Как найти расстояние между точками физика

В физике расстояние и перемещение используются для обозначения длины между двумя точками. Однако эти понятия не одно и то же.

Расстояние

Это длина фактического пути между двумя точками.

Перемещение

Это длина кратчайшего пути между двумя точками.

Таким образом, расстояние говорит нам, сколько пути пройдено телом, во время движения, а
перемещение дает нам представление о том, как далеко тело находится от своей начальной
точки, и в каком направлении. Разница между расстоянием и перемещением часто путается
или приравнивается, однако для решения физических задач, понимание сути этих двух
терминов очень важно.

Сравнительная таблица расстояния и перемещения

Параметры сравнений Расстояние Перемещение
Определение Расстояние относится к количеству пространства между двумя точками, измеренного вдоль фактического пути, связывающего их. Перемещение означает количество пространства между двумя точками, измеренное вдоль минимального пути, связывающего их.
Что это значит физически? Длина всего проспекта, пройденного телом. Наименьшее расстояние между начальной и конечной точкой.
Скаляр или вектор Скалярная величина Векторная величина
Информация Дает полную информацию о маршруте, по которому следует тело. Не дает полной информации о маршруте следования тела.
Время Расстояние никогда не может уменьшиться со временем. Перемещение может уменьшиться со временем.
Величина Положительная Положительная, Отрицательная или Ноль
Формула Скорость × Время Скорость × Время

Определение расстояния

Мы определяем расстояние как скалярное выражение. Это подразумевает, сколько области покрыто объектом во время путешествия из одного места в другое. В качестве скалярной меры она учитывает только величину, а не направление. Таким образом, дает числовое значение количества пространства между двумя точками в данный момент времени с учетом фактического пути.

Единица расстояния СИ – метры.

Определение перемещения

Перемещение означает изменение положения кого-либо или чего-либо в определенном направлении. Это самая короткая длина, измеренная от исходного положения до конечного
положения движущегося тела. Это векторная величина, поэтому она учитывает как величину,
так и направление объекта. Величина перемещения относится к линейному расстоянию между двумя точками.

Как правило, измерение перемещения выполняется по прямой линии, хотя его измерение также может быть выполнено по изогнутым траекториям. Кроме того, измерение выполняется с учетом контрольной точки.

Ключевые различия между расстоянием и перемещением

Следующие пункты объясняют разницу между расстоянием и перемещением:

  1. Количество пространства между двумя точками, измеренное вдоль фактического пути,
    соединяющего две точки, называется расстоянием. Количество пространства между двумя точками, измеренное вдоль минимального пути, который их соединяет, называется перемещением.

  2. Расстояние – это не что иное, как длина всего маршрута, пройденного объектом во время движения. С другой стороны, перемещение – это наименьшее расстояние между начальной и конечной точкой.

  3. Расстояние дает полную информацию о пути, по которому идет тело. В отличие от этого, перемещение не дает полной информации о пути, пройденном объектом.

  4. Перемещение уменьшается со временем, тогда как расстояние не уменьшается со временем.

  5. Значение перемещения может быть положительным, отрицательным или даже нулевым, но значение расстояния всегда положительное.

  6. Расстояние – это скалярная мера, которая учитывает только величину, то есть нам
    нужно указать только числовое значение. В отличие от перемещения, которое является
    векторной мерой и учитывает как величину, так и направление.

  7. Пройденное расстояние не является уникальным путем, но перемещение между двумя
    точками является уникальным путем.

Тест по теме «Разница между расстоянием и перемещением»

Подробности
Обновлено 03.07.2018 18:27
Просмотров: 689

Задачи по физике — это просто!

Не забываем, что решать задачи надо всегда в системе СИ!

А теперь к задачам!

Элементарные задачи из курса школьной физики по кинематике.


Задача на определение расстояния между двумя телами при прямолинейном равномерном движении

Смысл задачи:
Два тела движутся навстречу друг другу. Даны их начальные координаты и перемещения за одинаковый отрезок времени после начала движения. Определить расстояние между телами через какое-то время после начала движения.

Условия задачи:

Два автобуса движутся вдоль прямого шоссе навстречу друг другу. Они одновременно отошли от остановок, находящихся на расстоянии 200 м и 600 м от моста. Определить расстояние между ними, если за одинаковое время один прошел 50 м, а другой — 100 м.

Выбираем мост за точку отсчета. Т.к. движение по прямой, выбираем одномерную систему координат — ось ОХ.

На координатной оси от точки отсчета откладываем начальные координаты хo1 и хо2.
Из начальных координат показываем вектора перемещения, направленные навстречу друг другу (желательно, чтобы на чертеже соотношение длин векторов перемещения для наглядности соответствовала условиям задачи).

Ставим точки, соответствующие конечным координатам тел — х1 и х2. Расстояние между этими точками (х1 и х2) и требуется определить.

Для каждого тела записываем расчетную формулу для определения координаты при прямолинейном равномерном движении и делаем расчет.

Не забываем, что проекция перемещения для вектора Sx2, направленного противоположно координатной оси, отрицательна, поэтому (-100 м) в расчете.

Формула для расчета расстояния l очень удобна. Она дает абсолютное значение разности, поэтому безразлично, где эти координаты находятся на оси, и из какой координаты какую вычитать
.

Любознательным

Сбивание и нагревание яичных белков

Почему при сбивании яичные белки из жидкости превращаются в густую пену?
Почему взбивание делает белок таким плотным?

Почему яичный белок, сначала — прозрачная бесцветная жидкость, превращается в почти твердое вещество, когда вы жарите яичницу?

Оказывается…
Молекулы в яичном белке запутаны, как макароны. Когда белок сбивают или нагревают, молекулы расправляются
и начинают сильнее притягивать друг друга, поэтому белок становится жестче.

