Синус тупого угла
Выразим синус тупого угла от 90 до 180 градусов через синус острого угла (от 0º до 90º).
При повороте против часовой стрелки на острый угол альфа на единичной окружности отметив точку A (x;y), при повороте на тупой угол 180º- α — точку C.
Из точек A и C опустим перпендикуляры AB и CD на ось Ox.
В прямоугольных треугольниках AOB и COD:
1) AO=CO (как радиусы);
2) ∠AOB=∠COD=α (по построению).
Из равенства треугольников следует равенство соответствующих сторон:
Синусом угла альфа на единичной окружности называется ордината точки, полученной из точки P при повороте вокруг точки O на угол альфа.
Ордината точки A равна y, поэтому
По доказанному, ордината точки С также равна y, поэтому
Это — одна из формул приведения. Все формулы приведения рассматриваются в курсе алгебры 10 класса.
Таким образом, синус тупого угла 180º- α равен синусу острого угла α.
Теорема синусов
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Доказательство теоремы синусов
Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.
Нарисуем стандартный треугольник и запишем теорему формулой:
Формула теоремы синусов:
Докажем теорему с помощью формулы площади треугольника через синус его угла.
Из этой формулы мы получаем два соотношения:
На b сокращаем, синусы переносим в знаменатели:
bc sinα = ca sinβ
Из этих двух соотношений получаем:
Теорема синусов для треугольника доказана.
Эта теорема пригодится, чтобы найти:
- Стороны треугольника, если даны два угла и одна сторона.
- Углы треугольника, если даны две стороны и один прилежащий угол.
Доказательство следствия из теоремы синусов
У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.
где R — радиус описанной около треугольника окружности.
Так образовались три формулы радиуса описанной окружности:
Основной смысл следствия из теоремы синусов заключен в этой формуле:
Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.
Для доказательства следствия теоремы синусов рассмотрим три случая.
1. Угол ∠А = α — острый в треугольнике АВС.
Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.
Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.
Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.
BA1 = 2R, где R — радиус окружности
Следовательно: R = α/2 sinα
Для острого треугольника с описанной окружностью теорема доказана.
2. Угол ∠А = α — тупой в треугольнике АВС.
Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.
Следовательно, ∠А1 = 180° — α.
Вспомним свойство вписанного в окружность четырёхугольника:
Также известно, что sin(180° — α) = sinα.
В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:
α = 2R sin (180° — α) = 2R sinα
Следовательно: R = α/2 sinα
Для тупого треугольника с описанной окружностью теорема доказана.
Часто используемые тупые углы:
- sin120° = sin(180° — 60°) = sin60° = 3/√2;
- sin150° = sin(180° — 30°) = sin30° = 1/2;
- sin135° = sin(180° — 45°) = sin45° = 2/√2.
3. Угол ∠А = 90°.
В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.
Для прямоугольного треугольника с описанной окружностью теорема доказана.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Теорема о вписанном в окружность угле
Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.
Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.
Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.
∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.
Формула теоремы о вписанном угле:
Следствие 1 из теоремы о вписанном в окружность угле
Вписанные углы, опирающиеся на одну дугу, равны.
∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).
Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:
На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.
Следствие 2 из теоремы о вписанном в окружность угле
Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.
ВС — диаметр описанной окружности, следовательно ∠COB = 180°.
Следствие 3 из теоремы о вписанном в окружность угле
Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:
Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.
Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.
Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.
Следовательно: α + γ = 180°.
Поэтому: ∠A + ∠C = 180°.
Следствие 4 из теоремы о вписанном в окружность угле
Синусы противоположных углов вписанного четырехугольника равны. То есть:
sinγ = sin(180° — α)
Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα
Примеры решения задач
Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.
Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.
-
Согласно теореме о сумме углов треугольника:
∠B = 180° — 45° — 15° = 120°
Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.
В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:
Значит x = sin (4/5) ≈ 53,1°.
Ответ: угол составляет примерно 53,1°.
Запоминаем
Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.
>
Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:
Синус угла. Таблица синусов.
Синус угла через градусы, минуты и секунды
Синус угла через десятичную запись угла
Как найти угол зная синус этого угла
У синуса есть обратная тригонометрическая функция — arcsin(y)=x
Пример sin(30°) = 1/2; arcsin(1/2) = 30°
Определение синуса
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.
Периодичность синуса
Функция y = sin(x) периодична, с периодом 2π
http://skysmart.ru/articles/mathematic/teorema-sinusov
http://calc-best.ru/matematicheskie/trigonometriya/sinus-ugla?n1=3
Возможно, кто-то заметит, что тема относится к категории «приплыли».
