Определение.
Середина отрезка — это точка, которая лежит на отрезке и находится на равном расстоянии от конечных точек.
В геометрических задачах часто можно столкнуться с необходимостью найти середину отрезка заданного координатами точек его концов, например в задачах поиска медианы, средней линии, …
Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка.
Формулы вычисления расстояния между двумя точками:
- Формула вычисления координат середины отрезка с концами A(xa, ya) и B(xb, yb) на плоскости:
xc = xa + xb yc = ya + yb 2 2 - Формула вычисления координат середины отрезка с концами A(xa, ya, za) и B(xb, yb, zb) в пространстве:
xc = xa + xb yc = ya + yb zc = za + zb 2 2 2
Примеры задач на вычисление середины отрезка
Примеры вычисления координат середины отрезка на плоскости
Пример 1.
Найти координаты точки С, середины отрезка AB заданного точками A(-1, 3) и B(6, 5).
Решение.
| xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
| 2 | 2 | 2 |
| yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
| 2 | 2 | 2 |
Ответ: С(2.5, 4).
Пример 2.
Найти координаты точки В, если известны координаты точки C(1; 5), середины отрезка AB и точки A(-1, 3).
Решение.
xc =
xa + xb2
=> xb = 2xc — xa = 2·1-(-1)=2+1=3
yc =
ya + yb2
=> yb = 2yc — ya = 2·5-3=10-3=7
Ответ: B(3, 7).
Примеры вычисления координат середины отрезка в пространстве
Пример 3.
Найти координаты точки С середины отрезка AB заданного точками A(-1, 3, 1) и B(6, 5, -3).
Решение.
| xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
| 2 | 2 | 2 |
| yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
| 2 | 2 | 2 |
| zc = | za + zb | = | 1 + (-3) | = | -2 | = -1 |
| 2 | 2 | 2 |
Ответ: С(2.5, 4, -1).
Пример 4.
Найти координаты точки В если известны координаты точки C(1, 5, 2), середины отрезка AB и точки A(-1, 3, 10).
Решение.
xc =
xa + xb2
=> xb = 2xc — xa = 2·1-(-1)=2+1=3
yc =
ya + yb2
=> yb = 2yc — ya = 2·5-3=10-3=7
zc =
za + zb2
=> zb = 2zc — za = 2·2-10=4-10=-6
Ответ: B(3, 7, -6).
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
В данной публикации мы рассмотрим, что такое середина отрезка, по какой формуле считаются ее координаты (в плоскости и пространстве). Также разберем примеры решения задач по этой теме.
- Расчет координат середины отрезка
- Примеры задач
Расчет координат середины отрезка
Серединой называется точка, лежащая на отрезке и находящаяся на одинаковом расстоянии от его концов.
AC = CB
Если концы отрезка A (xa, ya) и B (xb, yb) расположены в одной плоскости, то координаты его середины (точки C) считаются по формуле:
Если отрезок с концами A (xa, ya, za) и B (xb, yb, zb) находится в трехмерном пространстве, координаты его середины рассчитываются следующим образом:
Примеры задач
Задание 1
Вычислим координаты точки C, которая является серединой отрезка AB, образованного точками A (5, -2) и B (11, 10).
Решение:
В данном случае нам подойдут формулы для плоскости:
xc = (5 + 11) / 2 = 8
yc = (-2 + 10) / 2 = 4
Таким образом, точка C имеет координаты (8, 4).
Задание 2
Найдем координаты точки B, являющейся одним из концов отрезка AB. При этом известны координаты точки A (7, 13) и середины отрезка – C (4, -3).
Решение:
Нужные нам формулы можно вывести из выражений для расчета координат середины отрезка:
xb = 2xc – xa = 2 · 4 – 7 = 1
yb = 2yc – ya = 2 · (-3) – 13 = -19
Следовательно, координаты B – (1, -19).
Загрузить PDF
Загрузить PDF
Поиск середины отрезка – легкая задача когда вам известны координаты двух конечных точек. Самый распространенный способ сделать это состоит в использовании формулы для нахождения середины отрезка; но есть еще один способ найти середину отрезка, если линия вертикальная или горизонтальная. Если вы хотите знать, как найти середину отрезка в течение нескольких минут, выполните следующие действия.