Источник: «Физический фейерверк» Дж. Уокер

Содержание материала

  1. Кинематика
  2. Видео
  3. Как выглядит формула пути без времени, когда скорость тела уменьшается
  4. Импульс
  5. График скорости равномерного движения
  6. Виды движения и формулы длины пути
  7. Основные формулы электричества
  8. Примеры решения задач

Кинематика

К оглавлению…

Путь при равномерном движении:

Перемещение S (расстояние по прямой между начально

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Средняя скорость пути:

Средняя скорость пути:

Средняя скорость перемещения:

Средняя скорость перемещения:

Определение ускорения при равноускоренном движении

Определение ускорения при равноускоренном движении:

Выразив из формулы выше конечную скорость, получае

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Перемещение при равноускоренном прямолинейном движ

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Координата при равноускоренном движении изменяется

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изм

Проекция скорости при равноускоренном движении изменяется по такому закону:

Скорость, с которой упадет тело падающее с высоты

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорос

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, бр

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула для тормозного пути тела:

Формула для тормозного пути тела:

Время падения тела при горизонтальном броске с выс

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Дальность полета тела при горизонтальном броске с

Дальность полета тела при горизонтальном броске с высоты H:

Полная скорость в произвольный момент времени при

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Максимальная высота подъема при броске под углом к

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске по

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошен

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Определение периода вращения при равномерном движе

Определение периода вращения при равномерном движении по окружности:

Определение частоты вращения при равномерном движе

Определение частоты вращения при равномерном движении по окружности:

Связь периода и частоты:

Связь периода и частоты:

Линейная скорость при равномерном движении по окру

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Угловая скорость вращения при равномерном движении

Угловая скорость вращения при равномерном движении по окружности:

Связь линейной и скорости и угловой скорости выраж

Связь линейной и скорости и угловой скорости выражается формулой:

Связь угла поворота и пути при равномерном движени

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Центростремительное ускорение находится по одной и

Центростремительное ускорение находится по одной из формул:

 

Видео

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

[large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

[ large begin{cases} S  = v_{0} cdot t — displaystyle frac{a}{2} cdot t^{2} \ v  = v_{0} — a cdot t end{cases} ]

Импульс

К оглавлению…

Импульс тела находится по следующей формуле:

Изменение импульса тела или системы тел (обратите

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Общий импульс системы тел (важно то, что сумма век

Общий импульс системы тел (важно то, что сумма векторная):

Второй закон Ньютона в импульсной форме может быть

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Закон сохранения импульса. Как следует из предыдущ

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Если внешние силы не действуют только вдоль одной

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

 

График скорости равномерного движения

Т.к. скорость – это векторная величина, она характеризуется и модулем, и направлением. В зависимости от выбранного направления скорость по знаку может быть как положительной, так и отрицательной.

На рисунке 1 изображен динозавр, автомобиль и дом. Зададим ось координат $x$.

Рисунок 1. Положительная и отрицательная скорости.

Рисунок 1. Положительная и отрицательная скорости.

Если динозавр начнет двигаться к дому, то его скорость будет положительной, т.к. направление движения совпадает с направлением оси $x$. Если же динозавр направится к автомобилю, то его скорость будет отрицательной, т.к. направление движения противоположно направлению оси $x$.

Итак, график скорости равномерного движения имеет вид, представленный на рисунке 2.

Рисунок 2. График скорости равномерного движения.

Рисунок 2. График скорости равномерного движения.

Из графика видно, что скорость с течением времени не изменяется – она постоянна в любой выбранный момент времени. Из графика положительной скорости мы видим, что $upsilon = 6 frac{м}{с}$; из графика отрицательной — $upsilon = -4 frac{м}{с}$.

Зная скорость и время, мы можем рассчитать пройденный путь за определенный промежуток времени. Рассчитаем какой путь пройдет тело с положительной скоростью за $4 с$.

$$S = upsilon t = 6 frac{м}{с} cdot 4 c = 24 м$.$

Виды движения и формулы длины пути

Длина пути при равномерном движении (v=const) точки равна:

где t1 – начало отсчета движения, t2 – окончание отсчета. Формула (5) показывает то, что длина пути, который проходит равномерно движущаяся материальная точка – это линейная функция времени.

Если движение не является равномерным, то можно длину пути $Delta s$ на отрезке времени от $t$ до $t + Delta t$ находят как:

где $langle vrangle$ – средняя путевая скорость. При равномерном движении $langle vrangle = v$ .

Путь, который проходит материальная тоска при равнопеременном движении (a=const)вычисляют как:

где a – постоянное ускорение, v – начальная скорость движения.

Основные формулы электричества

Для многих студентов тема про электричество сложнее, чем про термодинамика, но она не менее важна. Итак, начнём с электростатики:

Переходим к постоянному электрическому току:

Переходим к постоянному электрическому току:

Далее добавляем формулы по теме: “Магнитное поле э

Далее добавляем формулы по теме: “Магнитное поле электрического тока”

Электромагнитная индукция тоже важная тема для зна

Электромагнитная индукция тоже важная тема для знания и понимания физики. Конечно, формулы по этой теме необходимы:

Ну и, конечно, куда же без электромагнитных колеба

Ну и, конечно, куда же без электромагнитных колебаний:

Примеры решения задач

Примеры решения задач

1. Самым быстрым животным на Земле считается гепард. Он способен развивать скорость до $120 frac{км}{ч}$, но сохранять ее способен в течение короткого промежутка времени. Если за несколько секунд он не настигнет добычу, то, вероятнее всего, уже не сможет ее догнать. Найдите путь, который пробежит гепард на максимальной скорости за $3$ секунды.

Переведем единицы измерения скорость в СИ и решим задачу.

$120 frac{км}{ч} = 120 cdot frac{1000 м}{3600 с} approx 33 frac{м}{с}$.

Дано:$upsilon=120 frac{км}{ч}$$t = 3 c$СИ:$upsilon=33 frac{м}{с}$

Найти:$S — ?$

Показать решение и ответ

Скрыть

Решение:
Гепард двигается равномерно в течение 3 с.
Путь, который он проходит за это время:
$S = upsilon t = 33 frac{м}{с} cdot 3 с approx 100 м$

Ответ: $100 м$

2. Колибри – самые маленькие птицы на нашей планете. При полете они совершают около 4000 взмахов в минуту. Тем не менее, они способны пролетать очень большие расстояния. Например, некоторые виды данной птицы перелетают Мексиканский залив длиной $900 км$ со средней скоростью $40 frac{км}{ч}$. Сколько времени у них занимает такой полет?

Переведем единицы измерения скорость в СИ и решим задачу.

$40 frac{км}{ч} = 40 cdot frac{1000 м}{3600 с} approx 11 frac{м}{с}$;

$900 км = 900 000 м$.

Дано:$upsilon_{ср} = 40 frac{км}{ч}$$S = 900 км$CИ:$upsilon_{ср} = 11 frac{м}{с}$$S = 900 000 м$

Найти:$t-?$

Показать решение и ответ

Скрыть

Решение:
Полет колибри будет примером неравномерного движения. Зная среднюю скорость и путь, рассчитаем время перелета:
$t = frac{s}{upsilon_{ср}} = frac{900 000 м}{11 frac{м}{с}} approx 82 000 с$.

Переведем время в часы:
$1 ч = 60 мин = 60 cdot 60 c = 3600 c$.

Тогда,
$t = frac{82 000 c}{3600 c} approx 23 ч$.

Ответ: $t = 82 000 c = 23 ч$.

Теги

Содержание:

  • Определение и формула пути
  • Виды движения и формулы длины пути
  • Единицы измерения пути
  • Примеры решения задач

Определение и формула пути

Линия, которую описывает материальная точка при своем движении, называется траекторией.

Определение

Длиной пути называют сумму длин всех участков траектории, которые прошла точка за рассматриваемый промежуток времени
от t1 до t2.

В том случае, если уравнения движения представлены в прямоугольной декартовой системе координат, то длина пути (s) определяется как:

$$s=int_{t_{1}}^{t_{2}} sqrt{left(frac{d x}{d t}right)^{2}+left(frac{d y}{d t}right)^{2}+left(frac{d z}{d t}right)^{2}} d t=int_{t_{1}}^{t_{2}} sqrt{(dot{x})^{2}+(dot{y})^{2}+(dot{z})^{2}} d t(1)$$

В цилиндрических координатах длина пути может быть выражена как:

$$s=int_{t_{1}}^{t_{2}} sqrt{left(frac{d rho}{d t}right)^{2}+left(rho frac{d varphi}{d t}right)^{2}+left(frac{d z}{d t}right)^{2}} d t=int_{t_{1}}^{t_{2}} sqrt{(dot{rho})^{2}+(rho dot{varphi})^{2}+(dot{z})^{2}} d t(2)$$

В сферических координатах формулу длины пути запишем:

$$s=int_{t_{1}}^{t_{2}} sqrt{left(frac{d r}{d t}right)^{2}+left(r frac{d theta}{d t}right)^{2}+left(r sin theta frac{d varphi}{d t}right)^{2}} d t=int_{t_{1}}^{t_{2}} sqrt{(dot{r})^{2}+(r dot{theta})^{2}+(r varphi sin theta)^{2}} d t(3)$$

Местоположение перемещающейся материальной точки в фиксированный момент времени, например t=t1 называют начальным положением.
Очень часто полагают t1=0. Длин пути, который прошла материальная точка из начального положения – скалярная функция времени: s=s(t).

Считают, что за промежуток времени $d t rightarrow 0$ материальная точка проходит путь ds,
который называют элементарным. При этом:

$$d s=|d bar{r}|=v d t$$

где $bar{r}$ – вектор элементарного перемещения материальной точки, v – модуль скорости ее движения.

Виды движения и формулы длины пути

Длина пути при равномерном движении (v=const) точки равна:

$$s=vleft(t_{2}-t_{1}right)(5)$$

где t1 – начало отсчета движения, t2 – окончание отсчета. Формула (5) показывает то, что длина пути, который проходит равномерно движущаяся материальная точка – это линейная функция времени.

Если движение не является равномерным, то можно длину пути
$Delta s$ на отрезке времени от
$t$ до
$t + Delta t$ находят как:

$$Delta s=langle vrangle Delta t(6)$$

где $langle vrangle$ – средняя путевая скорость. При равномерном движении
$langle vrangle = v$ .

Путь, который проходит материальная тоска при равнопеременном движении (a=const)вычисляют как:

$$s=v_{0} t+frac{a t^{2}}{2}(7)$$

где a – постоянное ускорение, v0 – начальная скорость движения.

Единицы измерения пути

Основной единицей измерения пути в системе СИ является: [s]=м

В СГС: [s]=см

Примеры решения задач

Пример

Задание. Траектория движения материальной точки изображена на рис. 1. Каков путь, пройденный точкой,
чему равно перемещение, если точка двигалась 1-2-3-4.

Решение. Перемещение – кратчайшее расстояние между точками 1 и 4. Следовательно, перемещение точки равно:

$$6 — 2 = 4 (m)$$

Путь – длина траектории. Рассматривая график на рис.1 получаем, что путь материальной точки равен:

$$8 + 4 + 8 = 20 (m)$$

Ответ. Путь равен 20 м, перемещение равно 4 м.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Уравнение движения материальной точки в прямоугольной декартовой системе координат представлено функцией:
x=-0,2t2 (м) . Какой путь пройдет материальная точка за 5 с?

Решение. Так как уравнение движения задано только одной координатой, то в качестве основы для решения
задачи примем формулу пути в виде:

$$s=int_{t_{1}}^{t_{2}} sqrt{(dot{x})^{2}} d t(2.1)$$

Подставим в (2.1) функцию x=-0,2t2, учтем, что $0 c leq t leq 5 c$ имеем:

$$s=int_{0}^{5} sqrt{left(-0,2 frac{dleft(t^{2}right)}{d t}right)^{2}} d t=0,left.4 cdot frac{t^{2}}{2}right|_{0} ^{5}=5(m)$$

Ответ. s=5м.

Читать дальше: Формула равноускоренного движения.

Содержание:

Равномерное прямолинейное движение:

Вы изучали равномерное прямолинейное движение, познакомились с понятием «скорость». Скалярной или векторной величиной является скорость? Каковы закономерности равномерного прямолинейного движения?

Вы знаете, что движение, при котором за любые равные промежутки времени тело проходит одинаковые пути, называется равномерным. В каком случае одинаковыми будут не только пути, но и перемещения?

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Проделаем опыт. Проследим за падением металлического шарика в вертикальной трубке, заполненной вязкой жидкостью (например, густым сахарным сиропом) (рис. 43). Будем отмечать положение шарика через равные промежутки времени. Опыт показывает, что за равные промежутки времени, например за Равномерное прямолинейное движение в физике - формулы и определения с примерами

Сделаем вывод. При равномерном прямолинейном движении тело за любые равные промежутки времени совершает одинаковые перемещения и проходит одинаковые пути.