Увы. Базовый уровень в нашей богоспасаемой стране — аттестат на 3 единицы сложности. А это значит, что тригонометрию начинают с прямоугольного треугольника. И на нём же заканчивают.
Но потом изучаются без доказательства две теоремы – теорема синусов и теорема косинусов для уже произвольного треугольника. И оказывается, что если взять 150 градусов и нажать на Волшебном Калькуляторе кнопку SIN, то произойдёт Большое Колдунство – результатом будет 0.5. Как же так, ведь нет такого угла в прямоугольном треугольнике? Что же это за синус того, чего нет?
Я бы всё же попытался это объяснять, используя самые минимальные средства. Они, как мне кажется, должны быть доступны любому школьнику на самом базовом уровне.
Рассмотрим вычисление площади произвольного треугольника. Обычно произвольный треугольник рисуют остроугольным, и высота, проведенная на основание, попадает на само это основание. Но треугольник может быть и не остроугольный, и высота может попасть за пределы треугольника – на продолжение основания. А формула для вычисления площади при этом всё та же: S=a*h/2. Для половины школьников базового уровня это оказывалось открытием. Т.е. этот рисунок надо рисовать, и формулу площади для него надо доказывать.
Ну а теперь запишем формулу площади с использованием синуса. Сначала для треугольника со сторонами a, b и острым углом между ними α. S=a* b *sin(α ) /2. Ведь b *sin(α ) = h — высота по определению синуса для угла в прямоугольном треугольнике.
А можно ли иметь точно такую же формулу, если угол α между a и b тупой? Формально – нельзя, мы же определили sin(α ) только для острых углов. Но если очень хочется… Расширим определение. Пусть b *sin(α ) = h для тупого угла, где высота выходит за пределы треугольника и опускается на продолжение основания a. Для этого и надо всего, чтобы sin(α ) был равен синусу смежного с ним (внешнего ) угла, образованного стороной b и продолжением стороны a. Т.е. для тупого угла α определим sin(α ) = sin(180⁰ — α ). И теперь формула площади треугольника будет работать при любых двух сторонах и при любом угле между ними.
Но, может быть, от такого расширения понятия синуса только и пользы, что единообразие в вычислении площади треугольника? Не мало ли для расширения определения?
А вот как через выражение для площади треугольника легко получить теорему синусов. Пусть у нас есть треугольник со сторонами a, b, c, и, соответственно, лежащими против этих сторон углами α, β, γ.
Выразим его удвоенную площадь тремя способами – различными парами сторон и углами между ними.
a*b*sin(γ) = b*c*sin(α) = c*a*sin(β)
А из этих равенств следует, что sin(α)/a = sin(β)/b = sin(γ)/c . Причём теперь уже для любых, а не только для остроугольных, треугольников.
А кому она нужна, эта теорема? Геометрам в их исходном понимании – ведь «геометрия» в переводе с греческого – это землемерие. Землемерам, геодезистам, топографам, астрономам, строителям – всем, кто в силу больших размеров объектов или их недоступности не может просто измерить их линейкой или рулеткой, а вынужден вычислять. Вот самая простая задача такого рода. Треугольник задан стороной a и двумя прилежащими углами β и γ. Понятно, что этого достаточно, чтобы найти в нём всё остальное. Угол α находим сразу: α =180⁰- β— γ. А оставшиеся стороны из теоремы синусов:
b= a*sin(β)/sin(α), c = a*sin(γ)/sin(α).
Значит, удалось расширить определение синуса угла очень удачно.
А если поговорить ещё и об окружности, описанной вокруг треугольника, то станет совсем интересно. Правда, этот материал на 3 единицы сложности точно не проходят, хотя и непонятно, почему. Обычно рисуют остроугольный треугольник и описывают вокруг него окружность. Это позволяет просто нарисовать ещё один треугольник, прямоугольный, вписанный в данную окружность, так, что его острый угол будет опираться на ту же дугу, что и острый угол α, лежащий против стороны a. Исходя из того, что опирающиеся на одну и ту же дугу вписанные в окружность углы равны, по определению синуса для острого угла (в прямоугольном треугольнике) получаем:
a/sin(α) = 2R
Но после расширения определения синуса угла и на тупые углы, написанная выше формула работает уже для произвольных углов треугольника.
a/sin(α) = b/sin(β) = c/sin(γ) = 2R
Содержание материала
- Синус, косинус, тангенс и котангенс. Определения
- Видео
- Теорема косинусов
- Формула Герона
- Решение треугольников
- Пример (решение треугольника по двум сторонам и углу между ними).
- Пример (решение треугольника по стороне и двум прилежащим к ней углам).
- Пример (решение треугольника по трем сторонам).
- Пример
- Пример
- Примеры решения задач с использованием теоремы синусов и теоремы косинусов
- Пример
- Пример
- Пример
- Теорема Стюарта
- Пример
Синус, косинус, тангенс и котангенс. Определения
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Синус угла (sin α) — отношение противолежащего этому углу катета к гипотенузе.
Косинус угла (cosα) — отношение прилежащего катета к гипотенузе.
Тангенс угла (tg α) — отношение противолежащего катета к прилежащему.
Котангенс угла (ctg α) — отношение прилежащего катета к противолежащему.
Данные определения даны для острого угла прямоугольного треугольника!
Приведем иллюстрацию.
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.
Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса — вся числовая прямая, то есть эти функции могут принимать любые значения.
Видео
Теорема косинусов
Теорема косинусов позволяет выразить длину любой стороны треугольника через длины двух других его сторон и косинус угла между ними (например, длину стороны 

Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними, т. е.
Доказательство:
Докажем теорему для случая, когда в треугольнике АВС угол А и угол С острые (рис. 166). Проведем высоту ВН к стороне АС. Из 



По основному тригонометрическому тождеству 
Справедливость теоремы для случаев, когда 







• зная две стороны и угол между ними, найти третью сторону треугольника;
• зная две стороны и угол, противолежащий одной из этих сторон, найти третью сторону (рис. 167) (в этом случае возможны два решения).
Рассмотрим следствия из теоремы косинусов, которые дают возможность решить еще целый ряд задач.
Следствие:
Теорема косинусов позволяет, зная три стороны треугольника, найти его углы (косинусы углов). Из равенства 
Для углов 
Пример:
В треугольнике АВС стороны АВ = 8, ВС = 5, АС = 7. Найдем ZB (рис. 168).
По теореме косинусов
Используя записанную выше формулу, можно сразу получить:
Следствие:
С помощью теоремы косинусов можно по трем сторонам определить вид треугольника: остроугольный, прямоугольный или тупоугольный.
Так, из формулы 

- если
то
и угол
острый;
- если
то
и угол
тупой;
- если
то
и угол
прямой.
При определении вида треугольника достаточно найти знак косинуса угла, лежащего против большей стороны, поскольку только больший угол треугольника может быть прямым или тупым.
Пример:
Выясним, каким является треугольник со сторонами a = 2, 6 = 3 и с = 4. Для этого найдем знак косинуса угла у, лежащего против большей стороны с. Так как 


Сформулируем правило определения вида треугольника (относительно углов). Треугольник является:
- остроугольным, если квадрат его большей стороны меньше суммы квадратов двух других его сторон:
- тупоугольным, если квадрат его большей стороны больше суммы квадратов двух других его сторон:
- прямоугольным, если квадрат его большей стороны равен сумме квадратов двух других его сторон:
Следствие:
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:
Доказательство:
Пусть в параллелограмме ABCD 






Сложив почленно равенство (1) и равенство (2), получим 
Данная формула дает возможность:
- • зная две соседние стороны и одну из диагоналей параллелограмма, найти другую диагональ;
- • зная две диагонали и одну из сторон параллелограмма, найти соседнюю с ней сторону.
Следствие:
Медиану 
Доказательство:
Рассмотрим 
Проведем отрезки BD и DC. Так как у четырехугольника ABDC диагонали AD и ВС точкой пересечения делятся пополам, то он — параллелограмм. По свойству диагоналей параллелограмма 

Аналогично:
Формула медианы позволяет:
- зная три стороны треугольника, найти любую из его медиан;
- зная две стороны и медиану, проведенную к третьей стороне, найти третью сторону;
- зная три медианы, найти любую из сторон треугольника.
Пример:
а) Дан треугольник АВС, а = 5, 5 = 3, 
Решение:
а) По теореме косинусов







Пример:
Две стороны треугольника равны 6 и 10, его площадь — 
Решение:
Пусть в 







Ответ: 14.
Пример:
Найти площадь треугольника, две стороны которого равны 6 и 8, а медиана, проведенная к третьей стороне, равна 5.
Решение:
Обозначим стороны треугольника 




Формула Герона
Мы знаем, как найти площадь треугольника по основанию и высоте, проведенной к этому основанию: 

Теорема (формула Герона).
Площадь треугольника со сторонами 


Доказательство:






Тогда
Так как

Решение треугольников
Решением треугольника называется нахождение его неизвестных сторон и углов (иногда других элементов) по данным, определяющим треугольник.
Такая задача часто встречается на практике, например в геодезии, астрономии, строительстве, навигации.
Рассмотрим алгоритмы решения трех задач.
Пример (решение треугольника по двум сторонам и углу между ними)
Дано: 
Найти : 
Решение:
Рис. 184 1) По теореме косинусов
2) По следствию из теоремы косинусов
3) Угол 
4) Угол 



Пример (решение треугольника по стороне и двум прилежащим к ней углам)
Дано: 
Найти:
Решение:
1) Угол
2) По теореме синусов 


3) Сторону с можно найти с помощью теоремы косинусов или теоремы синусов: 