-
1
Определение. Середина отрезка — точка, которая находится на равном расстоянии от конечных точек отрезка и лежит на нем. Таким образом, ее координаты – среднее из двух координат х и двух координат у.
-
2
Формула. Формула записывается в виде суммы двух координат х (конечных точек), деленной на два, и суммы двух координат у (конечных точек), деленной на два. Это даст среднее значение х и у координат. Формула:[(x1 + x2)/2,( y1 + y2)/2]
-
3
Найдите координаты конечных точек. Вы не можете использовать формулу, не зная х и у координаты конечных точек. Например, необходимо найти середину (точку О) отрезка, ограниченного точками М (5,4 ) и N (3, -4). Таким образом, (x1, y1) = (5, 4) и (x2, y2) = (3, -4).
- Обратите внимание, что любая пара координат может обозначаться как (x1, y1) или (x2, y2). Так как вы будете просто складывать координаты и делить результат на два, не имеет значения, какую пару координат выбрать в первую очередь.
-
4
Подставьте координаты в формулу. Теперь, когда вам известны координаты конечных точек, подставьте их в формулу. Вот как это делается:
- [(5 + 3)/2, (4 + -4)/2]
-
5
Решите. После того как вы подставили координаты в формулу, проделайте арифметические действия для вычисления середины. Вот как это делается:
- [(5 + 3)/2, (4 + -4)/2] =
- [(8/2), (0/2)] =
- (4, 0)
- Середина отрезка между точками (5,4) и (3, -4) есть точка (4,0).
Реклама
-
1
Рассмотрим вертикальную или горизонтальную линию.
- Линия горизонтальная, если две у- координаты конечных точек равны. Например, отрезок с концами ( -3 , 4) и (5, 4) расположен горизонтально.
- Линия расположена вертикально, если две х -координаты конечных точек равны. Например, отрезок с концами (2, 0 ) и (2 , 3) находится в вертикальном положении.
- Линия горизонтальная, если две у- координаты конечных точек равны. Например, отрезок с концами ( -3 , 4) и (5, 4) расположен горизонтально.
-
2
Найдите длину отрезка. Вот как это сделать:
- Длина горизонтального отрезка с конечными точками (-3 , 4) и ( 5, 4) равна 8. Вы можете найти это сложением абсолютных величин координат х: | -3| + |5| = 8.
- Длина вертикального отрезка с конечными точками (2 ,0) и (2,3) равна 3. Вы можете найти это сложением абсолютных величин координат у: |0| + |3| = 3.
- Длина горизонтального отрезка с конечными точками (-3 , 4) и ( 5, 4) равна 8. Вы можете найти это сложением абсолютных величин координат х: | -3| + |5| = 8.
-
3
Разделите длину отрезка на два. Теперь, когда вы нашли длину отрезка, нужно разделить его на два.
- 8/2 = 4
- 3/2 = 1,5
- 8/2 = 4
-
4
Вычислите координаты середины. Вот как это делается:
- Чтобы найти середину отрезка, ограниченного точками (-3,4) и (5,4), прибавьте или вычтите 4 из х-координаты первой или второй конечной точки соответственно. Для точки (-3 , 4) это будет -3+4=1 и координаты середины: (1, 4) (Вам не нужно менять у- координаты, так как линия горизонтальная и у-координаты постоянны). Итак, середина отрезка (-3,4) и (5,4) есть точка (1,4).
- Чтобы найти середину отрезка, ограниченного точками (2, 0) и (2,3), прибавьте или вычтите 1,5 из у-координаты первой или второй конечной точки соответственно. Для точки (2 ,0) это будет -0+1,5=1,5 и координаты середины: (2,1,5) (Вам не нужно менять х-координаты, так как линия вертикальная и х-координаты постоянны). Итак, середина отрезка (2, 0 ) и (2,3) есть точка (2,1,5).
Реклама
