Как найти расстояние между двумя прямыми координатным

Расстояние между двумя прямыми. Метод координат. Задание 14

В этой статье я хочу показать решение  задачи на нахождение расстояния между скрещивающимися прямыми, которую мы уже решали геометрическим способом, но теперь с помощью метода координат. Я специально показываю решение одной задачи разными способами, чтобы у вас была возможность выбрать наиболее удобный для вас.

Итак,  аналитический  способ решения задачи:

В правильной треугольной призме ABCA_1B_1C_1, все ребра которой равны 1, найдите расстояние между прямыми AB и CB_1:

Как мы помним из геометрического метода решения этой задачи, расстояние между прямыми  и CB_1 есть расстояние от точки  M , которая является серединой отрезка AB до плоскости A_1B_1C:

Рассстояние rho от точки M_0(x_0,y_0,z_0) до плоскости ax+by+cz+d=0 вычисляется по такой формуле:

rho=delim{|}{ax_0+by_0+cz_0+d}{|}/{sqrt{a^2+b^2+c^2}}

Поместим нашу призму в систему координат. Если мы решаем задачу с кубом или прямоугольным параллелепипедом, то выбор системы координат очевиден: мы помещаем начало координат в одну из вершин куба, а оси направляем вдоль ребер. В случае  призмы это не столь очевидно.

Нам надо выбрать систему координат таким образом, чтобы координаты точки M   и точек A_1,  B_1 и C, задающих плоскость A_1B_1C вычислялись наиболее простым способом и содержали как можно больше нулей. Поэтому удобно выбрать систему координат вот таким образом:

Запишем координаты нужных нам точек:

A_1(0;-{1/2};1)

B_1(0;{1/2};1)

C({sqrt{3}}/2;0;0)

M(0;0;0)

Чтобы найти коэффициенты  a,   b,  c и d в уравнении ax+by+cz+d=0 плоскости A_1B_1C, примем коэффициент d=1, и подставим координаты точек A_1,  B_1 и C в уравнение плоскости. (Мы приняли коэффициентd=1, так как наша плоскость не проходит через начало координат.)

Получим систему уравнений:

delim{lbrace}{matrix{3}{1}{{0*a-{1/2}b+c+1=0} {0*a+{1/2}b+c+1=0} {{sqrt{3}}/2{a}+0*b+0*c+1=0}}}{ }

delim{lbrace}{matrix{3}{1}{{-{1/2}b+c+1=0} {{1/2}b+c+1=0} {{sqrt{3}}/2{a}+1=0}}}{ }

Отсюда:

a=-2/{sqrt{3}},

b=0,

c=-1

Подставим значения коэффициентов и координаты точки M(0;0;0) в формулу для расстояния. Получим:

rho=delim{|}{{-2/{sqrt{3}}}*0+0*0+{-1}*0+1}{|}/{sqrt{{-2/{sqrt{3}}^2+0^2+{-1}^2}}=1/{{4/3}+1}=sqrt{3/7}=sqrt{21}/7

Ответ: sqrt{21}/7 

 

И.В. Фельдман, репетитор по математике.

Автор статьи

Сергей Евгеньевич Грамотинский

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Скрещивающиеся прямые — это прямые, не лежащие в одной плоскости и не пересекающиеся между собой.

Наименьшим расстоянием между двумя скрещивающимися прямыми является перпендикуляр, опущенный с одной прямой на другую. У каждой пары скрещивающихся прямых при этом есть только один такой общий перпендикуляр.

Кратчайшее <a href=расстояние между скрещивающимися прямыми. Автор24 — интернет-биржа студенческих работ» />

Рисунок 1. Кратчайшее расстояние между скрещивающимися прямыми. Автор24 — интернет-биржа студенческих работ

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Через каждую из скрещивающихся прямых возможно провести лишь одну плоскость, параллельную второй скрещивающейся прямой, соответственно, для определения расстояния между скрещивающимися прямыми, достаточно определить расстояние между одной из скрещивающихся прямых и плоскостью, на которой лежит вторая прямая.

Соответственно, задачу поиска расстояния между прямой и параллельной ей плоскостью можно свести к поиску расстояния между любой точкой, лежащей на вышеозначенной прямой, и плоскостью.

Как найти расстояние между скрещивающимися прямыми: координатный метод

Рассмотрим методику нахождения расстояния между двумя скрещивающимися прямыми $L_1$ и $L_2$ через координатный метод.

Прямая $L_1$ задана каноническими уравнениями $frac{x-x_1}{l_1} =frac{y-y_1}{m_1}=frac{z-z_1}{n_1}$, а прямая $L_2$ — $frac{x-x_2}{l_2}=frac{y-y_2}{m_2}=frac{z-z_2}{n_2}$.

Прежде всего необходимо найти уравнение плоскости $β$, параллельной прямой $L_1$. Для этого необходимо найти векторное произведение направляющих векторов прямых $L_1$ и $L_2$, данное произведение представляет собой координаты нормального вектора плоскости $β$:

«Расстояние между скрещивающимися прямыми: формула» 👇

$[ {l_1;m_1;n_1} cdot {l_2;m_2;n_2}]=begin{array}{|ccc|} i & j & k \ l_1 & m_1 &n_1 \ l_2 & m_2 &n_2 \ end{array}left(1right)$.

При вычислении выражения $(1)$ мы получим коэффициенты для общего уравнения плоскости $β$ — $A, B$ и $C$.

Для того чтобы записать всё общее выражение плоскости, подставим координаты любой точки, лежащей на $L_2$ в общую форму, например, можно подставить точку с координатами $(x_2;y_2; z_2)$, получим следующее:

$A (x-x_2) + B (y – y_2) + C(z- z_2) + D=0$.

Теперь достаточно выбрать любую точку на прямой $L_1$, пусть это будет точка $M_1$ с координатами $(x_1;y_1; z_1)$.

Расстояние от плоскости $β$ до точки $M_1$ составит:

$ρ=frac{|Ax_1 + By_1 + Cz_1 + D|}{sqrt{A^2 + B^2 + C^2}}left(2right)$,

где $A, B, C$ и $D$ — коэффициенты уравнения плоскости $β$, а $(x_1;y_1; z_1)$ — координаты точки, лежащей на прямой $L_1$.

Замечание 1

Данная формула позволяет высчитать расстояние между двумя скрещивающимися прямыми.

Пример 1

Определить расстояние между скрещивающимися прямыми $L_1$ и $L_2$.

Уравнения прямых —

$L_1: frac{x-2}{2}=frac{y+1}{-3}=frac{z}{-1}$
$L_2: frac{x+1}{1}=frac{y}{-2}; z-1=0$.

Найдём нормальный вектор плоскости, в которой лежит прямая $L_2$, для этого выпишем направляющие вектора для каждой из прямых:

$L_1: vec{s_1}= {2;-3;-1}$, точка на этой прямой — $(2;-1;0)$

$L_2: vec{s_2}= {1;-2;0}$, точка на этой прямой — $(-1;0;1)$

Теперь найдём векторное произведение векторов $vec{s_1}$ и $vec{s_2}$, полученный вектор является нормальным вектором плоскости, в которой лежит $L_2 $:

$[vec{s_1}cdot vec{s_2}]= begin{array}{|ccc|} i &j &k \ 2 &-3 &-1 \ 1 &-2 &0 \ end{array}=((-3) cdot 0 -2) cdot vec{i} + (2 cdot 0 + 1)vec{j} + ((-4) + 3) cdot vec{k} = -2vec{i} + vec{j} -k = {-2;1;-1}$

Подставим координаты точки $(-1;0;1)$, принадлежащей прямой $L_2$, в общее уравнение плоскости:

$-2 cdot (x+1) + (y-0) – 1 cdot(z-1)=0$

Упрощаем и в конечном итоге имеем следующее уравнение плоскости:

$-2x+y-z+1=0$

Теперь, используя координаты точки $(2;-1;0)$, лежащей на первой прямой, можно воспользоваться формулой $(2)$ для вычисления расстояния между двумя скрещивающимися прямыми:

$ρ=frac{|(-2) cdot 2 + 1 cdot(-1) + (-1) cdot(0) + 1|}{sqrt{(-2)^2+1^2+(-1)^2}}=frac{|(-4)+(-1)+1|}{sqrt{4+1+1}}=frac{4}{sqrt{6}}$

Координатная формула вычисления расстояния между скрещивающимися прямыми

Также аналогичное уравнение для поиска расстояния между скрещивающимися прямыми можно использовать сразу в полной координатной форме:

$ρ=frac{begin{array}{|ccc|} l_1 & m_1 &n_1\ l_2 &m_2 &n_2\ (x_2 – x_1) &(y_2-y_1) &(z_2-z_1) \ end{array}}{sqrt{begin{array}{|cc|} m_1 &n_1 \ m_2 &n_2 \ end{array}^2 + begin{array}{|cc|} l_1 &n_1 \ l_2 &n_2 \ end{array}^2 + begin{array}{|cc|} l_1 &m_1 \ l_2 &m_2 \ end{array}^2}}left(3right)$

Для того чтобы воспользоваться данной формулой, возможно нужно освежить в памяти способы нахождения определителей матриц.

Пример 2

Найти расстояние между вышеприведёнными прямыми с помощью формулы $(3)$.

Выпишем сначала точки, принадлежащие данным прямым и их направляющие векторы:

$L_1$ имеет направляющий вектор ${2; -3; -1}$, а принадлежащая ей точка имеет координаты $(2; -1; 0)$.

$L_2$ имеет направляющий вектор ${1; -2; 0 }$, а принадлежащая ей точка имеет координаты $(-1; 0; 1)$.

Воспользуемся формулой $(3)$:

$ρ=frac{begin{array}{|ccc|} 2 & -3 &-1\ 1 &-2 &0\ (-1 -2) &(0+ 1) &(1-0) \ end{array}}{sqrt{begin{array}{|cc|} -3 &-1 \ -2 &0 \ end{array}^2 + begin{array}{|cc|} 2 & -1 \ 1 &0 \ end{array}^2 + begin{array}{|cc|} 2 & -3 \ 1 & -2 \ end{array}^2}}=frac{|4|}{sqrt{2^2 + 1^2 + 1^2}}=frac{4}{sqrt{6}}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Нахождение кратчайшего расстояния между прямыми в пространстве

Содержание:

  • Что такое расстояние между прямыми в пространстве
  • Метод координат для определения расстояния
  • Примеры задач с решением

    • Задача 1
    • Задача 2

Что такое расстояние между прямыми в пространстве

Для начала дадим определение этому понятию.

Определение

Расстояние между прямыми в пространстве — это отрезок, который соединяет две прямые линии по самому короткому пути. Иными словами, он перпендикулярен обеим этим прямым.

Расстояние между прямыми

Источник: resolventa.ru

Но не всегда две линии могут быть параллельны друг другу.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Определение

Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через вторую прямую параллельно первой.

Расстояние между скрещивающимися прямыми

Источник: shkolkovo.net

Таким образом, чтобы найти расстояние между этими скрещивающимися прямыми, нужно от одной из прямых провести перпендикуляр на плоскость, в которой лежит другая прямая.

Между параллельными прямыми расстояние одинаково на протяжении всей их длины: перпендикуляр, опущенный из любой точки одной из этих линий, всегда будет одной и той же величины.

Метод координат для определения расстояния

Разберем пошагово способ определения расстояния между двумя скрещивающимися прямыми с помощью метода координат.

  1. Определить координаты точек (М_1) и (М_2), лежащих соответственно на прямых a и b.
  2. Найти x, y и z направляющих векторов для прямых a и b.
  3. Найти вектор-нормаль для плоскости, в которой лежит прямая b с помощью векторного произведения (overrightarrow a) и (overrightarrow b).
  4. Записать общее уравнение плоскости: (A(x-x_0)+B(y-y_0)+C(z-z_0)=0) и потом записать к нормированному виду уравнения плоскости, которое выглядит так: (xtimescosleft(alpharight)+ytimescosleft(betaright)+ztimescosleft(gammaright)-p=0), где p — свободный член (число, которое равно расстоянию точки начала координат до плоскости), а (cosleft(alpharight),;cosleft(betaright)) и (cosleft(gammaright))координаты единичного нормального вектора плоскости.
  5. Далее, для определения расстояния от точки M до искомой плоскости, воспользуемся следующим уравнением: (M_1H_1=left|x_1timescosleft(alpharight)+y_1timescosleft(betaright)+z_1cosleft(gammaright)-pright|), где (x_1), (y_1) и (z_1) — координаты точки (M_1), лежащей на прямой a, а (H_1) — точка, лежащая на искомой плоскости.

Примеры задач с решением

Задача 1

Куб

Источник: shkolkovo.net

Дан куб (ABCDA_1B_1C_1D_1) с ребром равным (sqrt{32}) см. Найти расстояние между прямыми (DB_1) и (CC_1).

Решение

Расстояние между скрещивающимися прямыми будем искать в качестве расстояния между прямой (CC_1) и плоскостью, проходящей через (DB_1) параллельно (CC_1). Так как (DD_1parallel CC_1), плоскость ((B_1D_1D)) параллельна (СС_1).

Сначала нужно доказать, что (CO) — перпендикуляр, проведенный к этой плоскости. (COperp BD) (как диагонали квадрата) и (COperp DD_1) (так как ребро (DD_1) перпендикулярно всей плоскости ((ABC))). Получается, (CO) перпендикулярен двум пересекающимся прямым из плоскости. Значит, (COperp(B_1D_1D)).

(AC) — диагонально квадрата — равна (ABsqrt2), то есть (AC=sqrt{32}timessqrt2=sqrt{64}=8) см. Следовательно, (CO=frac12times AC=4) см.

Ответ: 4 см.

Задача 2

В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b. Прямую a определяют параметрические уравнения прямой в пространстве:

(left{begin{array}{l}x=-2\y=1+2timeslambda\z=4-3timeslambdaend{array}right.)

А прямую b канонические уравнения прямой в пространстве:

(frac x1=frac{y-1}{-2}=frac{z+4}6).

Вычислить расстояние между заданными прямыми.

Решение

Прямая a проходит через точку (M_1(-2, 1, 4)) и имеет направляющий вектор (overrightarrow a=(0, 2, -3)). Прямая b проходит через точку (M_2 (0, 1, -4)), а  ее направляющий вектором является вектор (overrightarrow b=(1, -2, 6)).

Найдем векторное произведение векторов( overrightarrow a=(0, 2, -3)) и (overrightarrow b=(1, -2, 6): left[overrightarrow atimesoverrightarrow bright]=begin{vmatrix}overrightarrow i&overrightarrow j&overrightarrow k\0&2&-3\1&-2&6end{vmatrix}=6timesoverrightarrow i-3timesoverrightarrow j-2timesoverrightarrow k).

Так, (overrightarrow n=left[overrightarrow atimesoverrightarrow bright]) плоскости X, проходящей через прямую b параллельно прямой a, имеет координаты (6, -3, -2).

Таким образом, уравнение плоскости X есть уравнение плоскости, проходящей через точку (M_2(0, 1, -4)) и имеющей нормальный вектор (overrightarrow n=(6, -3, -2)):

(6times(x-0)-3times(y-1)-2times(z-(-4))=0;leftrightarrow6x-3y-2z-5=0)

Нормирующий множитель для общего уравнения плоскости (6x-3y-2z-5=0) равен (frac1{sqrt{6^2+{(-3)}^2+{(-2)}^2}}=frac17). Значит, нормальное уравнение этой плоскости выглядит как (frac67x-frac37y-frac27z-frac57=0).

Воспользуемся формулой для вычисления расстояния от точки (M_1(-2, 1, 4)) до плоскости (frac67x-frac37y-frac27z-frac57=0: left|M_1H_1right|=left|frac67times(-2)-frac37times1-frac27times4-frac57right|=left|frac{-28}7right|=4) см.

Ответ: 4 см.

Метод координат (расстояние между точкой и плоскостью, между прямыми)

Расстояние между точкой и плоскостью.

Расстояние между точкой и прямой.

Расстояние между двумя прямыми.


Первое, что полезно знать, это как найти расстояние от точки до плоскости: 

Значения A, B, C, D — коэффициенты плоскости

x, y, z — координаты точки

Задача. Найти расстояние между точкой А = (3; 7; −2) и плоскостью 4x + 3y + 13z — 20 = 0.

Все дано, можно сразу подставить значения в уравнение:

Задача. Найдите расстояние от точки К = (1; −2; 7) до прямой, проходящей через точки V = (8; 6; −13) и T = (−1; −6; 7).

  1. Находим вектор прямой.
  2. Вычисляем вектор, проходящий через искомую точку и любую точку на прямой. 
  3. Задаем матрицу и находим определитель по двум полученным векторам в 1-ом и 2-ом пункте.
  4. Расстояние получим, когда квадратный корень из суммы квадратов коэффициентов матрицы поделим на длину вектора, который задает прямую (Думаю непонятно, поэтому перейдем к конкретному примеру).

1) TV = (8−(−1); 6−(−6); -13-7) = (9; 12; −20)

2) Вектор найдем через точки K и T, хотя так же можно было бы через K и V или любую другую точку на данной прямой.

TK = (1−(−1); −2−(−6); 7-7) = (2; 4; 0)

3) Получится матрица без коэффициента D (здесь он не нужен для решения):

Если непонятно, как получить матрицу и ее определитель, смотрите здесь более подробный разбор.

4) Плоскость получилась с коэффициентами А = 80, В = 40, С = 12,

x, y, z — координаты вектора прямой, в данном случае — вектор TV имеет координаты (9; 12; −20)

Задача. Найти расстояние между прямой, проходящей через точки Е = (1; 0; −2), G = (2; 2; −1), и прямой, проходящей через точки M = (4; −1; 4), L = (−2; 3; 0).

  1. Задаем векторы обеих прямых.
  2. Находим вектор, взяв по одной точке с каждой прямой.
  3. Записываем матрицу из 3-х векторов (две строчки из 1-го пункта, одна строчка из 2-го) и находим ее численный определитель.
  4. Задаем матрицу из двух первых векторов (в пункте 1). Первую строчку задаем как x, y, z.
  5. Расстояние получим, когда разделим получившееся значение из пункта 3 по модулю на квадратный корень из суммы квадратов пункта 4. 

Перейдем к цифрам:

1) EG = (2−1; 2−0; −1−2) = (1; 2; −3)

ML = (−2−4; 3−(−1); 0−4) = (−6; 4; −4) 

2) Найдем вектор EM (можно было так же найти EL или GM, или GL).

EM = (1−4; 0−(−1); −2−4) = (−3; 1; −6)

3) Составляем матрицу из трех выше найденных векторов и находим определитель.

4) Составляем матрицу из первых двух выше найденных векторов и находим определитель 

без коэффициента D (здесь он не нужен для решения).

Вспомним, что уравнение плоскости задается так:

В нашем случае А = 4, В = 22, С = 16, D = 0.

5) Итоговая формула выглядит так, где L= −86 (из 3 пункта)

Будь в курсе новых статеек, видео и легкого математического юмора.

({color{red}{textbf{Факт 1. Про векторы}}})
(bullet) Если в пространстве заданы две точки (A(x_1;y_1;z_1)) и (B(x_2;y_2;z_2)), то вектор (overrightarrow{AB}) имеет координаты [overrightarrow{AB} = {x_2-x_1;y_2-y_1;z_2-z_1}]
(bullet) Если в пространстве заданы два вектора (vec{a}
={x_1;y_1;z_1})
и (vec{b}=
{x_2;y_2;z_2})
, то:

(qquad blacktriangleright) сумма этих векторов (vec{a}+vec{b}={x_1+x_2;y_1+y_2;z_1+z_2})

(qquad blacktriangleright) разность этих векторов (vec{a}-vec{b}={x_1-x_2;y_1-y_2;z_1-z_2})

(qquad blacktriangleright) произведение вектора на число (lambda
vec{a}={lambda x_1;lambda
y_1;lambda z_1})

 
(bullet) Если в пространстве заданы две точки (A(x_1;y_1;z_1)) и (B(x_2;y_2;z_2)), а точка (O) — середина отрезка (AB), то (O) имеет координаты [Oleft(dfrac{x_1+x_2}2;dfrac{y_1+y_2}2;dfrac{z_1+z_2}2right)]
(bullet) Длина вектора (vec{a}={x;y;z}) обозначается (|vec{a}|) и вычисляется по формуле [|vec{a}|=sqrt{x^2+y^2+z^2}]
(bullet) Заметим, что расстояние между двумя точками есть не что иное, как длина вектора с началом и концом в этих точках.
 

({color{red}{textbf{Факт 2. Про скалярное произведение}}})
(bullet) Скалярным произведением двух векторов называется произведение длин этих векторов на косинус угла между ними: [{large{(vec{a},
vec{b})=|vec{a}|cdot|vec{b}|cdotcos angle (vec{a},
vec{b})}}]
На рисунке показано, что такое угол между векторами:

(bullet) Справедливы следующие утверждения:

I. Скалярное произведение ненулевых векторов (их длины не равны нулю) равно нулю тогда и только тогда, когда они перпендикулярны: [(vec{a}, vec{b})=0 quadLeftrightarrowquad
vec{a}perp vec{b}]

II. Длина вектора равна квадратному корню из скалярного произведения вектора на себя: [|vec{a}|=sqrt{(vec{a},
vec{a})}]

III. Переместительный закон: [(vec{a}, vec{b})=(vec{b},
vec{a})]

IV. Распределительный закон: [(vec{a}+vec{b},
vec{c})=(vec{a}, vec{c})+(vec{b}, vec{c})]

V. Сочетательный закон ((lambda) – число): [lambda(vec{a}, vec{b})=(lambda
vec{a}, vec{b})]

(bullet) Скалярное произведение двух векторов (vec{a}
={x_1;y_1;z_1})
и (vec{b}= {x_2;y_2;z_2}) можно вычислить с помощью координат этих векторов: [{large{(vec{a},
vec{b})=x_1x_2+y_1y_2+z_1z_2}}]

(bullet) Косинус угла между векторами (vec{a} ={x_1;y_1;z_1}) и (vec{b}= {x_2;y_2;z_2}) вычисляется по формуле: [{large{cosangle(vec{a}, vec{b})=dfrac{x_1x_2+y_1y_2+z_1z_2}
{sqrt{x^2_1+y^2_1+z^2_1}cdot
sqrt{x^2_2+y^2_2+z^2_2}}}}]

 

({color{red}{textbf{Факт 3. Про уравнение плоскости}}})
(bullet) Если (vec{n}={a;b;c}) – нормаль к плоскости, то уравнение плоскости имеет вид [ax+by+cz+d=0] Для того, чтобы найти (d), нужно подставить в уравнение плоскости вместо (x, y, z) координаты любой точки, лежащей в этой плоскости.
 
Пример: если (vec{n}={1;2;3}) – нормаль к плоскости, (O(4;5;6)) – точка из плоскости, то справедливо: (1cdot 4+2cdot 5+3cdot
6+d=0)
, откуда (d=-32), следовательно, уравнение плоскости имеет вид (x+2y+3z-32=0).
 
(bullet) Уравнение плоскости можно составить, используя три точки из плоскости, не лежащие на одной прямой.
Пусть (A(1;0;0),
B(0;3;4), C(2;0;5))
– точки из плоскости. Тогда уравнение плоскости можно найти, решив систему: [begin{cases}
1cdot a+0cdot b+0cdot c+d=0\
0cdot a+3cdot b+4cdot c+d=0\
2cdot a+0cdot b+5cdot c+d=0end{cases} quadRightarrowquad
begin{cases}
d=-a\
3b+4c-a=0\
a+5c=0end{cases}quadRightarrowquad begin{cases} d=-a\
a=-5c\
b=-3cend{cases}quadRightarrowquadbegin{cases}a=-5c\
b=-3c\
d=5cend{cases}]
Следовательно, уравнение плоскости имеет вид: [-5ccdot x-3ccdot y+ccdot z+5c=0] Можно разделить обе части на (c), так как (cne 0) (иначе (a=b=c=d=0)), следовательно, уравнение плоскости имеет вид [-5x-3y+z+5=0]
 

({color{red}{textbf{Факт 4. Про углы между прямыми, плоскостями}}})
(bullet) Если векторы (vec{a} ={x_1;y_1;z_1}) и (vec{b}=
{x_2;y_2;z_2})
являются направляющими прямых (p) и (q), то косинус угла между этими прямыми равен: [cos phi=dfrac{|x_1x_2+y_1y_2+z_1z_2|}
{sqrt{x^2_1+y^2_1+z^2_1}cdot sqrt{x^2_2+y^2_2+z^2_2}}]

(bullet) Если (vec{a}) — направляющий вектор прямой (p), а (vec{n}) — нормаль к плоскости (phi) (перпендикуляр к плоскости), то синус угла между прямой (p) и плоскостью (phi) равен модулю косинуса угла между векторами (vec{a}) и (vec{n}): [sin
angle(p, phi)=|cos angle(vec{a}, vec{n})|]

 
(bullet) Если две плоскости заданы уравнениями (a_1x+b_1y+c_1z+d_1=0) и (a_2x+b_2y+c_2z+d_2=0), то косинус угла между плоскостями ищется по формуле: [{large{cos phi=left| dfrac{a_1a_2+b_1b_2+c_1c_2}
{sqrt{a^2_1+b^2_1+c^2_1}cdot
sqrt{a^2_2+b^2_2+c^2_2}}right|}}]

 

({color{red}{textbf{Факт 5. Про расстояния от точки до плоскости,
между скрещивающимися прямыми}}})

(bullet) Если (M(x_0;y_0;z_0)) — некоторая точка вне плоскости (phi), (ax+by+cz+d=0) — уравнение плоскости (phi), то расстояние от точки (M) до плоскости (phi) ищется по формуле: [rho(M, phi)=dfrac{|ax_0+by_0+cz_0+d|}{sqrt{a^2+b^2+c^2}}]
(bullet) Для того, чтобы найти расстояние между скрещивающимися прямыми, нужно
— построить плоскость, проходящую через одну из них и параллельную другой;
— найти уравнение этой плоскости;
— найти расстояние от любой точки первой прямой до этой плоскости.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти угол между точками по координатам
  • Как найти контакты на android
  • Как найти период у меандра
  • Как найти длину векторов если они коллинеарны
  • Как составить библиографию книг

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии