Свойство касательной и секущей
Теорема о пропорциональности отрезков секущей и касательной
(Свойство касательной и секущей, проведённых из одной точки)
Для касательной и секущей к окружности, проведённых из одной точки, квадрат расстояния от этой точки до точки касания равен произведению длины секущей на длину её внешней части.
Другими словами, квадрат расстояния от данной точки до точки касания равен произведению расстояний от этой точки до точек пересечения секущей с окружностью.
Дано : окр. (O;R), AK — касательная, AB — секущая,
окр. (O;R)∩AK=K, (O;R)∩AB=B, C
Проведём хорды BK и CK.
Рассмотрим треугольники ABK и AKC.
(как вписанный угол, опирающийся на дугу CK).
Значит, треугольники ABK и AKC подобны (по двум углам).
Из подобия треугольников следует пропорциональность их соответствующих сторон:
По основному свойству пропорции
Что и требовалось доказать .
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найти AC, если диаметр окружности равен 15, а AB=4.
Дано :
∆ABC, B, C ∈ окр.(O;R) O∈AC, AB — касательная, AB=4, FC — диаметр, FС=15
По свойству касательной и секущей, проведённых из одной точки,
Пусть AF=x, тогда AC=x+15. Составим и решим уравнение:
Второй корень не подходит по смыслу задачи. Следовательно, AC=1+15=16.
Касательная к окружности
О чем эта статья:
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.
Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).
Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.
Свойства касательной к окружности
Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.
Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.
Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:
- окружность с центральной точкой А;
- прямая а — касательная к ней;
- радиус АВ, проведенный к касательной.
Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. а ⟂ АВ.
Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.
В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.
Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Задача
У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.
Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.
Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.
∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°
Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.
Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.
Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.
Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.
Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.
Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.
Задача 1
У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.
Решение
Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.
∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).
Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:
∠BDC = ∠BDA × 2 = 30° × 2 = 60°
Итак, угол между касательными составляет 60°.
Задача 2
К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.
Решение
Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.
Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.
∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°
Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.
Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.
Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.
Задача 1
Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.
Решение
Исходя из соотношения касательной и секущей МА 2 = МВ × МС.
Найдем длину внешней части секущей:
МС = МВ — ВС = 16 — 12 = 4 (см)
МА 2 = МВ × МС = 16 х 4 = 64
Задача 2
Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.
Решение
Допустим, что МО = у, а радиус окружности обозначим как R.
В таком случае МВ = у + R, а МС = у – R.
Поскольку МВ = 2 МА, значит:
МА = МВ : 2 = (у + R) : 2
Согласно теореме о касательной и секущей, МА 2 = МВ × МС.
(у + R) 2 : 4 = (у + R) × (у — R)
Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:
Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).
Ответ: MO = 10 см.
Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.
Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда AВ. Отметим на касательной прямой точку C, чтобы получился угол AВC.
Задача 1
Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.
Решение
Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.
АВ = ∠АВС × 2 = 32° × 2 = 64°
Задача 2
У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.
Решение
Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:
КМ = 2 ∠МКВ = 2 х 84° = 168°
Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.
∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2
Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:
∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°
Хорда, секущая, касательная
Определения
Хорда – отрезок, соединяющий две точки окружности.
В частности, хорда, проходящая через центр окружности, называется диаметром .
Секущей к окружности называется прямая, которая пересекает окружность в двух различных точках.
Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.
Свойства
Радиус, проведенный в точку касания, перпендикулярен касательной
Отрезки касательных, проведенных к окружности из одной точки, равны.
Отрезки пересекающихся хорд связаны соотношением:
Произведения отрезков секущих, проведенных из одной точки, равны:
Квадрат отрезка касательной равен произведению отрезков секущей, проведенной из той же точки:
Если две окружности касаются внешним образом, то длина отрезка общей внешней касательной равна удвоенному среднему пропорциональному их радиусов Видеодоказательство
Чтобы не потерять страничку, вы можете сохранить ее у себя:
http://skysmart.ru/articles/mathematic/kasatelnaya-k-okruzhnosti
Теорема о секущей и касательной
Анна Малкова
Об этой теореме можно сказать: в учебнике нет, а на экзамене есть. Конечно, в учебнике она тоже есть – но никак не выделена и найти ее почти невозможно.
Множество задач ЕГЭ и ОГЭ решаются с помощью этой теоремы.