- Чтобы найти середину отрезка, ограниченного точками (-3,4) и (5,4), прибавьте или вычтите 4 из х-координаты первой или второй конечной точки соответственно. Для точки (-3 , 4) это будет -3+4=1 и координаты середины: (1, 4) (Вам не нужно менять у- координаты, так как линия горизонтальная и у-координаты постоянны). Итак, середина отрезка (-3,4) и (5,4) есть точка (1,4).
Что вам понадобится
- Карандаш
- Лист бумаги
- Линейка
Об этой статье
Эту страницу просматривали 31 340 раз.
Была ли эта статья полезной?
Основное определение отрезка
Определение
Отрезок — это прямая линия, которая соединяет две произвольно расположенные точки, именуемые окончанием отрезка. В качестве конкретного примера можно назвать точки A и B и соответственно отрезок AB.
Прямую АВ можно получить путем удлинения отрезка, который состоит из двух точек. Вследствие чего, можно сказать, что полученный отрезок АВ — это часть прямой, которая ограничена точками А и В. Отрезок объединяет обе точки, которые являются концами прямой, а также множество других точек, лежащих на отрезке.
Например: дана точка К которая расположена между заданными отметками, следовательно, можно сказать, что данная точка лежит на этом отрезке.
Определения
Длина прямой – конкретное отмеренное расстояние, которое задано в масштабе. Чаще всего данный параметр задается как АВ.
Середина отрезка – это некая определенная отметка, которая лежит на прямой и удалена от концов на одинаковом расстоянии друг от друга. Ее можно обозначить как координата С.
Середина отрезка на координатной прямой
Заданы следующие параметры: координатная прямая Ox; точки А и В, которые не совпадают с данной прямой.
Заданным точкам соответствуют действительные числовые значения [x_{A}] и [x_{B}]. Координата С — это середина отрезка А и В. Исходя из этого нужно определить значение координаты [x_{C}] .
AB = |a — b|, где A и B — это произвольные точки, расстояние между которыми надо найти, то есть, найти длину отрезка AB, a и b — координаты точек.
Выражение |a — b| можно заменить выражением |b — a|, так как a — b и b — a являются противоположными числами и их модули равны.
Следовательно, чтобы найти расстояние между точками координатной прямой надо из координаты одной точки вычесть координату другой точки.
Середина отрезка на плоскости
Зададим следующие параметры: прямоугольная система координат относительно заданной плоскости Oxy; две произвольно расположенные несовпадающие точки, для которых заданы координаты [mathrm{A}left(x_{A} y_{A}right)] и [Bleft(chi_{B} chi_{B}right)]. Точка C — это заданная середина отрезка АВ. Нужно вычислить координаты [x_{C}] и [y_{C}] относительно точки С.
Чтобы правильно проанализировать задачу, возьмем случай, когда точки A и В между собой не совпадают и расположены на одной координатной плоскости.
В свою очередь координатная плоскость является перпендикулярной относительной одной из осей.
Координаты отметок [A_{x} A_{y} B_{x} B_{y} C_{x} C_{y}] — это проекции точек А, В, С.
Согласно построению, все прямые можно назвать параллельными; прямые также параллельны между собой. Принимая во внимание данное свойство и теорему Фалеса из равенства А С = С В следуют, что все равенства между собой равны. Также они в свою очередь свидетельствуют о том, что точка [C_{x}] – это середина отрезка [A_{x}] и [B_{x}], [C_{y}] а – середина отрезка [A_{y}] и [B_{y}].
Опираясь на полученное выражение получаем основное уравнение середины отрезка на координатной плоскости.
[x_{c}=frac{x_{A}+x_{B}}{2}text { и } y_{c}=frac{y_{A}+y_{B}}{2}]
Данным набором формул можно использовать, когда точки А и B лежат на одной координатной плоскости или прямой. Которая соответственно перпендикулярна относительной одной из осей.

