно, под влиянием работ Бенедетти, было понятие ускоренного прямолинейного движения, хотя Галилей не вводит термина «ускорение» и не приводит формулы ускорения как отношения изменения величины скорости ко времени.
Галилей дал законы равноускоренного движения и свободного падения тел, установив, что пути, проходимые падающим телом за последовательные равные промежутки времени, относятся как ряд нечетных чисел. Так, было установлено, что пути, проходимые свободно падающим телом, пропорциональны квадрату времени, и в современном обозначении
Законы падения тел Галилей вывел экспериментально, наблюдая качение шаров по наклонным плоскостям. Еще Леонардо да Винчи, великому предшественнику Галилея в области механики, была известна зависимость между длинами (и высотами) наклонных плоскостей и временем, в течение которого с этих плоскостей спускаются шары. Но эти работы Леонардо да Винчи не могли оказать влияния на развитие науки, они стали частично известны лишь после того, как в 1797 г. их опубликовал Вентури. Ко времени их опубликования эти работы имели только историческое значение.
Галилей показал, что движение тела, брошенного горизонтально или под углом к горизонту, состоит из двух независимых друг от друга движений: горизонтального равномерного и вертикального равнопеременного. Этим он не только ввел в употребление законы параллелограмма перемещений (см. §27), но в принципе обосновал введенный значительно позднее (в 1742 г.) Маклореном координатный способ определения движения (см. § 21), при котором движение точки рассматривают по движениям ее проекций на неподвижные оси.
Кинематика солнечной системы была создана в развитие теории Коперника астрономом Иоганном Кеплером и выражена в трех законах (1609 и 1619 гг.). Хотя законы Кеплера относятся только к движению планет, они имели громадное влияние на развитие всей теоретической механики.
Гюйгенс установил, что при движении точки по окружности центробежная сила пропорциональна квадрату скорости и обратно пропорциональна радиусу круга, откуда позднее было установлено,что при всяком криволинейном движении нормальное ускорение пропорционально квадрату скорости и обратно пропорционально радиусу кривизны.
Эйлер, по-видимому, первый (1772 г.), а за ним уже Ампер (1834 г.) предложили выделить кинематику в самостоятельный раздел механики — учение о.механическом движении без учета сил, приложенных к движущимся объектам.
Гаспар Кориолис исследовал составное движение и доказал (1831 г.) знаменитую теорему, позднее получившую название теоремы Кориолиса. Эта теорема является основной в механике относительного движения и имеет огромное значение для различных отраслей науки. Несколько позднее на основе этой теоремы в кинематике составного движения точки стали применять ускорение Кориолиса.
Понятие полного ускорения как величины, характеризующей изменение скорости в данное мгновение, установлено сравнительно недавно. Эта честь принадлежит Понселе, впервые начавшему применять понятие и термин «ускорение» в своих лекциях (1841 г.), и Резалю, впервые применившему его в учебнике (1851 и 1862 гг.).
Луи Пуансо в работе «Новая теория вращения тел» (1834 г.) обогатил кинематику рядом блестящих исследований и дал наглядные геометрические интерпретации. В частности, он изучил сложение вращений и вращение тела около неподвижной точки. Эта геометрическая теория позднее была развита Понселе, Шалем, Мебиусом и др.
По-видимому, первую монографию по кинематике под названием «Трактат по чистой кинематике (движение, рассматриваемое независимо от его причин)» издал Резаль (1862 г.). По прикладной кинематике заслуживает упоминания книга проф. П. О. Сомова «Кинематика подобно-изменяемой системы двух измерений» (1885 г.).
В настоящее время кинематика является хорошо исследованной областью науки, и дальнейшее развитие кинематики происходит преимущественно в виде применения ее к различным частным задачам техники.
Кинематика точки
В кинематике изучается движение материальных объектов (точки, твердого тела, сплошной среды) без рассмотрения причин, вызывающих или изменяющих это движение. Такое изучение движения материальных объектов не требует учета материальных характеристик этих объектов — массы, моментов инерции и др.
В кинематике рассматривают такие характеристики движения, как скорость и ускорение точки, угловые скорость и ускорение твердого тела и др.
Движение материальных объектов, в частности материальной точки, совершается в пространстве при изменении времени. Пространство в классической механике считается эвклидовым, не зависящим от времени и движущихся в нем материальных объектов. Время принимается универсальным, не связанным с пространством и не зависящим как от движения наблюдателя, с точки зрения которого рассматривается движение материального объекта, так и от движения самого материального объекта.
Движение материального объекта всегда следует рассматривать относительно какого-либо твердого тела — тела отсчета, т.е. движение является относительным. С телом отсчета скрепляют систему осей координат, например декартовых, принимая ее за систему отсчета, относительно которой рассматривается движение материального объекта. Системой отсчета для трехмерного эвклидова пространства не может служить одна точка, линия или плоскость, а должны быть три оси, не обязательно прямолинейные, но не лежащие в одной плоскости.
Независимость времени от движения означает, что во всех системах отсчета, произвольно движущихся друг относительно друга, оно одно и то же, если за начало отсчета выбрано общее для них событие.
В кинематике сплошной среды телами отсчета, относительно которых рассматривается движение, могут быть также деформируемые тела.
В курсе теоретической механики обычно изучаются движение точки и твердого тела. Соответственно кинематика делится на кинематику точки и кинематику твердого тела. В настоящем курсе дополнительно излагаются также основы кинематики сплошной среды.
В кинематике точки рассматриваются характеристики движения точки, такие, как скорость, ускорение, и методы их определения при различных способах задания движения. Важным в кинематике точки является понятие траектории. Траекторией точки называется геометрическое место ее последовательных положений в пространстве с течением времени относительно рассматриваемой системы отсчета.
По виду траекторий движения точки делятся на прямолинейные и криволинейные. Форма траектории зависит от выбранной системы отсчета. Одно и то же движение точки может быть прямолинейным относительно одной системы отсчета и криволинейным относительно другой. Например, если с летящего горизонтально Земле с постоянной скоростью самолета отцеплен груз, то, пренебрегая сопротивлением воздуха и учитывая только действие силы тяжести, получим в качестве траектории движения центра масс груза относительно самолета прямую линию, а относительно Земли — параболу.
Скорость точки
Одной из основных характеристик движения точки является ее скорость относительно выбранной системы отсчета, которая изображена в виде декартовой прямоугольной системы координат (рис. 1).
Рис. 1
Положение движущейся точки 








Средней скоростью 


Средняя скорость параллельна вектору 

Введем скорость точки 

Скорость точки направлена в сторону ее движения по предельному направлению вектора 



Начало радиуса-вектора движущейся точки можно выбрать в любой неподвижной точке. На рис. 1 представлен случай, в котором радиусом-вектором является также р с началом в точке 





Размерность скорости в 

Часто скорость выражают в км/ч; 
Для характеристики переменного вектора используют понятие его годографа. Годографом вектора называют геометрическое место его концов, если переменный вектор в различные моменты времени откладывать от одной и той же общей точки.
Траектория точки, очевидно, является годографом радиуса-вектора 





Первая производная по времени от радиуса-вектора есть скорость точки, направленная по касательной к траектории. Следовательно, параллельно касательной к годографу направлена первая производная по скалярному аргументу от любого переменного вектора.
Годографом вектора скорости является линия, на которой располагаются концы этого вектора в различные моменты времени, если их начала совместить в одной общей точке. Для построения годографа вектора скорости выбираем точку, например 


Рис. 2
При равномерном движении точки по прямой годографом вектора скорости является одна точка; при неравномерном движении — отрезок прямой, параллельный траектории.
Ускорение точки
Пусть движущаяся точка 









Средним ускорением точки 






Ускорением точки 


Рис. 3
Таким образом, ускорение точки равно первой производной по времени от скорости точки.
Приращение скорости 

Размерность ускорения в 
Векторный способ изучения движения
Движение точки относительно рассматриваемой системы отсчета при векторном способе изучения движения задается радиусом-вектором 
Задание векторного уравнения движения (3) полностью определяет движение точки.
Траекторией точки является годограф радиуса-вектора. Скорость точки направлена по касательной к траектории и вычисляется, согласно ее определению, по формуле
Для ускорения точки соответственно имеем
Таким образом, если движение точки задано векторным способом, то скорость и ускорение вычисляются по формулам (4) и (5).
Определение скорости и ускорения точки сводится к чисто математической задаче вычисления первой и второй производных по времени от радиуса-вектора этой точки. Для практического вычисления скорости и ускорения обычно используют координатный и естественный способы изучения движения. Векторный способ ввиду его краткости и компактности удобен для теоретического изложения кинематики точки.
Рис. 4
Координатный способ изучения движения
Задание движения и траектория:
Движение точки можно изучать используя любую систему координат. Рассмотрим случай декартовых прямоугольных осей координат, которые являются также системой отсчета, относительно которой рассматривается движение точки. Движение точки в декартовых координатах считается заданным, если известны координаты точки как непрерывные, дважды дифференцируемые функции времени (рис. 5), т. е. заданы уравнения движения точки в декартовых координатах:
Уравнения движения точки в декартовых координатах полностью определяют движение точки. Они позволяют найти положение точки, ее скорость и ускорение в любой момент времени. Уравнения движения (6) есть также уравнения траектории точки в параметрической форме. Параметром является время 

Это и есть уравнения траектории в координатной форме. Траекторией является линия пересечения двух поверхностей. Эти поверхности являются цилиндрическими, так как их уравнения не содержат одной из координат: первое — координаты 



Исключая время из уравнений движения в другом порядке, получим траекторию точки как линию пересечения двух других цилиндрических поверхностей, например
При исключении параметра 
Рис. 5
Пример 1.
Даны уравнения движения точки по плоскости
где 


Решение. Уравнения движения (а) есть уравнения траектории точки в параметрической форме с параметром 


так как
Уравнение (б) есть уравнение прямой, отсекающей на осях координат отрезки 

Рис. 6
Из уравнений (а) следует, что координаты точки 








Траектория точки 
Скорость в декартовых координатах
Разложим радиус-вектор и скорость точки на составляющие, параллельные осям координат (рис. 7). Получим
где 


Учитывая (7), согласно определению скорости, имеем
так как 


Проекция скорости точки на какую-либо координатную ось равна первой производной по времени от соответствующей координаты этой точки. По проекциям определяют числовое значение (модуль) скорости и косинусы углов вектора скорости с осями координат:
Рис. 7
Рис. 8
Если точка движется в плоскости, то, выбрав оси координат 

Соответственно
Для прямолинейного движения точки координатную ось, например Для прямолинейного движения точки координатную ось, например Ох, направляют по траектории (рис. 8). Тогда 



Уравнение годографа вектора скорости
Известны уравнения движения точки в декартовых координатах. Получим уравнения годографа вектора скорости. На рис. 9, а изображены траектория точки и несколько векторов скорости в выбранном масштабе для различных моментов времени, а на рис. 9,6 представлен годограф вектора скорости этого движения. Точке 

Координаты точки 

Если оси координат для годографа вектора скорости параллельны соответствующим осям координат, относительно которых заданы уравнения движения точки, то
Рис. 9
Параметрические уравнения годографа вектора скорости принимают такую форму:
Исключая из этих уравнений параметр 
Годограф вектора скорости дает наглядное представление о скоростях движущейся точки в разные моменты времени. Он также позволяет определить направление вектора ускорения, так как ускорение параллельно касательной к годографу вектора скорости.
Ускорение точки в декартовых координатах
Разложим ускорение точки на составляющие, параллельные осям декартовой системы координат. Получим
где 
Сравнивая (11) и (12), получаем формулы для проекций ускорения на оси декартовой системы координат:
Проекция ускорения на какую-либо координатную ось равна второй производной по времени от соответствующей координаты движущейся точки.
Числовое значение ускорения и косинусы углов вектора ускорения с осями координат определяем по формулам
При движении точки по плоскости оси 



Соответственно
Для прямолинейного движения ось 





Соответственно для числового значения ускорения имеем
Рис. 10
Пример 2.
Движение точки по плоскости 
где 



Решение. Уравнение траектории в координатной форме находим исключением времени из уравнений движения. Для этого поделим первое уравнение на 



так как
При 


Для момента времени 
По проекциям устанавливаем направление скорости по касательной к траектории и направление ускорения по радиусу-вектору к точке 



Если выбрать для годографа вектора скорости оси 



Исключая из этих параметрических уравнений годографа вектора скорости время г, получим следующее его уравнение в координатной форме:
На рис. 10,6 отмечены три изображающие точки годографа 





Естественный способ изучения движения
Естественный способ задания движения:
При естественном способе задания движения задаются траектория и закон движения точки по траектории. Движение точки рассматривается относительно фиксированной системы отсчета. Задание траектории относительно выбранной системы отсчета осуществляется различными способами: уравнениями (возможно, вместе с неравенствами), словесно или в виде графика (в каком-либо масштабе). Например, можно сказать, что траекторией автомобиля, принимаемого за точку, является дуга окружности радиусом 10 км и т. д.
Для задания закона движения точки по траектории необходимо выбрать на траектории точку 



Если в момент времени 







Рис. 11
От задания движения в декартовых координатах можно перейти к его заданию естественным способом. Закон движения точки по траектории в дифференциальной форме через декартовы координаты выражается в виде
и после интегрирования —в конечной форме
если
За начало отсчета расстояний принята точка траектории, в которой находится движущаяся точка в начальный момент времени. Знак у квадратного корня определяется выбором направления положительных и отрицательных расстояний.
Скорость точки при естественном способе задания движения
Пусть движение точки задано естественным способом, т. е. заданы траектория точки и закон ее движения по траектории 


или 




Единичный вектор 









При 



Величина 

Рис. 12
Естественное задание движения точки полностью определяет скорость точки по величине и направлению. Алгебраическую скорость находят дифференцированием по времени закона изменения расстояний. Единичный вектор 
Геометрические понятия. Дифференцирование единичного вектора
Радиус кривизны и соприкасающаяся плоскость. В точке 

















Радиусом кривизны кривой 

Вычислим радиус кривизны дуги окружности радиусом 



т. е. для окружности радиус кривизны в каждой ее точке один и тот же и совпадает с радиусом окружности.
Участок кривой из малой окрестности какой-либо ее точки лучше всего аппроксимирует по сравнению с дугами других окружностей элемент дуги окружности, радиус которой равен радиусу кривизны кривой в рассматриваемой точке.
Рис. 13
Рис. 14
Для определения понятия соприкасающейся плоскости проводим вспомогательную плоскость через две пересекающиеся прямые 




Рис. 15
В случае плоской кривой соприкасающейся плоскостью для всех точек кривой является сама плоскость, в которой расположена эта кривая.
Естественный трехгранник
Построим в точке 


Перпендикулярно касательной 


Нормаль, перпендикулярная главной нормали, называется бинормалью. Единичный вектор 



Три взаимно перпендикулярные оси 






Дифференцирование единичного вектора
Вычислим производную от единичного вектора по скалярному аргументу. В кинематике точки скалярными аргументами обычно являются время и расстояние по траектории. В качестве единичного вектора выберем 
Производная 

Дифференцируя по времени обе части этого тождества, получим
Каждый из сомножителей этого выражения не равен нулю, поэтому векторы 



Годографом вектора 
Рис. 16
По определению модуля производной от вектора имеем
Длина малой хорды
где 
Подставляя это значение в (14) и используя выражение для радиуса кривизны и переменную 
Радиус кривизны 
Вектор 







Если имеем любой другой вектор 

где 


Формулу (15′) можно выразить векторным произведением:
где 








Ускорение точки при естественном способе задания движения
Учитывая, что для скорости точки имеем
в соответствии с определением ускорения и (15) получаем
так как 


Получено разложение ускорения точки по осям естественного трехгранника. Часть ускорения
называется касательной составляющей ускорения. Другая часть ускорения
называется нормальной составляющей ускорения. Она направлена внутрь вогнутости траектории, т. е. в сторону положительного направления единичного вектора главной нормали 
Из (17) получим формулы для проекций ускорения на естественные оси. Имеем:
Проекция ускорения на положительное направление касательной, совпадающее с направлением единичного вектора 


Учитывая ортогональность 

Рис. 17
Нормальная составляющая ускорения 





При 




Если 




Случаи обращения в нуль касательного ускорения получают из условия
Это условие выполняется все время, пока 





Рис. 18
Рис. 19
Рис. 20
Случаи обращения в нуль нормального ускорения следуют из условия
Это условие выполняется при 


Случаи обращения в нуль касательного и нормального ускорений, а также общие формулы для них показывают, что касательное ускорение характеризует изменение вектора скорости по величине, а нормальное— по направлению.
Рис. 21
Пример 3.
Точка 






Решение. Скорость и проекции ускорения на естественные оси определяем по формулам (16) и (19). Имеем:
Скорость обращается в нуль, если 

Подставляя в формулы для 


Касательное ускорение в этот момент времени обращается в нуль, так как алгебраическая скорость достигает своего максимума.
Частные случаи движения точки
Равномерное движение
При равномерном движении точки по траектории любой формы 


то
если принять при 
Равнопеременное движение
Равнопеременным движением называют такое движение по траектории любой формы, при котором касательное ускорение 




Получим формулы для алгебраической скорости и расстояния при равнопеременном движении. Имеем:
следовательно,
если принять при 
Так как 
если при 
Из (21) и (22) можно определить любые две неизвестные величины, если известны остальные три величины, входящие в эти формулы.
Скорость и ускорение точки в полярных координатах
Рассмотрим движение точки по плоскости. В этом случае движение можно задать в полярных координатах. Для этого примем какую-либо точку 




Полярный угол считается положительным, если он откладывается от полярной оси до радиуса-вектора против часовой стрелки. Радиус-вектор как расстояние от точки 

Уравнения (23) называются уравнениями движения точки в полярных координатах. Они являются также уравнениями траектории точки в параметрической форме. Если из (23) исключить параметр — время 
Введем единичный вектор 


Для скорости 
Согласно (15), для производной по времени от единичного вектора имеем
где вместо единичного вектора 




Рис. 22
Это разложение скорости точки на радиальную 

где
Для проекций скорости на оси, положительные направления которых совпадают с направлениями единичных векторов 

Они соответственно называются радиальной и трансверcальной скоростями. В зависимости от знаков производных 

Используя (24), определяем ускорение точки в полярных координатах. Имеем
Выполняя дифференцирование, получим
Для производной по времени от единичного вектора 
dp°ldt =
так как вектор 




После подстановки в выражение для ускорения производных от единичных векторов и объединения слагаемых имеем
Получили разложение ускорения точки на радиальную 

Для проекций ускорения на оси 

Ускорение 

Это выражение для трансверсального ускорения широко используется при рассмотрении движения планет и искусственных спутников Земли.
Рис. 23
Радиальная и трансверсальная составляющие ускорения взаимно перпендикулярны, поэтому
Отметим, что для неподвижных осей координат 


Для подвижных осей 





Частные случаи
1. Если 


Эти величины совпадают с ранее полученными выражениями для них при изучении движения точки в декартовых координатах. Только расстояние 

2. При 

В этих формулах 

Пример 4.
Движение точки задано в полярных координатах уравнениями
где 



Решение. Исключая из уравнений движения параметр 
Это уравнение кардиоиды (рис. 24).
Проекции скорости и ускорения на полярные оси определяем по формулам (26) и (28). Имеем:
Для момента времени 
Векторы скорости и ускорения для моментов времени 

Пример 5.
Движение точки задано в прямоугольной системе координат уравнениями
где 


Определить уравнение траектории в координатной форме, а также скорость, ускорение, касательное и нормальное ускорения, радиальную и трансверсальную составляющие скорости и радиус кривизны траектории в момент времени 
Решение. Уравнения движения представляют собой уравнение траектории в параметрической форме. Для определения уравнения траектории в координатной форме следует из уравнений движения исключить время 
следовательно,
Это уравнение параболы. He все точки параболы являются точками траектории. Так как при любых значениях 


Таким образом, точки траектории удовлетворяют условиям
Часть точек параболы, не являющихся точками траектории, дополнительно появилась при исключении из уравнений движения параметра
Рис. 24
Рис. 25
На рис. 25 приведена траектория точки. Траекторией является только часть параболы 
Определяем проекции скорости на оси и скорость в любой момент времени:
При
Проекции ускорения в любой момент времени определяем по формулам
При
Для модуля касательного ускорения при 
Нормальное ускорение при
Для вычисления радиальной скорости предварительно определяем радиус-вектор:
Тогда при 
Трансверсальную скорость при 
Координаты движущейся точки при
По координатам отмечаем положение движущейся точки на траектории и, выбрав масштабы, изображаем векторы скорости и ускорения по их проекциям на оси. Для радиальной составляющей скорости 


Для трансверсальной составляющей скорости определено только числовое значение. Из рис. 25 следует, что направление вектора 






Для проверки правильности определения 
Нормальное ускорение 



Определим радиус кривизны траектории в момент времени 
Скорость и ускорение точки в цилиндрических координатах
При движении точки в пространстве иногда используются цилиндрические оси координат. Они получаются добавлением к полярным координатам на плоскости координаты 

Положение точки 
Разложение векторов скорости и ускорения на составляющие, параллельные осям цилиндрической системы координат 


где 




Представим радиус-вектор 

Скорость точки получим дифференцированием радиуса-вектора 
Первое слагаемое в этом выражении вычислялось при выводе формулы (24) для скорости точки в полярных координатах. Было получено
Во втором слагаемом постоянный по модулю и направлению единичный вектор 
Сравнивая (32) с (30), получаем формулы для проекций скорости на цилиндрические оси координат:
Так как составляющие скорости 


Ускорение точки получим дифференцированием по времени вектора скорости:
Первое слагаемое в этом выражении вычислялось при выводе ускорения в полярных координатах:
Во втором слагаемом при дифференцировании выносим вектор 
Сравнивая его с (31), получаем формулы для проекций ускорения на цилиндрические оси координат
Составляющие ускорения 
Скорость и ускорение точки в криволинейных координатах
Положение точки в пространстве в декартовой системе координат определяется тремя координатами: 

Движение точки в криволинейных координатах задается уравнениями
Радиус-вектор 
Выберем точку 








Через каждую точку пространства можно провести три координатные линии, пересекающиеся в этой точке. Вдоль каждой из координатных линий изменяется только одна криволинейная координата, а две другие сохраняют постоянные значения, соответствующие рассматриваемой точке.
Рассмотрим частные производные 



В общем случае базисные векторы могут быть неортогональными. Используя базисные векторы, получаем
или
Скалярные величины 
Для вычисления 
где 
и, следовательно
Скорость точки в криволинейных координатах
При движении точки ее радиус-вектор через обобщенные координаты зависит от времени, т. е.
По определению скорости и правилу дифференцирования сложных функций имеем
где 
Используя (36), из (39) получаем
Получено разложение скорости по осям, направление которых совпадает с направлением базисных векторов.
Для величин составляющих скорости по базисным векторам из (40) имеем
В случае ортогональности базисных векторов по формуле (40′) вычисляются проекции вектора скорости на оси, направленные по базисным векторам. В этом случае для квадрата скорости получаем
Ускорение в ортогональных криволинейных координатах
Криволинейные координаты считаются ортогональными, если ортогональны их базисные векторы. В приложениях обычно встречается этот случай. Для ортогональных базисных векторов проекции ускорения точки на их направления вычисляем по формулам
Выражая базисные векторы по (36), из (41) получим
Для дальнейших преобразований (42) следует воспользоваться тождествами
Тождество (43) представляет собой известное правило дифференцирования скалярного произведения двух векторов. Докажем справедливость тождеств Лагранжа (44) и (45). Тождество (44) получим из (39) дифференцированием 



Аналогично,
т.е.
Справедливость тождества (44) установлена.
Для доказательства тождества (45) продифференцируем 

Учитывая, что 
Правые части (46) и (47) совпадают, так как они отличаются только порядком частного дифференцирования, от которого частные производные не зависят. Следовательно, тождество (45) доказано. Используя тождества, преобразуем выражение в скобках из (42). Получим
Учитывая, что 

По формулам (49) можно вычислить проекции ускорения точки на оси, направленные по базисным ортогональным векторам.
Скорость и ускорение в сферических координатах
В качестве примера использования полученных формул вычислим скорость и ускорение точки в сферических координатах. Сферическими координатами точки 








Базисные векторы оказались ортогональными. Декартовы координаты 

По формулам (38) вычисляем коэффициенты Ламэ. Имеем:
Проекции скорости на оси, направленные по базисным векторам, определяем согласно (40′). Получаем
После этого
Рис. 27
Для квадрата скорости и функции 
Проекции ускорения на оси, направленные по базисным векторам, вычисляем по формулам (49). Имеем
Для вектора ускорения получаем
Модуль ускорения будет иметь следующее выражение:
Аналогично можно вычислить ранее полученные скорость и ускорение точки в цилиндрических координатах.
Справочный материал по кинематике точки
Кинематика изучает механическое движение тел без учета факторов, обусловливающих это движение.
Основными понятиями в кинематике являются движение, ‘пространство и время.
Движение, как было отмечено раньше, обнимает собой все происходящие во вселенной изменения.
Пространство и время представляют собой формы существования материи, без которых немыслимы ни существование, ни движение материи.
Отделить движение от материи нельзя, так же как нельзя себе представить движение материи, происходящее вне времени и пространства.
В кинематике, так же как и вообще в теоретической механике, мы будем рассматривать простейшую форму движения материи — механическую, т. е. перемещение тел в пространстве и во времени. Движение тела будет кинематически определено, если в каждый данный момент времени будет известно положение тела относительно выбранной системы отсчета. Положение тела при его движении определяется по отношению к какой-либо системе координат, связанной с другим телом, например с Землей.
Однако при изучении движения некоторых механических систем эта система отсчета может оказаться недостаточно точной. Так, при опыте с маятником Фуко, где заметно сказывается вращение Земли, за «неподвижную» систему следует принять Солнце. В других вопросах и этого оказывается недостаточно. Тогда неподвижную систему придется перенести на «неподвижную» звездную систему.
В том случае, когда положение рассматриваемого тела остается с течением времени неизменным по отношению к выбранной системе отсчета, про такое тело говорят, что оно находится в покое по отношению к данной системе отсчета.
По отношению к различным системам отсчета тело может совершать различные движения или находиться в покое. Так, например, если тело находится в относительном покое по отношению к Земле, оно уже не будет находиться в покое по отношению к Солнцу, так как это тело будет двигаться вместе с Землей вокруг Солнца. В этом смысле покой и движение тела относительны и зависят от выбранной системы отсчета.
В последующем изложении, если об этом не будет сделано специальной оговорки, мы будем рассматривать движение материальной точки или абсолютно твердого тела, происходящее по отношению к координатным осям, связанным с Землей, которую условно будем считать неподвижной.
При вычислениях все линейные величины мы обычно будем выражать в метрах или сантиметрах, а время в секундах.
При измерении времени следует различать понятия: начальный момент времени, момент времени и промежуток времени.
Начальным моментом времени называется произвольный момент.времени, принятый условно за начало отсчета времени 
Под моментом времени понимается число секунд, прошедшее от начального момента времени, соответствующего началу движения тела (или когда мы начали наблюдать за этим движением), до данного момента.
Промежуток времени определяет число секунд, отделяющих два каких-либо последовательных Момента времени
Способы задания движения точки
Первый способ задания движения точки
Изучение кинематики начнем с рассмотрения движения точки.
Пусть точка М (рис. 139) совершает движение, описывая в пространстве кривую АВ. Эта непрерывная кривая, которую описывает точка М при своем движении, называется ее траекторией. Если траектория прямая, то движение точки называется прямолинейным, если же кривая, то — криволилейным.
Очевидно, что траектория точки есть годограф радиуса-вектора 



Если зависимость (66) задана, то тем самым можно определить и положение точки М в пространстве в любой момент времени. Это есть первый способ задания движения точки.
Рис. 139.
Второй способ задания движения точки
Однако движение точки может быть задано иначе. В самом деле, положение движущейся точки в пространстве в данный момент определяется тремя координатами 
Если известна зависимость координат от времени, то .можно в любой момент указать положение, движущейся точки в пространстве.
Поэтому второй способ задания движения точки заключается в том,что нам даны уравнения движения (67). Если точка движется в плоскости, то ее положение будет определяться двумя уравнениями:
Исключая, например, из уравнений (67а) время t, получим уравнение траектории точки, движущейся в плоскости:
Уравнения (67) и (67а) могут рассматриваться так же, как параметрические уравнения траектории, причем роль параметра играет время t.
Координаты 


Если движение точки происходит в плоскости, например, хОу (рис. 140), то уравнение (66) может быть сведено к заданию модуля 

Уравнения (69) называются уравнениями движения точки в полярных координатах.
Между уравнениями движения (67а) и (69) имеется такая же зависимость, как между прямоугольными и полярными координатами. Из треугольника ОАВ (рис. 140) имеем: 

Рис. 140.
Третий способ задания движения точки
Наконец, движение точки М может быть задано по третьему способу. Пусть точка М движется по заданной траектории (рис. 139).
Для определения положения точки М в данный момент времени выберем на ее траекторий неподвижную точку О, которую назовем началом отсчета. Тогда положение точки в данный момент будет определяться расстоянием ее от начала отсчета. Условимся пройденные расстояния считать положительными, если точка находится по одну сторону от начала отсчета, и отрицательными — если по другую. Следует заметить, что при 




Уравнение (70) называется уравнением движения, или законом движения точки.
Заданием траектории и уравнения движения (70) вполне определяется положение движущейся точки в пространстве в любой момент времени. В этом заключается третий способ задания движения точки. ‘
Задача №1
Для следующих случаев задания движения точки требуется:
a) найти уравнение траектории и вычертить ее;
b) указать начальное положение точки на ее траектории;
c) найти закон расстояний, приняв за начало отсчета путей начальное положение точки;
d) показать направление движения точки по ее траектории.
Решение. Для вычерчивания траектории мы могли бы дать времени 


Таблица 5 Таблица 6
Решая первое из уравнений движения относительно 

Полученное уравнение является уравнение параболы. Посторим ее (рис. 141) по точкам (талб. 6).
Рис. 141.
Для нахождения начального положения точки на ее траектории подставим в заданные уравнения движения значение 


Закон пройденных расстояний (70) найдется, если воспользоваться известной из дифференциальной геометрии зависимостью между дифференциалом дуги 


но так как 
Отсюда находим:
Так как по условию начало отсчета следует взять в начальном положении точки, то, полагая в последнем выражении 

Направление движения точки по траектории найдем, если в уравнения движения точки (67а) или (70) вместо t подставим ряд положительных возрастающих значений, например t = 0, t = 1, t = 2 (табл. 5). Мы видим, что при возрастании t возрастают также и координаты движущейся точки, а поэтому движение точки будет происходить в направлении, показанном стрелкой (рис. 141).
Ответ: прямая линия
Решение. Для исключения времени t возведем обе части равенства каждого из уравнений в квадрат и сложим; тогда имеем:
Отсюда заключаем, что траектория точки — окружность радиусом 3 единицы и с центром в начале координат (рис. 142).
Рис. 142.
При 


далее:
откуда
Из уравнений движения видно, что при возрастании t абсцисса х уменьшается, ордината .у увеличивается, а поэтому точка будет двигаться против часовой стрелки в направлении, указанном стрелкой.
Указание: для нахождения уравнения движения берем производную по времени t от координат х и у, после чего получаем 


Ответ: прямая
Задача №2
С дирижабля, летящего на высоте 600 м, сбросили груз, движение которого в недрах и секундах выражается уравнениями: 
Решение. Исключая из уравнений движения время t, найдем, что траекторией груза будет парабола: 



Задача №3
Движение точки в сантиметрах и секундах выражается уравнением:
Построить график расстояний.
Решение. Графиком расстояний называется кривая зависимости пройденного расстояния В нашем случае кривая расстояний представляет собой синусоиду. Построим ее по точкам (табл. 7).
Таблица 7
Имея график расстояний (рис. 142а), можно для любого момента времени найти величину пути, пройденного движущейся точкой от начала отсчета, а следовательно, и указать положение точки на ее траектории, которая должна быть дана.
Рис. 142а.
Скорость точки
Бели точка движется по траектории так, что в любые два равных промежутка времени она проходит равные пути, то такое движение точки называется равномерным.
Скоростью равномерного движения называется путь, пройденный точкой в единицу времени, например в секунду, минуту, час и т. п. Пусть в начальный момент точка находилась на расстоянии 
откуда расстояние точки s от начала отсчета в любой момент времени t будет:
Уравнение (71) называется уравнением равномерного движения.
Найдем теперь скорость любого движения точки. В этом случае она определяется в зависимости от того, как задано движение точки.
Пусть движение точки задано по первому способу, т. е. по уравнению (66); допустим, что в момент t движущаяся точка находилась в положении М, определяемом радиусом-вектором 
За малый промежуток времени 




Если бы точка М двигалась не по дуге кривой 





Истинную скорость движущейся точки в рассматриваемом положении мы должны принять, как векторную величину, равную пределу отношения вектора перемещения 

Что касается направления истинной скорости, то она, следуя направлению хорды, будет в пределе направлена по касательной к траектории в данной точке.
Следовательно, вектор скорости равен векторной производной радиуса-вектора по времени и направлен по касательной к траектории в сторону движения точки.
Для нахождения скорости точки, если задано ее движение по второму способу, т. е. по уравнениям (67), выразим сначала радиус-вектор 
Тогда на основании уравнения (72) имеем:
С другой стороны, обозначая проекции скорости на координатные оси через 
Сравнивая коэффициенты при одинаковых единичных векторах, найдем проекции скорости на координатные оси:
В дальнейшем первые производные по времени будем обозначать 
Итак, проекция скорости на неподвижную ось равна первой производной от соответствующей координаты по времени. Модуль скорости находим по выражению:
Направление же вектора скорости к координатным осям определится через косинусы углов, которые составляет вектор скорости с осями координат.
Пусть теперь движение точки задано траекторией и законом движения, выраженным формулой (70).
Допустим, что за промежуток времени 

Заменим движение точки М по дуге кривой 


Направление же средней скорости воображаемого движения будет совпадать с направлением вектора перемещения 

Рис. 143.
Увеличивая число хорд и тем самым уменьшая их длины, мы будем точнее приближаться к действительному криволинейному движению, так как разности между дугами 

Что касается направления истинной скорости, то она, следуя направлению хорды, будет в пределе направлена по касательной к траектории в данной точке.
Умножив числитель и знаменатель последнего равенства на 
Но так как предел отношения длины хорды к длине дуги равен единице, а направление 


Отсюда находим:
где

Задача №4
Движение точки в метрах и секундах выражается уравнениями:
Найти уравнение траектории, величину и направление скорости.
Решение. Уравнение траектории прямая
Величина скбрости найдется по формуле (74):
Направление же скорости определяется косинусами углов, которые составляет вектор скорости с координатными осями:
откуда
Задача №5
Движение снаряда в метрах и секундах выражается уравнениями:
Требуется найти: уравнение траектории; высоту 


Рис. 144.
Решение. Траекторией снаряда является равнобочная парабола:
Дальность полета снаряда определится, если принять в уравнении траектории 




Для нахождения высоты полета снаряда следует в уравнении траектории принять: 
Найдем теперь проекции скорости снаряда на координатные оси:
В наивысшей точке вектор скорости горизонтален, а потому:
Для определения скорости снаряда в момент, когда он пересекает ось Ох, вычислим время полета снаряда, взяв хотя бы первое из уравнений движения и приняв
откуда находим:
Направление скорости определится косинусами углов:
откуда
Задача №6
Определить траекторию точки, если проекции ее скорости на координатные оси в сантиметрах и секундах выражаются уравнениями: 

Решение. Найдем сначала уравнения движения точки, для чего проинтегрируем заданные уравнения проекций скорости:
Постоянные интегрирования 




Подставляя вместо 


Исключая из полученных уравнений движения время t, найдем, что траекторией точки является окружность 
Задача №7
Даны графики скоростей двух точек, движущихся по одной прямой от одного начального положения (рис. 145). По истечении какого времени точки встретятся?
Решение. Вообще графиком скорости называется кривая зависимости скорости от времени:
Между пройденным расстоянием и величиной скорости точки имеется зависимость (75), из которой найдем элементарное перемещение точки
Рис. 145.
Расстояние же s, пройденное точкой между моментами 

Отсюда заключаем, что путь, пройденный точкой за время 

В нашей задаче точки встретятся, когда расстояния, пройденные ими от начала движения, будут одинаковы, а для этого необходимо, чтобы соответствующие площади треугольников, взятых с графиков скоростей, были равны. Обозначая неизвестное время встречи точек через t, скорость первой точки в момент встречи через 

так как:
окончательно получим
Ускорение точки
Остановимся на некоторых вопросах геометрии. Пусть имеется некоторая неплоская кривая (рис. 146). Возьмем на ней две весьма близко расположенные точки 








Для окружности направление главной нормали совпадает с направлением ее радиуса. Прямая, перпендикулярная к касательной Т и к главной нормали N, называется бинормалью и обозначается буквой В. Таким образом, три взаимно-перпендикулярных направления N, В и Т могут быть приняты за координатные оси, скрепленные с некоторой точкой М, выбранной на кривой (рис. 147).
Рис. 146 Рис. 147
Такие оси, перемещающиеся вместе с движущейся точкой М, называются естественными осями. Эти оси являются ребрами естественного триэдра, или естественного трехгранника, образованного тремя плоскостями, проходящими через каждые две естественные оси. На рисунке 147 соприкасающаяся плоскость проходит через оси Т и N, нормальная — через N и В и третья плоскость триэдра проходит через В и Т.
Единичные векторы естественных осей обозначены через 


Угол 




Величина 
Если от точки М (рис. 146) в сторону вогнутости кривой отложить в соприкасающейся плоскости отрезок, равный 
Для прямой 

Для окружности:
На этом мы заканчиваем изучение вопросов геометрии и рассмотрим далее изменение вектора скорости движущейся точки. Пусть в моменты 


Рис. 148. Рис. 149.
Вообще говоря, с течением времени скорость будет изменяться и по величине и по направлению. Взяв изменение скорости 








на основании равенства (72). Следовательно, вектор ускорения равен первой векторной производной вектора скорости по времени или второй векторной производной радиуса вектора по времени. Подставляя в последнее равенство вместо вектора 

Ha основании равенства (22) находим:
но так как согласно формулам (75), (77) и (78)
то окончательно имеем:
Таким образом, полное ускорение точки 


Обозначая соответственно касательное ускорение через 


Рис. 150.
Модули касательного и нормального ускорений можно рассматривать так же, как проекции полного ускорения на касательную и главную нормаль; проекция же полного ускорения на бинормаль равна нулю, так как полное ускорение расположено в соприкасающейся плоскости. Итак, имеем:
При




Если точка движется прямолинейно, то 


Движение точки с постоянным касательным ускорением называется равнопеременным. Рассмотрим равнопеременное и прямолинейное движение точки. В этом случае 

откуда 
Далее:
при 
Уравнения (82) и (83) называются уравнениями равнопеременного движения. Здесь 



Уравнения (82) и (83) применимы также и для случая криволинейного движения точки, положив
Посмотрим теперь, как находится ускорение точки в том случае, когда движение ее задано по второму способу, т. е. по уравнениям (67). Так как ускорение точки 

Выражая вектор 
с другой стороны, обозначив проекции ускорения на координатные оси через 
Сравнивая коэффициенты при одинаковых единичных векторах, получим:
Следовательно, проекция ускорения на неподвижную ось равна второй производной от соответствующей координаты по времени. Модуль ускорения будет:
Направление же вектора ускорения к координатным осям определится через косинусы углов.
Задача №8
Найти нормальное и касательное ускорения точки, движение которой в метрах и секундах выражается уравнениями:
Решение. Найдем сначала по формулам (73) и (84) проекции скорости и ускорения на координатные оси:
Далее находим, что 
С другой стороны, по формуле (80): 

Нормальное ускорение 


- Заказать решение задач по теоретической механике
Задача №9
Движение точки выражается в метрах и секундах уравнениями:
Найти скорость точки, ускорение, траекторию и радиус кривизны в наивысшей точке.
Указание: в наивысшей точке параболы (рис. 144) вектор скорости, направленный по касательной, горизонтален, поэтому 


Траектория точки — парабола 
Ответ:
Задача. Точка движется по некоторой кривой так, что в момент / = 4 сек, вектор ее полного ускорения составляет угол 30° с направлением нормали к траектории. Определить радиус кривизны
Задача №10
Движение автомобиля по дороге, имеющей форму двух четвертей окружности радиуса 

Решение. По формулам (75) и (81) находим выражение скорости, касательного и нормального ускорений автомобиля:
Графики пути, скорости нормального и касательного ускорений легко строятся по точкам (рис. 151, б, в, г, д). Следует обратить внимание на то, что на прямолинейном участке пути 




Рис. 151.
Отсюда получаем два граничных момента времени: 

Задача №11
Для точки, движущейся по прямой, диаграмма расстояний представляет собой четверть эллипса (рис. 152). Выразить расстояние, скорость и ускорение движущейся точки, как функции времени. Построить диаграммы (графики) скоростей и ускорений.
Рис. 152.
Решение. Выразим сначала аналитически зависимости: 

Зависимость между расстоянием s и временем t по заданному графику пути может быть выражена в форме уравнения эллипса (рис. 152):
откуда:
При 

Выразим теперь 
При 
Величина ускорения найдется по первой из формул (81):
При 
На рисунке 152 изображены графики: скорости 
Последние два графика можно построить по точкам, зная 


Задача №12
Найти величину и направление ускорения и радиус кривизны траектории точки М колеса радиуса R = 1 м, катящегося без скольжения по горизонтальной оси Ох (рис. 153). Известно, что скорость центра колеса
Рис. 153.
Решение. Если в начальный момент точка М колеса находилась в начале координат О, то в момент 
Так как дуга AM равна отрезку ОА, то 
Поэтому уравнения движения точки М будут:
Проекции ускорения точки М на координатные оси найдутся по формулам:
Величина полного ускорения точки М равна:
Направление вектора полного ускорения определяется по направляющим косинусам:
Из последних равенств следует, что вектор ускорения направлен по МС к центру катящегося колеса.
Скорость точки М найдется на основании равенств:
Касательное и нормальное, ускорения точки М соответственно определятся:
Радиус кривизны траектории точки М найдется из выражения для нормального ускорения:
Так как 

поэтому
Перейдем теперь к изучению движения точки по окружности. Пусть точка движется по окружности радиуса а (рис. 154) и занимает в начальный момент положение 




Рис.154.
Ясно, что угол 

Согласно равенствам (73) найдем проекции скорости точки М на координатные оси:
Величина 


тогда
Модуль линейной скорости точки определится по формуле (74):
Но, так как
то
т. е. линейная скорость точки, движущейся по окружности, равна произведению угловой скорости на радиус.
Величины нормального и касательного ускорений точки, движущейся по окружности, найдутся по формулам (81):

Величина 

Обозначим угловое ускорение буквой 
Если 

Полное ускорение точки (рис. 155):
Если 






или
Обычно угловая скорость измеряется в 

Рис. 155.
Найдем зависимость между угловой скоростью 

Пусть радиус ОМ (рис. 155) вместе с точкой М совершит в минуту 



Таким образом:
где 

Задача №13
Кривошипно-шатунный механизм состоит из кривошипа 

Рис. 156.
Кривошип ОА вращается с постоянной угловой скоростью 
1) найти закон движения ползуна В, величину его скорости и ускорения в момент t.
2) на ординатах 
Решение. Примем за начало отсчета расстояний ползуна В точку О и обозначим отрезок ОВ через х. Из чертежа видно:
где 
Зависимость между углами 

откуда
Далее:
Раскладывая полученное выражение по формуле бинома Ньютона, найдем:
Ограничившись первыми двумя членами разложения, получим приближенное уравнение движения ползуна:
при
при
что соответствует чертежу.
Выражения скорости и ускорения ползуна найдутся путем дифференцирования по времени t его уравнения движения:
Графики скорости и ускорения ползуна можно построить по точкам, давая углу 
при 
при
при
Рис. 157.
Отсюда видно, что в крайних положениях ползуна скорость его равна нулю, а ускорения не равны нулю, но при этом получаются неравными между собой.
Графики 

Рассмотрим, наконец, гармоническое колебательное движение точки. Пусть по окружности радиуса а равномерно движется точка М с угловой скоростью 
При этом закон движения проекции равномерно движущейся точки на одну из координатных осей, например ось Ох, выразится уравнением:
где 
Прямолинейное движение точки, совершающееся по закону синуса или косинуса, называется гармоническим колебательным движением.
В уравнении (95) гармонического колебательного движения величина а наибольшего удаления точки 


При 
Но это выражение (рис. 157) дает закон движения другой проекции точки М, а именно проекции ее 


т. е. движение точки 

Промежуток времени Т, в течение которого вспомогательная точка М опишет полную окружность, а ее проекция 


Величина 


Если точка 

а поэтому частота:
Отсюда число колебаний в минуту, выраженное через циклическую частоту колебаний, будет:
Задача №14
Движения трех точек в сантиметрах и секундах выражаются соответственно уравнениями:
и
Построить графики расстояний этих точек.
Рис. 158.
Решение. Каждая из трех точек совершает гармоническое колебательное движение. Для построения графиков расстояний проводам вспомогательную окружность радиуса а см, равного амплитуде колебания, и наносим на окружности последовательно ряд положений I, II, III и т. д. вспомогательной точки М, например через каждые 

Выбираем, далее, на продолжении горизонтального диаметра произвольную точку 


Задача №15
Выразить через переменное расстояние х ускорение точки 

Рис. 159.
Решение. Из 


т. е. точка 
Всё о кинематике
Кинематика — наука о движении геометрических тел. В ней рассматривается само движение без изучения причин, вызывающих это движение. Впервые термин «кинематика» ввел А.Ампер (1775-1836), взяв за основу греческое слово 
Простейшим объектом в кинематике является точка. В кинематике точки рассматриваются следующие функции времени t: радиус-вектор 

Движение тела в кинематике начинают изучать с поступательного и вращательного движения. Во вращательном движении вводятся понятия угла поворота тела 


В плоском движении тела каждая точка тела движется в плоскости, параллельной некоторой фиксированной плоскости. Само тело вовсе не обязательно должно быть плоским. Говорить о скорости тела или его ускорении в общем случае не имеет смысла: тело состоит из множества точек, каждая из которых может иметь свою скорость и ускорение. Исключение составляет поступательное движение тела, при котором равны скорости и ускорения всех точек. Кроме того, в некоторых задачах иногда говорят, например, о скорости катящегося цилиндра или о скорости автомобиля, подразумевая при этом скорость точек центральной оси цилиндра или скорость кузова автомобиля. принимая его за точку.
Угловая скорость и ускорение для плоского движения — векторные величины, но их направления всегда перпендикулярны плоскости движения. Введем декартову систему координат, в которой плоскость ху совпадает с плоскостью движения. Тогда угловая скорость 


Скорость точки А тела при плоском движении вычисляют через известную скорость какой-либо точки В того же тела, принимаемой за полюс (рис. 81):
Для расчета скоростей точек многозвенного механизма, каждое звено которого совершает плоское движение, формулу (1) применяют последовательно для всех точек, переходя от одной точки, принимаемой за полюс, к другой.
Схему вычислений в этом случае удобно записывать в виде структурных формул (графов [15])
где над стрелкой указан номер тела или наименование стержня, которому принадлежат точки, а снизу — угол 

где 


Ускорения точек тела при плоском движении связаны формулой

Изучаем тему: кинематика точки
При изучении темы КИНЕМАТИКА ТОЧКИ вы познакомитесь с простейшими понятиями кинематики. Этот раздел теоретической механики наиболее близко примыкает к математике. Умение дифференцировать и понимать смысл найденных производных — необходимые условия для освоения этой темы.
Проверить и «оживить» решение задачи можно с помощью программы, написанной для математической системы Maple V.
Движение точки в плоскости
Постановка задачи. Точка движется по закону
Для заданного момента времени найти скорость, ускорение точки и радиус кривизны траектории.
План решения:
1. Определяем траекторию движения точки, исключая t из закона движения (1).
2. Дифференцируя (1) по времени t, находим проекции скорости точки на оси х, у:
3. Модуль скорости вычисляем по формуле
4.Дифференцируя (2), находим компоненты вектора ускорения
5. Определяем модуль ускорения
6. Вычисляем тангенциальное (касательное) ускорение. Дифференцируя скорость 
7.Вычисляем нормальное ускорение
8. Нормальное ускорение зависит от скорости точки и радиуса кривизны траектории:
Отсюда находим радиус кривизны
Задача №16
Точка движется по закону
Для момента времени 
Решение
1. Определяем траекторию движения точки, исключая t из закона движения (3). Параметрическим представлением траектории является сам закон движения (3). Координатную форму .уравнения движения точки получаем, исключая из закона движения (3) время:
Для того, чтобы окончательно получить ответ на вопрос о траектории, необходимо еще выделить область определения функции (4). Не все точки кривой, определяемой этой функцией, являются точками траектории. При 


6.1.Движение точки в плоскости
т.о. траекторией является правая ветвь параболы (4) (рис. 82). График строим по точкам (отмечены звездочками), через равные промежутки времени 0.1 с.
2. Дифференцируя (3) по времени t, находим проекции скорости точки на оси х, у:
При 
3. Модуль скорости вычисляем по формуле
Вектор скорости

4. Дифференцируя (6), находим компоненты вектора ускорения:
При
5. Определяем модуль ускорения
Вектор ускорения строим на чертеже в масштабе ускорений (не обязательно совпадающем с масштабом скоростей). Вектор ускорения направлен внутрь вогнутости кривой.
6.Вычисляем тангенциальное ускорение 

7. Вычисляем нормальное ускорение:
8. Находим радиус кривизны траектории в указанном положении точки:
Центр кривизны траектории лежит на нормали к кривой на расстоянии R = 5.208 см внутри вогнутости кривой. Окружность радиусом R с центром в этой точке максимально близко совпадет с кривой в малой окрестности от нее.
6.2. Путь, пройденный точкой
Постановка задачи. Точка движется по закону
Определить длину пути, пройденного точкой за время
План решения
1. Дифференцируя (1) по времени t, находим проекции скорости точки на оси
2. Считая, что время отсчитывается от нуля, находим длину пути 
Задача №17
Точка движется по закону
где
Решение
1. Дифференцируя (2) по времени t, находим проекции скорости точки на оси х, у:
2. Считая, что время отсчитывается от нуля, находим длину пути:
Подставляя числовые значения 
Движение точки в пространстве
ПОСТАНОВКА ЗАДАЧИ. Точка движется по закону
Определить скорость, ускорение точки и радиус кривизны траектории в заданный момент времени.
План решения
1. Дифференцируя (1) по времени t, находим проекции скорости точки на оси х,у и z:
Гл.6.Кинематика точки
2. Вычисляем модуль скорости
3.Дифференцируя (2), находим компоненты вектора ускорения:
4. Определяем модуль ускорения
5. Вычисляем модуль тангенциального ускорения:
6. Вычисляем нормальное ускорение
7.Находим радиус кривизны траектории в указанном положении точки:
Задача №18
Точка движется по закону
где 
Решение
1. Дифференцируя (3) по времени t, находим проекции скорости точки на оси х, у и z:
2.Вычисляем модуль скорости
3.Дифференцируя (4), находим компоненты вектора ускорения:
4. Определяем модуль ускорения:
5. Вычисляем модуль тангенциального ускорения:
6.3.Движение точки в пространстве
6. Вычисляем нормальное ускорение:
7. Находим радиус кривизны траектории в указанном положении точки:
Радиус кривизны в данной задаче не зависит от времени. Кривая представляет собой винтовую линию постоянной кривизны. Получаем значения искомых величин при
Ответы занесем в таблицу (скорости — в см/с, ускорения — в 
Естественный способ задания движения точки
Постановка задачи. Точка движется по плоской кривой
с постоянной скоростью 
План решения:
1. Находим зависимость между компонентами скорости. Дифференцируя (1) по t, используя правило дифференцирования сложной функции 
6.4.Естественный способ задания движения точки
где штрихом обозначена производная по координате, 
2. Дополняя (2) уравнением 
3. Находим косинус угла наклона касательной к траектории с осью ox:
4. Находим зависимость между компонентами ускорения. Дифференцируя (2) по t, получаем
где
5. Так как по условию 
которое совместно с (3) дает систему для определения проекций ускорения. Решаем систему и находим
6. Вычисляем модуль ускорения
7. Согласно п.5, тангенциальное ускорение равно нулю и нормаль-нос ускорение совпадает с полным: 

Задача №19
Точка движется по плоской кривой
с постоянной скоростью 
Решение
1. Находим зависимость между компонентами скорости. Дифференцируем (4) по t. Используя правило дифференцирования сложной функции,получаем
где
При x = 1 имеем 
2. Дополняя (5) уравнением 
3. Находим косинус угла касательной к траектории с осью ох:
4.Находим зависимость между компонентами ускорения. Дифференцируя (5) по t, получаем
где
При х = 1 м вычисляем 
5. Из условия 
Решая это уравнение совместно с (6), находим проекции вектора ускорения:
6. Вычисляем модуль ускорения:
7. Находим радиус кривизны траектории:
Ответы заносим в таблицу:
Замечание. В механике гибких стержней и сопротивлении материалов для нахождения радиуса кривизны кривой, заданной в форме у = у(х), существует формула
Решенная задача представляет собой кинематический вывод этой формулы. Проверку решения можно выполнить, подставив в (7) найденные значения
Как и следовало ожидать, радиус кривизны траектории R от скорости движения точки не зависит, как не зависит, например, форма рельсового пути от скорости движения трамвая (если, конечно, не учитывать деформации).
Движение точки в полярных координатах
Постановка задачи. Задан закон движения точки в полярных координатах:
Найти скорость и ускорение точки в полярных, декартовых и естественных координатах в заданный момент времени.
План решения:
1. Вычисляем полярные координаты точки в заданный момент времени:
2. Дифференцируя (1) по времени t, находим производные полярного радиуса р и полярного угла:
3. Вычисляем компоненты скорости в полярных координатах:
6.5. Движение точки в полярных координатах
4.Находим модуль скорости
5.Декартовы х, у и полярные координаты 
Дифференцируя (3), вычисляем компоненты скорости точки в декартовых координатах:
6. Делаем проверку, вычисляя модуль скорости по декартовым компонентам:
7. Дифференцируя (2), находим вторые производные полярного радиуса р и полярного угла:
8.Вычисляем компоненты ускорения точки в полярных координатах:
9. Модуль ускорения вычисляем по формуле
10. Вычисляем компоненты ускорения точки в декартовых координатах, дважды дифференцируя (3):
11. Делаем проверку, вычисляя модуль ускорения по декартовым компонентам:
12. Находим модуль тангенциального ускорения,:
и проверяем его по формуле
13. Вычисляем нормальное ускорение
Задача №20
Задан закон движения точки в полярных координатах:
Найти скорость и ускорение точки в полярных, декартовых и естественных координатах при t = 1 с. Радиус дан в метрах.
Решение
1.Вычисляем полярные координаты точки в заданный момент времени
2. Дифференцируя (4) по времени it, находим производные полярного радиуса р и полярного угла:
При t = 1 имеем 
3. Вычисляем компоненты скорости в полярных координатах:
4.Вычисляем модуль скорости:
5.Вычисляем компоненты скорости в декартовых координатах:
6. Делаем проверку, вычисляя модуль скорости по декартовым компонентам:
7. Дифференцируя (5), находим вторые производные полярного радиуса р и полярного угла:
При t = 1 получаем
8. Вычисляем компоненты ускорения в полярных координатах:
9. Определяем модуль ускорения:
*) Аргументы тригонометрических функций измеряются в радианах.
10. Находим компоненты ускорения в декартовых координатах:
11. Делаем проверку, вычисляя модуль ускорения по декартовым компонентам:
12. Находим модуль касательного ускорения,
и проверяем его по формуле
13. Вычисляем нормальное ускорение
Ответы заносим в таблицу (скорости — в м/с, ускорения — в
- Плоское движение твердого тела
- Мгновенный центр скоростей
- Мгновенный центр ускорений
- Мгновенный центр вращения
- Плоская система сил
- Трение
- Пространственная система сил
- Центр тяжести















































































































































































































































































































































































































































































































































