Если из одной точки к окружности проведены секущая и касательная, то произведение всей секущей на ее внешнюю часть равно квадрату отрезка касательной.
Пусть МС – касательная, МВ — секущая к окружности. Покажем, что
Как мы доказали , и это значит, что треугольники МСА и МВС подобны по двум углам.
Запишем соотношение сходственных сторон:
.
Отсюда
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Теорема о секущей и касательной» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.05.2023
Теорема о пропорциональности отрезков секущей и касательной
(Свойство касательной и секущей, проведённых из одной точки)
Для касательной и секущей к окружности, проведённых из одной точки, квадрат расстояния от этой точки до точки касания равен произведению длины секущей на длину её внешней части.
Другими словами, квадрат расстояния от данной точки до точки касания равен произведению расстояний от этой точки до точек пересечения секущей с окружностью.
Дано: окр. (O;R), AK — касательная, AB — секущая,
окр. (O;R)∩AK=K, (O;R)∩AB=B, C
Доказать:
Доказательство:

Рассмотрим треугольники ABK и AKC.
У них ∠A — общий.
(как угол между хордой и касательной)
(как вписанный угол, опирающийся на дугу CK).
Следовательно, ∠ABK=∠AKC.
Значит, треугольники ABK и AKC подобны (по двум углам).
Из подобия треугольников следует пропорциональность их соответствующих сторон:
По основному свойству пропорции
Что и требовалось доказать.
Задача
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найти AC, если диаметр окружности равен 15, а AB=4.

∆ABC, B, C ∈ окр.(O;R) O∈AC, AB — касательная, AB=4, FC — диаметр, FС=15
Найти: AC
Решение:
По свойству касательной и секущей, проведённых из одной точки,
Пусть AF=x, тогда AC=x+15. Составим и решим уравнение:
Второй корень не подходит по смыслу задачи. Следовательно, AC=1+15=16.
Ответ: 16.
Trigonometry is one of the most significant topics of mathematics, with numerous applications in a wide range of fields. The study of the connection between the sides and angles of a right-angle triangle is the main focus of trigonometry. As a result, using trigonometric formulae, functions, or trigonometric identities, it is possible to find the missing or unknown angles or sides of a right triangle. Angles in trigonometry can be measured in degrees or radians.
Secant Trigonometric Ratio
The ratio of the lengths of any two sides of a right triangle is called a trigonometric ratio. In trigonometry, these ratios link the ratio of sides of a right triangle to the angle. The secant ratio is expressed as the ratio of the hypotenuse (longest side) to the side corresponding to a given angle in a right triangle. It is the reciprocal of the cosine ratio and is denoted by the abbreviation sec.
If θ is the angle that lies between the base and hypotenuse of a right-angled triangle then,
sec θ = Hypotenuse/Base = 1/cos θ
Here, hypotenuse is the longest side of right triangle and base is the side adjacent to the angle.
Secant Square x Formula
The secant square x ratio is denoted by the abbreviation sec2 x. It’s a trigonometric function that returns the square of the secant function value for an angle x. The period of the function sec x is 2π, but the period of sec2 x is π. Its formula is equivalent to the sum of unity and the tangent square function.
Formula
sec2 x = 1 + tan2 x
where,
x is one of the angles of the right triangle,
tan x is the tangent ratio for angle x.
Derivation
The formula for secant square x is derived by using the identity of sum of squares of sine and cosine ratios.
We know, sin2 x + cos2 x = 1.
Dividing both sides by cos2 x, we get
(sin2 x/cos2 x) + (cos2 x/cos2 x) = 1/cos2 x
tan2 x + 1 = sec2 x
=> sec2 x = 1 + tan2 x
This derives the formula for secant square x ratio.
Sample Problems
Problem 1. If tan x = 3/4, find the value of sec2 x using the formula.
Solution:
We have, tan x = 3/4.
Using the formula we get,
sec2 x = 1 + tan2 x
= 1 + (3/4)2
= 1 + 9/16
= 25/16
Problem 2. If tan x = 12/5, find the value of sec2 x using the formula.
Solution:
We have, tan x = 12/5.
Using the formula we get,
sec2 x = 1 + tan2 x
= 1 + (12/5)2
= 1 + 144/25
= 169/25
Problem 3. If sin x = 8/17, find the value of sec2 x using the formula.