В данном случае координаты отрезка будут определяться по следующей формуле:
[x_{C}=frac{x_{A}+x_{B}}{2} text{ и } y_{c}=frac{y_{A}+y_{B}}{2}]
Параметры середины отрезка в пространстве
Для выведения основной формулы для решения подобного рода задач, нужно рассмотреть конкретный пример.
Дана система координат, две произвольные координатные точки с конкретными координатами [mathrm{A}left(A_{x} A_{y} A_{z}right)] и [mathrm{B}left(B_{chi} B_{y} B_{z}right)]. Нужно определить отметку точки C, которая в свою очередь будет являться серединой отрезка.
Согласно основной теоремы Фалеса, все равенства между собой являются равными. Следовательно, значение точек С будут являться серединами отрезков, каждой координатной плоскости, коих имеется три.
Можно составить и записать окончательную формулу для определения середины прямой при координатной плоскости, состоящей более чем двух осей.
[x_{c}=frac{x_{A}+x_{B}}{2} text{ и } y_{C}=frac{y_{A}+y_{B}}{2}, z_{c}=frac{z_{A}+z_{B}}{2}]
Данные формулы также можно применять в случаях, когда точки A и B расположены на одной из координатных прямых. Либо на прямой, которая перпендикулярна относительно одной из осей. Есть еще случай, когда точки расположены в одной координатной плоскости, которая перпендикулярна одной из координатных плоскостей.
Нет времени решать самому?
Наши эксперты помогут!
Определение координат середины отрезка через координаты радиус-векторов его концов
Формулу для определения отметок середины отрезка, можно определить применяя алгебраическое правило решения векторных выражений.
Исходные данные: прямоугольная декартова система координат Oxy, точки с конкретно заданными координатами [mathrm{A}left(A_{x} A_{y}right)] и [text { B }left(B_{x} B_{y}right)].
Точка C – это середина отрезка с точками А и В.
Согласно геометрическому правилу и определению, действия над векторами будет выглядеть следующим образом:
[overline{O C}=frac{1}{2} cdot(overline{O A}+overline{O B}).]
Координата С в данной ситуации — это значение, в которой пересекаются диагонали геометрической фигуры параллелограмм. Данная фигура построена на основании следующих векторов [overline{O A}] и [overline{O B}], иными словами — это точка середины диагоналей.
Координатные показатели радиуса — это векторные показатели, которые равны координатам, тогда будут верны и равенства: [overline{O A}left(x_{A} y_{A}right)] и [overline{O B}left(x_{B} y_{B}right)].
Выполним следующие действия над векторными значениями и получим следующие формулы:
[overline{O C}=frac{1}{2} cdot(overline{O A}+overline{O B})=left(frac{x_{A}+y_{B}}{2}, frac{y_{A}+y_{B}}{2}right).]
Следовательно, заданная координата С обладает данными:
[left(frac{x_{A}+y_{B}}{2}, frac{y_{A}+y_{B}}{2}right).]
Аналогичным образом определяется нахождение координат середины заданного отрезка в пространстве.
[Cleft(frac{x_{A}+y_{B}}{2}, frac{y_{A}+y_{B}}{2}, frac{z_{A}+z_{B}}{2}right)]
Примеры решения задачи, при нахождении точки середины отрезка
Примеры
Пример №1:
Заданы координатные данные. Точка А с показателями (-7,3) и В (2,4).
Нужно определить точку с отметками, которая является серединой отрезка А и В.
Решение:
Середину отрезка можно обозначить любой точкой. В данном примере возьмем наименование точки — С.
Координатные значения ее будут вычисляться как половина суммы координат концов заданного отрезка с точками А
и В.
Составим и запишем следующие формулы:
[x_{C}=frac{x_{A}+x_{B}}{2}=frac{-7+2}{2}=-frac{5}{2}\y_{C}=frac{y_{A}+y_{B}}{2}=frac{3+4}{2}=frac{7}{2}]
Ответ: искомые координатные значения середины отрезка будут равны следующим данным:
[mathrm{AB}left(-frac{5}{2}, frac{7}{2}right)]
Пример №2:
Заданы координатные отметки геометрической фигуры треугольника: АВС А(-1,0), В (3,2), С (9,-8). По условию
необходимо вычислить длину медианы АМ.
Решение:
По условию задачи AM – медиана, следовательно, точка M будет являться точкой середины отрезка BC. В первую
очередь необходимо определить координаты середины отрезка BC, а именно: точки M.
[x_{M}=frac{x_{B}+x_{C}}{2}=frac{3+9}{2}=6\y_{M}=frac{y_{B}+y_{C}}{2}=frac{2+(-8)}{2}=-3]
Так как, нам известны координатные значения двух концов медианы, точки А и М. Можно воспользоваться формулой
определения расстояния между заданными значениями, и вычислить окончательное значение медианы.
[AM=sqrt{(6-(-1))^{2}+(-3+0)^{2}}=sqrt{58}]
Ответ: [sqrt{58}].
Содержание:
Декартовы координаты на плоскости:
Изучая материал этой лекции, вы расширите свои знания о координатной плоскости.
Вы научитесь находить длину отрезка и координаты его середины, зная координаты его концов.
Сформируете представление об уравнении фигуры, выведете уравнения прямой и окружности.
Ознакомитесь с методом координат, позволяющим решать геометрические задачи средствами алгебры.
Расстояние между двумя точками с заданными координатами. Координаты середины отрезка
В 6 классе вы ознакомились с координатной плоскостью, то есть с плоскостью, на которой изображены две перпендикулярные координатные прямые (ось абсцисс и ось ординат) с общим началом отсчета (рис. 8.1). Вы умеете отмечать на ней точки по их координатам и наоборот, находить координаты точки, отмеченной на координатной плоскости.
Договорились координатную плоскость с осью
Координаты точки на плоскости 
Вы знаете, как находить расстояние в между двумя точками, заданными своими координатами на координатной прямой. Для точек 
Научимся находить расстояние между точками 
Рассмотрим случай, когда отрезок 
Через точки 


Тогда формулу расстояния между точками 
Докажите самостоятельно, что эта формула остается верной и для случая, когда отрезок 
Пусть 



Рассмотрим случай, когда отрезок 









Формулы для нахождения координат середины отрезка остаются верными и для случая, когда отрезок 
Пример №1
Докажите, что треугольник с вершинами в точках 
Решение:
Используя формулу расстояния между двумя точками, найдем стороны данного треугольника:
Следовательно, 

Поскольку 

Пример №2
Точка 

Решение:
Обозначим 


Поскольку 
Аналогично
Ответ:
Пример №3
Докажите, что четырехугольник 

Решение:
Пусть точка 

Следовательно,
Пусть точка 

Следовательно,
Таким образом, точки 


Найдем диагонали параллелограмма:
Следовательно, диагонали параллелограмма 
Уравнение фигуры. Уравнение окружности
Из курса алгебры 7 класса вы знаете, какую фигуру называют графиком уравнения. В этом пункте вы ознакомитесь с понятием уравнения фигуры.
Координаты 


Определение. Уравнением фигуры 


- если точка принадлежит фигуре
то ее координаты являются решением данного уравнения;
- любое решение
данного уравнения является координатами точки, принадлежащей фигуре
Например, уравнение прямой, изображенной на рисунке 9.2, имеет вид 


Если данное уравнение является уравнением фигуры 
Пользуясь этими соображениями, выведем уравнение окружности радиуса 
Пусть 

Отсюда
Мы показали, что координаты 



Пусть пара чисел 
Тогда 
Это равенство показывает, что точка 


Итак, мы доказали следующую теорему.
Теорема 9.1. Уравнение окружности радиуса 

Верно и такое утверждение: любое уравнение вида 



Если центром окружности является начало координат (рис. 9.5), то 
Пример №4
Составьте уравнение окружности, диаметром которой является отрезок 
Решение:
Поскольку центр окружности является серединой диаметра, то можем найти координаты 

Следовательно,
Радиус окружности 

Следовательно, искомое уравнение имеет вид
Ответ:
Пример №5
Докажите, что уравнение 
Решение:
Представим данное уравнение в виде
Следовательно, данное уравнение является уравнением окружности с центром в точке 
Ответ:
Пример №6
Докажите, что треугольник с вершинами в точках 
Решение:
Найдем квадраты сторон данного треугольника:
Поскольку 




Ответ:
Уравнение прямой
В предыдущем пункте, рассматривая окружность как ГМТ, равноудаленных от данной точки, мы вывели ее уравнение. Для того чтобы вывести уравнение прямой, рассмотрим ее как ГМТ, равноудаленных от двух данных точек.
Пусть 




Пусть 


Мы показали, что координаты 


Теперь покажем, что любое решение уравнения 
Пусть 






Итак, мы доказали, что уравнение 
Однако из курса алгебры 7 класса вы знаете, что уравнение прямой выглядит гораздо проще, а именно: 





Раскроем скобки и приведем подобные слагаемые. Получим:
Обозначив 
Поскольку точки 



Итак, мы доказали следующую теорему.
Теорема 10.1. Уравнение прямой имеет вид?
где 

Верно и такое утверждение: любое уравнение вида 


Если 



Из курса алгебры 7 класса вы знаете, что уравнение вида 
на уроках алгебры в 7 классе мы приняли без доказательства тот факт, что графиком линейной функции 
Перепишем уравнение 



А любую ли прямую на плоскости можно задать уравнением вида 
Дело в том, что прямая, перпендикулярная оси абсцисс, не может являться графиком функции, а следовательно, не может быть задана уравнением вида
Вместе с тем, если в уравнении прямой 


Если 



Следовательно, если 


Уравнение невертикальной прямой удобно записывать в виде
Данная таблица подытоживает материал, рассмотренный в этом пункте.
Пример №7
Составьте уравнение прямой, проходящей через точки:
Решение:
1) Поскольку данные точки имеют равные абсциссы, то прямая 
2) Поскольку данные точки имеют разные абсциссы, то прямая 
Подставив координаты точек 

Решив эту систему уравнений, находим, что
Ответ:
Пример №8
Найдите периметр и площадь треугольника, ограниченного прямой 
Решение:
Найдем точки пересечения данной прямой с осями координат.
С осью абсцисс: при 
С осью ординат: при 
Следовательно, данная прямая и оси координат ограничивают прямоугольный треугольник 


Ответ:
Угловой коэффициент прямой
Рассмотрим уравнение 
Покажем, что прямые 

Точки 







Теперь мы можем сделать такой вывод: если 

Пусть прямая 


Если прямая 






Рассмотрим прямую 






где 

Если невертикальные прямые параллельны, то они образуют равные углы с положительным направлением оси абсцисс. Тогда тангенсы этих углов равны, следовательно, равны и их угловые коэффициенты. Таким образом,
если прямые 

Выводы (1) и (2) объединим в одну теорему.
Теорема 11.1. Прямые 
Пример №9
Составьте уравнение прямой, которая проходит через точку 
Решение:
Пусть уравнение искомой прямой 

Следовательно, искомое уравнение имеет вид 


Искомое уравнение имеет вид
Ответ:
Метод координат
Мы часто говорим: прямая 


Проиллюстрируем сказанное на таком примере.
Из наглядных соображений очевидно, что прямая и окружность имеют не более двух общих точек. Однако это утверждение не является аксиомой, поэтому его надо доказывать.
Эта задача сводится к исследованию количества решений системы уравнений
где числа 
Решая эту систему методом подстановки, мы получим квадратное уравнение, которое может иметь два решения, одно решение или вообще не иметь решений. Следовательно, для данной системы существует три возможных случая:
- система имеет два решения — прямая и окружность пересекаются в двух точках;
- система имеет одно решение — прямая касается окружности;
- система не имеет решений — прямая и окружность не имеют общих точек.
С каждым из этих случаев вы встречались, решая задачи 10.17-10.19.
Метод координат особенно эффективен в тех случаях, когда требуется найти фигуру, все точки которой обладают некоторым свойством, то есть найти геометрическое место точек.
Отметим на плоскости две точки 

Это серединный перпендикуляр отрезка 


Плоскость, на которой отмечены точки 




Пусть 


Следовательно, если точка 

Пусть 






Таким образом, уравнением фигуры 



Мы решили задачу для частного случая, когда 

Как строили мост между геометрией и алгеброй
Идея координат зародилась очень давно. Ведь еще в старину люди изучали Землю, наблюдали звезды, а по результатам своих исследований составляли карты, схемы.
Во II в. до н. э. древнегреческий ученый Гиппарх впервые использовал идею координат для определения места расположения объектов на поверхности Земли.
Только в XIV в. французский ученый Николя Орем (ок. 1323-1382) впервые применил в математике идею Гиппарха: он разбил плоскость на клетки (как разбита страница вашей тетради) и стал задавать положение точек широтой и долготой.
Однако огромные возможности применения этой идеи были раскрыты лишь в XVII в. в работах выдающихся французских математиков Пьера Ферма и Рене Декарта. В своих трудах эти ученые показали, как благодаря системе координат можно переходить от точек к числам, от линий к уравнениям, от геометрии к алгебре.
Несмотря на то что П. Ферма опубликовал свою роботу на год раньше Р. Декарта, систему координат, которой мы сегодня пользуемся, называют декартовой. Р. Декарт в своей работе «Рассуждение о методе» предложил новую удобную буквенную символику, которой с незначительными изменениями мы пользуемся и сегодня. Вслед за Декартом мы обозначаем переменные последними буквами латинского алфавита 


Справочный материал
Расстояние между двумя точками
Расстояние между точками 
Координаты середины отрезка
Координаты 

Уравнение фигуры
Уравнением фигуры 


1) если точка принадлежит фигуре 
2) любое решение 
Уравнение окружности
Уравнение окружности радиуса 

Любое уравнение вида 



Уравнение прямой
Уравнение прямой имеет вид 



Если 


Угловой коэффициент прямой
Коэффициент 

Необходимое и достаточное условие параллельности невертикальных прямых
Прямые 
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Планиметрия — формулы, определение и вычисление
- Стереометрия — формулы, определение и вычисление
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
- Перпендикулярность прямых и плоскостей в пространстве
- Ортогональное проецирование



































то ее координаты являются решением данного уравнения;
данного уравнения является координатами точки, принадлежащей фигуре 













































































