На этой странице вы узнаете
- Кто всегда протянет руку помощи в определении производной?
- Что такое сложная функция и зачем тут матрешка?
- Как никогда не ошибаться при решении задач с производными?
Теория теорией, а дифференцировать хочется всегда. Эта статья посвящена практике нахождения производных.
Производные основных функций
Должно быть, вы уже слышали о производной и даже пробовали взять её мозговым штурмом. При отрицательном ответе вам обязательно нужно прокатиться на американских горках в нашей статье «Производная». В ней рассмотрели основные понятия производной.
Главный вопрос этой статьи: как ее находить? Для этого существуют свои формулы и правила, которых необходимо придерживаться для правильного решения заданий.
Ниже приведена таблица с формулами для нахождения производных основных функций. Применяя эти формулы, можно найти производную почти любой функции.
Не пугайтесь, если вам покажется, что их много: это основные формулы, с помощью которых можно решить большинство задач.
| 1 | C’ = 0, C = const |
| 2 | ((x^n)’ = n * x^{n — 1}, x > 0) |
| 3 | ((a^x)’ = a^x * ln(a), a > 0, a neq 1) |
| 4 | ((e^x)’ = e^x) |
| 5 | ((log_{a}x)’ = frac{1}{x * ln(a)}, x > 0, a > 0, a neq 1) |
| 6 | ((ln(x))’ = frac{1}{x}, x > 0) |
| 7 | ((sqrt{x})’ = frac{1}{2sqrt{x}}, x > 0) |
| 8 | (sin(x))’ = cos(x) |
| 9 | (cos(x))’ = -sin(x) |
| 10 | ((tg(x))’ = frac{1}{cos^{2}x}, x neq frac{pi}{2} + pi n, n in Z) |
| 11 | ((ctg(x))’ = -frac{1}{sin^{2}x}, x neq pi n, n in Z) |
Смотреть на формулы и учить их — это круто, прямо ощущаем себя великими учеными. Что может быть круче этого? Только применять их на практике. Рассмотрим несколько примеров нахождения производной.
Пример 1. Найдите производную функции f(x) = 5.
Решение: 5 — это число, то есть константа. Тогда, пользуясь первой формулой в таблице, получаем:
f'(x) = 5′ = 0.
Ответ: 0
Пример 2. Найдите производную функции (f(x) = x^4)
Решение: В этом случае необходимо воспользоваться второй формулой из таблицы.
(f'(x) = (x^4)’ = 4 * x^{4-1} = 4 * x^3)
Ответ: (4x^3)
Пример 3. Найдите производную функции (f(x) = e^x)
Решение: В этом случае необходимо воспользоваться четвертой формулой из таблицы.
(f'(x) = (e^x)’ = e^x)
Ответ: (e^x)
Правила дифференцирования
С полной уверенностью можем сказать, что вам встречались сложные функции. Даже намного сложнее, чем те, которые приведены в таблицах. Там и сумма, и произведение, и формула в формуле. Одним словом: ужас! Как брать производную, если перед функцией стоит коэффициент, или в функцию включено несколько разных выражений? На этот случай существуют правила дифференцирования.
В сложных функциях невозможно пользоваться только формулами для нахождения производной.
Если функция
— усложнена коэффициентом,
— представлена в виде суммы, произведения или частного
— или является сложной функцией,
то для выбора правильной производной необходимо воспользоваться правилами дифференцирования. Они играют роль супергероев от мира производных. Рассмотрим их внимательнее.
1. Коэффициент можно вынести за знак производной.
(k * f(x))’ = k * (f(x))’
Например, необходимо взять производную у функции f(x) = 6sin(x). Тогда, пользуясь правилом дифференцирования и таблицей, получаем ответ 6cos(x).
2. Производная суммы (разности) равняется сумме (разности) производных.
((f(x) pm g(x))’ = f'(x) pm g'(x))
Найдем производную (f(x) = 4x^5 — sqrt{x} + cos(x)).
(f'(x) = (4x^5 — sqrt{x} + cos(x))’ = (4x^5)’ — (sqrt{x})’ + (cos(x))’ = 4 * 5 * x^{5 — 1} — frac{1}{2sqrt{x}} — sin(x))
(f'(x) = 20x^4 — frac{1}{2sqrt{x}} — sin(x). )
3. Производная произведения.
(f(x) * g(x))’ = f'(x) * g(x) + f(x) * g'(x)
Для примера возьмем производную функции f(x) = x2 * ln(x)
f'(x) = (x2 * ln(x))’ = (x2)’ * ln(x) + x2 * (ln(x))’
(f'(x) = 2x * ln(x) + x^2 * frac{1}{x} = 2x * ln(x) + x)
4. Производная частного.
((frac{f(x)}{g(x)})’ = frac{f'(x) * g(x) — f(x) * g'(x)}{g^{2}(x)})
Возьмем производную функции (f(x) = frac{e^x}{3x})
(f'(x) = frac{(e^x)’ * 3x — ex * (3x)’}{(3x)^2} = frac{e^x * 3x — e^x * 3}{9x^2} = frac{3e^x * (x-1)}{9x^2} = frac{e^x * (x-1)}{3x^2})
5. Производная сложной функции.
Сложная функция — это функция, внутри которой есть другая функция.
Давайте представим матрешку: в одну большую куклу складывается куколка поменьше, а в нее еще меньше и так далее. Точно так же и с функцией: “внутри” одной функции может лежать другая функция.
Например, у нас есть две функции: (sqrt{x}) и cos(x). А теперь попробуем поместить корень в функцию с косинусом, и получим (cos(sqrt{x})). Это и будет сложная функция.

Чтобы найти производную сложной функции, необходимо найти производную “внутренней” функции и умножить ее на производную “внешней” функции.
(f(g(x))’ = g'(x) * f'(g(x))
Найдем производную уже рассмотренной функции (f(x) = cos(sqrt{x})).
(f'(x) = (cos(sqrt{x}))’ = (sqrt{x})’ * (cos(sqrt{x}))’ = frac{1}{2sqrt{x}} * (-sin(sqrt{x})) = -frac{sin(sqrt{x})}{2sqrt{x}})
Исследование функции с помощью производной
В задании нам может быть дана только функция без ее графика. Что делать в таком случае, если нам нужно найти, например, отрезки возрастания, точки экстремума, наибольшее или наименьшее значение функции? Не во всех случаях получится построить график, да и это займет достаточно большое количество времени, которое и без того ограничено на экзамене.
В этом случае мы можем проанализировать поведение функции с помощью производной.
Исследуем функцию f(x) = (x — 4)2(x + 11) + 4.
Cначала возьмем производную от этой функции:
f'(x) = ((x — 4)2(x + 11))‘ + 4′ = ((x — 4)2(x + 11))’ = ((x — 4)2)'(x + 11) + (x — 4)2(x + 11)’
f'(x) = 2(x — 4)(x + 11) + (x — 4)2 * 1 = (x — 4)(2(x + 11) + (x — 4)) = (x — 4)(3x + 18)
Любое исследование функции с помощью производной начинается именно с дифференцирования функции.
Теперь рассмотрим алгоритм нахождения точек минимума и максимума:
2 шаг. Найденную производную необходимо приравнять к 0 и решить полученное уравнение.
3 шаг. Расставить корни полученного уравнения на числовой прямой.
4 шаг. Определяем знаки производной на промежутках. Для этого необходимо подставить любое значение с выбранного промежутка в производную функции.
5 шаг. Определить, какие точки будут точками минимума (в них знак меняется с минуса на плюс), а какие — точками максимума (знак меняется с плюса на минус).
Найдем точки минимума и максимума в нашей функции. Поскольку производную мы уже взяли, можно сразу перейти ко второму шагу:
(x — 4)(3x + 18) = 0
x = 4, x = -6.
Полученные значения х расставляем на числовой прямой:

Теперь определим знаки на промежутках слева направо.
1. Возьмем точку -10 и подставим ее в производную функции:
(-10 — 4)(3 * (-10) + 18) = (-14) * (-12) = 168. Производная на этом промежутке будет положительной.
2. Возьмем точку 0 и подставим ее в производную функции:
(0 — 4)(3 * 0 + 18) = (-4) * 18 = -72. Производная на этом промежутке будет отрицательной.
3. Возьмем точку 5 и подставим ее в производную функции:
(5 — 4)(3 * 5 + 18) = 33. Производная на этом промежутке будет положительной.
Расставим полученные знаки на прямой:

Остался последний пятый шаг. В точке -6 производная меняет знак с плюса на минус, значит, это точка максимума. В точке 4 производная меняет знак с минуса на плюс, значит, это точка минимума.
Важно!
Если в задании встречается формулировка “Найдите точку минимума (максимума) функции”, то необходимо пользоваться именно этим алгоритмом.
Но это не все выводы, которые уже можно сделать о функции. Вспомним, что функция возрастает, когда производная положительна, а убывает, когда производная отрицательна. Поскольку мы уже определили знаки производной, то смело можем сделать вывод, что на промежутках до -6 и после 4 функция будет возрастать, а на промежутке от -6 до 4 — убывать.
Однако могут встретиться задания, в которых необходимо найти наибольшее или наименьшее значение функции на определенном интервале.
Для выполнения таких заданий существует следующий алгоритм нахождения наибольшего и наименьшего значения функции.
Шаг 2. Найти точки минимума и максимума функции.
Шаг 3. Определить, какие из точек минимума и максимума принадлежат заданному интервалу.
Шаг 4. Найти значение функции в отобранных в предыдущем шаге точках, а также в точках, которые являются границами заданного интервала. Для этого необходимо подставить точки в функцию (не в производную от функции).
Для примера найдем наибольшее значение функции f(x) = (x — 4)2(x + 11) + 4 на отрезке [-10; 0].
Первые два шага мы уже выполнили, когда рассматривали алгоритм нахождения точек минимума и максимума. Из них отрезку [-10; 0] принадлежит х = -6 — точка максимума.
Теперь определим значение функции в трех точках:
f(-10) = (-10 — 4)2(-10 + 11) + 4 = 196 + 4 = 200
f(-6) = (-6 — 4)2(-6 + 11) + 4 = 500 + 4 = 504
f(0) = (0 — 4)2(0 + 11) + 4 = 176 + 4 = 180
Наибольшее из полученных значений — это 504. Это и будет ответ.
Может возникнуть вопрос, почему важно проверять значение функции и на границах отрезка? В заданиях ЕГЭ очень часто встречаются случаи, когда нужно найти наибольшее значение, и в интервале лежит точка максимума, или когда нужно найти наименьшее значение функции и в интервале лежит точка минимума. Логично будет проверить только экстремумы, поскольку в них, скорее всего, достигается наибольшее или наименьшее значение.
Однако стоит вспомнить, что мы не видим график функции и не можем с точностью определить, что в экстремуме достигается нужное нам значение. С помощью экстремумов мы можем описать поведение функции: где она возрастает, а где убывает. Но можно столкнуться с графиком, на котором граничная точка будет лежать выше или ниже точки экстремума. Тогда наибольшее или наименьшее значение будет достигаться именно в ней. Пример на картинке (красными линиями обозначены границы отрезка).

Подведем итог.
Как можно исследовать функцию с помощью производной?
С помощью производной можно с точностью сказать, на каких участках функция будет возрастать и убывать, сколько точек максимума и минимума у нее есть, какое наибольшее или наименьшее значение принимает функция на заданном участке.
Фактчек
- Для нахождения производной необходимо пользоваться специальными формулами для производной. С их помощью можно найти производную любой из основных функций.
- Если функция усложнена коэффициентом, является сложной или представлена в виде суммы, произведения или частного, то необходимо пользоваться правилами дифференцирования. Они помогут правильно найти производную.
- Сложная функция — это функция, внутри которой есть другая функция.
- С помощью производной можно исследовать функцию, а именно найти точки минимума и максимума, определить, на каких участках функция возрастает и убывает, найти наибольшее и наименьшее значение функции на заданном отрезке.
Проверь себя
Задание 1.
Чему будет равна производная f(x) = 3?
- 3;
- 1;
- 0;
- Производную этой функции невозможно найти.
Задание 2.
Чему будет равна производная f(x) = 5x2?
- 10x;
- 10x2;
- 5x2;
- 2x.
Задание 3.
Чему будет равна производная f(x) = 13x + 5 + x3?
- 18 + 3x2;
- 13 + 3x2;
- 18;
- 3x2.
Задание 4.
Чему будет равна производная f(x) = ln(x)?
- x
- (frac{1}{x})
- (frac{1}{2sqrt{x}})
- ex
Задание 5.
Чему будет равна производная f(x) = tg(x)?
- (frac{1}{cos^{2}(x)})
- (-frac{1}{sin^{2}(x)})
- (-frac{1}{cos^{2}(x)})
- (frac{1}{sin^{2}(x)})
Ответы: 1. — 3 2. — 1 3. — 2 4. — 2 5. — 1
Раз ты зашел сюда, то уже, наверное, успел увидеть в учебнике эту формулу
((f(g(x)))’=f'(g(x))cdot g'(x))
и сделать вот такое лицо:

Друг, не переживай! На самом деле все просто до безобразия. Ты обязательно все поймешь. Только одна просьба – прочитай статью не торопясь, старайся понять каждый шаг. Я писал максимально просто и наглядно, но вникнуть в идею всё равно надо. И обязательно реши задания из статьи.
Содержание:
- Что такое сложная функция?
«Распаковка» сложной функции
Внутренняя и внешняя функция
Производная сложной функции. Примеры
Что такое сложная функция?
Представь, что ты переезжаешь в другую квартиру и поэтому собираешь вещи в большие коробки. Пусть надо собрать какие-нибудь мелкие предметы, например, школьные письменные принадлежности. Если просто скидать их в огромную коробку, то они затеряются среди других вещей. Чтобы этого избежать, ты сначала кладешь их, например, в пакет, который затем укладываешь в большую коробку, после чего ее запечатываешь. Этот «сложнейший» процесс представлен на схеме ниже:

Казалось бы, причем здесь математика? Да притом, что сложная функция формируется ТОЧНО ТАКИМ ЖЕ способом! Только «упаковываем» мы не тетради и ручки, а (x), при этом «пакетами» и «коробками» служат разные функции.
Например, возьмем x и «запакуем» его в функцию косинуса:

В результате получим, ясное дело, (cosx). Это наш «пакет с вещами». А теперь кладем его в «коробку» — запаковываем, например, в кубическую функцию.

Что получится в итоге? Да, верно, будет «пакет с вещами в коробке», то есть «косинус икса в кубе».

Получившаяся конструкция и есть сложная функция. Она отличается от простой тем, что к одному иксу применяется НЕСКОЛЬКО «воздействий» (упаковок) подряд и получается как бы «функция от функции» — «упаковка в упаковке».
В школьном курсе видов этих самых «упаковок» совсем мало, всего четыре :

Давай теперь «упакуем» икс сначала в показательную функцию с основанием 7, а потом в тригонометрическую функцию тангенс. Получим:
(x → 7^x → tg(7^x))
А теперь «упакуем» икс два раза в тригонометрические функции, сначала в синус, а потом в котангенс:
(x → sinx → ctg (sinx ))
Просто, правда?
Напиши теперь сам функции, где икс:
— сначала «упаковывается» в косинус, а потом в показательную функцию с основанием (3);
— сначала в пятую степень, а затем в тангенс;
— сначала в логарифм по основанию (4), затем в степень (-2).
Ответы на это задание посмотри в конце статьи.
А можем ли мы «упаковать» икс не два, а три раза? Да, без проблем! И четыре, и пять, и двадцать пять раз. Вот, например, функция, в которой икс «упакован» (4) раза:
(y=5^{log_2{sin(x^4 )}})
Но такие формулы в школьной практике не встретятся (студентам повезло больше — у них может быть и посложнее☺).
«Распаковка» сложной функции
Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть — какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.
Сделал?
Теперь правильный ответ: сначала икс «упаковали» в (4)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию (2), и в конце концов всю эту конструкцию засунули в степень пятерки.
То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.
Например, вот такая функция: (y=tg(log_2x )). Смотрим на икс – что с ним происходит сначала? Берется логарифм от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:
(x → log_2x → tg(log_2x ))
Еще пример: (y=cos{(x^3 )}). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: (x → x^3 → cos{(x^3 )}). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть (cos{(x·x·x)})), а там в кубе косинус (x) (то есть, (cosx·cosx·cosx)). Эта разница возникает из-за разных последовательностей «упаковки».
Последний пример (с важной информацией в нем): (y=sin{(2x+5)}). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: (x → 2x+5 → sin{(2x+5)}). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.
Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных — два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) — тоже простая функция. Например, (x^7) – простая функция и (ctg x) — тоже. Значит и все их комбинации являются простыми функциями:
(x^7+ ctg x) — простая,
(x^7· ctg x) – простая,
(frac{x^7}{ctg x}) – простая и т.д.
Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:

Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций:
(y=cos{(sinx)})
(y=5^{x^7})
(y=arctg{11^x})
(y=log_2(1+x))
Ответы опять в конце статьи.
Внутренняя и внешняя функции
Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.
И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция — это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.
Вот в этом примере: (y=tg(log_2x )), функция (log_2x) – внутренняя, а — внешняя.
А в этом: (y=cos{(x^3+2x+1)}), (x^3+2x+1) — внутренняя, а — внешняя.
Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось — будем находить производные сложных функций:
Заполни пропуски в таблице:
Производная сложной функции
Браво нам, мы всё ж таки добрались до «босса» этой темы – собственно, производной сложной функции, а конкретно, до той самой ужасной формулы из начала статьи.☺
((f(g(x)))’=f'(g(x))cdot g'(x))
Формула эта читается так:
Производная сложной функции равна произведению производной внешней функции по неизменной внутренней на производную внутренней функции.
И сразу смотри схему разбора «по словам» чтобы понимать, что к чему относится:

Надеюсь, термины «производная» и «произведение» затруднений не вызывают. «Сложную функцию» — мы уже разобрали. Загвоздка в «производной внешней функции по неизменной внутренней». Что это такое?
Ответ: это обычная производная внешней функции, при которой изменяется только внешняя функция, а внутренняя остается такой же. Все равно непонятно? Хорошо, давай на примере.
Пусть у нас есть функция (y=sin(x^3 )). Понятно, что внутренняя функция здесь (x^3), а внешняя . Найдем теперь производную внешней по неизменной внутренней.
Из таблицы производных мы знаем, что производная синуса икс есть косинус икс (табличные значения надо знать наизусть!): (({sin{x}})’=cos{x}).
Тогда производная внешней функции по неизменной внутренней для нашего случая будет (cos(x^3)). То есть, мы взяли ее как обычную производную синуса, а содержимое синуса (внутреннюю функцию) просто скопировали в полученную производную (косинус), ничего в ней не меняя.
Таким образом, на данный момент имеем:

Осталась «производная внутренней функции». Ну, это совсем легко – обычная производная от внутренней функции, при этом внешняя не влияет вообще никак. В нашем примере, производная от (x^3).
((x^3 )’=3x^2)
Все, теперь можем писать ответ:

Вот так. Давай еще один пример разберем.
Пусть надо найти производную функции (y=(sinx )^3).
Анализируем. Последовательность «заворачивания» у нас такая: (x → sinx → (sinx )^3). Значит, в данном примере внутренняя функция это (sinx), а внешняя .
Производная внешней по внутренней – это производная куба (содержимое куба при этом не меняется). Так как , а в нашем случае в куб «завернут» (sinx), то производная внешней будет (3(sinx)^2). То есть, имеем:

Ну, а производная внутренней – это просто производная синуса икс, то есть косинус икс.
В итоге, имеем:
(y’=((sinx )^3 )’=3(sinx )^2·(sinx )’=3(sinx )^2·cosx)
Понятно?
Ладно, ладно, вот еще один пример с разбором. ☺
Пример. Найти производную сложной функции (y=ln(x^2-x)).
Разбираем вложенность функций: (x → x^2-x → ln(x^2-x)).
Внутренняя: (x^2-x). Внешняя: .
Из таблицы производных знаем:.
То есть производная внешней по внутренней будет: (ln(x^2-x)’=) (frac{1}{x^2-x}).
Производная внутренней: ((x^2-x)’= (x^2)’-(x)’=2x-1).
В итоге, согласно большой и страшной формуле имеем:
(y ‘=(ln(x^2-x) )’=)(frac{1}{x^2-x})(·(2x-1))
Ну и напоследок можно немного «причесать» ответ, чтоб никто не докопался:
(y ‘=(ln(x^2-x))’=)(frac{1}{x^2-x})(·(2x-1)=)(frac{2x-1}{x^2-x})
Готово.
Что, еще примеров желаешь? Легко.
Пример. Найти производную сложной функции (y=sin{(cosx)}).
Вложенность функций: (x → cosx → sin{(cosx)})
Внутренняя: (cosx) Внешняя:
Производная внешней по внутренней: (sin{(cosx )}’=cos{cosx})
Производная внутренней: ((cosx )’= -sinx)
Имеем: (y’=(sin{(cosx)})’=cos{cosx}·(-sinx )=-cos{cosx} ·sinx)
Замечание: Обрати внимание, что заменить запись (cos{cosx}) на (cos^2x) НЕЛЬЗЯ, так как (cos^2x) — это комбинация простых функций (cos^ 2x=cosx·cosx), а (cos{cosx}) – сложная функция: косинус от косинуса икс. Это абсолютно разные функции.
Еще пример с важным замечанием в нем.
Пример. Найти производную сложной функции (y=sqrt{x^6} )
Вложенность функций: (x → x^6 → sqrt{x^6})
Внутренняя: (x^6) Внешняя:
Производная внешней по внутренней: (sqrt{x^6}’=)(frac{1}{2sqrt{x^6}})
Производная внутренней: ((x^6)’= 6x^5)
Имеем: ((sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5)
И теперь упростим ответ. Вспомним свойство корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда (sqrt{x^6}=x^{frac{6}{2}}=x^3). С учетом этого получаем:
(y’=( sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5=)(frac{1}{2x^3})(·6x^5=)(frac{6x^5}{2x^3})(=3x^2)
Всё. А теперь, собственно, важное замечание:
Тот же самый ответ, но значительно меньшими усилиями мы могли бы получить, упростив исходную функцию сразу. Воспользуемся тем же свойством корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда исходная функция приобретает вид: (y=sqrt{x^6}=x^{frac{6}{2}}=x^3). А производная куба это практически табличное значение! Готов ответ: (y’=(sqrt{x^6})’=(x^3 )’=3x^2). Немножко проще предыдущего решения, правда ☺? Поэтому прежде чем искать производную, посмотрите, можно ли исходную функцию упростить, чтоб решать было проще.
Давай рассмотрим пример, где эта идея нам сильно поможет.
Пример. Найти производную сложной функции (y=ln(x^3)).
Можно, конечно, рассмотреть вложенность функций: (x → x^3 → ln(x^3 )), разобрать на внутреннюю и внешнюю и так далее. Но можно вспомнить свойство логарифма: (log_a{b^c}=c·log_a{b}). И тогда функция получается (y=ln(x^3 )=3lnx). Отлично! Берем производную:
(y’=(ln(x^3 ) )’=(3lnx )’=3(lnx )’=3·)(frac{1}{x}=frac{3}{x})
Вуаля!
Теперь задачка посложнее, для продвинутых. Решим пример с тройной вложенностью!
Пример. Найти производную сложной функции (y=3^{sin(x^4+1)}).
Вложенность функций: (x → x^4+1 → sin(x^4+1) → 3^{sin(x^4+1)})
Внутренняя: (x^4+1) Средняя: Внешняя:
Сначала производная внешней по средней. Вспоминаем таблицу производных: . Значит, в нашем случае будет (3^{sin(x^4+1)}·ln3).
Хорошо, теперь производная средней по внутренней. По таблице: . Значит, мы получим, (sin(x^4+1)’=cos(x^4+1)).
И наконец, производная внутренней: ((x^4+1)’=(x^4 )’+(1)’=4x^3).
Отлично. Теперь собираем все вместе, перемножая отдельные производные:
((3^{sin(x^4+1)})’=3^{sin(x^4+1)} ·ln3·cos{(x^4+1)}·4x^3)
Готово. Да, это ответ. ☺
Ну, а что ты хотел, я сразу сказал – пример для продвинутых! А представь, что будет с четырехкратной или пятикратной вложенностью? ☺
Пример: Найти производную сложной функции (y=tg(7^x)).
Разбираем вложенность функций: (x : → :7^x : → :tg(7^x)).
Внутренняя: (7^x) Внешняя: (tg(7^x)).
Ищем производную самой внешней функции, внутреннюю при этом не трогаем.
Из таблицы производных знаем: .
То есть, в нашем случае производная внешней по внутренней будет: (frac{1}{cos^2(7^x)}).
Теперь ищем производную внутренней. Этой формулой мы уже пользовались, так что сразу пишем ответ: ((7^x)’=7^x·ln7).
И перемножаем результаты:
(y’=tg(7^x)’=)(frac{1}{cos^2(7^x)}·7^x·ln7)
И «причесываем»: (y’=(tg(7)^x))’=)(frac{1}{cos^2(7^x )})( ·7^x·ln7=)(frac{ln7·7^x}{cos^2(7^x)}).
Ну, теперь думаю всё понятно? И снова повторю – не пугайся сложных конструкций в ответах и промежуточных вычислениях. Они «на лицо ужасные», но зато добрые (в смысле простые) внутри. ☺ Пойми принцип и делай все последовательно.
Последний пример. Такие задания в разных вариациях весьма часто дают на контрольных и тестах. Он вроде как считается сложным. ☺ Хех, наивные учителя. ☺
Пример: Найти производную сложной функции (y=sqrt[3]{(x^5+2x-5)^2}).
Казалось бы, опять у нас тройная вложенность функций:
(x → x^5+2x-5 → (x^5+2x-5)^2 → sqrt[3]{(x^5+2x-5)^2}).
Но давай снова воспользуемся свойством корня (sqrt[b]{x^a} =x^{frac{a}{b}}) и преобразуем нашу функцию к виду:
(y=sqrt[3]{(x^5+2x-5)^2}=(x^5+2x-5)^{frac{2}{3}})
Вот так. И теперь у нас вложенность двойная: (x → x^5+2x-5 → (x^5+2x-5)^{frac{2}{3}})
При этом функция осталась той же! Удобное свойство, однако. Стоит его запомнить, да? ☺ Ладно, поехали дальше.
Внутренняя функция: (x^5+2x-5). Внешняя: .
Производная внешней по внутренней. По таблице производных общая формула производной степенной функции: . Получаем:
. Тогда в нашем случае будет: (frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}).
Производная внутренней: ((x^5+2x-5)’=5x^4+2).
Общий результат: (y ‘=(sqrt[3]{(x^5+2x-5)^2})’=((x^5+2x-5)^{frac{2}{3}} )’=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)).
В принципе, ответ найден. Но здесь можно сильно «причесать» результаты. Это может показаться сложным, но это не так, просто опять нагромождения символов большое и возникает такое ложное ощущение. На всякий случай помни: «не причесанный» ответ – тоже ответ. Поэтому если не поймешь дальнейших преобразований – не критично. Ладно, расческу в руки и вперед.
Вспоминаем свойство отрицательной степени (a^{-n}=)(frac{1}{a^n}). Получаем:
(y ‘=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)=)(frac{2}{3})(·)(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2))
А теперь применяем свойство корня (sqrt[b]{x^a} =x^{frac{a}{b}}) в обратную сторону. То есть, вот так (x^{frac{a}{b}}=sqrt[b]{x^a}). В результате имеем:
(y’=)(frac{2}{3})(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2)=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2))
Ну, и перемножаем дроби.
(y’=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2)=)(frac{2(5x^4+2)}{3sqrt[3]{x^5+2x-5}})(=)(frac{10x^4+4}{3sqrt[3]{x^5+2x-5}})
ВСЁ!!! А теперь сам.
Найти производные функций:
a. (y=ctg(x^7))
b. (y=e^{x^4+5x^3})
c. (y=sqrt{cosx})
d. (y=log_5{5^x})
e. (y=(tgx)^3)
f. (y=sin(ln(x^2)))
Ответы ко всем заданиям (вперемежку).
(y=tg(x^5))
(y=log^{-2}_{4}{x})
(y=3^{cosx})
(x → 1+x → log_2{(1+x)} )
(x → 11^x → arctg(11^x) )
(x → x^7 → 5^{x^7})
(x → sinx → cos(sinx))


Сошлось? Красавчик!

Что такое функция и что такое сложная функция ?
Функция $gleft(tright)=3cdot t-1$ — это правило отображения $t$ — чисел в значения функции $gleft(.right)$ по указанному правилу.
Например: числу $t=2$ соответствует значение $gleft(2right)=3cdot 2-1=5$. «2» отображается в «5».
Еще: $t=0$ отображается в $-1$, т.е. $gleft(0right)=-1$ ; говорят: функция $g$ в точке $0$ принимает значение $-1$.
Именно все такие пары соответствий $left(2;5right)$ , $left(0;-1right)$ , $left(4;11right)$ … все прочие «делают» функцию.
«Я знаю кто он, если я знаю на что он способен, что и как он делает». Функция: аргумент —> значение
$gleft(tright)$ переводит значения аргументов в значения функции. Имя аргумента » $t$ » здесь не важно, важно правило: $3cdot t-1$ !
Другая функция, $fleft(zright)=z^2$ переводит, отображает 5 —> 25, -1 —> 1. т.е. $fleft(5right)=25$ $fleft(-1right)=1$
- Ключевые термины: функция имя аргумент правило вычисления значения
- $gleft(tright)$ $gleft(tright)=3cdot t-1$ $g$ $t$ $3cdot t-1$
- $fleft(zright)$ $fleft(zright)=z^2$ $f$ $z$ $z^2$
Сложная функция $fleft(gleft(xright)right)=left(3x-1right)^2$ комбинированная из двух: $f$ и $g$
для $x=2$ функция $fleft(gleft(2right)right)=fleft(5right)=25$, значение по правилу такое же $left(3cdot 2-1right)^2=25$
для $x=0$ функция $fleft(gleft(0right)right)=fleft(-1right)=1$, также и значение по правилу $left(3cdot -1-1right)^2=1$
-
термины $fleft(gleft(xright)right)$ $x$ — аргумент функции $g$. $gleft(xright)$ — аргумент функции $f$.
-
$f$ — внешняя функция, $g$ — внутренняя функция. правило сложной функции $left(3x-1right)^2$
-
$fleft(gleft(xright)right)=fleft(3x-1right)=left(3x-1right)^2=left(gleft(xright)right)^2$ … $x$ (по правилу $g$ ) —> $left(3x-1right)$ (по правилу $f$) —> $left(3x-1right)^2$
Пример 1: Найти производную сложной функций $left(left(3x-1right)^2right)’$
-
Сложная функция: внутреняя $gleft(xright)=left(3x-1right)^2$ и внешняя $fleft(gright)=left(gleft(xright)right)^2$ — квадрат от аргумента, от внутренней
-
Метод Замены: Введем новую переменную $X=3x-1$ … «внутренняя функция стала переменной от $x$ «
-
Итак, зависимости: $fleft(Xright)=left(Xright)^2$, $X=3x-1$ . C какой скоростью изменяется $f$ при изменении $x$ ?
-
выражение $left(Xright)^2$ при изменениях $X$ изменяется со скоростью $left(left(Xright)^2right)’=2cdot X=2cdot (3x-1)$
-
переменная $X$ при изменениях аргумента $x$ изменяется со скоростью $left(Xright)’=left(3x-1right)’=3$
-
тогда, «комбинация двух изменений»: $left(Xright)^2$ при изменениях $x$ меняется по умножения скоростей $2cdot (3x-1)cdot 3$
-
иллюстрация правила умножения: Проследим за всеми взаимными изменениями
-
$bigtriangleup left(X^2right)approx left(X^2right)’cdot bigtriangleup X=left[2Xright]cdot bigtriangleup X$ $bigtriangleup Xapprox left(X’right)cdot bigtriangleup x=left(3x-1right)’bigtriangleup x$
-
комбинированная скорость $f’left(xright)approx frac{bigtriangleup left(X^2right)}{bigtriangleup x}=frac{bigtriangleup left(X^2right)}{bigtriangleup X}cdot frac{bigtriangleup left(Xright)}{bigtriangleup x}approx left[2Xright]cdot left(X’right)=left[2cdot left(3x-1right)right]cdot left(3right)$ — умножение скоростей
Решение: Оформим записи о дифференцировании сложной функции через равенства — действия шаг за шагом:
$left(left(3x-1right)^2right)’=left(X^2right)’cdot X’=2Xcdot X’=2left(3x-1right)cdot left(3x-1right)’=2left(3x-1right)cdot 3=18x-6$. Или, короче:
$left(left(3x-1right)^2right)’=2left(3x-1right)cdot left(3x-1right)’=2left(3x-1right)cdot 3=18x-6$ (замена $X=3x-1$ в воображении)
Хорошие вопросы: Производная Чего? в этом случае «квадрата». Что есть внешняя и что есть внутренняя функции?
Теорема: Производная Сложной Функции по аргументу $x$ равна умножению
производной внешней функции по внутренней на производной внутренней функции по $x$.
$left(fleft(gleft(xright)right)right)’=f_g’cdot g_x’$ Метод Замены: $left(fleft(gleft(xright)right)right)’=left(fleft(Xright)right)’=f_X’left(Xright)cdot X’$.
$X=gleft(xright)$ — внутреннее выражение. Доказательство через осмысление предела: $frac{bigtriangleup fleft(gleft(xright)right)}{bigtriangleup x}=frac{bigtriangleup fleft(gright)}{bigtriangleup g}cdot frac{bigtriangleup gleft(xright)}{bigtriangleup x}$
Таблица Основных Производных … $X$ большое — любое выражение от $x$
-
Степень: $left(X^nright)’=ncdot X^{n-1}cdot X’$ $left(X^3right)’=3X^2cdot X’$
-
Корень: $left(sqrt{X}right)’=left(X^{frac{1}{2}}right)’=frac{1}{2}cdot X^{-frac{1}{2}}cdot X’$ $left(sqrt[3]{X}right)’=left(X^{frac{1}{3}}right)’=frac{1}{3}cdot X^{-frac{2}{3}}cdot X’$
-
Тригонометрические: $left(sin Xright)’=cos Xcdot X’$ $left(cos Xright)’=-sin Xcdot X’$
-
Экспоненциальные: $left(e^Xright)’=e^Xcdot X’$ $left(a^Xright)’=a^Xcdot ln acdot X’$
-
Логарифмические: $left(ln Xright)’=frac{1}{X}cdot X’$ $left(log _aXright)’=left(frac{ln X}{ln a}right)’=frac{1}{Xcdot ln a}cdot X’$
Правила Дифференцирования:
-
производная суммы равна сумме производных: $left(A-B+Cright)’=A’-B’+C’$
-
правило производной от умножения: $left(Acdot Bright)’=A’cdot B+Acdot B’$
-
правило производной от деления: $left(frac{A}{B}right)’=frac{A’cdot B-Acdot B’}{B^2}$
-
производная сложной функции : $left(fleft(Xright)right)’=f’left(Xright)cdotleft(Xright)’$
Дифференцирование «сложных» функций, … … «как замена» и умножение на производную «замены»:
- Производная сложной функции … в аргументе функции выражение от $x$, называем «заменой» $X$ :
- $left(fleft(Xright)right)’=f’left(Xright)cdotleft(Xright)’$. В сложных функциях надо распознать и выделить внешнюю и внутреннюю функцию.
- Найти производную внешней функции и умножить на производную внутренней функции.
- f- внешняя функция, $X$ — внутренняя. $f’left(Xright)$ — производная в $X$ !
Пример 2: Найти производные «сложных» функций
В сложных функциях важно правильно распознать внешнюю и внутреннюю функцию. И, перемножить их производные.
A. $left(sin7xright)’=left(sin Xright)’=cos Xcdotleft(X’right)=cos7xcdotleft(7xright)’=7cos7x$
B. $left(sqrt{5cdot x^2-6}right)’=left(sqrt{X}right)’=frac{1}{2sqrt{X}}cdotleft(Xright)’=frac{1}{2sqrt{5cdot x^2-6}}cdotleft(5cdot x^2-6right)’=frac{10x}{2sqrt{5cdot x^2-6}}=frac{5x}{sqrt{5cdot x^2-6}}$
C. $left(e^{-5x}right)’=left(e^Xright)’=e^Xcdotleft(Xright)’=e^{-5x}cdotleft(-5xright)’=-5e^{-5x}$
D. $left(cossqrt{5cdot x^2-6}right)’=left(cos Xright)’=-sin Xcdotleft(Xright)’=-sinsqrt{5cdot x^2-6}cdotleft(sqrt{5cdot x^2-6}right)’=-frac{5xcdotsinsqrt{5cdot x^2-6}}{sqrt{5cdot x^2-6}}$
E. $left(log_3left(x^5-3x^2right)right)’=left(log_3Xright)’=left(frac{ln X}{ln3}right)’=frac{1}{ln3cdot X}cdotleft(Xright)’=frac{1}{ln3cdotleft(x^5-3x^2right)}cdotleft(x^5-3x^2right)’=frac{5x^4-6x}{ln3cdotleft(x^5-3x^2right)}$
Пример 3: Найти производную $left(sqrt{3x}cosleft(4x+1right)right)’$
-
перед нами произведение двух функций , возьмем производную от умножения по формуле
-
$left(fgright)’=f’g+fg’$ : $left(sqrt{3x}right)’cosleft(4x+1right)+sqrt{3x}left(cosleft(4x+1right)right)’$ .
-
функции , от которых предстоит взять производную, являются сложными …. производные сложных?
-
важно правильно распознать, какая функция будет внешней, а какая внутренней для каждой сложной функции.
-
$sqrt{3x}$ : внешняя функция — квадратный корень ; внутренняя — выражение под корнем $3x$ , берем производную:
-
$left(sqrt{3x}right)’=frac{1}{2}left(3xright)^{frac{1}{2}-1}cdotleft(3xright)’=frac{1}{2}left(3xright)^{-frac{1}{2}}cdot3=frac{3}{2sqrt{3x}}$
-
$cosleft(4x+1right)$ : внешняя функция — тригонометрическая cos ; внутренняя — аргумент косинуса $4x+1$
-
$left(cosleft(4x+1right)right)’=-sinleft(4x+1right)cdotleft(4x+1right)’=-sinleft(4x+1right)cdot4x’=-4sinleft(4x+1right)$
-
соберем все наши выкладки и получим производную исходного выражения:
-
$left(sqrt{3x}right)’cosleft(4x+1right)+sqrt{3x}left(cosleft(4x+1right)right)’=frac{3}{2sqrt{3x}}cosleft(4x+1right)-4sqrt{3x}sinleft(4x+1right)$
Иллюстационный пример: Учет сложности под разными функциями ….
Классная Интерактивная Доска:
Упражнения:
Представим себе прямую дорогу, проходящую по холмистой местности. То есть она идет то вверх, то вниз, но вправо или влево не поворачивает.
Если ось ( Ox) направить вдоль дороги горизонтально, а ( Oy) – вертикально, то линия дороги будет очень похожа на график какой-то непрерывной функции:
Ось ( Ox) – это некий уровень нулевой высоты, в жизни мы используем в качестве него уровень моря. Двигаясь вперед по такой дороге, мы также движемся вверх или вниз.
Также мы можем сказать: при изменении аргумента (продвижение вдоль оси абсцисс) изменяется значение функции (движение вдоль оси ординат).
А теперь давай подумаем, как определить «крутизну» нашей дороги? Что это может быть за величина?
Очень просто: на сколько изменится высота при продвижении вперед на определенное расстояние.
Ведь на разных участках дороги, продвигаясь вперед (вдоль оси абсцисс) на один километр, мы поднимемся или опустимся на разное количество метров относительно уровня моря (вдоль оси ординат).
Продвижение вперед обозначим ( displaystyle Delta x) (читается «дельта икс»).
Греческую букву ( displaystyle Delta ) (дельта) в математике обычно используют как приставку, означающую «изменение».
То есть ( displaystyle Delta x) – это изменение величины ( displaystyle x), ( displaystyle Delta y) – изменение ( displaystyle y); тогда что такое ( displaystyle Delta f)? Правильно, изменение величины ( displaystyle f).
Важно: выражение ( displaystyle Delta x) – это единое целое, одна переменная. Никогда нельзя отрывать «дельту» от «икса» или любой другой буквы!
То есть, например, ( displaystyle frac{Delta x}{Delta y}ne frac{x}{y})
Итак, мы продвинулись вперед, по горизонтали, на ( displaystyle Delta x). Если линию дороги мы сравниваем с графиком функции ( displaystyle fleft( x right)), то как мы обозначим подъем?
Конечно, ( displaystyle Delta f). То есть, при продвижении вперед на ( displaystyle Delta x) мы поднимаемся выше на ( displaystyle Delta f).
Величину ( displaystyle Delta f) посчитать легко: если в начале мы находились на высоте ( displaystyle {{f}_{1}}), а после перемещения оказались на высоте ( displaystyle {{f}_{2}}), то ( displaystyle Delta f={{f}_{2}}-{{f}_{1}}).
Если конечная точка оказалась ниже начальной, ( displaystyle Delta f) будет отрицательной – это означает, что мы не поднимаемся, а спускаемся.
Вернемся к «крутизне»: это величина, которая показывает, насколько сильно (круто) увеличивается высота при перемещении вперед на единицу расстояния:
( displaystyle K=frac{Delta f}{Delta x}).
Предположим, что на каком-то участке пути при продвижении на ( 1) км дорога поднимается вверх на ( 1) км. Тогда крутизна в этом месте равна ( 1).
А если дорога при продвижении на ( 100) м опустилась на ( 0,5)км?
Тогда крутизна равна ( displaystyle K=frac{-text{500м}}{text{100м}}=-5).
А теперь рассмотрим вершину какого-нибудь холма.
Если взять начало участка за полкилометра до вершины, а конец – через полкилометра после него, видно, что высота практически одинаковая.
То есть, по нашей логике выходит, что крутизна здесь почти равна нулю, что явно не соответствует действительности.
Просто на расстоянии в ( 1) км может очень многое поменяться.
Нужно рассматривать более маленькие участки для более адекватной и точной оценки крутизны.
Например, если измерять изменение высоты при перемещении на один метр, результат будет намного точнее. Но и этой точности нам может быть недостаточно – ведь если посреди дороги стоит столб, мы его можем просто проскочить.
Какое расстояние тогда выберем? Сантиметр? Миллиметр?
Чем меньше, тем лучше!
В реальной жизни измерять расстояние с точностью до миллиметра – более чем достаточно. Но математики всегда стремятся к совершенству.
Поэтому было придумано понятие бесконечно малого, то есть величина по модулю меньше любого числа, которое только можем назвать.
Например, ты скажешь: одна триллионная! Куда уж меньше?
А ты подели это число на ( 2) – и будет еще меньше. И так далее.
Если хотим написать, что величина ( x) бесконечно мала, пишем так: ( displaystyle xto 0) (читаем «икс стремится к нулю»).
Очень важно понимать, что это число не равно нулю! Но очень близко к нему. Это значит, что на него можно делить.
Понятие, противоположное бесконечно малому – бесконечно большое (( displaystyle xto infty )).
Ты уже наверняка сталкивался с ним, когда занимался неравенствами: это число по модулю больше любого числа, которое только можешь придумать.
Если ты придумал самое большое из возможных чисел, просто умножь его на два, и получится еще больше. А бесконечность еще больше того, что получится.
Фактически бесконечно большое и бесконечно малое обратны друг другу, то есть при ( displaystyle xto 0:text{ }frac{1}{x}to infty ), и наоборот: при ( displaystyle xto infty :text{ }frac{1}{x}to 0).
Теперь вернемся к нашей дороге.
Идеально посчитанная крутизна – это крутизна, вычисленная для бесконечно малого отрезка пути, то есть:
( displaystyle K=frac{Delta f}{Delta x}text{ при }Delta xto 0).
Замечу, что при бесконечно малом перемещении изменение высоты тоже будет бесконечно мало.
Но напомню, бесконечно малое – не значит равное нулю. Если поделить друг на друга бесконечно малые числа, может получиться вполне обычное число.
Например, ( displaystyle 2). То есть одна малая величина может быть ровно в ( displaystyle 2) раза больше другой.
К чему все это?
Дорога, крутизна… Мы ведь не в автопробег отправляемся, а математику учим. А в математике все точно так же, только называется по-другому.
Давай посмотрим как.
Производная функции — это отношение приращения функции к приращению аргумента при бесконечно малом приращение аргумента.
Приращением в математике называют изменение.
То, насколько изменился аргумент (( displaystyle x)) при продвижении вдоль оси ( displaystyle Ox), называется приращением аргумента и обозначается ( displaystyle Delta x.)
То, насколько изменилась функция (высота) при продвижении вперед вдоль оси ( displaystyle Ox) на расстояние ( displaystyle Delta x), называется приращением функции и обозначается ( displaystyle Delta f).
Итак, производная функции ( displaystyle fleft( x right)) – это отношение ( displaystyle Delta f) к ( displaystyle Delta x) при ( displaystyle Delta xto 0).
Обозначаем производную той же буквой, что и функцию, только со штрихом сверху справа: ( displaystyle {f}’left( x right)) или просто ( displaystyle {f}’).
Итак, запишем формулу производной, используя эти обозначения:
( displaystyle {f}’left( x right)=frac{Delta f}{Delta x}text{ при} Delta xto 0)
А бывает ли производная равна нулю?
Как и в аналогии с дорогой здесь при возрастании функции производная положительна, а при убывании – отрицательна.
Конечно. Например, если мы едем по ровной горизонтальной дороге, крутизна равна нулю. И правда, высота ведь не совсем меняется. Так и с производной: производная постоянной функции (константы) равна нулю:
( displaystyle {C}’=0,text{ }C=const),
так как приращение такой функции равно нулю при любом ( Delta x).
А еще?
Давай вспомним пример с вершиной холма. Там получалось, что можно так расположить концы отрезка по разные стороны от вершины, что высота на концах оказывается одинаковой, то есть отрезок располагается параллельно оси ( Ox):
Но большие отрезки – признак неточного измерения. Будем поднимать наш отрезок вверх параллельно самому себе, тогда его длина будет уменьшаться.
В конце концов, когда мы будем бесконечно близко к вершине, длина отрезка станет бесконечно малой.
Но при этом он остался параллелен оси ( Ox), то есть разность высот на его концах ( displaystyle Delta f) равна нулю (не стремится, а именно равна).
Значит, производная
( displaystyle {f}’left( {{x}_{text{вершины}}} right)=frac{Delta f}{Delta x}=frac{0}{Delta x}=0).
Понять это можно так: когда мы стоим на самой вершине, меленькое смещение влево или вправо изменяет нашу высоту ничтожно мало.
Есть и чисто алгебраическое объяснение: левее вершины функция возрастает, а правее – убывает.
Как мы уже выяснили ранее, при возрастании функции производная положительна, а при убывании – отрицательна.
Но меняется она плавно, без скачков (т.к. дорога нигде не меняет наклон резко).
Поэтому между отрицательными и положительными значениями обязательно должен быть ( displaystyle 0). Он и будет там, где функция ни возрастает, ни убывает – в точке вершины.
То же самое справедливо и для впадины (область, где функция слева убывает, а справа – возрастает):
Производная тригонометрических функций
Здесь будем использовать один факт из высшей математики:
При ( xto 0) выражение ( frac{sin x}{x}to 1).
Доказательство ты узнаешь на первом курсе института (а чтобы там оказаться, надо хорошо сдать ЕГЭ 😉 ).
Сейчас только покажу это графически:
Видим, что при ( displaystyle x=0) функция не существует – точка на графике выколота. Но чем ближе ( displaystyle x) к значению ( displaystyle0), тем ближе функция к ( displaystyle 1). Это и есть то самое «стремится».
Впредь будем считать, что при ( xto 0) это выражение равно ( displaystyle 1): ( frac{sin x}{x}=1).
Дополнительно можешь проверить это правило с помощью калькулятора. Да-да, не стесняйся, бери калькулятор, мы ведь не на ЕГЭ еще.
Итак, пробуем: ( x=0,1:text{ }frac{sin x}{x}=frac{sin 0,1}{0,1}approx 0,9983);
Не забудь перевести калькулятор в режим «Радианы»!
Попробуй теперь сам для ( displaystyle xtext{ }=text{ }0,01;text{ }0,001;text{ }0,0001) и так далее.
( frac{sin 0,01}{0,01}approx 0,999983…;text{ }frac{sin 0,001}{0,001}approx 0,99999983…) и т.д. Видим, что чем меньше ( displaystyle x), тем ближе значение отношения к ( displaystyle 1).
Убедился? Идем дальше.
7. Производная сложной функции
Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».
Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.
Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат.
Итак, нам дают число ( displaystyle x) (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось?
Функция ( displaystyle y={{cos }^{2}}x). Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.
Другими словами, сложная функция – это функция, аргументом которой является другая функция: ( displaystyle yleft( fleft( x right) right)).
Для нашего примера ( displaystyle fleft( x right)=cos x), ( displaystyle yleft( x right)={{x}^{2}}).
Тогда ( displaystyle yleft( fleft( x right) right)={{left( fleft( x right) right)}^{2}}={{left( cos x right)}^{2}}={{cos }^{2}}x).
Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь ( displaystyle x) в квадрат, а я затем ищу косинус полученного числа: ( displaystyle f=cos left( {{x}^{2}}right)). Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.
Второй пример: ( displaystyle yleft( x right)={{x}^{2}};text{ }fleft( x right)=cos x)(то же самое). ( displaystyle fleft( yleft( x right) right)=cos yleft( x right)=cos left({{x}^{2}}right)).
Действие, которое делаем последним будем называть «внешней» функцией, а действие, совершаемое первым – соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).
Попробуй определить сам, какая функция является внешней, а какая внутренней:
Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции
- Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб.
Значит, внутренняя функция ( displaystyle yleft( x right)=sin x), а внешняя ( displaystyle fleft( x right)={{x}^{3}}).
А исходная функция является их композицией: ( displaystyle fleft( yleft( x right) right)={{y}^{3}}left( x right)={{sin }^{3}}x).
- Внутренняя: ( displaystyle yleft( x right)=sqrt{x}); внешняя:( displaystyle f(x)=tg x).
Проверка:( displaystyle f(y(x))=tg(y(x))=tgsqrt{x}).
- Внутренняя: ( displaystyle yleft( x right)=cos x); внешняя: ( displaystyle fleft( x right)=sqrt{x}).
Проверка: ( displaystyle fleft( yleft( x right) right)=sqrt{yleft( x right)}=sqrt{cos x}).
- Внутренняя: ( displaystyle yleft( x right)={{x}^{3}}+2x+1); внешняя: ( displaystyle fleft( x right)={{x}^{5}}).
Проверка: ( displaystyle fleft( yleft( x right) right)={{left( yleft( x right) right)}^{5}}={{left( {{x}^{3}}+2x+1 right)}^{5}}).
- Внутренняя: ( displaystyle yleft( x right)=2{{x}^{2}}+3); внешняя: ( displaystyle fleft( x right)=sqrt[3]{x}).
Проверка: ( displaystyle fleft( yleft( x right) right)=sqrt[3]{yleft( x right)}=sqrt[3]{left( 2{{x}^{2}}+3 right)}).
( displaystyle fleft( x right)=sqrt{cos x}) производим замену переменных ( displaystyle y=cos x) и получаем функцию ( displaystyle fleft( y right)=sqrt{y}).
Ну что ж, теперь будем извлекать нашу шоколадку – искать производную.
Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции.
Применительно к исходному примеру это выглядит так:
( displaystyle begin{array}{l}yleft( fleft( x right) right)={{cos }^{2}}x;\fleft( x right)=cos x;text{ }{f}’left( x right)=-sin x\yleft( f right)={{f}^{2}};text{ }{y}’left( f right)=2f=2cos x\{y}’left( fleft( x right) right)={y}’left( f right)cdot {f}’left( x right)=2cos xcdot left( -sin x right)=-2cos xcdot sin x=-sin 2xend{array})
Другой пример:
( displaystyle begin{array}{l}f(x)=sin (2{{x}^{2}}+1)\ uparrow uparrow \внешняя text{внутренняя}end{array})
( displaystyle begin{array}{l}{f}’left( x right)=cos left( 2{{x}^{2}}+1 right)cdot left( 2cdot 2x+0 right)=4xcdot cos left( 2{{x}^{2}}+1 right)\ uparrow uparrow \ производная производная\ внешней внутреннейend{array}).
Итак, сформулируем, наконец, официальное правило:
( displaystyle {{left[ fleft( yleft( x right) right) right]}^{prime }}={f}’left( yleft( x right) right)cdot {y}’left( x right))
или проще:
( displaystyle {{left[ fleft( y right) right]}^{prime }}={f}’left( y right)cdot {y}’)
Алгоритм нахождения производной сложной функции:
| Алгоритм | Пример: ( displaystyle sqrt{sin x}) |
| 1. Определяем «внутреннюю» функцию, находим ее производную. | Внутренняя функция: ( displaystyle y=sin x).( displaystyle {y}’=cos x) |
| 2. Определяем «внешнюю» функцию, находим ее производную. | Внешняя функция:( displaystyle fleft( y right)=sqrt{y}={{y}^{frac{1}{2}}}).( displaystyle {f}’left( y right)=frac{1}{2}{{y}^{-frac{1}{2}}}=frac{1}{2sqrt{y}}=frac{1}{2sqrt{sin x}}) |
| 3. Умножаем результаты первого и второго пунктов. | ( displaystyle {f}’left( x right)=frac{cos x}{2sqrt{sin x}}). |
Вроде бы всё просто, да?
Проверим на примерах:
урок 3. Математика ЕГЭ
Как найти производную от функции
Как считать производные?
Никто не использует определение производной, чтобы ее вычислить. Как же тогда ее посчитать?
Оказывается, существуют специальные формулы, с помощью которых производная от функции вычисляется достаточно просто.
Формулы производной
Выпишем теперь все формулы производной функции и порешаем примеры.
Производная от константы
Производная от любого числа всегда равна (0):
$$(const)^{/}=0;$$
Пример 1
$$(5)^{/}=0;$$
Производная от (x)
Производная просто от (x) равна (1):
$$x^{/}=1;$$
Производная от степени
$$(x^n)^{/}=n*x^{n-1};$$
Пример 2
$$(x^4)^{/}=4*x^{4-1}=4*x^{3};$$
$$(x^{10})^{/}=10*x^{10-1}=10*x^{9};$$
$$(x^{-3})^{/}=-3*x^{-3-1}=-3*x^{-4};$$
$$(x^{frac{1}{3}})^{/}=frac{1}{3}*x^{1-frac{1}{3}}=frac{1}{3}*x^{frac{2}{3}};$$
Производная от квадратного корня
$$(sqrt{x})^{/}=frac{1}{2sqrt{x}};$$
Тут полезно заметить, что формулу производной от квадратного корня можно не учить. Она сводится к формуле производной от степени:
$$(sqrt{x})^{/}=(x^{frac{1}{2}})^{/}=frac{1}{2}*x^{frac{1}{2}-1}=frac{1}{2}*x^{-frac{1}{2}}=frac{1}{2sqrt{x}};$$
Производная от синуса
$$sin(x)^{/}=cos(x);$$
Производная от косинуса
$$cos(x)^{/}=-sin(x);$$
Производная от тангенса
$$tg(x)^{/}=frac{1}{cos^{2}(x)};$$
Производная от котангенса
$$tg(x)^{/}=frac{-1}{sin^{2}(x)};$$
Производная от экспоненты
$$(e^x)^{/}=e^x;$$
Производная от показательной функции
$$(a^x)^{/}=a^x*ln(a);$$
Пример 3
$$(2^x)^{/}=2^{x}*ln(2);$$
Производная от натурального логарифма
$$(ln(x))^{/}=frac{1}{x};$$
Производная от логарифма
$$(log_{a}(x))^{/}=frac{1}{x*ln(a)};$$
Свойства производной
Помимо формул по вычислению производной еще есть свойства производной, их тоже надо выучить.
Вынесение константы за знак производной
$$(alpha*f(x))^{/}=alpha*(f(x))^{/};$$
Пример 4
$$(3*x^5)^{/}=3*(x^5)^{/}=3*5x^4=15x^4;$$
$$(10sin(x))^{/}==10*(sin(x))^{/}=10*cos(x);$$
Производная от суммы и разности двух функций
$$(f(x) pm g(x))^{/}=(f(x))^{/} pm (g(x))^{/};$$
Пример 5
$$(2x^4+x^3)^{/}=?$$
Тут (f(x)=2x^4), а (g(x)=x^3). Тогда по формуле производной от суммы:
$$(2x^4+x^3)^{/}=(2x^4)^{/}+(x^3)^{/}=2*(x^4)^{/}+(x^3)^{/}=2*4x^3+3x^2=8x^3+3x^2;$$
Пример 6
$$(ln(x)+cos(x))^{/}=(ln(x))^{/}+(cos(x))^{/}=frac{1}{x}-sin(x);$$
Пример 7
$$(x^6-e^x)^{/}=(x^6)^{/}-(e^x)^{/}=6x^5-e^x;$$
Производная от произведения двух функций
$$(f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/};$$
Пример 8
$$(x^2*sin(x))^{/}=?$$
$$(x^2*sin(x))^{/}=(x^2)^{/}*sin(x)+x^2*(sin(x))^{/}=2x*sin(x)+x^2*cos(x);$$
Пример 9
$$(ln(x)*e^x)^{/}=(ln(x))^{/}*e^x+ln(x)*(e^x)^{/}=frac{1}{x}*e^x+ln(x)*e^x;$$
Производная от частного двух функций
$$left(frac{f(x)}{g(x)}right)^{/}=frac{(f(x))^{/}*g(x)-f(x)*(g(x))^{/}}{(g(x))^2};$$
Пример 10
$$left(frac{x^3}{sin(x)}right)^{/}=frac{(x^3)^{/}*sin(x)-x^3*(sin(x))^{/}}{(sin(x))^2}=frac{3x^2*sin(x)-x^3*cos(x)}{(sin(x))^2};$$
Примеры нахождения производной
Рассмотрим несколько примеров нахождения производной, чтобы разобраться, как применяются свойства и формулы производной на практике.
Пример 11
$$(5x^3+2cos(x))^{/}=(5x^3)^{/}+(2cos(x))^{/}=$$
$$=5*(x^3)^{/}+2*(cos(x))^{/}=5*3*x^2+2*(-sin(x))=15x^2-2sin(x);$$
Пример 12
$$left(-frac{3x^2}{2x^4+5x}right)^{/}=-frac{(3x^2)^{/}*(2x^4+5x)-3x^2*(2x^4+5x)^{/}}{(2x^4+5x)^2}=$$
$$=-frac{6x*(2x^4+5x)-3x^2*(8x+5)}{(2x^4+5x)^2}=-frac{12x^5-24x^3+15x^2}{(2x^4+5x)^2};$$
Пример 13
$$(2xsqrt{x})^{/}=(2x)^{/}*sqrt{x}+2x*(sqrt{x})^{/}=$$
$$=2*sqrt{x}+2x*frac{1}{2sqrt{x}}=2*sqrt{x}+frac{2x}{2sqrt{x}}=2*sqrt{x}+sqrt{x}=3sqrt{x};$$
Производная сложной функции
Сложная функция — это функция не от аргумента (x), а от какой-то другой функции: (f(g(x))). Например, функция (sin(x^2)) будет сложной функцией: «внешняя» функция синуса берется от «внутренней» функции степени ((x^2)). Так как под синусом стоит аргумент не (x), а (x^2), то такая функция будет называться сложной.
Еще примеры сложных функций:
-
$$ln(3x^4);$$
Внешняя функция: натуральный логарифм; Внутренняя функция: ((3x^4)). -
$$cos(ln(x));$$
Внешняя функция: косинус; Внутренняя функция: ((ln(x))). -
$$e^{2x^2+3};$$
Внешняя функция: экспонента; Внутренняя функция: ((2x^2+3)). -
$$(sin(x))^3;$$
Внешняя функция: возведение в третью степень; Внутренняя функция: (sin(x)).
Чтобы посчитать производную от такой функции, нужно сначала найти производную внешней функции, а затем умножить результат на производную внутренней функции. В общем виде формула выглядит так:
$$f(g(x))^{/}=f^{/}(g(x))*g^{/}(x);$$
Скорее всего, выглядит непонятно, поэтому давайте разберем на примерах.
Пример 14
$$((cos(x))^4)^{/}=?$$
Внешней функцией тут будет возведение в четвертую степень, поэтому сначала считаем производную от степени по формуле ((x^n)^{/}=n*x^{n-1}). А потом умножаем результат на производную внутренней функции, у нас это функция косинуса, по формуле (cos(x)^{/}=-sin(x)):
$$((cos(x))^4)^{/}=underset{text{внешняя производная}}{underbrace{4*(cos(x))^3}}*underset{text{внутренняя производная}}{underbrace{(cos(x))^{/}}}=$$
$$=4*(cos(x))^3*(-sin(x))=-4*(cos(x))^3*sin(x);$$
Пример 15
$$(e^{2x^3+5})^{/}=?$$
Внешняя функция — это экспонента ((e^x)^{/}=e^x), а внутренняя функция — квадратный многочлен ((2x^3+5)):
$$(e^{2x^3+5})^{/}=e^{2x^3+5}*(2x^3+5)^{/}=e^{2x^3+5}*((2x^3)^{/}+5^{/})=e^{2x^3+5}*6x^2.$$
Пример 16
$$(ln((2x^2+3)^6))^{/}=?$$
Внешняя функция — это натуральной логарифм, берем производную от него по формуле ((ln(x))^{/}=frac{1}{x}), и умножаем на производную внутренней функции, у нас это шестая степень: ((x^n)^{/}=n*x^{n-1}). Но и на этом еще не все: под шестой степенью стоит не просто (x), а квадратный многочлен, значит еще нужно умножить на производную от этого квадратного многочлена:
$$ln((2x^2+3)^6)=frac{1}{(2x^2+3)^6}*((2x^2+3)^6)^{/}*(2x^2+3)^{/}=$$
$$=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*(4x+0)=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*4x=$$
$$=frac{6*(2x^2+3)^5*4x}{(2x^2+3)^6}=frac{24x*(2x^2+3)^5}{(2x^2+3)^6}=frac{24x}{(2x^2+3)^6}.$$
Вывод формул производной функции
Выведем некоторые из этих формул, чтобы было понимание, откуда они берутся. Но перед этим познакомимся с новыми обозначениями. Запись (f(x)) означает, что функция берется от аргумента (x). Например:
$$f(x)=x^3+sin(x);$$
На месте аргумента (x) может стоять все что угодно, например выражение (2x+3). Обозначение такой функции будет (f(2x+3)), а сама функция примет вид:
$$f(2x+3)=(2x+3)^3+sin(2x+3);$$
То есть, везде вместо аргумента (x) мы пишем (2x+3).
И несколько важных замечаний про (Delta f(x)) и (Delta x). Напомню, что значок (Delta) означает изменение некоторой величины. (Delta x) — изменения координаты (x) при переходе от одной точки на графике функции к другой; (Delta f(x)) — разница координат (y) между двумя точками на графике. Подробнее про это можно почитать в главе, где мы вводим понятие производной. Распишем (Delta x) для двух близких точек на графике функции (O) и (B):
$$Delta x=x_B-x_O;$$
Отсюда можно выразить (x_B):
$$x_B=x_O+Delta x;$$
Абсцисса (координата точки по оси (x)) точки (B) получается путем сложения абсциссы точки (O) и (Delta x).
Кстати, функцию (f(x)=x^3+sin(x)) от аргумента (x_B=x_O+Delta x) можно расписать:
$$f(x_B)=f(x_O+Delta x)=(x_O+Delta x)^3+sin(x_O+Delta x);$$
Рис.1. График произвольной функции
И распишем (Delta f):
$$Delta f(x)=f(x_B)-f(x_O)=f(x_O+Delta x)-f(x_O);$$
Тогда определение производной можно записать в виде:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x_O+Delta x)-f(x_O)}{Delta x} quad при quad Delta x to 0;$$
За (x_O) обычно обозначают точку, в окрестности которой берут производную. То есть, получается (x_O) — это абсцисса начальной точки, а (x_O+Delta x) — абсцисса конечной точки.
Нам это пригодится при выводе формул производной.
Производная квадратичной функции
Выведем теперь формулу производной от (f(x)=x^2), воспользовавшись определением производной:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
Распишем числитель (f(x+Delta x)-f(x)) с учетом, что (f(x)=x^2):
$$f(x+Delta x)-f(x)=(x+Delta x)^2-x^2=x^2+2xDelta x+(Delta x)^2-x^2=2xDelta x+(Delta x)^2;$$
Подставим в определение производной:
$$f^{/}(x)=frac{2xDelta x+(Delta x)^2}{Delta x}=frac{Delta x*(2x+Delta x)}{Delta x}=2x+Delta x;$$
Напоминаю, что (Delta x) это бесконечно малая величина:
$$(Delta x)^2 ll 0;$$
Поэтому этим слагаемым можно пренебречь. Вот мы и получили формулу для производной от квадратной функции:
$$f^{/}(x)=(x^2)^{/}=2x;$$
Производная от третьей степени
Аналогичные рассуждения можно провести для функции третьей степени:
$$f(x)=x^3;$$
Воспользуемся определением производной:
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
$$f(x+Delta x)-f(x)=(x+Delta x)^3-x^3=(x+Delta x-x)((x+Delta x)^2+(x+Delta x)*x+x^2)=$$
$$=Delta x*(x^2+2x*Delta x+(Delta x)^2+x^2+x*Delta x+x^2)=Delta x*(3x^2+3xDelta x);$$
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x}=frac{Delta x*(3x^2+3xDelta x)}{Delta x}=3x^2+3xDelta x;$$
Так как при умножении на бесконечно малую величину получается бесконечно малая величина, то слагаемым (3xDelta x) можно пренебречь:
$$f^{/}(x)=(x^3)^{/}=3x^2;$$
Точно таким же способом можно вывести формулы производных для любых степеней:
$$(x^4)^{/}=4x^3;$$
$$(x^5)^{/}=5x^4;$$
$$…$$
$$(x^n)^{/}=n*x^{n-1};$$
Кстати, эта формула справедлива и для дробных степеней.
Вывод остальных формул делается похожим образом, только там может понадобиться знание пределов. Вывод всех формул разбирается в университетском курсе математического анализа.
Что такое производная функции простыми словами? Для чего нужна производная? Определение производной
Как решать задания №7 из ЕГЭ по математике. Анализ графиков при помощи производной. Графики производной и графики функции
Исследуем функцию с помощью производной. Находим точки минимума и максимума, наибольшее и наименьшее значение функции. Точки экстремума. Промежутки возрастания и убывания.
Связь коэффициента наклона и тангенса угла наклона касательной к функции и производной функции в точке касания. Задание №7 в ЕГЭ по математике.