В 7-м классе вы находили скорость равномерного движения тела как отношение пути к промежутку времени, за который путь пройден: Равномерное прямолинейное движение в физике - формулы и определения с примерами Это отношение показывает, как быстро движется тело, но ничего не говорит о направлении движения. Чтобы скорость характеризовала и быстроту движения, и его направление, ее определяют через перемещение.

Скорость равномерного прямолинейного движения — это величина, равная отношению перемещения к промежутку времени, за который оно совершено:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из равенства (1) следует, что скорость Равномерное прямолинейное движение в физике - формулы и определения с примерамивекторная физическая величина. Ее модуль численно равен модулю перемещения за единицу времени, а направление совпадает с направлением перемещения (т. к. Равномерное прямолинейное движение в физике - формулы и определения с примерами).

Отношение Равномерное прямолинейное движение в физике - формулы и определения с примерами для всех участков движения на рисунке 43 одинаково: Равномерное прямолинейное движение в физике - формулы и определения с примерами  Значит, скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.

Из формулы (1) легко найти перемещение:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

и путь Равномерное прямолинейное движение в физике - формулы и определения с примерами (равный модулю перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

А как определить положение равномерно и прямолинейно движущегося тела в любой момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Рассмотрим пример. Автомобиль движется с постоянной скоростью по прямолинейному участку шоссе (рис. 44).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Автомобиль рассматриваем как материальную точку. Из формулы (2) находим проекцию перемещения автомобиля на ось Ох:

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Согласно рисунку 44 за время Равномерное прямолинейное движение в физике - формулы и определения с примерами автомобиль совершил перемещение Равномерное прямолинейное движение в физике - формулы и определения с примерами Подставляя Равномерное прямолинейное движение в физике - формулы и определения с примерами в равенство (4), получим:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Приняв Равномерное прямолинейное движение в физике - формулы и определения с примерами запишем формулу для координаты автомобиля:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Зависимость координаты движущегося тела от времени называется кинематическим законом движения. Формула (5) выражает кинематический закон равномерного прямолинейного движения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для измерения скорости используются специальные приборы. В автомобилях имеется спидометр (рис. 45), на самолетах — указатель скорости. Эхолокаторы измеряют скорость тел, движущихся под водой, а радиолокаторы (радары) — в воздухе и по земле. Сотрудники службы дорожного движения с помощью портативного радара с видеокамерой (рис. 46) регистрируют скорость транспортных средств.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для любознательных:

Скорости движения могут сильно отличаться. За одну секунду черепаха может преодолеть несколько сантиметров, человек — до 10 м, гепард — до 30 м, гоночный автомобиль — около 100 м.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Около 8 км за секунду пролетает по орбите спутник Земли (рис. 47). Но даже скорости космических кораблей «черепашьи» по сравнению со скоростью микрочастиц в ускорителях. В современном ускорителе (рис. 48) электрон за одну секунду пролетает почти 300 000 км!

Главные выводы:

  1. При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
  2. Скорость равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.
  3. При равномерном прямолинейном движении тела модуль перемещения равен пути, пройденному за тот же промежуток времени.
  4. Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Пример решения задачи:

Кинематический закон прямолинейного движения лодки но озеру вдоль оси Ох задан уравнением Равномерное прямолинейное движение в физике - формулы и определения с примерами где Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Определите: 1) проекцию скорости лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами 2) координату лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами в момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами 3) проекцию перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами лодки на ось Ох и путь, пройденный лодкой за время от момента Равномерное прямолинейное движение в физике - формулы и определения с примерами до момента Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение

Сделаем рисунок к задаче.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

По условию задачи координата лодки линейно зависит от времени. Значит, лодка движется равномерно. Сравнив Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами получимРавномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерами

Найдем Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из рисунка 49: проекция перемещенияРавномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Ответ: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графическое представление равномерного прямолинейного движения

Зависимости между различными величинами можно наглядно изобразить с помощью графиков. Использование графиков облегчает решение научных, практических задач и даже бытовых проблем.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Например, по графику зависимости температуры пациента от времени (рис. 50) видно, что на 5-е сутки температура достигла своего максимума, затем резко упала, а еще через сутки стала приближаться к норме. График дал наглядное представление о течении болезни.

В физике роль графиков чрезвычайно велика. Умение строить и читать графики помогает быстрее и глубже понять физические явления.

Рассмотрим простой пример из кинематики. Леша и Таня идут навстречу друг другу (рис. 51). Они движутся равномерно и прямолинейно. Модуль скорости Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами Как представить графически характеристики их движения?

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Выберем координатную ось Ох и зададим начальные положения участников движения (см. рис. 51). Пусть при Равномерное прямолинейное движение в физике - формулы и определения с примерами координата Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами

Построим графики зависимости проекции скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами проекции перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами пути S и координаты X от времени t.

График проекции скорости

Согласно условию и рисунку 52 для проекций скорости движения Тани и Леши на ось Ох получим: Равномерное прямолинейное движение в физике - формулы и определения с примерами Так как проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами постоянны, то графики их зависимости от времени t — прямые, параллельные оси времени (прямые I и II на рисунке 52).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики показывают: проекция скорости при равномерном прямолинейном движении с течением времени не изменяется.

График проекции перемещения

Проекция перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами совершенного за время t, определяется формулой Равномерное прямолинейное движение в физике - формулы и определения с примерами (см. § 6).

Зависимость проекции перемещения от времени для Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами График Равномерное прямолинейное движение в физике - формулы и определения с примерами — наклонная прямая I (рис. 53).

Для Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами График Равномерное прямолинейное движение в физике - формулы и определения с примерами — наклонная прямая II, изображенная на рисунке 53.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из графиков и формул следует, что при равномерном прямолинейном движении проекция перемещения прямо пропорциональна времени.

График пути

Путь — величина положительная при любом движении тела. При равномерном прямолинейном движении путь равен модулю перемещения: Равномерное прямолинейное движение в физике - формулы и определения с примерами Поэтому при Равномерное прямолинейное движение в физике - формулы и определения с примерами график пути совпадает с графиком проекции перемещения (прямая I), а при Равномерное прямолинейное движение в физике - формулы и определения с примерами график пути (прямая III) является «зеркальным отражением» графика II (проекции перемещения) от оси времени.

Графики пути показывают: при равномерном прямолинейном движении пройденный путь прямо пропорционален времени.

График координаты

Его называют также графиком движения.

По формуле Равномерное прямолинейное движение в физике - формулы и определения с примерами, используя данные из условия задачи и рисунок 51, находим зависимости координаты Равномерное прямолинейное движение в физике - формулы и определения с примерами Леши и Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани от времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами Графики этих зависимостей — прямые I и II на рисунке 54. Они параллельны соответствующим графикам проекций перемещения на рисунке 53.

Графики движения показывают: при равномерном прямолинейном движении координата тела линейно зависит от времени.

По точке пересечения графиков I и II (точке А) (рис. 54) легко найти момент и координату места встречи Леши и Тани. Определите их самостоятельно.

Что еще можно определить по графикам?

По графику проекции скорости можно найти проекцию перемещения и пройденный путь

Рассмотрим прямоугольник ABCD на рисунке 52. Его высота численно равна Равномерное прямолинейное движение в физике - формулы и определения с примерами а основание — времени t. Значит, площадь прямоугольника равна Равномерное прямолинейное движение в физике - формулы и определения с примерами Таким образом, проекция перемещения численно равна площади прямоугольника между графиком проекции скорости и осью времени. При Равномерное прямолинейное движение в физике - формулы и определения с примерами проекция перемещения отрицательна, и площадь надо брать со знаком «минус».

Докажите самостоятельно, что площадь между графиком проекции скорости и осью времени численно равна пройденному пути.

По углу наклона графика проекции перемещения можно оценить скорость движения

Рассмотрим треугольник АВС на рисунке 53. Чем больше угол наклона а графика проекции перемещения, тем больше скорость тела. Объясните это самостоятельно.

Главные выводы:

Для равномерного прямолинейного движения:

  1. График проекции скорости — прямая, параллельная оси времени.
  2. Графики проекции перемещения и координаты — прямые, наклон которых к оси времени определяется скоростью движения.
  3. Площадь фигуры между графиком проекции скорости и осью времени определяет проекцию перемещения.

Пример №1

Мотоциклист едет из города по прямолинейному участку шоссе с постоянной скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами Через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после проезда перекрестка он встречает едущего в город велосипедиста, движущегося равномерно со скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами Определите расстояние между участниками движения через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после их встречи, если Равномерное прямолинейное движение в физике - формулы и определения с примерами Запишите кинематические законы движения мотоциклиста и велосипедиста, постройте графики проекции и модуля скорости, проекции перемещения, координаты и пути для обоих участников движения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение

Изобразим координатную ось Ох, вдоль которой идет движение (рис. 55). Начало системы координат О свяжем с перекрестком.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

В начальный момент времени мотоциклист находился на перекрестке, а велосипедист в точке В. Значит, кинематический закон движения мотоциклиста имеет вид:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Найдем координату Равномерное прямолинейное движение в физике - формулы и определения с примерами велосипедиста в начальный момент времени. Пусть точка С на оси Ох — место встречи участников движения (рис. 56).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Тогда

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Кинематический закон движения велосипедиста имеет вид:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Расстояние между мотоциклистом и велосипедистом через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после их встречи равно сумме путей, которые они проделают за это время. Значит,

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Пример №2

Построим графики проекций и модулей скорости. Для мотоциклиста графики проекции скорости 1 и модуля скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами совпадают (рис. 56). Для велосипедиста график проекции скорости — прямая 2, а модуля скорости — прямая Равномерное прямолинейное движение в физике - формулы и определения с примерами Объясните причину несовпадения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графиками пути s, проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами и модуля перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами (рис. 57) будут прямые, выражающие прямую пропорциональную зависимость от времени t.

Для мотоциклиста:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики пути, модуля и проекции перемещения мотоциклиста совпадают (прямая 1).

Для велосипедиста:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Прямая 2 является графиком пути и модуля перемещения велосипедиста.  Прямая Равномерное прямолинейное движение в физике - формулы и определения с примерами — графиком проекции его перемещения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики координат представлены на рисунке 58. Они выражают зависимости Равномерное прямолинейное движение в физике - формулы и определения с примерами (прямая 1) и Равномерное прямолинейное движение в физике - формулы и определения с примерами (прямая 2). Точка А определяет время встречи и координату места встречи.

Ответ: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Прямолинейное равномерное движение и скорость

Из курса Физики VII класса вам известно, что равномерное прямолинейное движение является самым простым видом механического движения.

Прямолинейное равномерное движение — это движение по прямой линии, при котором материальная точка за равные промежутки времени совершает одинаковые перемещения.

При прямолинейном равномерном движении модуль и направление скорости с течением времени не изменяются:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость при прямолинейном равномерном движении является постоянной физической величиной, равной отношению перемещения материальной точки ко времени, за которое это перемещение было совершено: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как отношение Равномерное прямолинейное движение в физике - формулы и определения с примерами в формуле является положительной скалярной величиной, то направление вектора скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами совпадает с направлением вектора перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами Единица измерения скорости в СИ — метр в секунду:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами  известна, то можно определить перемещение s материальной точки за промежуток времени Равномерное прямолинейное движение в физике - формулы и определения с примерами при прямолинейном равномерном движении:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При прямолинейном равномерном движении пройденный телом путь равен модулю перемещения: 

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как уравнение в векторном виде можно заменить алгебраическими уравнениями в проекциях векторов, то для вычисления перемещения используют не формулу, выраженную через векторы, а формулу, содержащую в себе проекции векторов на координатные оси. При прямолинейном движении положение материальной точки определяется одной координатой X, определяются проекции векторов скорости и перемещения материальной точки на эту ось и уравнение решается в этих проекциях. Поэтому выражение (1.2) можно записать в проекциях перемещения и скорости на ось ОХ:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Можно получить формулу для вычисления координаты точки Равномерное прямолинейное движение в физике - формулы и определения с примерами в произвольный момент времени (см.: тема 1.2):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Выражение (1.5) является уравнением прямолинейного равномерного движения тела. Если материальная точка движется по направлению выбранной координатной оси ОХ, то проекция скорости считается положительной (b), если же движется против направления координатной оси, то проекция скорости считается отрицательной (с).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из формулы (1.5) определяется выражение для проекции скорости: 

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из формулы (1.6) становится ясным физический смысл скорости: проекция скорости на ось равна изменению проекции соответствующей координаты за единицу времени.

Пройденный путь и координата материальной точки при прямолинейном равномерном движении являются линейной функцией от времени (d). Скорость же является постоянной величиной, поэтому график скорость — время будет представлять собой линию, параллельную оси времени — скорость такого движения не зависит от времени (е):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

График координата-время при равномерном движении образует определенный угол с осью времени. Тангенс этого угла равен проекции (модулю) скорости по оси ох (f): Равномерное прямолинейное движение в физике - формулы и определения с примерами

Пример №3

Два велосипедиста одновременно начали движение навстречу друг другу вдоль прямой линии из пунктов А и В, расстояние между которыми 90 км. Скорость первого велосипедиста Равномерное прямолинейное движение в физике - формулы и определения с примерами скорость второго велосипедиста Равномерное прямолинейное движение в физике - формулы и определения с примерами (g)?

Определите: а) координату и время Равномерное прямолинейное движение в физике - формулы и определения с примерами встречи велосипедистов; b) пройденные велосипедистами пути и совершенные ими перемещения к моменту встречи; с) время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее с начала движения до момента, когда расстояние между ними стало 10 км.

Дано:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение:

a) При решении задачи соблюдается следующая последовательность действий: 

I действие. Выбирается система координат ОХ с началом координат в точке А и рисуется схема (h).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

II действие. Уравнение движения записывается в общем виде: Равномерное прямолинейное движение в физике - формулы и определения с примерами

III действие. На основании условия задачи уравнения движения велосипедистов записываются в общем виде: Равномерное прямолинейное движение в физике - формулы и определения с примерами

IV действие. Координаты велосипедистов при встрече равны: Равномерное прямолинейное движение в физике - формулы и определения с примерами Это равенство решается для Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

V действие. Для определения координат Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами встречи велосипедистов необходимо решить уравнения их движения для времени Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как Равномерное прямолинейное движение в физике - формулы и определения с примерами то Равномерное прямолинейное движение в физике - формулы и определения с примерами

b) Так как по условию задачи велосипедисты движутся прямолинейно и без изменения направления движения, то пройденный путь равен проекции (модулю) перемещения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

c) Время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее с начала движения до момента, когда между ними осталось 10 км, вычисляется по нижеприведенному равенству:

Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость при равнопеременном прямолинейном движении

Из формулы (1.14) видно, что если известны ускорение Равномерное прямолинейное движение в физике - формулы и определения с примерами и начальная скорость тела Равномерное прямолинейное движение в физике - формулы и определения с примерами то можно определить его скорость в любой момент времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

или ее проекцию на ось Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если начальная скорость равна нулю Равномерное прямолинейное движение в физике - формулы и определения с примерами то:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из этих выражений видно, что скорость при равнопеременном движении является линейной функцией от времени. График зависимости скорости от времени — прямая линия, проходящая через начало координат (или через Равномерное прямолинейное движение в физике - формулы и определения с примерами Эта линия, в соответствии с увеличением или уменьшением скорости, направлена вверх или вниз (с).

Перемещение при равнопеременном прямолинейном движении

Формулу для определения перемещения при равнопеременном движении можно вывести на основе графика скорость-время. Проекция перемещения равна площади фигуры между графиком Равномерное прямолинейное движение в физике - формулы и определения с примерами и осью времени.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

На приведенных графиках — это заштрихованная фигура трапеции (см: с):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

или в векторной форме:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если в последнюю формулу вместо Равномерное прямолинейное движение в физике - формулы и определения с примерами подставить выражение (1.18), то получим

обобщенную формулу перемещения для равнопеременного движения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Таким образом, формула проекции перемещения (например, на ось Равномерное прямолинейное движение в физике - формулы и определения с примерами при равнопеременном прямолинейном движении будет:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

а формула координаты:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

(1.23) является формулой перемещения при равнопеременном движении в векторной форме, а (1.24) и (1.25) обобщенными формулами координаты и проекции перемещения, соответственно. Если материальная точка начинает движение из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Как видно из формулы, проекция перемещения при прямолинейном равнопеременном движении пропорциональна квадрату времени Равномерное прямолинейное движение в физике - формулы и определения с примерами и его график представляет собой параболу, проходящую через начало координат (d).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

В некоторых случаях возникает необходимость определить перемещение материальной точки, не зная время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее от начала движения. Такую задачу можно решить тогда, когда известны ускорение, начальное и конечное значения скорости. Для получения этой формулы из выражения (1.19) получаем Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Это выражение подставляется в формулу (1.21):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

После простых преобразований получаем:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для проекции конечной скорости получаем: Равномерное прямолинейное движение в физике - формулы и определения с примерами Если движение начинается из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то проекции перемещения и скорости будут равны:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равноускоренное и равнозамедленное движения

Равнопеременное движение по характеру может быть или равноускоренным, или же равнозамедленным.

При равноускоренном движении векторы Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют одинаковые направления. В этом случае знаки у обеих проекций Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами или положительные, или же отрицательные. Если материальная точка начнет движение из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то независимо от направления движения, оно во всех случаях будет равноускоренным.

При равнозамедленном движении векторы Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют противоположные направления. В этом случае проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют противоположные знаки, если один из них отрицательный, то другой — положительный.

В таблице 1.3 даны формулы и соответствующие графики равноускоренного и равнозамедленного прямолинейного движения.

Таблица 1.3.

Прямолинейное равноускоренное движение
Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Примечание: так как Равномерное прямолинейное движение в физике - формулы и определения с примерами то отношение проекций перемещения равно отношению квадратов соответствующих промежутков времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Это соотношение иногда называется «правило путей».

Прямолинейное равнозамедленное движение
Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Кинематика прямолинейного движения

Физические величины бывают скалярные и векторные. Скалярные физические величины характеризуются только численным значением, тогда как векторные определяются и числом (модулем), и направлением. Скалярными физическими величинами являются время, температура, масса, векторными — скорость, ускорение, сила.
Мир вокруг нас непрерывно изменяется, или движется, т. е. можно сказать, что движение (изменение) есть способ существования материи.