Пример (решение треугольника по трем сторонам)
Дано: 
Найти: 
Решение:
1) По следствию из теоремы косинусов
2) Зная 

3) Аналогично находим угол
4) Угол
5) Радиус R описанной окружности треугольника можно найти по формуле 

Замечание*. Вторым способом нахождения R будет нахождение косинуса любого угла при помощи теоремы косинусов 


Пример
Найти площадь S и радиус R описанной окружности треугольника со сторонами 9, 12 и 15.
Решение:
Способ 1. Воспользуемся формулой Герона. Обозначим а = 9, b = 12, с = 15. Получим:









Пример
Найти площадь трапеции с основаниями, равными 5 и 14, и боковыми сторонами, равными 10 и 17.
Решение:
Пусть в трапеции ABCD основания AD = 14 и ВС = 5, боковые стороны АВ = 10 и 



Ответ: 76.
Примеры решения задач с использованием теоремы синусов и теоремы косинусов
Пример:
Внутри угла А, равного 60°, взята точка М, которая находится на расстоянии 1 от одной стороны угла и на расстоянии 2 от другой стороны. Найти расстояние от точки М до вершины угла А (рис. 189, а).
Решение:
Пусть 







Ответ: 
Пример
В прямоугольном треугольнике АВС известно: 
Решение:
Построим 







Пример
Дан прямоугольный треугольник АВС с катетами ВС = а и АС = 
Решение:
Способ 1. Так как 


Пусть СО = х. По теореме косинусов из 
из 
По свойству вписанного четырехугольника 




Способ 2. Используем теорему Птолемея, которая гласит: «Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон». Для нашей задачи получаем (см. рис. 191):
Способ 3. Достроим 


Пример
Точка О — центр окружности, вписанной в треугольник АВС, 
Решение:
Пусть 

Отсюда 
С другой стороны, 





Теорема Стюарта
Следующая теорема позволяет найти длину отрезка, соединяющего вершину треугольника с точкой на противоположной стороне.
Теорема Стюарта. «Если а, b и с — стороны треугольника и отрезок d делит сторону с на отрезки, равные х и у (рис. 194), то справедлива формула
Доказательство:
По теореме косинусов из 



Умножим обе части равенства (1) на у, равенства (2) — на 
Сложим почленно полученные равенства: 


Следствие:
Биссектрису треугольника можно найти по формуле (рис. 195)
Доказательство:
По свойству биссектрисы треугольника 



Пример
Доказать, что если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера—Лемуса).
Доказательство:
Пусть дан треугольник АВС, 






По формуле биссектрисы треугольника
Из условия 




Теги
Выразим синус тупого угла от 90 до 180 градусов через синус острого угла (от 0º до 90º).
На единичной окружности отметим точку P (0;1).
При повороте против часовой стрелки на острый угол альфа на единичной окружности отметив точку A (x;y), при повороте на тупой угол 180º- α — точку C.
Из точек A и C опустим перпендикуляры AB и CD на ось Ox.
В прямоугольных треугольниках AOB и COD:
1) AO=CO (как радиусы);
2) ∠AOB=∠COD=α (по построению).
Следовательно, ∆ AOB = ∆ COD (по гипотенузе и острому углу).
Из равенства треугольников следует равенство соответствующих сторон:
AB=CD=y.
Синусом угла альфа на единичной окружности называется ордината точки, полученной из точки P при повороте вокруг точки O на угол альфа.
Ордината точки A равна y, поэтому
По доказанному, ордината точки С также равна y, поэтому
Таким образом,
Это — одна из формул приведения. Все формулы приведения рассматриваются в курсе алгебры 10 класса.
Таким образом, синус тупого угла 180º- α равен синусу острого угла α.
|
В решении найден же угол смежного с ним угла — острого, но не тупого, которого нужно найти. Есть какие-то свойства? Откройте учебник, на теме формулы приведения. Там есть формула: sin(Пи-a)=sin(a). Всего то и «делов». Или запомните такое определение. Вдоль оси Х (по горизонтали вправо) направьте небольшой вектор с длиной, равной 1. Теперь поворачивайте этот вектор против часовой стрелки на требуемый Вам угол (хоть острый, хоть тупой, хоть в три полных оборота «с гаком». В любом случае синусом угла будет ОРДИНАТА конца вектора, а косинусом — АБСЦИССА. автор вопроса выбрал этот ответ лучшим bezdelnik 8 лет назад В этом примере нужно сначала найти величину гипотенузы по теореме Пифагора. В решении без доказательства сказано гипотенуза равна 5. Гипотенуза равна корню квадратному из суммы квадратов катетов 9+16=25. Знаете ответ? |


















то
и угол
острый;
то
и угол
тупой;
то
и угол
прямой.








































































