2.5.4. Как найти прямую, перпендикулярную данной?
В отличие от предыдущих задач п. 2.5, рассмотренные ниже схемы работают лишь в декартовой системе
координат (но не в общем аффинном случае):
Задача 79
Прямая задана уравнением в декартовой системе координат. Составить
уравнение перпендикулярной прямой , проходящей через точку
.
Решение: по условию известна точка (
– значок принадлежности), и нам неплохо бы найти направляющий вектор прямой
. Так как прямые перпендикулярны, то фокус прост: из уравнения
«снимаем» вектор нормали:
, который и будет направляющим вектором прямой
.
Уравнение прямой составим по точке
и направляющему вектору
:
Ответ:
Развернём геометрический этюд:

1) Из уравнений ,
вытаскиваем направляющие векторы
и с помощью скалярного произведения приходим к выводу, что прямые действительно
перпендикулярны:
.
Кстати, можно использовать векторы нормали, это даже проще.
2) Проверяем, удовлетворяет ли точка полученному уравнению
Оба пункта легко выполнить устно!
Самостоятельно:
Задача 80
Найти точку пересечения перпендикулярных прямых , если известно уравнение
в декартовой системе координат и точка
.
В задаче несколько действий, поэтому решение удобно оформить по пунктам.
И наше увлекательное путешествие продолжается:


| Оглавление |
Автор: Aлeксaндр Eмeлин
План урока:
Перпендикулярность прямых
Перпендикулярность прямой и плоскости
Признак перпендикулярности прямой и плоскости
Задачи на перпендикулярность
Перпендикулярность прямых
Напомним, что планиметрии две прямые перпендикулярны, если угол между ними – прямой (то есть его величина составляет 90°).
Однако в стереометрии угол измеряется и между скрещивающимися двумя прямыми в пространстве, у которых общих точек нет. Если он составляет 90°, то прямые также именуются перпендикулярными.
Как же проверить, перпендикулярны ли скрещивающиеся прямые или нет? Для этого может быть использована специальная теорема, которую можно считать признаком перпендикулярности прямых.
Действительно, пусть есть прямые m, n и p, причем р||n и m⊥n. Требуется показать, что также m⊥p. Для этого выберем в пространстве какую-нибудь точку К и проведем через нее две такие прямые m’ и n’, что m’||m и n’||n:
По определению угла между прямыми из того факта, что m⊥n, вытекает, что и m’⊥n’. Так как p||n и n||n’, то в силу транзитивности параллельности, можно сделать вывод, что и р||n’. Но тогда угол между m’ и n’ одновременно является углом между m и p. А разm’⊥n’, то и m⊥p, ч. т. д.
Проиллюстрируем это правило на примере простого кубика:
Ребра ВС и AD параллельны как стороны квадрата АВСD. В свою очередь ВС⊥СG. Тогда по доказанной теореме можно утверждать, что и AD⊥CG.
Перпендикулярность прямой и плоскости
Из реальной жизни мы знаем, что палку в землю можно вставить так, что она будет стоять строго вертикально. В таких случаях говорят, что палка располагается перпендикулярно земле. Также гвоздь, «ровно» забитый в стену, оказывается перпендикулярным стене. Колонны, которые архитекторы используют при строительстве, также перпендикулярны плоскости пола в этих зданиях.
По аналогии и в геометрии прямая может быть перпендикулярна плоскости. На рисунке такая ситуация будет выглядеть так:
Сформулируем строгое определение:
Так, на следующем рисунке перпендикулярны прямая m и плоскость α. Это значит, что m перпендикулярна каждой прямым, находящимся в α:
Ясно, что прямая m, перпендикулярная плоскости α, должна пересекать ее. Действительно, если бы это было не так, то m либо полностью лежала бы в α, либо была бы ей параллельна. В обоих случаях в α можно было бы построить прямую n, параллельную m. В этом случае m и n уже не были бы перпендикулярны, а значит, что m уже не будет перпендикулярна к α.
Сформулируем две теоремы, связанные с перпендикулярностью прямой и плоскости.
Действительно, пусть есть прямые m и n, и m||n. Также есть плоскость α, и α⊥m. Проведем в α какую-нибудь прямую р:
По определению перпендикулярности (опр. 2) ясно, что m⊥p. Тогда по теор. 1 и n⊥p, ведь m||n. Прямая р была выбрана произвольно, поэтому получается, что n перпендикулярно любой произвольной прямой в α. Это как раз и значит, что n⊥α.
Теперь перейдем ко второй теореме, которая по сути обратна первой:
Для доказательства выберем на n точку К, не находящуюся в плоскости α. Через нее можно построить прямую р, параллельную m. Нам надо показать, что р и n – это одна и та же прямая. Пусть это не так, тогда р будет перпендикулярна α по теор. 2. Если n и р – различные прямые, то они должны пересекать α в разных точках, которые мы обозначим буквами Н и Т соответственно:
Прямая ТН будет перпендикулярна и n, и р. Тогда в ∆ТНК есть два прямых угла, ∠Н и∠Т, что невозможно. Значит, на самом деле прямые n и p совпадают. Так как p||m, то и n||m, ч. т. д.
Признак перпендикулярности прямой и плоскости
Заметим,что проверять перпендикулярность прямой и плоскости с помощью определения неудобно, ведь в любой плоскости находится бесконечно большое количество прямых. Поэтому на практике используется более простой признак перпендикулярности прямой и плоскости:
Доказательство. Пусть есть прямые m, n и р, причем m⊥n и m⊥p. При этом n и р пересекаются в какой-нибудь точке О, и через них проходит плоскость α.Надо продемонстрировать, что m также будет перпендикулярна и любой произвольной прямой k, принадлежащей α:
Если k||nили k||р, то k⊥m по теор. 1. Тогда надо рассмотреть случай, когда k пересекается с n и р. Проведем через О прямую k’, параллельную k.
Далее на прямой m отложим точки А и В так, чтобы ОА = АВ. Также проведем прямую s, пересекающую р, n, k’ в точках Р, L и Q соответственно:
В результате такого построения прямые n и р оказались серединными перпендикулярами для отрезка АВ. Тогда по свойству серединного перпендикуляра мы можем прийти к выводу, что
Теперь мы можем сравнить ∆АРQ и ∆BPQ, которые также оказываются равными:
Отсюда вытекает, что отрезки АQ и BQ одинаковы, поэтому ∆АВQ – равнобедренный. Теперь заметим, что в ∆АВQ отрезок OQ представляет собой медиану, ведь О – середина АВ. Но медиана в равнобедренном треугольнике – это ещё и высота, поэтому АВ⊥OQ. Это как раз и значит, что k’⊥m. Наконец, отсюда по теор. 1 выходит, что и k⊥m, ч. т. д.
Надо также рассмотреть и второй случай, когда изначально m НЕ проходит через О. В таком случае мы можем провести через О прямую m’, чтобы m’||m:
В этом случае по аналогии с предыдущим доказательством получаем, что m’⊥k. Тогда по теор. 1 и m⊥k, ч. т. д.
Покажем, как можно применить доказанный признак. Снова рассмотрим куб:
Докажем, что, например, ребро DH перпендикулярно грани АВСD. Действительно,DH⊥AD и DH⊥CD. Значит, в плоскости АВСD есть две пересекающиеся прямые (это AD и CD), каждая из которых перпендикулярна DH. По доказанному признаку (теор. 4) этого достаточно для того, чтобы DH⊥ABCD. Аналогично можно показать, что ребра BF, AE, СG также перпендикулярны АВСD.
Докажем ещё несколько важных и вместе с тем очевидных теорем.
Действительно, пусть есть прямая m и точка K. Здесь мы рассмотрим случай, когда K не находится на m. Тогда через m и K можно построить единственную плоскость α:
Дальше выполним следующие построения:
1) Проведем в плоскости α через К прямую n, такую, что n⊥m. Она пересечет m в какой-то точке Т.
2) Построим через m плоскость β, не совпадающую с α. То есть m окажется границей между α и β.
3) Через точку Т уже в плоскости β построим прямую р так, чтобы р⊥m.
4) Построим плоскость γ, проходящую пересекающиеся прямые р и n (эта плоскость будет единственной).
В итоге мы получили плоскость γ, в которой располагаются две прямые, р и n, каждая из которых перпендикулярна m. Тогда и вся плоскость γ будет перпендикулярна прямой m по теор. 4. То есть γ удовлетворяет условию теоремы.
В случае, когда точка К находится непосредственно на прямой m, плоскости α и β будут просто двумя различными плоскостями, проходящими через m. В каждой из них через К можно будет построить перпендикуляры к m, которые и будут играть роль прямых pи n.
Осталось убедиться, что γ – единственная плоскость, удовлетворяющая условию теоремы. В самом деле, пусть через некоторую точку К можно построить хотя бы две несовпадающие плоскости, перпендикулярные прямой m:
Обозначим буквами Т и Р точки, где m пересекает эти две плоскости. Тогда по опр. 2 получится, что РК⊥m и KT⊥m. Теперь рассмотрим ∆KPT. У него сразу два прямых угла – это ∠Р и ∠Т. Треугольник с двумя прямыми углами существовать не может, значит, на самом деле через K нельзя провести две плоскости, перпендикулярных m.
Прямым следствием из только что доказанной теоремы является следующее утверждение:
Действительно, пусть существуют такие плоскости α и β и прямая m, что m⊥α, m⊥β. Предположим, что α и β пересекаются по какой-нибудь прямой n. Тогда получается, что через каждую точку, принадлежащую n, проведены сразу 2 плоскости, перпендикулярные m, а это невозможно по теор. 5. Значит, α и β не пересекаются, то есть они параллельны.
Следующее утверждение часто называют теоремой о прямой, перпендикулярной плоскости:
Возьмем произвольные плоскость α и точку К. Далее в α выберем какую-нибудь прямую m. Мы можем провести через К такую плоскость β, что β⊥m (по теор. 5):
Прямую, по которой пересекутся α и β, обозначим буквой n. Теперь мы можем в плоскости β опустить перпендикуляр из К на n. Этот перпендикуляр обозначим буквой р.
Получается, что р⊥n,но также и р⊥m (ведь m⊥β, а р находится в β). Тогда по признаку перпендикулярности (теор. 4) получаем, что р⊥α, то есть р – это как раз искомая прямая.
Осталось показать, что р – единственная такая прямая. Действительно, пусть через К построили две прямых, каждая из которых перпендикулярна α. Тогда, по теореме 3, они окажутся параллельными. Но при этом у них будет общая точка K, а параллельные прямые общих точек не имеют. Поэтому р – единственная прямая, удовлетворяющая условию теоремы.
Задачи на перпендикулярность
Прежде, чем смотреть решение задач, постарайтесь решить их самостоятельно.
Задание. Ребра ВС и AD в тетраэдре АВСD перпендикулярны. M и N – это середины ребер АВ и АС. Докажите, что MN⊥AD.
Решение.MN по определению оказывается средней линией в ∆АВС. Это значит, что MN||ВС. Тогда, по теор. 1, можно утверждать, что и АD⊥MN, ч. т. д.
Задание. Диагонали квадрата, чья сторона имеет длина а, пересекаются в точке О. Через О проведена прямая ОК, перпендикулярная плоскости квадрата, причем отрезок ОК имеет длину b. Найдите расстояние от какой-нибудь вершины квадрата до точки К.
Решение.
Обозначим вершины квадрата буквами А, В, С и D. Найдем длину его диагонали, например, АС. Для этого используем теорему Пифагору и прямоугольный ∆АСD:
Точка пересечения диагоналей квадрата одновременно является серединой каждой диагонали, то есть отрезок ОС вдвое короче АС:
Теперь заметим, что если ОК перпендикулярна плоскости квадрата, то также ОК⊥ОС (опр. 2). Значит, ∆КОС – прямоугольный, и для него справедлива теорема Пифагора:
Аналогично можно показать, что расстояние и до других вершин вычисляется по такой же формуле.
Задание. В кубе найдите угол между прямыми АС и DH:
Решение. Заметим, что DH⊥АD и DH⊥CD, при этом AD и CD находятся в плоскости грани АВСD. Тогда по теор. 4 получаем, что DH перпендикулярна этой грани. В свою очередь из опр. 2 вытекает, что DH перпендикулярна любой прямой, принадлежащей грани, в том числе и АС. То есть угол между этими прямыми составляет 90°.
Ответ: 90°.
Задание. Ребро куба имеет длину, равную единице. Какова длина его диагонали FD?
Решение. Предварительно найдем длину диагонали FC (эта диагональ называется не диагональю куба, а диагональю грани ВСGF). Ее можно найти из прямоугольного ∆FCG:
Далее заметим, что СD⊥BC и CD⊥CG, то есть по теор. 4 ребро CD перпендикулярно всей грани BCGF. Это значит, что и ∠FCD– прямой, а ∆FCD – прямоугольный. Применим и к нему теорему Пифагора:
Задание. Какой угол в кубе с единичным ребром образуют диагональ куба и его ребро?
Решение. Используем рисунок предыдущей задачи и полученные в ней результаты. Нам надо найти ∠FDC. Мы уже рассчитали длины всех сторон в ∆FDC:
Тогда ∠FDC легко найти с помощью теоремы косинусов:
Примечание. Несложно показать, что ровно такой же угол диагональ куба образует и со всеми остальными ребрами куба. Также можно показать, что это угол никак не зависит от длины ребра.
Задание. Отрезок PQ и плоскость α параллельны. Через точку P и Q построены прямые, перпендикулярные α. Они пересекают α в точках Р1 и Q1. Докажите, что отрезки PQ и P1Q1 одинаковы.
Решение. По условию РР1⊥α и QQ1⊥α. Тогда по теор. 3 можно утверждать, что РР1||QQ1. Это значит, что отрезки РР1 и QQ1, в том числе и точки Р, Р1, Q, Q1 располагаются в одной плоскости. Тогда РQQ1P1– это плоский четырехугольник.
Заметим, что PQ||P1Q1, ведь если бы они пересекались, то точка их пересечения была бы общей для PQ и α, и тогда PQ и α не были бы параллельны. С учетом того факта, что и РР1||QQ1, получаем, что в четырехугольнике РQQ1P1 противоположные стороны параллельны. То есть он представляет собой параллелограмм.
Так как РР1⊥α и QQ1⊥α, то
Получается, что все углы в РQQ1P1 – прямые, то есть это прямоугольник. Из этого вытекает, что PQиP1Q1 – одинаковые отрезки, ч. т. д. Попутно мы также убедились, что также РР1 и QQ1 одинаковы.
Задание. Есть плоскости α и β, параллельные друг другу. Прямая m перпендикулярна α. Верно ли, что также m перпендикулярна и β?
Решение.
Пусть α и m пересекаются в точке Р. Заметим, что m обязательно должна пересекаться и с β в какой-нибудь точке М. Действительно, m не может полностью принадлежать β, ведь тогда бы точка Р также находилась в β, то есть существовала бы общая точка Р у параллельных плоскостей, что невозможно. Если бы m и β были параллельны, то тогда в β можно провести такую прямую m’, что m’||m. Раз m пересекает α, то и m’ должна пересекаться с α (по теор. 3 из этого урока). Но m’ с α не может пересечься, так как m’ находится в β и потому общих точек с α не имеет. Это противоречие показывает, что m пересекает β в точке, обозначенной нами как М.
Предположим, что утверждение в условии ошибочно и на самом деле β и m не перпендикулярны. Тогда через М можно провести третью плоскость γ, перпендикулярную m (по теор. 5). Проанализируем расположение плоскостей α, β и γ. Раз α⊥m и γ⊥m, то по теор. 6 можно утверждать, что α||γ. По условию α||β. Тогда в силу транзитивности параллельности и β||γ. Но это невозможно, ведь уβ и γ есть общая точка М. Значит, на самом деле β и m всё же перпендикулярны, ч. т. д.
Задание. Прямые AD, АС, АВ попарно параллельны. Известно, что
BC = 26
AB = 24
BD = 25
Найдите длину отрезка CD.
Решение. В задаче есть сразу три прямоугольных треугольника: ∆АВС, ∆АВD и ∆АСD. Для каждого из них можно записать теорему Пифагора, что позволит найти длины отрезков АС, АD и СD. Начнем с ∆АВС:
Теперь можно найти и длину CD c помощью ∆АСD:
Задание. На прямой m отмечена точка М. Через точку M проведены плоскость α и прямая n, причем m⊥α и m⊥n. Докажите, что n обязательно принадлежит α.
Решение. Так как m и n пересекаются, то через них можно построить плоскость β:
Так как у α и β есть общая точка М, то они должны пересекаться по некоторой прямой р. При этом р находится в α, а m⊥α, то m⊥n (по опр. 2). Тогда получается, что в плоскости β через точку M проходят две прямые, n и p, которые перпендикулярны m. Но в одной плоскости через точку прямой можно построить строго один перпендикуляр к ней. То есть n и p совпадают. Это значит, что n, как и p, полностью находится в α, ч. т. д.
Задание. Отрезок АВ не пересекает плоскость α, а отрезок СD принадлежит α. Известно, что отрезки АС и BD перпендикулярны α. Также известны длины:
AC = 3
BD = 2
CD = 2,4
Какова длина АВ?
Решение.
Если АС⊥α и BD⊥α, то АС||BD (по теор. 3). Это значит, что через АВ и СD можно провести плоскость, то есть АВСD – плоский четырехугольник. При этом∠С и ∠D прямые (по опр. 2). Построим отдельно этот четырехугольник и проведем некоторые построения:
Опустим из В перпендикуляр ВК на АС. Так как в четырехугольнике СDBK три угла прямые (∠С, ∠D и ∠K), то и четвертый угол также прямой, то есть СDBK – прямоугольник. Это значит, что
В ходе сегодняшнего урока мы узнали о перпендикулярных прямых в пространстве, а также о том, что перпендикулярны могут быть также прямая и плоскость. На основе простейших теорем о перпендикулярности возможно определять длину диагонали в кубе и углы, которые образует его диагональ с ребрами куба.
Квадрат — определение и свойства
Квадрат — это прямоугольник, у которого все стороны равны.
Можно дать и другое определение квадрата:
квадрат — это ромб, у которого все углы прямые.
Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.
Квадрат относится к правильным многоугольникам. У правильного многоугольника все стороны равны и все углы равны.
Перечислим свойства квадрата:
- Все углы квадрата — прямые, все стороны квадрата — равны.
- Диагонали квадрата равны и пересекаются под прямым углом.
- Диагонали квадрата делятся точкой пересечения пополам.
- Диагонали квадрата являются биссектрисами его углов (делят его углы пополам).
- Диагонали квадрата делят его на 4 равных прямоугольных равнобедренных треугольника:
Периметр квадрата P в 4 раза больше его стороны и равен:
Площадь квадрата равна квадрату его стороны: .
Теорема 1. Диагональ квадрата равна произведению его стороны на , то есть
.
Доказательство:
Рассмотрим квадрат ABCD. Проведем диагональ квадрата AC.
Треугольник АВС – прямоугольный с гипотенузой АС. Запишем для треугольника АВС теорему Пифагора:
что и требовалось доказать.
Теорема 2. Радиус вписанной в квадрат окружности равен половине его стороны:
Доказательство:
Пусть окружность с центром в точке О и радиусом r вписана в квадрат АВСD и касается его сторон в точках
P, M, N, K.
Тогда поскольку AB параллельно CD. Через точку О можно провести только одну прямую, перпендикулярную АВ, поэтому точки Р, О и N лежат на одной прямой. Значит, PN – диаметр окружности. Поскольку АРND – прямоугольник, то PN = AD, то есть
, что и требовалось доказать.
Теорема 3. Радиус описанной около квадрата окружности равен половине его диагонали:
Доказательство:
Диагонали квадрата АС и BD равны, пересекаются в точке О и делятся точкой пересечения пополам. Поэтому OA=OB=OC=OD, т.е. точки A, B, C и D лежат на одной окружности, радиус которой R = d/2 (d=AC=BD). Это и есть описанная около квадрата АВСD окружность.
По теореме
Тогда , что и требовалось доказать.
Заметим, что периметр квадрата тоже можно связать с радиусами вписанной и описанной окружностей:
Четырехугольник является квадратом, если выполняется хотя бы одно из условий:
- Все стороны равны и среди внутренних углов есть прямой угол.
- Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.
Разберем несколько простых задач на тему «Квадрат». Все они взяты из Банка заданий ФИПИ.
Задача 1. Найдите сторону квадрата, диагональ которого равна .
Решение:
Мы знаем, что . Тогда
.
Ответ: 2.
Задача 2. Найдите площадь квадрата, если его диагональ равна 1.
Первый способ решения:
Зная связь между стороной и диагональю квадрата (теорема 1), выразим сторону квадрата через его диагональ:
Тогда по формуле площади квадрата:
Второй способ решения:
Воспользуемся формулой для площади ромба:
Ответ: 0,5
Задача 3. Найдите радиус окружности, описанной около квадрата со стороной, равной .
Решение:
Радиус описанной окружности равен половине диагонали квадрата, поэтому
Ответ: 2.
Задача 4. Найдите сторону квадрата, описанного около окружности радиуса .
Решение:
Диаметр окружности равен стороне квадрата: .
Ответ: 8.
Задача 5. Радиус вписанной в квадрат окружности равен . Найдите диагональ этого квадрата.
Решение:
Сторона квадрата в два раза больше радиуса вписанной окружности:
Диагональ найдем, зная сторону квадрата:
Ответ: 56.
Задача 6. Радиус вписанной в квадрат окружности равен . Найдите радиус окружности, описанной около этого квадрата.
Решение:
Радиус окружности, вписанной в квадрат, равен половине стороны квадрата, а радиус описанной окружности равен половине диагонали квадрата:
Поэтому
Ответ: 22.
Задача 7. Найдите периметр квадрата, если его площадь равна 9.
Решение:
Найдем сторону квадрата:
Периметр квадрата со стороной 3 равен:
Ответ: 12.
Задача 8. Найдите площадь квадрата, в который вписан круг площадью .
Решение:
Площадь круга откуда радиус круга равен 2.
Сторона квадрата в два раза больше радиуса вписанного круга и равна 4. Площадь квадрата равна 16.
Ответ: 16.
Задача 9. Найдите радиус окружности, вписанной в квадрат ABCD, считая стороны квадратных клеток равными .
Решение:
Сторону квадрата найдем как диагональ другого квадрата со стороной 2 клеточки. Поскольку длина одной клеточки равна ., то сторона малого квадрата равна
. А сторона квадрата ABCD равна
Радиус вписанной окружности в два раза меньше стороны квадрата и равен 2.
Ответ: 2.
Задача 10. Найдите радиус r окружности, вписанной в четырехугольник ABCD. В ответе укажите .
Решение:
Считаем стороны клеток равными единице. Четырехугольник ABCD — квадрат. Все его стороны равны, все углы — прямые. Как и в предыдущей задаче, радиус окружности, вписанной в квадрат, равен половине его стороны.
Найдем на чертеже прямоугольный треугольник. По теореме Пифагора найдем сторону, например, AB.
Она равна . Тогда радиус вписанной окружности равен
. В ответ запишем
.
Ответ: 5.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Квадратu0026nbsp;u0026mdash; определение иu0026nbsp;свойства» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.05.2023
Содержание:
Я думаю, что мы еще никогда не жили в такой геометрический период. Все вокруг — геометрия. Ле Корбюзье
Перпендикулярность прямых в пространстве
В модуле 3 мы рассматривали взаимное расположение прямых в пространстве.
Естественно, что пересекающиеся прямые
образуют углы. Углом между прямыми является меньший из двух смежных. Например, на рисунке 5.1 изображены две пересекающиеся прямые
Две прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом.
Свойства перпендикулярных прямых пространства выражают теоремы 1-4.
Теорема 1
Через произвольную точку прямой в пространстве можно провести перпендикулярную ей прямую.
Доказательство:
Пусть 








Теорема 2
Если две пересекающиеся прямые соответственно параллельны двум перпендикулярным прямым, то они также перпендикулярны.
Доказательство:
Пусть 























Четырехугольники 










Итак, четырехугольник 








Теорема 3
Через любую точку пространства, не принадлежащую прямой, можно провести прямую, перпендикулярную данной (рис. 5.4, а).
Теорема 4
Если прямая перпендикулярна одной из двух параллельных прямых и лежит с ними в одной плоскости, то она перпендикулярна и второй прямой (рис. 5.4, б).
Доказательство теорем 3 и 4 выполните самостоятельно.
Расположение трех прямых в пространстве, когда они между собой попарно перпендикулярны и имеют общую точку, является особым случаем (рис. 5.4, в).
Отметим, что в пространстве существует множество плоскостей, которые можно провести через одну и ту же прямую. Выбирая точку А вне прямой, мы попадем на одну из этих плоскостей и в выбранной плоскости к данной прямой через точку А проводим прямую, перпендикулярную данной.
Итак, в пространстве к прямой можно провести сколь угодно много перпендикулярных прямых, проходящих через данную точку этой прямой.
Пример №1
Прямые 



Дано: 
Найти:
Решение:
Из 




Из 


Ответ. 6,5 см
Почему именно так?
Каждая пара данных прямых 







: известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом.
— сторона
.
: один катет известен по условию, второй — найден из
; неизвестной является третья сторона — гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка
.
Перпендикулярность прямой и плоскости в пространстве
Мы уже рассматривали взаимное расположение прямой и плоскости, детально ознакомились со случаем, когда прямая не пересекает плоскость. В этом параграфе мы рассмотрим случай, когда прямая пересекает плоскость и, кроме того, образует с произвольной прямой этой плоскости, проходящей через точку пересечения, прямой угол. Такую прямую называют перпендикулярной плоскости. Все другие неперпендикулярные прямые, пересекающие плоскость, называют наклонными.
Моделью прямой, перпендикулярной плоскости, может быть установленная вышка, столб, вкопанный в землю, гвоздь, вбитый в стену, и т.п.
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна произвольной прямой, которая лежит на этой плоскости и проходит через их точку пересечения.
Чтобы определить, будет ли прямая 



Теорема 5 (признак перпендикулярности прямой и плоскости)
Если прямая перпендикулярна двум пересекающимся прямым этой плоскости, то она перпендикулярна и данной плоскости.
Доказательство:
Пусть 











Для этого выполним дополнительное построение:
- отложим в разных полупространствах на прямой
от точки
равные отрезки
и
;
- обозначим на прямой
некоторую точку
, а на прямой
— точку
; соединим точки:
с
,
с
,
с
,
с
и
с
;
- проведем через точку
произвольную прямую
, которая пересечет
в точке
, и также соединим ее с
и
.
Рассмотрим образованные при этом треугольники.
— медиана и высота;
по построению;
— общая сторона треугольников
и
;
. Итак,
по двум сторонам и углу между ними. Отсюда
.
. Равенство отрезков
и
доказывается аналогично, как и равенство отрезков
и
.
, поскольку
и
-общая сторона. Отсюда вытекает равенство соответствующих углов:
.
по двум сторонам и углу между ними:
— общая сторона;
по доказательству выше. Итак,
, т.е.
— равнобедренный:
— основание треугольника,
— середина
, поэтому
— медиана
. В равнобедренном треугольнике медиана является высотой, т.е.
, а это означает, что
. Поскольку прямая
— произвольная прямая плоскости
, проходит через точку пересечения прямой
и плоскости
, перпендикулярна прямой
, то
.
Теорема доказана.
Отметим, что вы впервые столкнулись с таким громоздким доказательством. Доказательство не следует заучивать наизусть или запоминать шаги, необходимо понять его и последовательно, опираясь на известные факты, изложить рассуждения. Для этого важно спланировать последовательность логических шагов и не допускать ошибок.
Итак, для установления перпендикулярности прямой и плоскости достаточно проверить перпендикулярность прямой двум прямым плоскости, проходящим через точку их пересечения (по признаку).
Из данной теоремы вытекают два следствия.
Следствие 1. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой.
Доказательство:
Пусть 
























Следствие 2. Две прямые, перпендикулярные одной плоскости, параллельны.
Доказательство:
Пусть 




















Пример №2
Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости.
Доказательство:
Рассмотрим два случая.
Первый случай. Пусть точка 













Тогда в плоскости 







Второй случай. Пусть точка 












Перпендикуляр и наклонная. Теорема о трех перпендикулярах
Рассмотрим изображение прямой а, перпендикулярной плоскости 

Отрезок называется перпендикулярным плоскости, если он лежит на прямой, перпендикулярной плоскости.
Итак, на прямой 


На рисунке 5.21 изображены различные случаи расположения перпендикулярного плоскости отрезка:
- отрезок
лежит по одну сторону от плоскости
и не пересекает ее (рис. 5.21, а);
- отрезок
пересекает плоскость
(концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
- отрезок
лежит по одну сторону от плоскости
и точка
— конец отрезка — принадлежит плоскости
(рис. 5.21, в).
Чаще всего на практике встречается третий случай. Такой отрезок 
Перпендикуляром, проведенным из данной точки к данной плоскости, называется отрезок, который соединяет данную точку с точкой плоскости и лежит на прямой, перпендикулярной этой плоскости (рис. 5.21, в). Конец отрезка, лежащий на плоскости, называется основанием перпендикуляра.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, который соединяет данную точку с точкой плоскости и не является перпендикуляром к плоскости. Конец отрезка, лежащий на плоскости, называется основанием наклонной. Отрезок, который соединяет основание перпендикуляра и основание наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
На рисунке 5.22 отрезок 















Углом между наклонной и плоскостью называется угол между наклонной и проекцией этой наклонной на плоскость.
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости провести к ней перпендикуляр и наклонные, то:
- из точки, не принадлежащей плоскости, можно провести один и только один перпендикуляр и множество наклонных;
- длина перпендикуляра меньше длины любой наклонной;
- наклонные, имеющие равные проекции, равны между собой, и наоборот, равные наклонные имеют равные проекции;
- из двух наклонных большую длину имеет та, которая имеет большую проекцию, и наоборот, большая наклонная имеет большую проекцию.
Докажите эти свойства самостоятельно.
Широко используется свойство прямой, перпендикулярной проекции наклонной или наклонной, которое называют теоремой о трех перпендикулярах.
Теорема 6 (о трех перпендикулярах)
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и наклонной. И наоборот, если прямая, проведенная на плоскости через основание наклонной, перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Дано:
Доказать: прямая 
Доказательство:
Докажем вторую часть теоремы. Пусть 



















Пример №3
Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если одна из них на 26 см больше другой, а проекции наклонных равны 12 см и 40 см.
Дано: 






Найти: 

Решение:
Пусть 







В 






Из (1) и (2) имеем: 

Ответ. 15 см и 41 см.
Почему именно так?




Алгебраический метод решения упрощает процесс поиска решения. Находим общий катет для 


Отсюда имеем равенство: 
Перпендикулярность плоскостей
Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (рис. 5.31).
Если 
Моделями перпендикулярных плоскостей в окружающем мире являются различные конфигурации предметов. Например, шкатулка с крышкой, двери, окна, которые открываются, и т.д. Принцип «открывания» частей моделей основывается на перпендикулярности прямых, проведенных перпендикулярно прямой пересечения (линии крепления) (рис. 5.32).
Перпендикулярные плоскости обладают такими свойствами:
- Любая плоскость, перпендикулярная линии пересечения перпендикулярных плоскостей, пересекает их по перпендикулярным прямым. И наоборот, плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна линии их пересечения.
- Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная их линии пересечения, перпендикулярна другой плоскости.
- Если две плоскости взаимно перпендикулярны и из произвольной точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Рассмотрим их несколько позднее. Докажем сначала признак перпендикулярности двух плоскостей.
Теорема 7 (признак перпендикулярности плоскостей)
Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Дано: 


Доказательство:
Построим произвольную плоскость 






























Теорема доказана.
Теперь вернемся к свойствам перпендикулярных прямых и плоскостей и докажем некоторые из них.
Теорема 8
Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная линии их пересечения, перпендикулярна второй плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости 





Проведем через точку 









Теорема 9
Если две плоскости взаимно перпендикулярны и из некоторой точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости 





Итак, дано 














Теорема доказана.
Остальные свойства докажите самостоятельно.
Пример №4
Из точек 








Дано:
Найти:
Решение:
Поскольку 









Из 






Отсюда, учитывая что 

Ответ. 11 см.
Почему именно так?
Для каждой геометрической задачи важно построить цепочку логических рассуждений. В этой задаче важно видеть не только прямоугольные треугольники на плоскостях 








Перпендикулярность прямой и плоскости
А) Напомним, что перпендикулярными называют прямые, угол между которыми равен 90°. Перпендикулярные прямые могут быть пересекающимися и могут быть скрещивающимися. На рисунке 210 перпендикулярные прямые 



Прямая называется перпендикулярной плоскости, если она перпендикулярна каждой прямой этой плоскости.
Перпендикулярность прямой 




Прямая 






Окружающее пространство даёт много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Столбы с осветительными лампами и колонны устанавливают перпендикулярно горизонтальной поверхности земли (рис. 211).
Из теоремы 6 параграфа 5 следует, что при определении угла между прямыми эти прямые можно заменять параллельными прямыми. Поэтому если одна из параллельных прямых перпендикулярна плоскости, то и другая также перпендикулярна этой плоскости. Верно и обратное утверждение.
Теорема 1. Если две прямые перпендикулярны плоскости, то они параллельны друг другу.
Доказательство: Пусть прямые 




Через какую-либо точку 

















Пусть имеются плоскость 





Следующая теорема устанавливает признак перпендикулярности прямой и плоскости.
Теорема 2. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.
Доказательство: Пусть прямая 








Проведём через точку 






























Следствие 1. Если прямая перпендикулярна одной из параллельных плоскостей, то она перпендикулярна и другой плоскости.
Пусть плоскости 


















Следствие 2. Если одной прямой перпендикулярны две плоскости, то они параллельны.
Проведите самостоятельно обоснование этого утверждения, используя рисунок 216
Б) Теорема 3. Через каждую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.
Доказательство: Пусть даны прямая 












В случае, когда точка 









Докажем теперь, что построенная плоскость а единственная. Допустим, что это не так. Пусть через точку 























Теорема 4. Через каждую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
Доказательство: Пусть даны точка 



















Прямая 







Следствие 3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Пусть 










Пример №5
Докажите, что если рёбра 






Решение:



Поскольку 

Поскольку 





Используя рисунок 226, докажите самостоятельно обратное утверждение: «Если отрезки 






Пример №6
В правильной треугольной пирамиде 



Решение:











Пример №7
Докажите, что диагональ 


Решение:














Используя рисунок 228, установите, в какой точке прямая 
Пространственное моделирование
При выполнении задания на определение вертикальности столба для забора (рис. 240) ученик проверил вертикальность первого из столбов, а дальше, измерив высоту первого и второго столбов и расстояние между ними снизу и сверху, сделал вывод о том, что и второй столб тоже вертикальный. Определите, обеспечивают ли полученные учеником сведения правильность его вывода. Ответ обоснуйте.
Расстояния
А) Пусть даны плоскость 









Соединим точку 






Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости проведены к этой плоскости две наклонные (рис. 242), то:
- а) наклонные, имеющие равные проекции, равны между собой;
- б) та наклонная больше, проекция которой больше;
- в) равные наклонные имеют равные проекции;
- г) большая наклонная имеет большую проекцию.
Свойства перпендикуляров и наклонных докажите самостоятельно, используя рисунок.
Теорема 5. Перпендикуляр к плоскости, проведённый из некоторой точки, меньше любой наклонной к этой плоскости, проведённой из той же точки.
Доказательство: Пусть отрезок 



В соответствии с утверждением теоремы 5, из всех расстояний от данной точки до различных точек данной плоскости наименьшим является расстояние, измеренное по перпендикуляру.
Б) Расстоянием от точки до плоскости называется длина перпендикуляра, проведённого из этой точки к плоскости.
Когда мы говорим, например, что уличный фонарь находится на высоте 8 м от земли, то подразумеваем, что расстояние от фонаря до поверхности земли, измеренное по перпендикуляру, проведённому от фонаря к плоскости земли, составляет 8 м (рис. 244).
Теорема 6. Расстояние от любой точки одной из параллельных плоскостей к другой плоскости одно и то же и равно длине их общего перпендикуляра.
Доказательство: Пусть даны параллельные плоскости 

























Расстоянием между параллельными плоскостями называется длина перпендикуляра, проведённого из какой-либо точки одной плоскости к другой плоскости.
Все точки одной стены комнаты находятся на одинаковом расстоянии от противоположной стены (рис. 246). Это расстояние и есть ширина комнаты.
Теорема 7. Расстояние от любой точки прямой, параллельной плоскости, до этой плоскости одно и то же и равно перпендикуляру, проведённому из какой-либо точки прямой к плоскости.
Используя рисунок 247, проведите доказательство теоремы самостоятельно.
Расстоянием между прямой и параллельной ей плоскостью называется длина перпендикуляра, проведённого из какой-либо точки прямой к плоскости.
Все точки края стола находятся на одном расстоянии от пола (рис. 248).
Теорема 8. Две скрещивающиеся прямые имеют единственный общий перпендикуляр.
Доказательство: Пусть даны скрещивающиеся прямые 





Пусть 


























Этим самым существование общего перпендикуляра скрещивающихся прямых обосновано. Докажем теперь его единственность.
Пусть скрещивающиеся прямые 






Точки 














Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра.
Из доказательства теоремы 8 следует, что расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из них до плоскости, содержащей другую прямую и параллельную первой.
Чтобы найти расстояние между скрещивающимися прямыми, можно действовать по-разному.
а) Можно построить отрезок с концами на этих прямых, перпендикулярный им обеим, и найти его длину.
Пример №8
Найдём расстояние между прямыми, которые содержат ребро куба длиной 
Решение:
Пусть нужно найти расстояние между прямыми 






б) Можно построить плоскость, которая содержит одну из прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию от этой плоскости до другой прямой.
Пример №9
В правильной четырёхугольной пирамиде 




Решение:
Пусть 









Пусть 










Теперь
в) Можно построить две параллельные плоскости, каждая из которых содержит одну из скрещивающихся прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию между этими плоскостями.
Пример №10
Найдём расстояние между прямыми, содержащими непересекающиеся диагонали двух смежных граней куба с ребром
Решение:
Пусть нужно найти расстояние между прямыми 













Диагональ 








Плоскость 






















Ответ:
Диагональ куба делится плоскостью треугольника, сторонами которого служат диагонали граней куба, имеющие с рассматриваемой диагональю куба общую точку, в отношении 1 : 2.
г) Можно построить плоскость, перпендикулярную одной из скрещивающихся прямых, и построить проекцию на неё другой прямой. Тогда искомое расстояние будет равно длине перпендикуляра, опущенного из точки, являющейся проекцией первой прямой на построенную плоскость, на проекцию другой прямой.
Пример №11
В четырёхугольной пирамиде 



Решение:
Из теоремы 8 следует, что на прямых 






Пусть 









Определим, в какие точки спроектируются точки 





Поскольку точки 








Длину 


Получим 
Ответ:
Пример №12
Точка 


Решение:







Тогда
Ответ: 20 см.
Пример №13
Из вершины 







Решение:

















Угол между прямой и плоскостью
А) С помощью чисел, выражающих расстояние между двумя прямыми и величину угла между ними, можно описать взаимное расположение этих прямых в пространстве. Если прямые 









Теорема 9. Если прямая плоскости перпендикулярна проекции наклонной на эту плоскость, то она перпендикулярна и самой наклонной, а если прямая плоскости перпендикулярна наклонной к плоскости, то она перпендикулярна и проекции этой наклонной.
Доказательство: Пусть отрезки 



Пусть прямая 


Прямая 







Пусть прямая 




Прямая 




Теорема 9 называется теоремой о трёх перпендикулярах, потому что в ней идёт речь об отношении перпендикулярности между тремя прямыми. Приведём примеры использования этой теоремы.
Пример №14
Из вершины 




Решение:
Искомое расстояние — длина перпендикуляра, опущенного из точки 










Найдём сначала высоту 


Треугольник 

Ответ: 36,6.
Пример №15
Докажем, что если данная точка пространства равноудалена от сторон многоугольника, то в этот многоугольник можно вписать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Доказательство: Пусть точка 







Соединим точку 






Треугольники 




Пример №16
Если данная точка пространства равноудалена от вершин многоугольника, то около этого многоугольника можно описать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Используя рисунок 272, проведите доказательство этого утверждения самостоятельно.
Б) Теперь введём понятие угла между прямой и плоскостью. Пусть дана плоскость 






Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной ей, называется угол между прямой и её проекцией на плоскость.
Угол между прямой и плоскостью — наименьший из углов, которые образует эта прямая со всеми прямыми плоскости. Докажите утверждение самостоятельно.
Если прямая 



Если прямая 



Пример №17
В треугольной пирамиде 


Решение:
Пусть 







Искомый угол между медианой 



тогда
Значит,
Ответ:
При вычислении угла между скрещивающимися прямыми бывает полезной следующая теорема о трёх косинусах.
Угол 








Доказательство: Пусть точка 










Пусть 







и
Пример №18
В треугольной пирамиде 





Решение:
Используем теорему о трёх косинусах, учитывая, что угол 






Поскольку 
то 

Ответ:
Пример №19
Основанием треугольной пирамиды 








Решение:











Ответ: 5 см.
Пример №20
Докажите, что если луч 






Решение:
Пусть 











Пространственное моделирование
Определим, как при движении на эскалаторе можно оценить глубину расположения станции метро, длину эскалатора (рис. 289).
Обратим внимание на то, что при спуске или подъёме на эскалаторе мы проезжаем вдоль ряда ламп, расположенных на равных расстояниях друг от друга. Нормативами задаётся освещённость тоннеля, исходя из которой устанавливается и расстояние между соседними лампами. Также учтём, что оптимальный угол наклона линии эскалатора к плоскости земли равен 30°.
Будем рассматривать эскалатор как наклонную к плоскости земли. Тогда глубину расположения станции можно интерпретировать как длину перпендикуляра к плоскости земли.
Для ответа на вопрос достаточно рассмотреть прямоугольный треугольник 


- а) Подсчитайте длину эскалатора, учитывая, что расстояние между лампами равно а.
- б) Составьте формулу для нахождения глубины закладки станции метро.
Перпендикулярность плоскостей
А) Два луча на плоскости с общим началом разделяют эту плоскость на две части, каждая из которых называется углом.
Аналогично две полуплоскости с общей границей разделяют пространство на две части (рис. 290). Каждую из этих частей вместе с полуплоскостями называют двугранным углом. Полуплоскости, ограничивающие двугранный угол, называют гранями угла, а общую прямую — ребром двугранного угла (рис. 291).
Обычно рассматривают меньший из двугранных углов с данными гранями (рис. 292). Точки угла, не лежащие на его гранях, составляют внутреннюю область двугранного угла (рис. 293).
Двугранный угол обычно обозначают по ребру: 




Моделью двугранного угла может служить двускатная крыша (рис. 295), стена вместе с открытой дверью (рис. 296), полураскрытая книга (рис. 297).
Для измерения двугранных углов вводится понятие линейного угла. Выберем на ребре 














Понятно, что двугранный угол имеет бесконечно много линейных углов (рис. 299).
Теорема 10. Все линейные углы двугранного угла равны друг другу.
Доказательство: Пусть 


Отложим на сторонах углов 














Измерение двугранных углов связывается с измерением их линейных углов. В зависимости от того, каким — острым, прямым, тупым, развёрнутым — является линейный угол двугранного угла, отличают острые, прямые, тупые, развёрнутые двугранные углы. Двугранный угол, изображённый на рисунке 301, — острый, на рисунке 302 — прямой, на рисунке 303 — тупой.
Две пересекающиеся плоскости разделяют пространство на четыре двугранных угла с общим ребром (рис. 304). Если один из них равен 

Если один из двугранных углов, образовавшихся при пересечении двух плоскостей, прямой, то три остальных также прямые (рис. 305).
Б) Плоскости, при пересечении которых образуются прямые двугранные углы, называются перпендикулярными плоскостями.
Для обозначения перпендикулярности плоскостей, как и для обозначения перпендикулярности прямых, используют знак
Моделями перпендикулярных плоскостей могут служить столешница и боковина стола (рис. 306), пол в комнате и дверь в неё (рис. 307).
Теорема 11. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то такие плоскости перпендикулярны.
Доказательство: Пусть через прямую 



Плоскости 





В плоскости 










Теорема 11 выражает признак перпендикулярности плоскостей.
Следствие. Плоскость, перпендикулярная линии пересечения двух данных плоскостей, перпендикулярна каждой из них (рис. 309).
Докажем теперь утверждение, обратное утверждению теоремы 11.
Теорема 12. Если через точку одной из перпендикулярных плоскостей провести прямую, перпендикулярную другой плоскости, то эта прямая принадлежит первой плоскости.
Доказательство: Пусть две перпендикулярные плоскости 






Через точку 
















Пример №21
Точка 



Решение:
Прямая 








Следствие. Если две пересекающиеся плоскости перпендикулярны третьей плоскости, то их линия пересечения перпендикулярна той же плоскости (рис. 312).
Пример №22
В правильной треугольной пирамиде 


Решение:
Пусть 



Из равенства треугольников 



Из прямоугольных треугольников 



Поэтому
Ответ:
В) При вычислениях бывает полезной теорема о трёх синусах.
Теорема 13. Линейный угол 


Доказательство: Пусть прямая 


















Следствие 1. Если точка 







Пример №23
Стороны 








Решение:
Пусть искомый угол равен 







Следствие 2. Пусть рёбра 




Пример №24
Плоскости правильных треугольника 


Решение:








Тогда по теореме Пифагора
Ответ:
Пример №25
Из точек 







Решение:
Пусть 















Тогда по теореме Пифагора
Из треугольника
Поэтому
Ответ:
Пространственное моделирование
Отдельным видом параллельного проектирования, применяемого в геометрии для изображения пространственных фигур, является ортогональное проектирование.
Ортогональной проекцией точки на плоскость 
Ортогональной проекцией фигуры на плоскость называется множество ортогональных проекций всех точек этой фигуры на плоскость.
Если 


«…Разум заключается не только в знаниях, но и в умении применять знания на деле…»
(Аристотель).
- Ортогональное проецирование
- Декартовы координаты на плоскости
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Теорема синусов и теорема косинусов
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
Если диагонали трапеции перпендикулярны, решить задачу поможет дополнительное построение.
Проведем через вершину меньшего основания прямую, параллельную диагонали: CF∥BD:
Четырехугольник BCFD — параллелограмм, так как у него противоположные стороны лежат на параллельных прямых (CF∥BD по построению, BC∥AD как основания трапеции). Следовательно, DF=BC, CF=BD.
Так как диагонали трапеции перпендикулярны, прямые CF и AC также перпендикулярны (если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой). Проведем высоту трапеции CN:
В прямоугольном треугольнике ACF CN — высота, проведенная к гипотенузе. Пропорциональные отрезки в прямоугольном треугольнике связаны соотношениями:
Площадь трапеции можно найти по одной из формул
где a и b — основания, h — высота, m — средняя линия трапеции. Площадь выпуклого четырехугольника можно найти как половину произведения диагоналей на синус угла между ними:
Поскольку sin90º=1, если диагонали перпендикулярны, площадь трапеции равна
Отсюда
и, в зависимости от условий задачи, можно искать ту или иную величину.
Можно рассуждать иначе: площадь прямоугольного треугольника ACF можно найти как
Отсюда
В следующий раз рассмотрим частный случай: диагонали равнобедренной трапеции перпендикулярны.











































































: известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом.
— сторона
.
: один катет известен по условию, второй — найден из
; неизвестной является третья сторона — гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка
.


от точки
равные отрезки
и
;
некоторую точку
, а на прямой
— точку
; соединим точки:
с
,
с
,
с
,
и
произвольную прямую
, которая пересечет
в точке
— медиана и высота;
по построению;
— общая сторона треугольников
и
; 
. Итак,
по двум сторонам и углу между ними. Отсюда
.
. Равенство отрезков
и
доказывается аналогично, как и равенство отрезков
и
.
, поскольку
и
-общая сторона. Отсюда вытекает равенство соответствующих углов:
.
по двум сторонам и углу между ними:
— общая сторона;
по доказательству выше. Итак,
, т.е.
— равнобедренный:
— основание треугольника,
— середина
, поэтому
— медиана
. В равнобедренном треугольнике медиана является высотой, т.е.
, а это означает, что
. Поскольку прямая
— произвольная прямая плоскости
, проходит через точку пересечения прямой
и плоскости
, перпендикулярна прямой
, то
.



лежит по одну сторону от плоскости
и не пересекает ее (рис. 5.21, а);
пересекает плоскость
(концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
лежит по одну сторону от плоскости
и точка
— конец отрезка — принадлежит плоскости
(рис. 5.21, в).

















































































































































































