Простейшая форма движения материи — механическое движение — заключается в изменении взаимного расположения тел или их частей в пространстве с течением времени. Наука, изучающая механическое движение, называется механикой (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамиподъемная машина).

Даже самое простое движение тела оказывается достаточно сложным для изучения и исследования. Соответственно, для того чтобы в сложном явлении «увидеть» главное, в физике строится его адекватная упрощенная модель.

В механике широко используется простейшая модель реального тела, называемая материальной точкой (МТ). Под материальной точкой понимают тело, размерами и формой которого можно пренебречь при описании данного движения. Хотя МТ представляет собой абстрактное понятие, упрощающее изучение многих физических явлений, она, подобно реальному телу, «имеет» массу, энергию и т. д.

Кроме материальной точки, в механике используется модель абсолютно твердого тела. Под абсолютно твердым телом понимают модель реального тела, в которой расстояние между его любыми двумя точками остается постоянным. Это означает, что размеры и форма абсолютно твердого тела не изменяются в процессе его движения. В противном случае говорят о модели деформируемого тела.

В классической (ньютоновской) механике рассматривается движение тел со скоростями, намного меньшими скорости света в вакуумеРавномерное прямолинейное движение в физике - формулы и определения с примерами
Классическая механика состоит из трех основных разделов: кинематики, динамики и статики. В кинематике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамидвижение) изучается механическое движение тел без учета их масс и действующих на них сил. В динамике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамисила) рассматривается влияние взаимодействия между телами на их движение. В статике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерами — искусство взвешивать) исследуются законы сложения сил и условия равновесия твердых, жидких и газообразных тел.

Всякое движение тела можно представить в виде двух основных видов движения — поступательного и вращательного.

Поступательным называется движение тела, при котором прямая, соединяющая в этом теле любые две точки, при перемещении остается параллельной самой себе (рис. 1).

Вращательным называется движение абсолютно твердого тела вокруг неподвижной прямой, называемой осью вращения, при котором все точки тела движутся по окружностям, центры которых лежат на этой оси (рис. 2).

Основными задачами кинематики являются:

описание совершаемого телом движения с помощью математических формул, графиков или таблиц;

определение кинематических характеристик движения (перемещения, скорости, ускорения).

Движение тела можно описать только относительно какого-либо другого тела. Тело, относительно которого рассматривается исследуемое движение, называют телом отсчета (ТО). Для описания движения используются формулы, графики и таблицы, выражающие зависимость координат, скоростей и ускорений от времени.

Основным свойством механического движения является его относительность: характер движения тела зависит от выбора системы отсчета (СО).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Систему отсчета, выбираемую для описания того или иного движения, образуют: тело отсчета, связанные с ним система координат (СК) и прибор для измерения времени (часы) (рис. 3).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Система координат и часы необходимы для того, чтобы знать, как с течением времени изменяется положение тела относительно выбранного тела отсчета.

Для описания движения материальной точки в пространстве вводятся такие понятия, как траектория, перемещение, путь.

Линию, которую описывает материальная точка в процессе движения по отношению к выбранной СО, называют траекторией (от латинского слова trajectorus относящийся к перемещению). Если траектория является прямой линией, то движение называется прямолинейным, в противном случае — криволинейным.

Длина участка траектории, пройденного МТ в процессе движения, называется путем (s).

Термин «скаляр», происходящий от латинского слова scalarus — ступенчатый, введен У. Гамильтоном в 1843 г.

Термин «вектор» произошел от латинского слова vector — несущий и введен У. Гамильтоном в 1845 г.
Перемещением называют вектор Равномерное прямолинейное движение в физике - формулы и определения с примерами направленный из точки, заданной радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами где МТ находилась в начальный момент времени, в точку, заданную радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами где МТ находится в рассматриваемый момент времени (рис. 4):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для количественного описания механического движения тел (МТ) вводятся физические величины, характеризующие пространство и время: длина l, время t.

Длина l определяется как расстояние между двумя точками в пространстве. Основной единицей длины в Международной системе единиц (СИ) является метр (1м).

Время t между двумя событиями в данной точке пространства определяется как разность показаний прибора для измерения времени, например часов. В основе работы прибора для измерения времени лежит строго периодический физический процесс. В СИ за основную единицу времени принята секунда (1с).
В зависимости от вида движения могут выбираться следующие системы координат: одномерная (на прямой линии) (рис. 5), двухмерная (на плоскости) (рис. 6), трехмерная (в пространстве) (рис. 7).

Равномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерами

Произвольное движение материальной точки может быть задано одним из трех способов: векторным, координатным, траекторным (естественным).

При векторном способе описания положение движущейся МТ по отношению к выбранной системе отсчета определяется ее радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами

Радиус-вектор Равномерное прямолинейное движение в физике - формулы и определения с примерами всегда проводится из начала координат О в текущее положение материальной точки (рис. 8). При движении положение МТ изменяется. Закон движения в этом случае задается векторным уравнением Равномерное прямолинейное движение в физике - формулы и определения с примерами
Равномерное прямолинейное движение в физике - формулы и определения с примерами
При координатном способе описания положение точки относительно СО определяется координатами х, у, z, а закон движения — уравнениями х = х(t), у = y(t), z = z(t) (см. рис. 8). Исключив из этих уравнений время /, можно найти уравнение траектории движения точки.

Траекторный (естественный) способ описания движения применяется, когда известна траектория движения материальной точки по отношению к выбранной СО (рис. 9).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Текущее положение материальной точки в данном случае определяется расстоянием s, измеренным вдоль траектории от выбранного на ней начала отсчета (точка О на рисунке 9). Кинематический закон движения МТ при этом задается уравнением s = s(t).

Если положить в основу классификации движений характер изменения скорости, то получим равномерные и неравномерные движения, а если вид траектории, то — прямолинейные и криволинейные.

Для того чтобы описать быстроту изменения положения тела (МТ) и направление движения относительно данной СО, используют векторную физическую величину, называемую скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами

Чтобы охарактеризовать неравномерное движение тела (МТ), вводят понятие средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами движения как отношение перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами тела к промежутку времени Равномерное прямолинейное движение в физике - формулы и определения с примерами за который это перемещение произошло (рис. 10):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами
 

Средней путевой скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами называется отношение длины отрезка пути As (см. рис. 9) к промежутку времени Равномерное прямолинейное движение в физике - формулы и определения с примерами его прохождения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Средняя путевая скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами в отличие от средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами является скалярной величиной.

Однако средняя скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами характеризует движение тела (МТ) на определенном участке траектории, но не дает информации о его движении в определенной точке траектории или в определенный момент времени. Кроме того, средняя скорость дает лишь приближенное понятие о характере движения, так как движение в течение каждого малого промежутка времени заменяется равномерным движением. В рамках этой модели скорость тела (МТ) меняется скачком при переходе от одного промежутка времени к другому.

Для того чтобы отразить характер движения в данной точке траектории или в данный момент времени, вводится понятие мгновенной скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами — это скорость тела (МТ), равная производной перемещения по времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Вектор мгновенной скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами в любой точке траектории направлен по касательной к ней (см. рис. 10).

В СИ основной единицей скорости является метр в секунду Равномерное прямолинейное движение в физике - формулы и определения с примерами

Простейший вид движения — равномерное. Равномерным называется движение МТ, при котором она за любые равные промежутки времени совершает одинаковые перемещения.

При прямолинейном движении в одном направлении модуль перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами равен пройденному пути s. Скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами равномерного движения равна отношению перемещения тела Равномерное прямолинейное движение в физике - формулы и определения с примерами ко времени Равномерное прямолинейное движение в физике - формулы и определения с примерами за которое это перемещение произошло:  

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При равномерном движении скорость постоянна Равномерное прямолинейное движение в физике - формулы и определения с примерами и равна средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами определяемой выражением (2).

Зависимость перемещения от времени имеет вид Равномерное прямолинейное движение в физике - формулы и определения с примерами Вследствие того, что Равномерное прямолинейное движение в физике - формулы и определения с примерами  — радиус-вектор, задающий положение МТ в начальный

момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами получаем кинематическое уравнение движения в векторном виде

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При проецировании радиус-вектора, например, на ось Ох получаем кинематическое уравнение для координаты при равномерном движении:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Здесь Равномерное прямолинейное движение в физике - формулы и определения с примерами — координата тела (МТ) в начальный момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Если начальный момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами уравнение принимает вид

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для наглядности описания механического движения удобно представлять зависимости между различными кинематическими величинами графически.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость МТ при равномерном движении постоянна, поэтому график зависимости проекции скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами от времени представляет собой отрезок прямой линии, параллельной оси времени Ot (рис. 11). Отрезок прямой l на рисунке 11 соответствует движению материальной точки в положительном направлении оси Равномерное прямолинейное движение в физике - формулы и определения с примерами а 2 — в отрицательном Равномерное прямолинейное движение в физике - формулы и определения с примерами Площади Равномерное прямолинейное движение в физике - формулы и определения с примерами закрашенных прямоугольников численно равны модулям перемещений МТ с проекциями скоростей Равномерное прямолинейное движение в физике - формулы и определения с примерами за промежуток времени Равномерное прямолинейное движение в физике - формулы и определения с примерами

График зависимости координаты материальной точки, движущейся равномерно прямолинейно, от времени x(t) — линейная функция (рис. 12).
На рисунке отрезок / прямой соответствует равномерному движению в положительном направлении оси Ох; отрезок 2 прямой — покою материальной точки; отрезок 3 прямой — равномерному движению в отрицательном направлении оси Ох.

Проекция скорости движения численно равна угловому коэффициенту этой прямой линии:  Равномерное прямолинейное движение в физике - формулы и определения с примерами

т. е. тангенсу угла наклона (tga) этой прямой к оси времени.

График зависимости пути (модуля перемещения|Равномерное прямолинейное движение в физике - формулы и определения с примерами от времени s(t) при равномерном движении представляет собой прямую линию, проходящую через начало координат (рис. 13).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Угловой коэффициент (tga) этой прямой численно равен модулю скорости движения v. Поэтому на рисунке большей скорости у, соответствует больший угловой коэффициент (tgРавномерное прямолинейное движение в физике - формулы и определения с примерами).

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Для тел (МТ), участвующих в нескольких движениях одновременно, справедлив принцип независимости движений:

если тело (МТ) участвует в нескольких движениях одновременно, то его результирующее перемещение равно векторной сумме перемещений за то же время в отдельных движениях:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Как следует из принципа независимости движений, конечное перемещение тела не зависит от порядка (последовательности) суммирования перемещений при отдельных движениях.

Пусть, например, при переправе через реку, скорость течения которой Равномерное прямолинейное движение в физике - формулы и определения с примерами мы движемся на лодке со скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами относительно воды. В этом случае результирующее перемещение Равномерное прямолинейное движение в физике - формулы и определения с примерами (рис. 14) лодки относительно берега будет складываться из собственного перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами относительно воды и перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами вместе с водой вследствие течения реки: Равномерное прямолинейное движение в физике - формулы и определения с примерами

  • Заказать решение задач по физике

На основе принципа независимости движений формулируется классический закон сложения скоростей:

результирующая скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами тела (МТ), участвующего в нескольких движениях одновременно, равна векторной сумме скоростей Равномерное прямолинейное движение в физике - формулы и определения с примерами отдельных движений (рис. 15):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Этот закон справедлив только при условии, что скорость каждого отдельного движения мала по сравнению со скоростью света Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так, для рассмотренного примера (см. рис. 14) результирующая скорость лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное движение по прямой линии в повседневной жизни встречается сравнительно редко. Например, различные транспортные средства (автомобиль, автобус, троллейбус и т. д.) равномерно и прямолинейно движутся лишь на небольших участках своего пути, в то время как на остальных участках их скорость изменяется как по величине, так и по направлению.

Для измерения мгновенной скорости движения на транспортных средствах устанавливается прибор — спидометр.

  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Ускорение в физике
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
  • Путь и перемещение

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти sпп куба
  • Как найти проданную фотографию
  • Как исправить регистрацию служб
  • Как правильно составить смету по отделочным работам
  • Как составить карту на google

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии