Решение задачи (РГР) К1 «Определение скорости и ускорения точки по заданным уравнениям ее движения» по разделу «кинематика» теоретической механики.
Пример определения для заданного момента времени положения точки на траектории, скорости, полного, касательного и нормального ускорения, радиуса кривизны траектории и вида траектории движения точки, если движение точки задано уравнениями.
Задача
Движение точки M задано уравнениями:
Требуется:
Установить вид траектории движения точки M, и для момента времени t = t1 = 0,5 с найти:
- положение точки на траектории,
- скорость, полное, касательное и нормальное ускорения,
- радиус кривизны траектории.
Другие примеры решений >
Помощь с решением задач >
Решение
Расчет траектории движения точки
Уравнения движения можно рассматривать как параметрические уравнения траектории точки.
Другие видео
Чтобы узнать вид траектории в координатной форме, надо получить прямую зависимость между переменными x и y, для этого избавимся от параметра времени t, выразив его, например, из первого уравнения и подставив во второе.
Получилось квадратное уравнение. То есть точка движется по параболе.
Построим траекторию движения, рассчитав несколько её точек.
Положение точки на траектории
Определим положения точки в начале движения и в заданный момент времени.
Для этого в исходные уравнения подставляем соответственно сначала 0
а затем, половину секунды.
Положение точки на ее траектории в заданный момент обозначим буквой M, и все остальные параметры будем рассчитывать для неё.
Расчет скорости точки
Направление и величину скорости точки определим как векторную сумму её проекций на оси координат.
Здесь i, j — орты осей x и y.
vx, vy — проекции вектора скорости на оси координат.
Проекции вектора скорости получим, взяв первые производные по времени t от соответствующих заданных уравнений движения точки.
Далее выбрав масштаб, из точки M последовательно и с учетом знака, откладываем оба вектора.
Сам вектор скорости получим, соединив точку M с концом второго вектора и направив его по ходу движения точки.
Здесь надо отметить, что вектор скорости всегда должен располагаться по касательной к траектории. Любое другое положение будет указывать на ошибки в расчетах.
Рассчитаем модуль вектора скорости
Расчет ускорений точки
Проекции полного ускорения точки на оси координат определяются как вторая производная от исходных уравнений движения точки.
Здесь, ax, ay – проекции ускорения точки на оси координат.
В этом примере, горизонтальная проекция ускорения оказалась равной нулю, поэтому его модуль и направление будут совпадать с вертикальной.
Касательная составляющая полного ускорения это производная скорости точки по времени.
Ее можно рассчитать по этой формуле.
Вектор касательного ускорения всегда направлен по линии вектора скорости.
Положительная величина говорит об ускоренном движении точки и тогда направления скорости и касательного ускорения совпадают.
В противном случае они разнонаправлены, и движение точки замедляется.
Модуль нормального ускорения определим по формуле Пифагора, так как векторы касательного и центростремительного ускорений всегда взаимно перпендикулярны.
Расчет радиуса кривизны траектории
Осталось найти только радиус кривизны траектории в точке M, который равен отношению квадрата скорости к модулю нормального ускорения.
Результаты расчетов
Результаты вычислений для заданного момента времени t1=0,5c приведены в таблице:
На рисунке показано положение точки M в заданный момент времени и векторы скорости и ускорений в выбранном масштабе.
Вектор v строим по составляющим vx и vy, причем этот вектор должен по направлению совпадать с касательной к траектории.
Вектор a строим по составляющим ax и ay и затем раскладываем на составляющие векторы aτ и an. Совпадение величин aτ и an, найденных из чертежа, с их значениями, полученными аналитически, служит критерием правильности решения.
Другие примеры решения задач >
Кинематика материальной точки
Основные формулы кинематики материальной точки
Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.
Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где – единичные векторы (орты) в направлении осей x, y, z .
Скорость точки:
;
;
;
Единичный вектор в направлении касательной к траектории точки:
.
Вектор можно выбрать двумя способами во взаимно противоположных направлениях. Обычно его выбирают в направлении увеличения дуговой координаты. Тогда, наряду с модулем скорости , вводят алгебраическую величину скорости . При , вектор скорости сонаправлен с . При – имеет противоположное с направление.

Тангенциальное (касательное) ускорение:
;
;
.
Здесь, как и для скорости, – это алгебраическое касательное ускорение, . Если , то вектор касательного ускорения сонаправлен с . При – имеет противоположное с направление.
Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.
Радиус кривизны траектории:
.
Далее приводится вывод этих формул и изложение теории кинематики материальной точки.
Радиус-вектор и траектория точки
Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами ( x, y, z ) . Эти координаты являются компонентами радиус-вектора материальной точки.
Радиус-вектор точки M – это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где – единичные векторы в направлении осей x, y, z .
При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.
Траектория материальной точки – это линия, вдоль которой происходит движение точки.
Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями
В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где – некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .
Скорость материальной точки
Согласно определению скорости и определению производной:
Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:
,
где
,
,
– проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.
Таким образом
.
Модуль скорости:
.
Касательная к траектории
С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории.
Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени – в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная – это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .
При стремлении , прямая стремится к касательной , а вектор – к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.
Введем направляющий вектор касательной единичной длины:
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.
Здесь мы направили вектор по направлению к вектору скорости, поскольку это более удобно. Но могут возникнуть случаи, когда точка останавливается и движется по той же траектории в обратном направлении. Чтобы не вводить для одной и той же точки траектории два единичных касательных вектора, нужно охватить случай, когда направлен противоположно скорости. Для этого вводят алгебраическую величину скорости:
.
Если направления векторов и совпадают, то . Если они противоположны, то .
– это проекция скорости на направление единичного вектора . Она равна скалярному произведению этих векторов:
.
Абсолютную величину (модуль) вектора скорости мы обозначаем символом с прямыми скобками, или символом без стрелки:
;
Алгебраическая величина скорости:
.
Тогда вектор скорости точки можно представить в следующем виде:
.
Ускорение материальной точки
Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.
Тангенциальное (касательное) и нормальное ускорения
Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.
Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?
Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают их скалярное произведение. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты – касательную к траектории и перпендикулярную к ней.
Тангенциальное (касательное) ускорение
Также как и для скорости, введем алгебраическую величину вектора касательного ускорения :
.
Если , то вектор касательного ускорения сонаправлен с . Если , то эти векторы противоположны. Абсолютную величину касательного ускорения будем обозначать прямыми скобками: . Тогда
.
Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили: .
Отсюда видно, что алгебраическая величина тангенциального ускорения равна проекции полного ускорения на направление касательной к траектории. Она также равна производной по времени алгебраической величины скорости точки: .
Подставив , имеем:
.
Здесь мы учли, что .
Найдем производную по времени модуля скорости . Применяем правила дифференцирования:
;
.
Итак,
.
Отсюда следует, что если между векторами ускорения и скорости острый угол: , то движение ускоренное. Абсолютное значение скорости возрастает. Если между ними тупой угол: , то движение замедленное. Абсолютное значение скорости убывает.
Выразим ускорение через тангенциальное и нормальное: , и учтем, что . Получим:
.
Тогда предыдущую формулировку можно выразить посредством тангенциального ускорения. Если векторы касательного ускорения и скорости направлены в одну сторону, то движение ускоренное. Если их направления противоположны, то движение замедленное.
Радиус кривизны траектории
Теперь исследуем вектор .
Рассмотрим вектор в два момента времени – в момент времени t и в момент t 1 . Введем обозначения: . По определению производной:
.
Пусть в момент времени t , точка находится в положении M , а в момент t 1 – в положении M 1 (см. рисунок).
Рассмотрим случай, когда алгебраическая скорость положительна: . То есть направления векторов и совпадают. Тогда точка M 1 находится справа от M . Через точки и проведем плоскости, перпендикулярные векторам и . Пересечение этих плоскостей образует прямую. Она проходит через точку C перпендикулярно плоскости рисунка. MC – это перпендикуляр, опущенный из точки M на эту прямую.
При , точка стремится к точке , а длина отрезка CM стремится к радиусу кривизны траектории ρ . Поскольку и , то угол между отрезками и равен углу между векторами и . Отложим их для наглядности из одного центра.
Абсолютное значение производной:
.
Здесь мы учли, что .
Вектор , как указывалось выше, перпендикулярен . В данном случае он направлен вдоль единичного вектора главной нормали , направленной к центру кривизны C траектории. Поэтому при имеем:
.
Теперь рассмотрим случай, когда алгебраическое значение скорости отрицательно: . В этом случае, вектор скорости противоположен . Получается тот же рисунок, только точка располагается слева от M . В результате абсолютное значение производной остается прежней:
.
Но ее направление меняется на противоположное:
.
Поскольку , то формула сохраняет прежний вид и в этом случае:
.
Нормальное ускорение
Теперь находим нормальное ускорение:
.
Перепишем результат в следующем виде:
,
где ; – единичный вектор в направлении главной нормали траектории – то есть вектор, направленный к мгновенному центру кривизны перпендикулярно касательной к траектории. Поскольку , то также является модулем нормального ускорения. Для него не нужно вводить алгебраическое значение, как мы это делали для скорости и касательного ускорения.
Нормальное ускорение всегда направлено к центру кривизны траектории.
Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.
Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.
Выпишем еще раз следующую формулу:
.
Отсюда видно, что нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории.
Радиус кривизны траектории:
.
И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.
Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.
Автор: Олег Одинцов . Опубликовано: 09-02-2016 Изменено: 27-01-2020
Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.
В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.
Траектория движения материальной точки через радиус-вектор
Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.
Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):
Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:
Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:
В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.
Вектор скорости материальной точки
Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.
Пример нахождения вектора скорости
Имеем закон перемещения материальной точки:
Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:
Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.
Как найти вектор ускорения материальной точки
Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:
Модуль вектора скорости точки
Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:
Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.
Модуль вектора ускорения
Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:
Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.
Еще примеры решений задачи нахождения вектора скорости и ускорения
А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.
Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.
Исследовательская работа «Определение линейной и угловой скоростей точки, равномерно движущейся по окружности»
ОГЭ 2021 по физике ›
1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.
При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.
2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности ( T ) — время, в течение которого тело совершает один полный оборот. Единица периода — ( [,T,] ) = 1 с.
Частота обращения ( (n) ) — число полных оборотов тела за одну секунду: ( n=N/t ). Единица частоты обращения — ( [,n,] ) = 1 с-1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.
Связь между частотой и периодом обращения выражается формулой: ( n=1/T ).
Пусть некоторое тело, движущееся по окружности, за время ( t ) переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ( varphi ).
Быстроту обращения тела характеризуют угловая и линейная скорости.
Угловая скорость ( omega ) — физическая величина, равная отношению угла поворота ( varphi ) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ( omega=varphi/t ). Единица угловой скорости — радиан в секунду, т.е. ( [,omega,] ) = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ( 2pi ). Поэтому ( omega=2pi/T ).
Линейная скорость тела ( v ) — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.
Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ( vec=l/t ). За один оборот точка проходит путь, равный длине окружности. Поэтому ( vec=2pi!R/T ). Связь между линейной и угловой скоростью выражается формулой: ( v=omega R ).
Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.
4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: ( vec=frac<Deltavec> ) и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.
Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: ( a=frac ). Так как ( v=omega R ), то ( a=omega^2R ).
При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.
Линейная скорость
Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности.
Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.
Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T
. Путь, который преодолевает точка — это есть длина окружности.
Общие понятия
Кинематика, входящая в состав механики, занимается изучением закономерностей движения. Под этим понятием понимается изменение положения тела относительно других объектов. Основная задача науки состоит в определении координат рассматриваемого предмета в любой момент. Кинематика изучает перемещение без учёта воздействия его вызвавшего. Любое движение считается относительным. Поэтому для его описания используют систему координат с начальной и конечной точкой отсчёта.
Для облегчения понимания процессов размерами исследуемого тела пренебрегают. Считая, что любой объект представляет собой совокупность материальных точек, повторяющих одинаковое движение при сравнении с друг другом. Существует несколько видов изменения положения. Различают их по траектории — воображаемой линии, повторяющей путь прохождения объекта. Сравнивая виды движения, выделяют два типа перемещения: прямолинейное и криволинейное.
Кроме этого, если рассматривать изменение положения во времени, движение можно различать по равномерности. При перемещении с постоянной скоростью движение называют равномерным, а при изменении её — неравномерным.
Более узкая классификация разделяет перемещение по характеру на следующие виды:
- равноускоренное — это перемещение, обусловленное движением тела, при котором ускорение будет постоянным по направлению;
- равнозамедленное — движение, при котором происходит отрицательное ускорение, до полного замедления объекта;
- равнопеременное — при таком виде перемещения скорость изменяется на одинаковое значение в любом промежутке времени;
- поступательное — если на перемещаемое тело нанести линии, они будут перемещаться параллельно сами себе;
- вращательное — это периодическое движение, при котором материальная точка описывает окружность.
Частным случаем криволинейного движения, то есть по траектории, отличной от прямой линии, является равномерное движение по окружности. Определение понятия включает в себя центростремительное ускорение и постоянную по модулю скорость. Под этим видом понимают изменение положения, при котором изменяется только направление скорости.
Центростремительное ускорение
При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.
Используя предыдущие формулы, можно вывести следующие соотношения
Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.
Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.
Вращение тел
Под вращением понимают тип движения, при котором траектория перемещающегося тела представляет собой окружность. Вращение может происходить вокруг оси или вокруг фиксированной точки. Вращение колеса, планет по своим орбитам, спортсменов во время соревнований по фигурному катанию — все это примеры указанного типа движения.
По аналогии с линейным перемещением, главной формулой динамики вращения является следующая:
Здесь M и I — моменты силы и инерции, соответственно, α — ускорение угловое.
Для описания вращения удобно пользоваться не линейной, а угловой скоростью. Она определяется так:
Где θ — угол, на который тело повернулось за время t. С записанным ускорением α скорость ω связана следующим равенством:
Для измерения всех угловых величин используются радианы.
Связь со вторым законом Ньютона
Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.
Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой
Основные понятия и законы динамики
Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой
Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано. Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется
инертностью.
Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией.
Инерциальными системами отсчёта
называют системы, в которых выполняется первый закон Ньютона.
Принцип относительности Галилея:
во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам
Масса
— это мера инертности тела
Сила
— это количественная мера взаимодействия тел.
Второй закон Ньютона:
Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой: $F↖ <→>= m⋅a↖<→>$
Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.
Третий закон Ньютона:
Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению: $F_1↖ <→>= -F_2↖ <→>$
III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).
Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом — Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места. Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости
записывают в виде где k — жёсткость пружины, x — деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.
При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения.
Различают трение покоя и трение скольжения.
Сила трения скольжения
подсчитывается по формуле где N — сила реакции опоры, µ — коэффициент трения. Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.
возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения
называют силы, с которыми любые два тела притягиваются друг к другу.
Закон всемирного тяготения:
любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.
Здесь R — расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.
называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.
— это сила, с которой все тела притягиваются к Земле: При неподвижной опоре вес тела равен по модулю силе тяжести: Если тело движется по вертикали с ускорением, то его вес будет изменяться. При движении тела с ускорением, направленным вверх, его вес Видно, что вес тела больше веса покоящегося тела.
При движении тела с ускорением, направленным вниз, его вес В этом случае вес тела меньше веса покоящегося тела.
называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила — сила тяжести.
Искусственный спутник Земли
— это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли На спутник Земли действует только одна сила — сила тяжести, направленная к центру Земли
Первая космическая скорость
— это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите. где R — расстояние от центра планеты до спутника. Для Земли, вблизи её поверхности, первая космическая скорость равна
1.3. Основные понятия и законы статики и гидростатики
Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное.
Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это
устойчивое равновесие.
Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это
неустойчивое положение
; если никаких сил не возникает —
безразличное
(см. рис. 3). Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю. Здесь d —плечо силы.
Плечом силы
d называют расстояние от оси вращения до линии действия силы.
Условие равновесия рычага:
алгебраическая сумма моментов всех вращающих тело сил равна нулю.
Давлением
называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:
Для жидкостей и газов справедлив закон Паскаля:
давление распространяется по всем направлениям без изменений. Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей где ρ — плотность жидкости, h — глубина проникновения в жидкость.
Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае Высоты столбов жидкости обратно пропорциональны плотностям:
представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой. Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то
На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют
силой Архимеда
Величину выталкивающей силы устанавливает
закон Архимеда
: на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом: где ρжидк — плотность жидкости, в которую погружено тело; Vпогр — объём погружённой части тела.
Условие плавания тела
— тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.
1.4. Законы сохранения
Импульсом тела
называют физическую величину, равную произведению массы тела на его скорость:
Импульс — векторная величина.
=кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы.
Это произведение силы на время её действия Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется
закон сохранения импульса
: сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой
называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:
— это работа, совершённая в единицу времени:
Способность тела совершать работу характеризуют величиной, которую называют энергией.
Механическую энергию делят на
кинетическую и потенциальную.
Если тело может совершать работу за счёт своего движения, говорят, что оно обладает
кинетической энергией.
Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает
потенциальной энергией.
Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле где h — высота подъёма
Энергия сжатой пружины:
где k — коэффициент жёсткости пружины, x — абсолютная деформация пружины.
Сумма потенциальной и кинетической энергии составляет механическую энергию.
Для изолированной системы тел в механике справедлив
закон сохранения механической энергии
: если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.
Движение по циклоиде*
В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.
Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.
Мгновенная скорость определяется по формуле
При равномерном движении по окружности вектор скорости тела меняется (скорость направлена по касательным к окружности), а модуль скорости тела (числовое значение) остается постоянным. Поэтому если один полный оборот тела по окружности обозначить как s (пройденный путь), а время, за которое он был совершен, как t, то найдем модуль скорости тела, движущегося равномерно по окружности:





Траектория движения материальной точки через радиус-вектор
Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.
Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):
Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:
Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:
В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.
Угловая скорость
При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.
Определение. Угловая скорость
Угловая скорость в данной точке траектории — предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .
ω = ∆ φ ∆ t , ∆ t → 0 .
Единица измерения угловой скорости — радиан в секунду ( р а д с ).
Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:
Мгновенная и средняя скорости
Как найти линейную скорость? Формулу, согласно определению величины, можно записать следующую:
Где dl¯ — вектор перемещения тела за время dt. Эта скорость называется мгновенной, поскольку рассчитывается за чрезвычайно короткий промежуток времени dt. Мгновенная скорость в действительности является величиной не стабильной и постоянно меняющейся. Например, представим, что по дороге движется автомобиль. На первый взгляд можно полагать, что в любой момент времени его мгновенная скорость будет постоянной, однако, это не так. Мгновенная скорость испытывает колебания. Если спидометр автомобиля достаточно чувствителен, то он фиксирует эти колебания.
Формула линейной скорости средней ничем не отличается от таковой для мгновенной, однако, измеряется она за более длительный промежуток времени Δt:
В примере с автомобилем выше, хотя мгновенная скорость испытывает колебания, средняя скорость остается постоянной с определенной точностью на всем участке пути Δl¯.
При решении задач, как правило, используют среднюю скорость. Мгновенная же величина имеет смысл только в случае движения с ускорением.
Занимательный пример
Пусть имеется некая планета, которая совершила полтора оборота за сорок два часа, при этом метеостанция, располагающаяся на её экваторе, прошла путь равный 50 тыс. километров, делённых на час. Нужно определить линейную и угловую скорости планеты при её вращении вокруг собственной оси. Кроме этого, вычислить, чему равны сутки, и найти радиус планеты. При этом считать, что форма космического тела — идеальный шар.
Для решения задачи следует обозначить буквой эн число оборотов: n = 1,5, а t — время, за которое планета их совершила. Путь же, который прошла станция, можно представить в виде материальной точки и принять за l = 50 000 км. Найти же будет нужно линейную и угловую скорости. Кроме этого, по условию задачи нужно найти сутки, длина которых равняется периоду — полному обороту планеты вокруг оси.
В такой задаче необязательно переводить данные в систему СИ. Можно использовать километры и часы, так как в задании не требуется дать ответ в соответствии с СИ, тем более что метры и секунды использовать неудобно.
Первое, что можно найти, это линейную скорость, равную отношению пройденного пути ко времени: v = l / t = 50000 / 42. Решив дробь, примерный результат будет равняться 1190 км /ч. Теперь можно найти скорость угла поворота. Нужно разделить угол, на который изменилось положение точки, на время. Так как один полный оборот — это 2p, то полтора оборота будут составлять 3p. Тогда искомая скорость будет равняться: w = φ / t = 3p / 42 = 0,22 рад/ч.
Сутки, то есть период обращения, будут определяться как полный период вращения, который можно разделить на число оборотов за это время. Формула для расчёта будет выглядеть следующим образом: T = t / N. Подставив значения, можно найти искомый период. Он будет составлять: T = 42 / 1,5 = 28 часов.
Осталось вычислить радиус, который равняется отношению линейной скорости к угловой: R = v / w. Так как в качестве ответов записывались примерные значения, то для предотвращения арифметической ошибки подставлять уже найденные числа не следует. Поэтому лучше подставить алгебраические выражения. Тогда: R = (l /t) / (φ / t) = l / φ = 50000 / 3p = 5305 км. Задача решена.
http://artsybashev.ru/zadachki-s-resheniem/vektor-skorosti-i-uskoreniya-materialnoi-tochki/
http://svet202.ru/teoriya/formula-skorosti-cherez-radius.html
Радиус кривизны траектории
В этой статье приведены две задачи, которые помогут вам научиться определять радиус кривизны траектории при движении тела под углом к горизонту. Каждая из задач представляет собой целый набор, поэтому неясностей не должно остаться.
Задача 1.
Тело брошено со скоростью 10 м/с под углом к горизонту. Найти радиусы кривизны траектории тела в начальный момент его движения, спустя время 0,5 с и в точке наивысшего подъема тела над поверхностью земли.
Как известно, радиус кривизны траектории связан с нормальным ускорением и скоростью формулой:
Откуда :
То есть, чтобы найти радиус кривизны траектории в любой точке, необходимо лишь знать скорость и нормальное ускорение, то есть ускорение, перпендикулярное вектору скорости. Рассмотрим все заданные точки и определим в них скорости и нужные составляющие ускорения.
К задаче 1
Самое простое – это определение этих величин в точке наивысшего подъема. Действительно, вертикальная составляющая скорости здесь равна нулю, поэтому скорость тела в данной точке равна горизонтальной составляющей, а ускорение, нормальное к вектору этой скорости – это ускорение свободного падения, поэтому
Вторая по простоте расчета – точка начала движения. Скорость в ней нам уже известна, осталось с ускорением разобраться. Ускорение свободного падения разложим на две составляющие: и
. Первая – перпендикулярна скорости, она-то нам и нужна. Определяем радиус:
Наконец, точка, в которой тело окажется через пол-секунды.
Наше тело будет лететь по горизонтали с постоянной скоростью, равной . По вертикали тело будет двигаться равнозамедленно до середины траектории (наивысшей точки), а затем равноускоренно. Определим, успеет ли тело добраться до апогея:
Простой прикидочный расчет показывает, что нужная нам точка находится на первой половине траектории, где тело еще двигается вверх. Тогда его скорость по оси :
Определим полную скорость тела в момент времени :
Угол наклона вектора скорости к горизонту в этот момент равен:
А можно было сразу и косинус найти:
Тогда искомый радиус кривизны траектории равен:
Ответ: м,
м,
м.
Задача 2.
Под каким углом к горизонту нужно бросить шарик, чтобы а) радиус кривизны траектории в начальный момент времени был в 8 раз больше, чем в вершине; б) центр кривизны вершины траектории находился бы на поверхности земли?
Запишем условие задачи так: а) , б)
.
а)Как и в предыдущей задаче, определяем радиус кривизны траектории в точке броска. Скорость нам известна, а нормальным ускорением будет проекция ускорения свободного падения:
Определим теперь радиус кривизны в вершине:
По условию :
б) Мы уже определили , осталась максимальная высота подъема.
Время определяем из условия равенства нулю вертикальной составляющей скорости так же, как мы это делали в предыдущей задаче:
Приравниваем и
:
Откуда .
Ответ: а) , б)
.
Кинематика
Кинематикой
называют
раздел теоретической механики, в котором
изучают механическое движение,
рассматриваемое без учета сил, приложенных
к движущимся объектам. Другими словами,
кинематика исследует изменения положения
тел в пространстве, происходящие с
течением времени.
Кинематика
точки
Способы
задания движения: естественный, векторный
и координатный.
Движение
тела или материальной точки считают
известным, если существует возможность
определить их положение относительно
выбранной системы отсчета в любой момент
времени. Задание движения точки может
быть осуществлено естественным или
координатным
способами. Геометрическое место всех
положений движущейся точки М
называют её траекторией.
Естественный
способ определения движения точки
П
ри
естественном способе определения
движения точки должны быть известны ее
траектория и дуговая координата как
функция времени s=s(t).
Должно быть указано также начало отсчета
и положительное направление движения.
Скорость
точки направлена по касательной к
траектории, а ее величина и направление
определены величиной и знаком производной
.
В
екторный
способ задания движения
Положение
точки М в пространстве определяется её
радиус–вектором
.
Траекторией является геометрическое
место концов вектора
Вектор скорости
Скоростью
точки М, определяющей как быстро и в
каком направлении она движется в данный
момент времени t,
называют предел
Вектор
скорости равен
первой производной от радиуса-вектора
точки по времени.
Так
как предельным положением секущей ММ1
является касательная к траектории
точки, то и вектор ее скорости
в данный момент времени t
направлен по касательной к траектории
в сторону движения.
Вектор ускорения
В
еличину
называют средним ускорением точки за
время
.
Предел отношения
,
характеризующий
изменение скорости в данный момент
времени t,
называют ускорением
точки. Вектор
ускорения равен
первой производной от вектора скорости
точки по времени или второй производной
от радиуса-вектора точки по времени.
Ускорение, направлено в сторону вогнутости траектории.
Координатный
способ задания движения
В
прямолинейной системе координат Oxyz
вектор
может быть представлен в виде
,
координаты точки
М, определяющие закон ее движения в
зависимости от времени t
;
—
нормированный базис Oxyz.
1.
Проекции скорости
на оси координат равны первым производным
от соответствующих координат точки по
времени:
2.
Проекции
ускорения
на оси
координат равны первым производным от
проекций скоростей точки или вторым
производным от соответствующих координат
точки по времени:
Величины (модули)
скорости и ускорения в декартовой
ортогональной системе координат
определяют по формулам
,
а
направления
и
характеризуют их направляющие косинусы
.
Задание движения
в естественных осях
Предельное
положение прямой, проходящей через
точки М
и М1
траектории L
точки М, когда М1
стремится к М, определяет касательную
к этой кривой в точке М. Обозначим
— единичный направляющий вектор
касательной к L
в точке М.
Соприкасающаяся
плоскость
в точке М кривой L
определяется как предельное положение
плоскости, содержащей в себе касательную
в точке М кривой и любую точку М1
на ней, когда М1
стремится к М.
Нормаль
к кривой в точке М, лежащую в соприкасающейся
плоскости, называют главной
нормалью к
кривой в т.М. Нормаль
к кривой, перпендикулярную соприкасающейся
плоскости, называют бинормалью.
Прямоугольную
систему взаимно ортогональных осей,
направленных по
называют естественными
осями кривой L.
Направление вектора скорости принимают
за положительное направление касательной
.
П
оложительное
направление главной нормали считают в
сторону вогнутости кривой, а бинормаль
направляют так, чтобы получившаяся
система осей
являлась правой.
К
ривизной
«k»
кривой L
в точке М
называют предел
.
Радиусом
кривизны
«»
кривой L
в точке М
называют величину обратную ее кривизне
в этой точке
.
Так,
например, дуга окружности длиной s,
опирающаяся на центральный угол
:
,
где
R
– радиус окружности, то радиус
кривизны
для окружности
Ускорение
точки можно разложить на тангенциальное
,
направленное по касательной к траектории
и характеризующее изменение величины
скорости, и нормальное
,
направленное по главной нормали к центру
кривизны траектории и определяющее
изменение направления
.
Так
как в естественных осях траектории
скорость может быть представлена в виде
,
то, дифференцируя это соотношение по
времени, получим ускорение:
,
Касательное ускорение
(проекция ускорения точки на касательную)
равно первой производной от величины
скорости от времени:
Нормальное
ускорение
Абсолютная
величина
может быть определена по формуле
.
Задача.
По заданным уравнениям движения точки
x
= 2t
(см),
(см)
определить
ее траекторию, положение, скорость,
ускорение, касательное и нормальное
ускорения, радиус кривизны траектории
в заданное время t1
= 2c.
Решение.
1
.Уравнение
траектории получим, исключив из уравнений
движения время:
—
парабола с вершиной в точке (0,-2).
Построим
траекторию по точкам:
2.Величина
скорости точки
;
см/с;
;
при t1=2с,
vx=2
см/с vy=6см/с;
3.
Величина ускорения точки
;
;
;
.
4.Касательное
ускорение
; при t1
= 2с
.
5.Нормальное
ускорение
;
при
t1
= 2c
:
.
6.Радиус
кривизны траектории
;
при t1
= 2c
см.
Кинематика
твердого тела
Твердые тела можно
рассматривать как совокупность точек,
расстояния между которыми в процессе
их перемещения остаются неизменными.
Угол между пересекающимися прямыми,
связанными с телом, сохраняется без
изменения, а параллельные прямые остаются
параллельными при его движении. Положение
точек твердого тела полностью определено,
если известно положение трех его точек,
не лежащих на одной прямой.
1. Простейшие
движения твердого тела
К
простейшим относятся поступательное
и вращательное движение
тела вокруг неподвижной оси.
1.1.
Поступательное движение.
При
поступательном движении любой отрезок
прямой (например, отрезок АВ), проведенный
в твердом теле, остается параллельным
самому себе.
Выберем подвижную
систему отсчета Axyz
, оси которой связаны с данным телом и
передвигаются вместе с ним.
Т. к. при поступательном
движении оси координат остаются
параллельными своему начальному
направлению, координаты любой точки
(например т. В) твердого тела в подвижной
системе отсчета остаются постоянными,
а ее движение тождественно движению т.
А.
Следовательно,
траектории движения всех точек одинаковы.
Одинаковыми по модулю и направлению
будут также скорости и ускорения твердого
тела при его поступательном движении.
Поступательное
движение твердого тела полностью
определяется движением одной его точки.
Все точки тела
движутся по идентичным траекториям, а
их скорости и ускорения одинаковы.
Скорости и
ускорения при простейших движениях
точек тела при его
поступательном
движении
-
Равномерное
прямолинейное движение (v=const)
по оси Х
x=x0+vt,
a=0.
-
Равномерное
криволинейное движение (v=const)
s=s0+vt,
где
s
− дуговая координата; s0
− дуговая координата в начальный момент
времени при t=0.
-
Равноускоренное
движение (a=const)
v=v0+
аτ
t
здесь
v0
− начальная
скорость при t=0.
1.2.
Вращательное движение твердого тела
Вращательным
движением
называется такое движение, при котором
любые две точки, принадлежащие телу,
остаются неподвижными.
П
рямая,
соединяющая эти точки называется осью
вращения все точки этой прямой также
остаются неподвижными. Остальные точки
тела движутся по окружностям в параллельных
плоскостях, перпендикулярных оси
вращения, а их центры расположены на
оси вращения.
Такое
движение вполне определяется углом
поворота тела
относительно некоторого начального
положения:
За
время t
угол
изменяется на величину .
Отношение
к t
называют средней угловой скоростью
тела за время t
,
.
Угловая
скорость тела:
.
Угловая
скорость
тела
равна первой
производной от угла поворота по времени.
Отношение
к t
называют средним угловым ускорением
.
Угловое ускорение:
Угловое
ускорение тела равно первой производной
от угловой скорости по времени.
Перемещения
S
и скорости точек
можно
определить из соотношений:
S
=
;
здесь
R
− радиус вращения.
.

Нормальное
(центростремительное)
и
тангенциальное (вращательное)
ускорения
определим из соотношений:
,
;
,
Полное
ускорение точки:
.
Модули
скоростей и ускорений точек
вращающегося тела пропорциональны
расстояниям от этих точек до оси вращения.
Равнопеременное
вращение тела
При
равнопеременном вращении твердого тела
вокруг неподвижной оси: ε=
const
Так
как
После
интегрирования с учетом начальных
условий получим:
ω=ω0+ε
t
φ
=φ0
+ω0t+ε
t2/2,
здесь ω0
и φ0
− угловая скорость и угол поворота в
начальный момент времени при t=0.
Пример
1.
Груз, опускаясь согласно уравнению
(м), приводит посредством троса в движение
барабан радиуса R
= 0,2м (рис.11.10). Определить скорость и
ускорение точки М барабана при t1=
2с.
Решение.
Скорость груза равна скорости точки М
барабана
Угловая
скорость барабана:
.
Угловое
ускорение
.
При
t1=2c:
,
;
Нормальное
ускорение:
,
Тангенциальное
ускорение:
,
Полное
ускорение:
.
Пример
2. Вал 1 с
зубчатым колесом 1 при вращении делает
n=300
об./мин. Колесо 1 находится в зацеплении
с зубчатым колесом 2. Радиусы делительных
окружностей колес составляют R1=10
см, R2=50
см. На валу 2 смонтирован барабан 3 радиуса
R3=
20 см, который вращается вместе с зубчатым
колесом 2. Найти скорость перемещения
груза 4, подвешенного на тросе.

Решение. 1.
Угловая скорость колеса 1:
ω1=
n/
30 = 10
с−1
2. Линейные скорости
точек, колес 1, 2 в точках контакта А равны
в любой момент времени:
vA=ω1R1=ω2R2
= 100
см/с
такую же скорость
имеют точки А1,
А2
.
3. Угловая скорость
колеса 2 и барабана 3:
ω2=
ω1R1
/R2=
2
с−1
4. Скорость
перемещения груза 4, такую же скорость
имеют точки на наружной поверхности
барабана (например, т. А3):
v4=ω2R3=
40
см/с
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Предмет кинематики:
Кинематикой называют раздел теоретической механики, в котором изучают механическое движение, рассматриваемое без учета сил, приложенных к движущимся объектам
Арифметика наряду с некоторыми другими науками, занимающимися исчислением, является наиболее отвлеченной из математических наук. Для нее достаточно одного понятия «число», и она не нуждается ни в каких других фундаментальных понятиях.
Геометрия не может ограничиться одним понятием числа. Она основывается также и на понятиях, связанных с геометрической формой (длина, поверхность, объем, угол). Геометрия часто пользуется понятием движения; линию геометрия определяет как след точки. Но если точка оставила след, то, следовательно, она передвигалась; фигура, образовавшая тело вращения, поворачивалась вокруг оси, т. е. тоже находилась в движении. Однако геометрию не интересует, совершалось ли это движение в течение многих тысячелетий или же в малые доли секунды. Понятие времени чуждо геометрии. Размерностью геометрических величин является размерность длины L в той или иной степени (площадь измеряется в L2, объем—в L3, размерность угла
К понятиям числа и геометрической формы добавляется новое понятие — «время» в науке, изучающей геометрические свойства движения и называемой кинематикой.
«В мире нет ничего, кроме движущейся материи, и движущаяся материя не может двигаться иначе, как в пространстве и во времени». Механическое движение, как и все прочие виды движения (теплота, электричество, ядерные процессы, органическая жизнь и пр.), не может происходить вне времени. Напомним, что под механическим движением мы понимаем один из видов движения материи, выражающийся в изменении с течением времени взаимных положений тел или частей тела. Положение тел, а также их механическое движение может быть отмечено лишь относительно других реальных или условных тел. Так, например, положение корабля может быть отмечено относительно берегов или относительно сетки географических долгот и широт; чтобы дать положение летящего самолета, можно указать направление, в котором этот самолет находится, и расстояние до него или же дать его координаты х, у и z относительно системы осей, определенным образом ориентированных в пространстве; чтобы дать положение поезда, можно назвать железную дорогу, по которой он движется, и его расстояние от станции. Реальное или условное твердое тело, по отношению к которому определяется положение других движущихся тел, называют системой отсчета.
Кинематика изучает изменения в положении тел по отношению к системе отсчета. Она дает возможность разобраться в многообразии видов механического движения и установить пространственные и временные меры движения (путь, скорость и т. п.), но не дает возможности предсказать, как будет двигаться тело под действием приложенных сил, или определить, какие силы должны быть приложены к телу для того, чтобы оно совершало то или иное движение. Понятие «силы» чуждо кинематике.
Формулы размерности кинематических величин содержат размерности длины L и времени Т, размерность же силы F или массы M в размерность кинематических величин не входит.
Кинематика является разделом теоретической механики, в котором изучают механическое движение, рассматриваемое без учета сил, приложенных к движущимся объектам. Изучение же механического движения в связи с силами, приложенными к движущимся объектам, составляет предмет динамики.
Кинематика наряду со статикой является необходимой предпосылкой динамики и, следовательно, всех других механических дисциплин. Но кинематика имеет также и непосредственное применение в технике. Техника широко пользуется законами и формулами кинематики. Большое значение кинематика имеет в теории механизмов и машин (TMM) .
История развития кинематики
Кинематика как самостоятельный раздел теоретический механики возникла в XIX столетии
Многие сведения из кинематики были известны еще в глубокой древности. Так, например, в сочинении «Механические проблемы», принадлежащем Аристотелю или кому-либо из его учеников, дан закон сложения двух прямолинейных равномерных движений. В древней астрономии пользовались равномерным круговым движением точки и знали, что проекция этой точки на прямую, лежащую в той же плоскости, совершает гармоническое колебание. Но появление отрывочных сведений еще не является возникновением науки. И хотя основателем кинематики иногда называют Галилея, кинематика как самостоятельный раздел теоретической механики возникла лишь в XIXв.
Упомянем о некоторых из открытий Галилея в области кинематики.
Галилей показал, что пути, проходимые движущимся телом, не всегда пропорциональны времени, и в своих исследованиях он пользовался понятием скорости. Но во времена Галилея считали возможным делить друг на друга только отвлеченные или одноименные числа, и потому Галилей не дал формулы скорости точки как отношения пройденного пути ко времени:
Тем более он не мог дать формулы скорости в данное мгновение, которая стала возможной лишь после открытия дифференциального исчисления. Обе эти формулы были введены в науку Эйлером в сочинении «Механика, т. е. наука о движении, изложенная аналитическим методом», изданном в Петербурге в 1736 г.
Совершенно новым понятием, к которому пришел Галилей, возможно, под влиянием работ Бенедетти, было понятие ускоренного прямолинейного движения, хотя Галилей не вводит термина «ускорение» и не приводит формулы ускорения как отношения изменения величины скорости ко времени.
Галилей дал законы равноускоренного движения и свободного падения тел, установив, что пути, проходимые падающим телом за последовательные равные промежутки времени, относятся как ряд нечетных чисел. Так, было установлено, что пути, проходимые свободно падающим телом, пропорциональны квадрату времени, и в современном обозначении
Законы падения тел Галилей вывел экспериментально, наблюдая качение шаров по наклонным плоскостям. Еще Леонардо да Винчи, великому предшественнику Галилея в области механики, была известна зависимость между длинами (и высотами) наклонных плоскостей и временем, в течение которого с этих плоскостей спускаются шары. Но эти работы Леонардо да Винчи не могли оказать влияния на развитие науки, они стали частично известны лишь после того, как в 1797 г. их опубликовал Вентури. Ко времени их опубликования эти работы имели только историческое значение.
Галилей показал, что движение тела, брошенного горизонтально или под углом к горизонту, состоит из двух независимых друг от друга движений: горизонтального равномерного и вертикального равнопеременного. Этим он не только ввел в употребление законы параллелограмма перемещений (см. §27), но в принципе обосновал введенный значительно позднее (в 1742 г.) Маклореном координатный способ определения движения (см. § 21), при котором движение точки рассматривают по движениям ее проекций на неподвижные оси.
Кинематика солнечной системы была создана в развитие теории Коперника астрономом Иоганном Кеплером и выражена в трех законах (1609 и 1619 гг.). Хотя законы Кеплера относятся только к движению планет, они имели громадное влияние на развитие всей теоретической механики.
Гюйгенс установил, что при движении точки по окружности центробежная сила пропорциональна квадрату скорости и обратно пропорциональна радиусу круга, откуда позднее было установлено,что при всяком криволинейном движении нормальное ускорение пропорционально квадрату скорости и обратно пропорционально радиусу кривизны.
Эйлер, по-видимому, первый (1772 г.), а за ним уже Ампер (1834 г.) предложили выделить кинематику в самостоятельный раздел механики — учение о.механическом движении без учета сил, приложенных к движущимся объектам.
Гаспар Кориолис исследовал составное движение и доказал (1831 г.) знаменитую теорему, позднее получившую название теоремы Кориолиса. Эта теорема является основной в механике относительного движения и имеет огромное значение для различных отраслей науки. Несколько позднее на основе этой теоремы в кинематике составного движения точки стали применять ускорение Кориолиса.
Понятие полного ускорения как величины, характеризующей изменение скорости в данное мгновение, установлено сравнительно недавно. Эта честь принадлежит Понселе, впервые начавшему применять понятие и термин «ускорение» в своих лекциях (1841 г.), и Резалю, впервые применившему его в учебнике (1851 и 1862 гг.).
Луи Пуансо в работе «Новая теория вращения тел» (1834 г.) обогатил кинематику рядом блестящих исследований и дал наглядные геометрические интерпретации. В частности, он изучил сложение вращений и вращение тела около неподвижной точки. Эта геометрическая теория позднее была развита Понселе, Шалем, Мебиусом и др.
По-видимому, первую монографию по кинематике под названием «Трактат по чистой кинематике (движение, рассматриваемое независимо от его причин)» издал Резаль (1862 г.). По прикладной кинематике заслуживает упоминания книга проф. П. О. Сомова «Кинематика подобно-изменяемой системы двух измерений» (1885 г.).
В настоящее время кинематика является хорошо исследованной областью науки, и дальнейшее развитие кинематики происходит преимущественно в виде применения ее к различным частным задачам техники.
Кинематика точки
В кинематике изучается движение материальных объектов (точки, твердого тела, сплошной среды) без рассмотрения причин, вызывающих или изменяющих это движение. Такое изучение движения материальных объектов не требует учета материальных характеристик этих объектов — массы, моментов инерции и др.
В кинематике рассматривают такие характеристики движения, как скорость и ускорение точки, угловые скорость и ускорение твердого тела и др.
Движение материальных объектов, в частности материальной точки, совершается в пространстве при изменении времени. Пространство в классической механике считается эвклидовым, не зависящим от времени и движущихся в нем материальных объектов. Время принимается универсальным, не связанным с пространством и не зависящим как от движения наблюдателя, с точки зрения которого рассматривается движение материального объекта, так и от движения самого материального объекта.
Движение материального объекта всегда следует рассматривать относительно какого-либо твердого тела — тела отсчета, т.е. движение является относительным. С телом отсчета скрепляют систему осей координат, например декартовых, принимая ее за систему отсчета, относительно которой рассматривается движение материального объекта. Системой отсчета для трехмерного эвклидова пространства не может служить одна точка, линия или плоскость, а должны быть три оси, не обязательно прямолинейные, но не лежащие в одной плоскости.
Независимость времени от движения означает, что во всех системах отсчета, произвольно движущихся друг относительно друга, оно одно и то же, если за начало отсчета выбрано общее для них событие.
В кинематике сплошной среды телами отсчета, относительно которых рассматривается движение, могут быть также деформируемые тела.
В курсе теоретической механики обычно изучаются движение точки и твердого тела. Соответственно кинематика делится на кинематику точки и кинематику твердого тела. В настоящем курсе дополнительно излагаются также основы кинематики сплошной среды.
В кинематике точки рассматриваются характеристики движения точки, такие, как скорость, ускорение, и методы их определения при различных способах задания движения. Важным в кинематике точки является понятие траектории. Траекторией точки называется геометрическое место ее последовательных положений в пространстве с течением времени относительно рассматриваемой системы отсчета.
По виду траекторий движения точки делятся на прямолинейные и криволинейные. Форма траектории зависит от выбранной системы отсчета. Одно и то же движение точки может быть прямолинейным относительно одной системы отсчета и криволинейным относительно другой. Например, если с летящего горизонтально Земле с постоянной скоростью самолета отцеплен груз, то, пренебрегая сопротивлением воздуха и учитывая только действие силы тяжести, получим в качестве траектории движения центра масс груза относительно самолета прямую линию, а относительно Земли — параболу.
Скорость точки
Одной из основных характеристик движения точки является ее скорость относительно выбранной системы отсчета, которая изображена в виде декартовой прямоугольной системы координат (рис. 1).
Рис. 1
Положение движущейся точки 








Средней скоростью 


Средняя скорость параллельна вектору 

Введем скорость точки 

Скорость точки направлена в сторону ее движения по предельному направлению вектора 



Начало радиуса-вектора движущейся точки можно выбрать в любой неподвижной точке. На рис. 1 представлен случай, в котором радиусом-вектором является также р с началом в точке 





Размерность скорости в 

Часто скорость выражают в км/ч; 
Для характеристики переменного вектора используют понятие его годографа. Годографом вектора называют геометрическое место его концов, если переменный вектор в различные моменты времени откладывать от одной и той же общей точки.
Траектория точки, очевидно, является годографом радиуса-вектора 





Первая производная по времени от радиуса-вектора есть скорость точки, направленная по касательной к траектории. Следовательно, параллельно касательной к годографу направлена первая производная по скалярному аргументу от любого переменного вектора.
Годографом вектора скорости является линия, на которой располагаются концы этого вектора в различные моменты времени, если их начала совместить в одной общей точке. Для построения годографа вектора скорости выбираем точку, например 


Рис. 2
При равномерном движении точки по прямой годографом вектора скорости является одна точка; при неравномерном движении — отрезок прямой, параллельный траектории.
Ускорение точки
Пусть движущаяся точка 









Средним ускорением точки 






Ускорением точки 


Рис. 3
Таким образом, ускорение точки равно первой производной по времени от скорости точки.
Приращение скорости 

Размерность ускорения в 
Векторный способ изучения движения
Движение точки относительно рассматриваемой системы отсчета при векторном способе изучения движения задается радиусом-вектором 
Задание векторного уравнения движения (3) полностью определяет движение точки.
Траекторией точки является годограф радиуса-вектора. Скорость точки направлена по касательной к траектории и вычисляется, согласно ее определению, по формуле
Для ускорения точки соответственно имеем
Таким образом, если движение точки задано векторным способом, то скорость и ускорение вычисляются по формулам (4) и (5).
Определение скорости и ускорения точки сводится к чисто математической задаче вычисления первой и второй производных по времени от радиуса-вектора этой точки. Для практического вычисления скорости и ускорения обычно используют координатный и естественный способы изучения движения. Векторный способ ввиду его краткости и компактности удобен для теоретического изложения кинематики точки.
Рис. 4
Координатный способ изучения движения
Задание движения и траектория:
Движение точки можно изучать используя любую систему координат. Рассмотрим случай декартовых прямоугольных осей координат, которые являются также системой отсчета, относительно которой рассматривается движение точки. Движение точки в декартовых координатах считается заданным, если известны координаты точки как непрерывные, дважды дифференцируемые функции времени (рис. 5), т. е. заданы уравнения движения точки в декартовых координатах:
Уравнения движения точки в декартовых координатах полностью определяют движение точки. Они позволяют найти положение точки, ее скорость и ускорение в любой момент времени. Уравнения движения (6) есть также уравнения траектории точки в параметрической форме. Параметром является время 

Это и есть уравнения траектории в координатной форме. Траекторией является линия пересечения двух поверхностей. Эти поверхности являются цилиндрическими, так как их уравнения не содержат одной из координат: первое — координаты 



Исключая время из уравнений движения в другом порядке, получим траекторию точки как линию пересечения двух других цилиндрических поверхностей, например
При исключении параметра 
Рис. 5
Пример 1.
Даны уравнения движения точки по плоскости
где 


Решение. Уравнения движения (а) есть уравнения траектории точки в параметрической форме с параметром 


так как
Уравнение (б) есть уравнение прямой, отсекающей на осях координат отрезки 

Рис. 6
Из уравнений (а) следует, что координаты точки 








Траектория точки 
Скорость в декартовых координатах
Разложим радиус-вектор и скорость точки на составляющие, параллельные осям координат (рис. 7). Получим
где 


Учитывая (7), согласно определению скорости, имеем
так как 


Проекция скорости точки на какую-либо координатную ось равна первой производной по времени от соответствующей координаты этой точки. По проекциям определяют числовое значение (модуль) скорости и косинусы углов вектора скорости с осями координат:
Рис. 7
Рис. 8
Если точка движется в плоскости, то, выбрав оси координат 

Соответственно
Для прямолинейного движения точки координатную ось, например Для прямолинейного движения точки координатную ось, например Ох, направляют по траектории (рис. 8). Тогда 



Уравнение годографа вектора скорости
Известны уравнения движения точки в декартовых координатах. Получим уравнения годографа вектора скорости. На рис. 9, а изображены траектория точки и несколько векторов скорости в выбранном масштабе для различных моментов времени, а на рис. 9,6 представлен годограф вектора скорости этого движения. Точке 

Координаты точки 

Если оси координат для годографа вектора скорости параллельны соответствующим осям координат, относительно которых заданы уравнения движения точки, то
Рис. 9
Параметрические уравнения годографа вектора скорости принимают такую форму:
Исключая из этих уравнений параметр 
Годограф вектора скорости дает наглядное представление о скоростях движущейся точки в разные моменты времени. Он также позволяет определить направление вектора ускорения, так как ускорение параллельно касательной к годографу вектора скорости.
Ускорение точки в декартовых координатах
Разложим ускорение точки на составляющие, параллельные осям декартовой системы координат. Получим
где 
Сравнивая (11) и (12), получаем формулы для проекций ускорения на оси декартовой системы координат:
Проекция ускорения на какую-либо координатную ось равна второй производной по времени от соответствующей координаты движущейся точки.
Числовое значение ускорения и косинусы углов вектора ускорения с осями координат определяем по формулам
При движении точки по плоскости оси 



Соответственно
Для прямолинейного движения ось 





Соответственно для числового значения ускорения имеем
Рис. 10
Пример 2.
Движение точки по плоскости 
где 



Решение. Уравнение траектории в координатной форме находим исключением времени из уравнений движения. Для этого поделим первое уравнение на 



так как
При 


Для момента времени 
По проекциям устанавливаем направление скорости по касательной к траектории и направление ускорения по радиусу-вектору к точке 



Если выбрать для годографа вектора скорости оси 



Исключая из этих параметрических уравнений годографа вектора скорости время г, получим следующее его уравнение в координатной форме:
На рис. 10,6 отмечены три изображающие точки годографа 





Естественный способ изучения движения
Естественный способ задания движения:
При естественном способе задания движения задаются траектория и закон движения точки по траектории. Движение точки рассматривается относительно фиксированной системы отсчета. Задание траектории относительно выбранной системы отсчета осуществляется различными способами: уравнениями (возможно, вместе с неравенствами), словесно или в виде графика (в каком-либо масштабе). Например, можно сказать, что траекторией автомобиля, принимаемого за точку, является дуга окружности радиусом 10 км и т. д.
Для задания закона движения точки по траектории необходимо выбрать на траектории точку 



Если в момент времени 







Рис. 11
От задания движения в декартовых координатах можно перейти к его заданию естественным способом. Закон движения точки по траектории в дифференциальной форме через декартовы координаты выражается в виде
и после интегрирования —в конечной форме
если
За начало отсчета расстояний принята точка траектории, в которой находится движущаяся точка в начальный момент времени. Знак у квадратного корня определяется выбором направления положительных и отрицательных расстояний.
Скорость точки при естественном способе задания движения
Пусть движение точки задано естественным способом, т. е. заданы траектория точки и закон ее движения по траектории 


или 




Единичный вектор 









При 



Величина 

Рис. 12
Естественное задание движения точки полностью определяет скорость точки по величине и направлению. Алгебраическую скорость находят дифференцированием по времени закона изменения расстояний. Единичный вектор 
Геометрические понятия. Дифференцирование единичного вектора
Радиус кривизны и соприкасающаяся плоскость. В точке 

















Радиусом кривизны кривой 

Вычислим радиус кривизны дуги окружности радиусом 



т. е. для окружности радиус кривизны в каждой ее точке один и тот же и совпадает с радиусом окружности.
Участок кривой из малой окрестности какой-либо ее точки лучше всего аппроксимирует по сравнению с дугами других окружностей элемент дуги окружности, радиус которой равен радиусу кривизны кривой в рассматриваемой точке.
Рис. 13
Рис. 14
Для определения понятия соприкасающейся плоскости проводим вспомогательную плоскость через две пересекающиеся прямые 




Рис. 15
В случае плоской кривой соприкасающейся плоскостью для всех точек кривой является сама плоскость, в которой расположена эта кривая.
Естественный трехгранник
Построим в точке 


Перпендикулярно касательной 


Нормаль, перпендикулярная главной нормали, называется бинормалью. Единичный вектор 



Три взаимно перпендикулярные оси 






Дифференцирование единичного вектора
Вычислим производную от единичного вектора по скалярному аргументу. В кинематике точки скалярными аргументами обычно являются время и расстояние по траектории. В качестве единичного вектора выберем 
Производная 

Дифференцируя по времени обе части этого тождества, получим
Каждый из сомножителей этого выражения не равен нулю, поэтому векторы 



Годографом вектора 
Рис. 16
По определению модуля производной от вектора имеем
Длина малой хорды
где 
Подставляя это значение в (14) и используя выражение для радиуса кривизны и переменную 
Радиус кривизны 
Вектор 







Если имеем любой другой вектор 

где 


Формулу (15′) можно выразить векторным произведением:
где 








Ускорение точки при естественном способе задания движения
Учитывая, что для скорости точки имеем
в соответствии с определением ускорения и (15) получаем
так как 


Получено разложение ускорения точки по осям естественного трехгранника. Часть ускорения
называется касательной составляющей ускорения. Другая часть ускорения
называется нормальной составляющей ускорения. Она направлена внутрь вогнутости траектории, т. е. в сторону положительного направления единичного вектора главной нормали 
Из (17) получим формулы для проекций ускорения на естественные оси. Имеем:
Проекция ускорения на положительное направление касательной, совпадающее с направлением единичного вектора 


Учитывая ортогональность 

Рис. 17
Нормальная составляющая ускорения 





При 




Если 




Случаи обращения в нуль касательного ускорения получают из условия
Это условие выполняется все время, пока 





Рис. 18
Рис. 19
Рис. 20
Случаи обращения в нуль нормального ускорения следуют из условия
Это условие выполняется при 


Случаи обращения в нуль касательного и нормального ускорений, а также общие формулы для них показывают, что касательное ускорение характеризует изменение вектора скорости по величине, а нормальное— по направлению.
Рис. 21
Пример 3.
Точка 






Решение. Скорость и проекции ускорения на естественные оси определяем по формулам (16) и (19). Имеем:
Скорость обращается в нуль, если 

Подставляя в формулы для 


Касательное ускорение в этот момент времени обращается в нуль, так как алгебраическая скорость достигает своего максимума.
Частные случаи движения точки
Равномерное движение
При равномерном движении точки по траектории любой формы 


то
если принять при 
Равнопеременное движение
Равнопеременным движением называют такое движение по траектории любой формы, при котором касательное ускорение 




Получим формулы для алгебраической скорости и расстояния при равнопеременном движении. Имеем:
следовательно,
если принять при 
Так как 
если при 
Из (21) и (22) можно определить любые две неизвестные величины, если известны остальные три величины, входящие в эти формулы.
Скорость и ускорение точки в полярных координатах
Рассмотрим движение точки по плоскости. В этом случае движение можно задать в полярных координатах. Для этого примем какую-либо точку 




Полярный угол считается положительным, если он откладывается от полярной оси до радиуса-вектора против часовой стрелки. Радиус-вектор как расстояние от точки 

Уравнения (23) называются уравнениями движения точки в полярных координатах. Они являются также уравнениями траектории точки в параметрической форме. Если из (23) исключить параметр — время 
Введем единичный вектор 


Для скорости 
Согласно (15), для производной по времени от единичного вектора имеем
где вместо единичного вектора 




Рис. 22
Это разложение скорости точки на радиальную 

где
Для проекций скорости на оси, положительные направления которых совпадают с направлениями единичных векторов 

Они соответственно называются радиальной и трансверcальной скоростями. В зависимости от знаков производных 

Используя (24), определяем ускорение точки в полярных координатах. Имеем
Выполняя дифференцирование, получим
Для производной по времени от единичного вектора 
dp°ldt =
так как вектор 




После подстановки в выражение для ускорения производных от единичных векторов и объединения слагаемых имеем
Получили разложение ускорения точки на радиальную 

Для проекций ускорения на оси 

Ускорение 

Это выражение для трансверсального ускорения широко используется при рассмотрении движения планет и искусственных спутников Земли.
Рис. 23
Радиальная и трансверсальная составляющие ускорения взаимно перпендикулярны, поэтому
Отметим, что для неподвижных осей координат 


Для подвижных осей 





Частные случаи
1. Если 


Эти величины совпадают с ранее полученными выражениями для них при изучении движения точки в декартовых координатах. Только расстояние 

2. При 

В этих формулах 

Пример 4.
Движение точки задано в полярных координатах уравнениями
где 



Решение. Исключая из уравнений движения параметр 
Это уравнение кардиоиды (рис. 24).
Проекции скорости и ускорения на полярные оси определяем по формулам (26) и (28). Имеем:
Для момента времени 
Векторы скорости и ускорения для моментов времени 

Пример 5.
Движение точки задано в прямоугольной системе координат уравнениями
где 


Определить уравнение траектории в координатной форме, а также скорость, ускорение, касательное и нормальное ускорения, радиальную и трансверсальную составляющие скорости и радиус кривизны траектории в момент времени 
Решение. Уравнения движения представляют собой уравнение траектории в параметрической форме. Для определения уравнения траектории в координатной форме следует из уравнений движения исключить время 
следовательно,
Это уравнение параболы. He все точки параболы являются точками траектории. Так как при любых значениях 


Таким образом, точки траектории удовлетворяют условиям
Часть точек параболы, не являющихся точками траектории, дополнительно появилась при исключении из уравнений движения параметра
Рис. 24
Рис. 25
На рис. 25 приведена траектория точки. Траекторией является только часть параболы 
Определяем проекции скорости на оси и скорость в любой момент времени:
При
Проекции ускорения в любой момент времени определяем по формулам
При
Для модуля касательного ускорения при 
Нормальное ускорение при
Для вычисления радиальной скорости предварительно определяем радиус-вектор:
Тогда при 
Трансверсальную скорость при 
Координаты движущейся точки при
По координатам отмечаем положение движущейся точки на траектории и, выбрав масштабы, изображаем векторы скорости и ускорения по их проекциям на оси. Для радиальной составляющей скорости 


Для трансверсальной составляющей скорости определено только числовое значение. Из рис. 25 следует, что направление вектора 






Для проверки правильности определения 
Нормальное ускорение 



Определим радиус кривизны траектории в момент времени 
Скорость и ускорение точки в цилиндрических координатах
При движении точки в пространстве иногда используются цилиндрические оси координат. Они получаются добавлением к полярным координатам на плоскости координаты 

Положение точки 
Разложение векторов скорости и ускорения на составляющие, параллельные осям цилиндрической системы координат 


где 




Представим радиус-вектор 

Скорость точки получим дифференцированием радиуса-вектора 
Первое слагаемое в этом выражении вычислялось при выводе формулы (24) для скорости точки в полярных координатах. Было получено
Во втором слагаемом постоянный по модулю и направлению единичный вектор 
Сравнивая (32) с (30), получаем формулы для проекций скорости на цилиндрические оси координат:
Так как составляющие скорости 


Ускорение точки получим дифференцированием по времени вектора скорости:
Первое слагаемое в этом выражении вычислялось при выводе ускорения в полярных координатах:
Во втором слагаемом при дифференцировании выносим вектор 
Сравнивая его с (31), получаем формулы для проекций ускорения на цилиндрические оси координат
Составляющие ускорения 
Скорость и ускорение точки в криволинейных координатах
Положение точки в пространстве в декартовой системе координат определяется тремя координатами: 

Движение точки в криволинейных координатах задается уравнениями
Радиус-вектор 
Выберем точку 








Через каждую точку пространства можно провести три координатные линии, пересекающиеся в этой точке. Вдоль каждой из координатных линий изменяется только одна криволинейная координата, а две другие сохраняют постоянные значения, соответствующие рассматриваемой точке.
Рассмотрим частные производные 



В общем случае базисные векторы могут быть неортогональными. Используя базисные векторы, получаем
или
Скалярные величины 
Для вычисления 
где 
и, следовательно
Скорость точки в криволинейных координатах
При движении точки ее радиус-вектор через обобщенные координаты зависит от времени, т. е.
По определению скорости и правилу дифференцирования сложных функций имеем
где 
Используя (36), из (39) получаем
Получено разложение скорости по осям, направление которых совпадает с направлением базисных векторов.
Для величин составляющих скорости по базисным векторам из (40) имеем
В случае ортогональности базисных векторов по формуле (40′) вычисляются проекции вектора скорости на оси, направленные по базисным векторам. В этом случае для квадрата скорости получаем
Ускорение в ортогональных криволинейных координатах
Криволинейные координаты считаются ортогональными, если ортогональны их базисные векторы. В приложениях обычно встречается этот случай. Для ортогональных базисных векторов проекции ускорения точки на их направления вычисляем по формулам
Выражая базисные векторы по (36), из (41) получим
Для дальнейших преобразований (42) следует воспользоваться тождествами
Тождество (43) представляет собой известное правило дифференцирования скалярного произведения двух векторов. Докажем справедливость тождеств Лагранжа (44) и (45). Тождество (44) получим из (39) дифференцированием 



Аналогично,
т.е.
Справедливость тождества (44) установлена.
Для доказательства тождества (45) продифференцируем 

Учитывая, что 
Правые части (46) и (47) совпадают, так как они отличаются только порядком частного дифференцирования, от которого частные производные не зависят. Следовательно, тождество (45) доказано. Используя тождества, преобразуем выражение в скобках из (42). Получим
Учитывая, что 

По формулам (49) можно вычислить проекции ускорения точки на оси, направленные по базисным ортогональным векторам.
Скорость и ускорение в сферических координатах
В качестве примера использования полученных формул вычислим скорость и ускорение точки в сферических координатах. Сферическими координатами точки 








Базисные векторы оказались ортогональными. Декартовы координаты 

По формулам (38) вычисляем коэффициенты Ламэ. Имеем:
Проекции скорости на оси, направленные по базисным векторам, определяем согласно (40′). Получаем
После этого
Рис. 27
Для квадрата скорости и функции 
Проекции ускорения на оси, направленные по базисным векторам, вычисляем по формулам (49). Имеем
Для вектора ускорения получаем
Модуль ускорения будет иметь следующее выражение:
Аналогично можно вычислить ранее полученные скорость и ускорение точки в цилиндрических координатах.
Справочный материал по кинематике точки
Кинематика изучает механическое движение тел без учета факторов, обусловливающих это движение.
Основными понятиями в кинематике являются движение, ‘пространство и время.
Движение, как было отмечено раньше, обнимает собой все происходящие во вселенной изменения.
Пространство и время представляют собой формы существования материи, без которых немыслимы ни существование, ни движение материи.
Отделить движение от материи нельзя, так же как нельзя себе представить движение материи, происходящее вне времени и пространства.
В кинематике, так же как и вообще в теоретической механике, мы будем рассматривать простейшую форму движения материи — механическую, т. е. перемещение тел в пространстве и во времени. Движение тела будет кинематически определено, если в каждый данный момент времени будет известно положение тела относительно выбранной системы отсчета. Положение тела при его движении определяется по отношению к какой-либо системе координат, связанной с другим телом, например с Землей.
Однако при изучении движения некоторых механических систем эта система отсчета может оказаться недостаточно точной. Так, при опыте с маятником Фуко, где заметно сказывается вращение Земли, за «неподвижную» систему следует принять Солнце. В других вопросах и этого оказывается недостаточно. Тогда неподвижную систему придется перенести на «неподвижную» звездную систему.
В том случае, когда положение рассматриваемого тела остается с течением времени неизменным по отношению к выбранной системе отсчета, про такое тело говорят, что оно находится в покое по отношению к данной системе отсчета.
По отношению к различным системам отсчета тело может совершать различные движения или находиться в покое. Так, например, если тело находится в относительном покое по отношению к Земле, оно уже не будет находиться в покое по отношению к Солнцу, так как это тело будет двигаться вместе с Землей вокруг Солнца. В этом смысле покой и движение тела относительны и зависят от выбранной системы отсчета.
В последующем изложении, если об этом не будет сделано специальной оговорки, мы будем рассматривать движение материальной точки или абсолютно твердого тела, происходящее по отношению к координатным осям, связанным с Землей, которую условно будем считать неподвижной.
При вычислениях все линейные величины мы обычно будем выражать в метрах или сантиметрах, а время в секундах.
При измерении времени следует различать понятия: начальный момент времени, момент времени и промежуток времени.
Начальным моментом времени называется произвольный момент.времени, принятый условно за начало отсчета времени 
Под моментом времени понимается число секунд, прошедшее от начального момента времени, соответствующего началу движения тела (или когда мы начали наблюдать за этим движением), до данного момента.
Промежуток времени определяет число секунд, отделяющих два каких-либо последовательных Момента времени
Способы задания движения точки
Первый способ задания движения точки
Изучение кинематики начнем с рассмотрения движения точки.
Пусть точка М (рис. 139) совершает движение, описывая в пространстве кривую АВ. Эта непрерывная кривая, которую описывает точка М при своем движении, называется ее траекторией. Если траектория прямая, то движение точки называется прямолинейным, если же кривая, то — криволилейным.
Очевидно, что траектория точки есть годограф радиуса-вектора 



Если зависимость (66) задана, то тем самым можно определить и положение точки М в пространстве в любой момент времени. Это есть первый способ задания движения точки.
Рис. 139.
Второй способ задания движения точки
Однако движение точки может быть задано иначе. В самом деле, положение движущейся точки в пространстве в данный момент определяется тремя координатами 
Если известна зависимость координат от времени, то .можно в любой момент указать положение, движущейся точки в пространстве.
Поэтому второй способ задания движения точки заключается в том,что нам даны уравнения движения (67). Если точка движется в плоскости, то ее положение будет определяться двумя уравнениями:
Исключая, например, из уравнений (67а) время t, получим уравнение траектории точки, движущейся в плоскости:
Уравнения (67) и (67а) могут рассматриваться так же, как параметрические уравнения траектории, причем роль параметра играет время t.
Координаты 


Если движение точки происходит в плоскости, например, хОу (рис. 140), то уравнение (66) может быть сведено к заданию модуля 

Уравнения (69) называются уравнениями движения точки в полярных координатах.
Между уравнениями движения (67а) и (69) имеется такая же зависимость, как между прямоугольными и полярными координатами. Из треугольника ОАВ (рис. 140) имеем: 

Рис. 140.
Третий способ задания движения точки
Наконец, движение точки М может быть задано по третьему способу. Пусть точка М движется по заданной траектории (рис. 139).
Для определения положения точки М в данный момент времени выберем на ее траекторий неподвижную точку О, которую назовем началом отсчета. Тогда положение точки в данный момент будет определяться расстоянием ее от начала отсчета. Условимся пройденные расстояния считать положительными, если точка находится по одну сторону от начала отсчета, и отрицательными — если по другую. Следует заметить, что при 




Уравнение (70) называется уравнением движения, или законом движения точки.
Заданием траектории и уравнения движения (70) вполне определяется положение движущейся точки в пространстве в любой момент времени. В этом заключается третий способ задания движения точки. ‘
Задача №1
Для следующих случаев задания движения точки требуется:
a) найти уравнение траектории и вычертить ее;
b) указать начальное положение точки на ее траектории;
c) найти закон расстояний, приняв за начало отсчета путей начальное положение точки;
d) показать направление движения точки по ее траектории.
Решение. Для вычерчивания траектории мы могли бы дать времени 


Таблица 5 Таблица 6
Решая первое из уравнений движения относительно 

Полученное уравнение является уравнение параболы. Посторим ее (рис. 141) по точкам (талб. 6).
Рис. 141.
Для нахождения начального положения точки на ее траектории подставим в заданные уравнения движения значение 


Закон пройденных расстояний (70) найдется, если воспользоваться известной из дифференциальной геометрии зависимостью между дифференциалом дуги 


но так как 
Отсюда находим:
Так как по условию начало отсчета следует взять в начальном положении точки, то, полагая в последнем выражении 

Направление движения точки по траектории найдем, если в уравнения движения точки (67а) или (70) вместо t подставим ряд положительных возрастающих значений, например t = 0, t = 1, t = 2 (табл. 5). Мы видим, что при возрастании t возрастают также и координаты движущейся точки, а поэтому движение точки будет происходить в направлении, показанном стрелкой (рис. 141).
Ответ: прямая линия
Решение. Для исключения времени t возведем обе части равенства каждого из уравнений в квадрат и сложим; тогда имеем:
Отсюда заключаем, что траектория точки — окружность радиусом 3 единицы и с центром в начале координат (рис. 142).
Рис. 142.
При 


далее:
откуда
Из уравнений движения видно, что при возрастании t абсцисса х уменьшается, ордината .у увеличивается, а поэтому точка будет двигаться против часовой стрелки в направлении, указанном стрелкой.
Указание: для нахождения уравнения движения берем производную по времени t от координат х и у, после чего получаем 


Ответ: прямая
Задача №2
С дирижабля, летящего на высоте 600 м, сбросили груз, движение которого в недрах и секундах выражается уравнениями: 
Решение. Исключая из уравнений движения время t, найдем, что траекторией груза будет парабола: 



Задача №3
Движение точки в сантиметрах и секундах выражается уравнением:
Построить график расстояний.
Решение. Графиком расстояний называется кривая зависимости пройденного расстояния В нашем случае кривая расстояний представляет собой синусоиду. Построим ее по точкам (табл. 7).
Таблица 7
Имея график расстояний (рис. 142а), можно для любого момента времени найти величину пути, пройденного движущейся точкой от начала отсчета, а следовательно, и указать положение точки на ее траектории, которая должна быть дана.
Рис. 142а.
Скорость точки
Бели точка движется по траектории так, что в любые два равных промежутка времени она проходит равные пути, то такое движение точки называется равномерным.
Скоростью равномерного движения называется путь, пройденный точкой в единицу времени, например в секунду, минуту, час и т. п. Пусть в начальный момент точка находилась на расстоянии 
откуда расстояние точки s от начала отсчета в любой момент времени t будет:
Уравнение (71) называется уравнением равномерного движения.
Найдем теперь скорость любого движения точки. В этом случае она определяется в зависимости от того, как задано движение точки.
Пусть движение точки задано по первому способу, т. е. по уравнению (66); допустим, что в момент t движущаяся точка находилась в положении М, определяемом радиусом-вектором 
За малый промежуток времени 




Если бы точка М двигалась не по дуге кривой 





Истинную скорость движущейся точки в рассматриваемом положении мы должны принять, как векторную величину, равную пределу отношения вектора перемещения 

Что касается направления истинной скорости, то она, следуя направлению хорды, будет в пределе направлена по касательной к траектории в данной точке.
Следовательно, вектор скорости равен векторной производной радиуса-вектора по времени и направлен по касательной к траектории в сторону движения точки.
Для нахождения скорости точки, если задано ее движение по второму способу, т. е. по уравнениям (67), выразим сначала радиус-вектор 
Тогда на основании уравнения (72) имеем:
С другой стороны, обозначая проекции скорости на координатные оси через 
Сравнивая коэффициенты при одинаковых единичных векторах, найдем проекции скорости на координатные оси:
В дальнейшем первые производные по времени будем обозначать 
Итак, проекция скорости на неподвижную ось равна первой производной от соответствующей координаты по времени. Модуль скорости находим по выражению:
Направление же вектора скорости к координатным осям определится через косинусы углов, которые составляет вектор скорости с осями координат.
Пусть теперь движение точки задано траекторией и законом движения, выраженным формулой (70).
Допустим, что за промежуток времени 

Заменим движение точки М по дуге кривой 


Направление же средней скорости воображаемого движения будет совпадать с направлением вектора перемещения 

Рис. 143.
Увеличивая число хорд и тем самым уменьшая их длины, мы будем точнее приближаться к действительному криволинейному движению, так как разности между дугами 

Что касается направления истинной скорости, то она, следуя направлению хорды, будет в пределе направлена по касательной к траектории в данной точке.
Умножив числитель и знаменатель последнего равенства на 
Но так как предел отношения длины хорды к длине дуги равен единице, а направление 


Отсюда находим:
где

Задача №4
Движение точки в метрах и секундах выражается уравнениями:
Найти уравнение траектории, величину и направление скорости.
Решение. Уравнение траектории прямая
Величина скбрости найдется по формуле (74):
Направление же скорости определяется косинусами углов, которые составляет вектор скорости с координатными осями:
откуда
Задача №5
Движение снаряда в метрах и секундах выражается уравнениями:
Требуется найти: уравнение траектории; высоту 


Рис. 144.
Решение. Траекторией снаряда является равнобочная парабола:
Дальность полета снаряда определится, если принять в уравнении траектории 




Для нахождения высоты полета снаряда следует в уравнении траектории принять: 
Найдем теперь проекции скорости снаряда на координатные оси:
В наивысшей точке вектор скорости горизонтален, а потому:
Для определения скорости снаряда в момент, когда он пересекает ось Ох, вычислим время полета снаряда, взяв хотя бы первое из уравнений движения и приняв
откуда находим:
Направление скорости определится косинусами углов:
откуда
Задача №6
Определить траекторию точки, если проекции ее скорости на координатные оси в сантиметрах и секундах выражаются уравнениями: 

Решение. Найдем сначала уравнения движения точки, для чего проинтегрируем заданные уравнения проекций скорости:
Постоянные интегрирования 




Подставляя вместо 


Исключая из полученных уравнений движения время t, найдем, что траекторией точки является окружность 
Задача №7
Даны графики скоростей двух точек, движущихся по одной прямой от одного начального положения (рис. 145). По истечении какого времени точки встретятся?
Решение. Вообще графиком скорости называется кривая зависимости скорости от времени:
Между пройденным расстоянием и величиной скорости точки имеется зависимость (75), из которой найдем элементарное перемещение точки
Рис. 145.
Расстояние же s, пройденное точкой между моментами 

Отсюда заключаем, что путь, пройденный точкой за время 

В нашей задаче точки встретятся, когда расстояния, пройденные ими от начала движения, будут одинаковы, а для этого необходимо, чтобы соответствующие площади треугольников, взятых с графиков скоростей, были равны. Обозначая неизвестное время встречи точек через t, скорость первой точки в момент встречи через 

так как:
окончательно получим
Ускорение точки
Остановимся на некоторых вопросах геометрии. Пусть имеется некоторая неплоская кривая (рис. 146). Возьмем на ней две весьма близко расположенные точки 








Для окружности направление главной нормали совпадает с направлением ее радиуса. Прямая, перпендикулярная к касательной Т и к главной нормали N, называется бинормалью и обозначается буквой В. Таким образом, три взаимно-перпендикулярных направления N, В и Т могут быть приняты за координатные оси, скрепленные с некоторой точкой М, выбранной на кривой (рис. 147).
Рис. 146 Рис. 147
Такие оси, перемещающиеся вместе с движущейся точкой М, называются естественными осями. Эти оси являются ребрами естественного триэдра, или естественного трехгранника, образованного тремя плоскостями, проходящими через каждые две естественные оси. На рисунке 147 соприкасающаяся плоскость проходит через оси Т и N, нормальная — через N и В и третья плоскость триэдра проходит через В и Т.
Единичные векторы естественных осей обозначены через 


Угол 




Величина 
Если от точки М (рис. 146) в сторону вогнутости кривой отложить в соприкасающейся плоскости отрезок, равный 
Для прямой 

Для окружности:
На этом мы заканчиваем изучение вопросов геометрии и рассмотрим далее изменение вектора скорости движущейся точки. Пусть в моменты 


Рис. 148. Рис. 149.
Вообще говоря, с течением времени скорость будет изменяться и по величине и по направлению. Взяв изменение скорости 








на основании равенства (72). Следовательно, вектор ускорения равен первой векторной производной вектора скорости по времени или второй векторной производной радиуса вектора по времени. Подставляя в последнее равенство вместо вектора 

Ha основании равенства (22) находим:
но так как согласно формулам (75), (77) и (78)
то окончательно имеем:
Таким образом, полное ускорение точки 


Обозначая соответственно касательное ускорение через 


Рис. 150.
Модули касательного и нормального ускорений можно рассматривать так же, как проекции полного ускорения на касательную и главную нормаль; проекция же полного ускорения на бинормаль равна нулю, так как полное ускорение расположено в соприкасающейся плоскости. Итак, имеем:
При




Если точка движется прямолинейно, то 


Движение точки с постоянным касательным ускорением называется равнопеременным. Рассмотрим равнопеременное и прямолинейное движение точки. В этом случае 

откуда 
Далее:
при 
Уравнения (82) и (83) называются уравнениями равнопеременного движения. Здесь 



Уравнения (82) и (83) применимы также и для случая криволинейного движения точки, положив
Посмотрим теперь, как находится ускорение точки в том случае, когда движение ее задано по второму способу, т. е. по уравнениям (67). Так как ускорение точки 

Выражая вектор 
с другой стороны, обозначив проекции ускорения на координатные оси через 
Сравнивая коэффициенты при одинаковых единичных векторах, получим:
Следовательно, проекция ускорения на неподвижную ось равна второй производной от соответствующей координаты по времени. Модуль ускорения будет:
Направление же вектора ускорения к координатным осям определится через косинусы углов.
Задача №8
Найти нормальное и касательное ускорения точки, движение которой в метрах и секундах выражается уравнениями:
Решение. Найдем сначала по формулам (73) и (84) проекции скорости и ускорения на координатные оси:
Далее находим, что 
С другой стороны, по формуле (80): 

Нормальное ускорение 


- Заказать решение задач по теоретической механике
Задача №9
Движение точки выражается в метрах и секундах уравнениями:
Найти скорость точки, ускорение, траекторию и радиус кривизны в наивысшей точке.
Указание: в наивысшей точке параболы (рис. 144) вектор скорости, направленный по касательной, горизонтален, поэтому 


Траектория точки — парабола 
Ответ:
Задача. Точка движется по некоторой кривой так, что в момент / = 4 сек, вектор ее полного ускорения составляет угол 30° с направлением нормали к траектории. Определить радиус кривизны
Задача №10
Движение автомобиля по дороге, имеющей форму двух четвертей окружности радиуса 

Решение. По формулам (75) и (81) находим выражение скорости, касательного и нормального ускорений автомобиля:
Графики пути, скорости нормального и касательного ускорений легко строятся по точкам (рис. 151, б, в, г, д). Следует обратить внимание на то, что на прямолинейном участке пути 




Рис. 151.
Отсюда получаем два граничных момента времени: 

Задача №11
Для точки, движущейся по прямой, диаграмма расстояний представляет собой четверть эллипса (рис. 152). Выразить расстояние, скорость и ускорение движущейся точки, как функции времени. Построить диаграммы (графики) скоростей и ускорений.
Рис. 152.
Решение. Выразим сначала аналитически зависимости: 

Зависимость между расстоянием s и временем t по заданному графику пути может быть выражена в форме уравнения эллипса (рис. 152):
откуда:
При 

Выразим теперь 
При 
Величина ускорения найдется по первой из формул (81):
При 
На рисунке 152 изображены графики: скорости 
Последние два графика можно построить по точкам, зная 


Задача №12
Найти величину и направление ускорения и радиус кривизны траектории точки М колеса радиуса R = 1 м, катящегося без скольжения по горизонтальной оси Ох (рис. 153). Известно, что скорость центра колеса
Рис. 153.
Решение. Если в начальный момент точка М колеса находилась в начале координат О, то в момент 
Так как дуга AM равна отрезку ОА, то 
Поэтому уравнения движения точки М будут:
Проекции ускорения точки М на координатные оси найдутся по формулам:
Величина полного ускорения точки М равна:
Направление вектора полного ускорения определяется по направляющим косинусам:
Из последних равенств следует, что вектор ускорения направлен по МС к центру катящегося колеса.
Скорость точки М найдется на основании равенств:
Касательное и нормальное, ускорения точки М соответственно определятся:
Радиус кривизны траектории точки М найдется из выражения для нормального ускорения:
Так как 

поэтому
Перейдем теперь к изучению движения точки по окружности. Пусть точка движется по окружности радиуса а (рис. 154) и занимает в начальный момент положение 




Рис.154.
Ясно, что угол 

Согласно равенствам (73) найдем проекции скорости точки М на координатные оси:
Величина 


тогда
Модуль линейной скорости точки определится по формуле (74):
Но, так как
то
т. е. линейная скорость точки, движущейся по окружности, равна произведению угловой скорости на радиус.
Величины нормального и касательного ускорений точки, движущейся по окружности, найдутся по формулам (81):

Величина 

Обозначим угловое ускорение буквой 
Если 

Полное ускорение точки (рис. 155):
Если 






или
Обычно угловая скорость измеряется в 

Рис. 155.
Найдем зависимость между угловой скоростью 

Пусть радиус ОМ (рис. 155) вместе с точкой М совершит в минуту 



Таким образом:
где 

Задача №13
Кривошипно-шатунный механизм состоит из кривошипа 

Рис. 156.
Кривошип ОА вращается с постоянной угловой скоростью 
1) найти закон движения ползуна В, величину его скорости и ускорения в момент t.
2) на ординатах 
Решение. Примем за начало отсчета расстояний ползуна В точку О и обозначим отрезок ОВ через х. Из чертежа видно:
где 
Зависимость между углами 

откуда
Далее:
Раскладывая полученное выражение по формуле бинома Ньютона, найдем:
Ограничившись первыми двумя членами разложения, получим приближенное уравнение движения ползуна:
при
при
что соответствует чертежу.
Выражения скорости и ускорения ползуна найдутся путем дифференцирования по времени t его уравнения движения:
Графики скорости и ускорения ползуна можно построить по точкам, давая углу 
при 
при
при
Рис. 157.
Отсюда видно, что в крайних положениях ползуна скорость его равна нулю, а ускорения не равны нулю, но при этом получаются неравными между собой.
Графики 

Рассмотрим, наконец, гармоническое колебательное движение точки. Пусть по окружности радиуса а равномерно движется точка М с угловой скоростью 
При этом закон движения проекции равномерно движущейся точки на одну из координатных осей, например ось Ох, выразится уравнением:
где 
Прямолинейное движение точки, совершающееся по закону синуса или косинуса, называется гармоническим колебательным движением.
В уравнении (95) гармонического колебательного движения величина а наибольшего удаления точки 


При 
Но это выражение (рис. 157) дает закон движения другой проекции точки М, а именно проекции ее 


т. е. движение точки 

Промежуток времени Т, в течение которого вспомогательная точка М опишет полную окружность, а ее проекция 


Величина 


Если точка 

а поэтому частота:
Отсюда число колебаний в минуту, выраженное через циклическую частоту колебаний, будет:
Задача №14
Движения трех точек в сантиметрах и секундах выражаются соответственно уравнениями:
и
Построить графики расстояний этих точек.
Рис. 158.
Решение. Каждая из трех точек совершает гармоническое колебательное движение. Для построения графиков расстояний проводам вспомогательную окружность радиуса а см, равного амплитуде колебания, и наносим на окружности последовательно ряд положений I, II, III и т. д. вспомогательной точки М, например через каждые 

Выбираем, далее, на продолжении горизонтального диаметра произвольную точку 


Задача №15
Выразить через переменное расстояние х ускорение точки 

Рис. 159.
Решение. Из 


т. е. точка 
Всё о кинематике
Кинематика — наука о движении геометрических тел. В ней рассматривается само движение без изучения причин, вызывающих это движение. Впервые термин «кинематика» ввел А.Ампер (1775-1836), взяв за основу греческое слово 
Простейшим объектом в кинематике является точка. В кинематике точки рассматриваются следующие функции времени t: радиус-вектор 

Движение тела в кинематике начинают изучать с поступательного и вращательного движения. Во вращательном движении вводятся понятия угла поворота тела 


В плоском движении тела каждая точка тела движется в плоскости, параллельной некоторой фиксированной плоскости. Само тело вовсе не обязательно должно быть плоским. Говорить о скорости тела или его ускорении в общем случае не имеет смысла: тело состоит из множества точек, каждая из которых может иметь свою скорость и ускорение. Исключение составляет поступательное движение тела, при котором равны скорости и ускорения всех точек. Кроме того, в некоторых задачах иногда говорят, например, о скорости катящегося цилиндра или о скорости автомобиля, подразумевая при этом скорость точек центральной оси цилиндра или скорость кузова автомобиля. принимая его за точку.
Угловая скорость и ускорение для плоского движения — векторные величины, но их направления всегда перпендикулярны плоскости движения. Введем декартову систему координат, в которой плоскость ху совпадает с плоскостью движения. Тогда угловая скорость 


Скорость точки А тела при плоском движении вычисляют через известную скорость какой-либо точки В того же тела, принимаемой за полюс (рис. 81):
Для расчета скоростей точек многозвенного механизма, каждое звено которого совершает плоское движение, формулу (1) применяют последовательно для всех точек, переходя от одной точки, принимаемой за полюс, к другой.
Схему вычислений в этом случае удобно записывать в виде структурных формул (графов [15])
где над стрелкой указан номер тела или наименование стержня, которому принадлежат точки, а снизу — угол 

где 


Ускорения точек тела при плоском движении связаны формулой

Изучаем тему: кинематика точки
При изучении темы КИНЕМАТИКА ТОЧКИ вы познакомитесь с простейшими понятиями кинематики. Этот раздел теоретической механики наиболее близко примыкает к математике. Умение дифференцировать и понимать смысл найденных производных — необходимые условия для освоения этой темы.
Проверить и «оживить» решение задачи можно с помощью программы, написанной для математической системы Maple V.
Движение точки в плоскости
Постановка задачи. Точка движется по закону
Для заданного момента времени найти скорость, ускорение точки и радиус кривизны траектории.
План решения:
1. Определяем траекторию движения точки, исключая t из закона движения (1).
2. Дифференцируя (1) по времени t, находим проекции скорости точки на оси х, у:
3. Модуль скорости вычисляем по формуле
4.Дифференцируя (2), находим компоненты вектора ускорения
5. Определяем модуль ускорения
6. Вычисляем тангенциальное (касательное) ускорение. Дифференцируя скорость 
7.Вычисляем нормальное ускорение
8. Нормальное ускорение зависит от скорости точки и радиуса кривизны траектории:
Отсюда находим радиус кривизны
Задача №16
Точка движется по закону
Для момента времени 
Решение
1. Определяем траекторию движения точки, исключая t из закона движения (3). Параметрическим представлением траектории является сам закон движения (3). Координатную форму .уравнения движения точки получаем, исключая из закона движения (3) время:
Для того, чтобы окончательно получить ответ на вопрос о траектории, необходимо еще выделить область определения функции (4). Не все точки кривой, определяемой этой функцией, являются точками траектории. При 


6.1.Движение точки в плоскости
т.о. траекторией является правая ветвь параболы (4) (рис. 82). График строим по точкам (отмечены звездочками), через равные промежутки времени 0.1 с.
2. Дифференцируя (3) по времени t, находим проекции скорости точки на оси х, у:
При 
3. Модуль скорости вычисляем по формуле
Вектор скорости

4. Дифференцируя (6), находим компоненты вектора ускорения:
При
5. Определяем модуль ускорения
Вектор ускорения строим на чертеже в масштабе ускорений (не обязательно совпадающем с масштабом скоростей). Вектор ускорения направлен внутрь вогнутости кривой.
6.Вычисляем тангенциальное ускорение 

7. Вычисляем нормальное ускорение:
8. Находим радиус кривизны траектории в указанном положении точки:
Центр кривизны траектории лежит на нормали к кривой на расстоянии R = 5.208 см внутри вогнутости кривой. Окружность радиусом R с центром в этой точке максимально близко совпадет с кривой в малой окрестности от нее.
6.2. Путь, пройденный точкой
Постановка задачи. Точка движется по закону
Определить длину пути, пройденного точкой за время
План решения
1. Дифференцируя (1) по времени t, находим проекции скорости точки на оси
2. Считая, что время отсчитывается от нуля, находим длину пути 
Задача №17
Точка движется по закону
где
Решение
1. Дифференцируя (2) по времени t, находим проекции скорости точки на оси х, у:
2. Считая, что время отсчитывается от нуля, находим длину пути:
Подставляя числовые значения 
Движение точки в пространстве
ПОСТАНОВКА ЗАДАЧИ. Точка движется по закону
Определить скорость, ускорение точки и радиус кривизны траектории в заданный момент времени.
План решения
1. Дифференцируя (1) по времени t, находим проекции скорости точки на оси х,у и z:
Гл.6.Кинематика точки
2. Вычисляем модуль скорости
3.Дифференцируя (2), находим компоненты вектора ускорения:
4. Определяем модуль ускорения
5. Вычисляем модуль тангенциального ускорения:
6. Вычисляем нормальное ускорение
7.Находим радиус кривизны траектории в указанном положении точки:
Задача №18
Точка движется по закону
где 
Решение
1. Дифференцируя (3) по времени t, находим проекции скорости точки на оси х, у и z:
2.Вычисляем модуль скорости
3.Дифференцируя (4), находим компоненты вектора ускорения:
4. Определяем модуль ускорения:
5. Вычисляем модуль тангенциального ускорения:
6.3.Движение точки в пространстве
6. Вычисляем нормальное ускорение:
7. Находим радиус кривизны траектории в указанном положении точки:
Радиус кривизны в данной задаче не зависит от времени. Кривая представляет собой винтовую линию постоянной кривизны. Получаем значения искомых величин при
Ответы занесем в таблицу (скорости — в см/с, ускорения — в 
Естественный способ задания движения точки
Постановка задачи. Точка движется по плоской кривой
с постоянной скоростью 
План решения:
1. Находим зависимость между компонентами скорости. Дифференцируя (1) по t, используя правило дифференцирования сложной функции 
6.4.Естественный способ задания движения точки
где штрихом обозначена производная по координате, 
2. Дополняя (2) уравнением 
3. Находим косинус угла наклона касательной к траектории с осью ox:
4. Находим зависимость между компонентами ускорения. Дифференцируя (2) по t, получаем
где
5. Так как по условию 
которое совместно с (3) дает систему для определения проекций ускорения. Решаем систему и находим
6. Вычисляем модуль ускорения
7. Согласно п.5, тангенциальное ускорение равно нулю и нормаль-нос ускорение совпадает с полным: 

Задача №19
Точка движется по плоской кривой
с постоянной скоростью 
Решение
1. Находим зависимость между компонентами скорости. Дифференцируем (4) по t. Используя правило дифференцирования сложной функции,получаем
где
При x = 1 имеем 
2. Дополняя (5) уравнением 
3. Находим косинус угла касательной к траектории с осью ох:
4.Находим зависимость между компонентами ускорения. Дифференцируя (5) по t, получаем
где
При х = 1 м вычисляем 
5. Из условия 
Решая это уравнение совместно с (6), находим проекции вектора ускорения:
6. Вычисляем модуль ускорения:
7. Находим радиус кривизны траектории:
Ответы заносим в таблицу:
Замечание. В механике гибких стержней и сопротивлении материалов для нахождения радиуса кривизны кривой, заданной в форме у = у(х), существует формула
Решенная задача представляет собой кинематический вывод этой формулы. Проверку решения можно выполнить, подставив в (7) найденные значения
Как и следовало ожидать, радиус кривизны траектории R от скорости движения точки не зависит, как не зависит, например, форма рельсового пути от скорости движения трамвая (если, конечно, не учитывать деформации).
Движение точки в полярных координатах
Постановка задачи. Задан закон движения точки в полярных координатах:
Найти скорость и ускорение точки в полярных, декартовых и естественных координатах в заданный момент времени.
План решения:
1. Вычисляем полярные координаты точки в заданный момент времени:
2. Дифференцируя (1) по времени t, находим производные полярного радиуса р и полярного угла:
3. Вычисляем компоненты скорости в полярных координатах:
6.5. Движение точки в полярных координатах
4.Находим модуль скорости
5.Декартовы х, у и полярные координаты 
Дифференцируя (3), вычисляем компоненты скорости точки в декартовых координатах:
6. Делаем проверку, вычисляя модуль скорости по декартовым компонентам:
7. Дифференцируя (2), находим вторые производные полярного радиуса р и полярного угла:
8.Вычисляем компоненты ускорения точки в полярных координатах:
9. Модуль ускорения вычисляем по формуле
10. Вычисляем компоненты ускорения точки в декартовых координатах, дважды дифференцируя (3):
11. Делаем проверку, вычисляя модуль ускорения по декартовым компонентам:
12. Находим модуль тангенциального ускорения,:
и проверяем его по формуле
13. Вычисляем нормальное ускорение
Задача №20
Задан закон движения точки в полярных координатах:
Найти скорость и ускорение точки в полярных, декартовых и естественных координатах при t = 1 с. Радиус дан в метрах.
Решение
1.Вычисляем полярные координаты точки в заданный момент времени
2. Дифференцируя (4) по времени it, находим производные полярного радиуса р и полярного угла:
При t = 1 имеем 
3. Вычисляем компоненты скорости в полярных координатах:
4.Вычисляем модуль скорости:
5.Вычисляем компоненты скорости в декартовых координатах:
6. Делаем проверку, вычисляя модуль скорости по декартовым компонентам:
7. Дифференцируя (5), находим вторые производные полярного радиуса р и полярного угла:
При t = 1 получаем
8. Вычисляем компоненты ускорения в полярных координатах:
9. Определяем модуль ускорения:
*) Аргументы тригонометрических функций измеряются в радианах.
10. Находим компоненты ускорения в декартовых координатах:
11. Делаем проверку, вычисляя модуль ускорения по декартовым компонентам:
12. Находим модуль касательного ускорения,
и проверяем его по формуле
13. Вычисляем нормальное ускорение
Ответы заносим в таблицу (скорости — в м/с, ускорения — в
- Плоское движение твердого тела
- Мгновенный центр скоростей
- Мгновенный центр ускорений
- Мгновенный центр вращения
- Плоская система сил
- Трение
- Пространственная система сил
- Центр тяжести





































































































































































































































































































































































































































































































































