Solution:
We have, sin x = 8/17.
Find the value of cos x using the formula sin2 x + cos2 x = 1.
cos x = √(1 – (64/289))
= √(225/289)
= 15/17
So, tan x = sin x/cos x = 8/15
Using the formula we get,
sec2 x = 1 + tan2 x
= 1 + (8/15)2
= 1 + 64/225
= 289/225
Problem 4. If cot x = 8/15, find the value of sec2 x using the formula.
Solution:
We have, cot x = 8/15.
So, tan x = 1/cot x = 15/8
Using the formula we get,
sec2 x = 1 + tan2 x
= 1 + (15/8)2
= 1 + 225/64
= 289/64
Problem 5. If cos x = 12/13, find the value of sec2 x using the formula.
Solution:
We have, cos x = 12/13.
Find the value of sin x using the formula sin2 x + cos2 x = 1.
sin x = √(1 – (144/169))
= √(25/169)
= 5/13
So, tan x = sin x/cos x = 5/12
Using the formula we get,
sec2 x = 1 + tan2 x
= 1 + (5/12)2
= 1 + 25/144
= 169/144
Last Updated :
31 May, 2022
Like Article
Save Article
Допустим, у вас есть функция, y = f (x), где y — функция от x. Неважно, каковы конкретные отношения. Это может быть y = x ^ 2, например, простая и знакомая парабола, проходящая через начало координат. Это может быть y = x ^ 2 + 1, парабола с идентичной формой и вершиной на одну единицу выше начала координат. Это может быть более сложная функция, например, y = x ^ 3. Независимо от того, что это за функция, прямая линия, проходящая через любые две точки на кривой, является секущей.
-
Обратите внимание, что секущая линия меняется, когда вы выбираете вторую точку ближе к первой. Вы всегда можете выбрать точку на кривой ближе, чем раньше, и получить новую секущую линию. Когда ваша вторая точка становится все ближе и ближе к вашей первой точке, секущая линия между ними приближается к касательной к кривой в первой точке.
Возьмите значения x и y для любых двух точек, которые, как вы знаете, находятся на кривой. Точки задаются как (значение x, значение y), поэтому точка (0, 1) означает точку на декартовой плоскости, где x = 0 и y = 1. Кривая y = x ^ 2 + 1 содержит точку (0 1). Он также содержит точку (2, 5). Вы можете подтвердить это, вставив каждую пару значений для x и y в уравнение и убедившись, что уравнение уравновешивает оба раза: 1 = 0 + 1, 5 = 2 ^ 2 + 1. Оба (0, 1) и (2, 5) являются точками кривой y = x ^ 2 +1. Прямая линия между ними является секущей, и оба (0, 1) и (2, 5) также будут частью этой прямой.
Определите уравнение для прямой, проходящей через обе эти точки, выбрав значения, которые удовлетворяют уравнению y = mx + b — общему уравнению для любой прямой линии — для обеих точек. Вы уже знаете, что y = 1, когда x равен 0. Это означает, что 1 = 0 + b. Так что б должно быть равно 1.
Подставим значения для x и y во второй точке в уравнение y = mx + b. Вы знаете, y = 5, когда x = 2, и вы знаете, b = 1. Это дает вам 5 = m (2) + 1. Таким образом, m должно равняться 2. Теперь вы знаете и m, и b. Секущая линия между (0, 1) и (2, 5) равна y = 2x + 1
Выберите другую пару точек на кривой, и вы сможете определить новую секущую линию. На той же кривой, у = х ^ 2 + 1, вы можете взять точку (0, 1), как вы делали раньше, но на этот раз выберите (1, 2) в качестве второй точки. Поместите (1, 2) в уравнение для кривой, и вы получите 2 = 1 ^ 2 + 1, что, очевидно, правильно, так что вы знаете (1, 2) также на той же кривой. Секущей линией между этими двумя точками является y = mx + b: если положить 0 и 1 для x и y, вы получите: 1 = m (0) + b, поэтому b все равно равно единице. Подставив значение для новой точки, (1, 2), вы получите 2 = mx + 1, который уравновешивается, если m равно 1. Уравнение для секущей линии между (0, 1) и (1, 2) имеет вид у = х + 1.





