гречиху фасуют два дозатора. В один дозатор засыпают (200) кг гречихи, и он расфасовывает крупу в пакеты за (20) мин. В другой засыпают (330) кг, и он расфасовывает крупу за (30) мин. Какой из дозаторов работает быстрее?
Сначала найдём, скорость каждого дозатора.
Эту задачу можно представить в виде таблицы:
— килограммов гречихи расфасовывает первый дозатор за (1) мин.
— килограммов гречихи расфасовывает второй дозатор за (1) мин.
Значит, работает быстрее второй дозатор.
2-й способ решения — без таблицы
Как обойтись без составления таблицы?
Сразу составить уравнение.
Для этого определим, какая величина нам не нужна в уравнении, чтобы затем приравнять.
Производительность? Ее и надо найти. Работа? Она нам дана по условию, поэтому глупо от нее избавляться. Остается время: оно нам и неизвестно, и не нужно.
Слева от знака равно будем писать формулу времени для первого рабочего, а справа – для второго.
Напомню, что первый работал на ( displaystyle 2) часа дольше, поэтому к времени второго надо будет прибавить ( displaystyle 2):
( displaystyle frac{112}{x}=frac{112}{x+1}+2)
То же самое уравнение, что и в первом способе, только без таблицы и системы уравнений.
А теперь вспомним, что я говорил в сааамом начале: задачи на работу и на движение – это то же самое. Спорное заявление, да? Ну, давай проверим, есть ли аналогия.
Во-первых, сравним формулы:
| Движение | Работа |
| ( displaystyle v=frac{S}{t}) | ( displaystyle P=frac{A}{t}) |
| Скорость движения | Скорость выполнения работы, т.е. производительность |
| Пройденный путь | Выполненная работа |
| Потраченное на движение время | Потраченное на работу время |
Теперь рассмотрим задачу:
Пример №1
Расстояние ( displaystyle 112) км первый велосипедист проезжает на ( displaystyle 2) часа дольше, чем второй.
Сколько км в час проезжает первый велосипедист, если известно, что второй за час проезжает на один километр больше, чем первый?
Ничего не напоминает? Да я же просто заменил слова: «Заказ» на «расстояние», «деталь» на «километр», «рабочий» на «велосипедист», «выполняет» на «проезжает». Суть осталась той же. Даже решение будет точно таким же (разберу здесь только II способ – без таблицы).
Пусть скорость первого ( displaystyle x), тогда второго ( displaystyle x+1). Сколько времени едет первый? ( displaystyle frac{112}{x}). Сколько времени едет второй? ( displaystyle frac{112}{x+1}). На сколько время первого больше, чем второго? На ( displaystyle 2) часа:
( displaystyle frac{112}{x}=frac{112}{x+1}+2).
То же самое уравнение! Вот и получается, что работа и движение – одно и то же.
Как решать задачи на совместную работу
Задачи на совместную работу отличаются от обычных, представленных выше, тем, что в них работа выполняется одновременно (совместно) несколькими рабочими (трубами и т.д.).
Пример №2
Первая труба заполняет бассейн за ( displaystyle 6) часов, а вторая – за ( displaystyle 4).
За какое время они заполнят бассейн, работая вместе?
Решение
Во-первых, давай придумаем аналогию с движением.
Придумал?
Бассейн – это путь. Допустим, из ( displaystyle A) в ( displaystyle B). Итак, первый автомобиль проезжает путь ( displaystyle AB) за ( displaystyle 6) часов, второй – за ( displaystyle 4).
А теперь как сформулировать вопрос? За какое время они проедут весь путь, двигаясь вместе? Бред.
Если двигаться параллельно, то каждый проходит весь путь самостоятельно. А в какой ситуации нам важно, какой путь автомобили проходят в сумме? Все гениальное просто: если они движутся навстречу друг другу!
Тогда что нас просят найти? Время, через которое они встретятся.
Поразмысли немного над этой аналогией. Все понял? Тогда идем дальше.
Какова «скорость» (а по-настоящему, производительность) первого? Путь (работа) деленный на время: ( displaystyle {{P}_{1}}=frac{A}{{{t}_{1}}}=frac{A}{6}). А второго? ( displaystyle {{P}_{2}}=frac{A}{{{t}_{2}}}=frac{A}{4}).
С какой производительностью работают две трубы вместе (не забывай, это задачи на совместную работу)? Берем количество литров, которое налила в бассейн первая труба за один час, прибавляем количество литров, которое налила в бассейн вторая труба за один час, – именно столько наливают в бассейн обе трубы за один час. То есть производительности складываются:
( displaystyle P={{P}_{1}}+{{P}_{2}})
То же самое, что и относительная скорость: с какой скоростью второй автомобиль приближается к первому? Со скоростью, равной сумме скоростей: ( displaystyle v={{v}_{1}}+{{v}_{2}}).
Итак,
( displaystyle P={{P}_{1}}+{{P}_{2}}=frac{A}{6}+frac{A}{4}=frac{5A}{12}).
Тогда время, за которое с такой производительностью будет выполнена работа ( A):
( displaystyle t=frac{A}{P}=frac{A}{frac{5A}{12}}=frac{12}{5}=2,4) (ч)
Итак, правило:
При совместной работе производительности складываются
А теперь давай рассмотрим самый сложный пример, научившись решать который, ты сможешь с легкостью справится с любой задачей на ЕГЭ.
Пример 8
На изготовление ( displaystyle 600) деталей первый рабочий тратит на ( displaystyle 10) часов меньше, чем второй рабочий на изготовление ( displaystyle 500) таких же деталей. За какое время, работая совместно, они изготовят партию в ( displaystyle 1000) деталей, если известно, что за час первый рабочий делает на ( displaystyle 5) деталей больше?
Решение:
Давай определимся, что нам нужно найти? Нам нужно найти время, за которое рабочие изготовят ( displaystyle 1000) деталей, то есть: ( displaystyle frac{1000}{{{P}_{1}}+{{P}_{2}}}).
Значит, нужно найти ( displaystyle {{P}_{1}}) и ( displaystyle {{P}_{2}}).
Первый рабочий за час делает на ( displaystyle 5) деталей больше. Обозначим производительность первого рабочего за х, тогда производительность второго – ( displaystyle x-5).
( displaystyle 600) деталей первый рабочий делает за ( displaystyle {{t}_{1}}) часов, а ( displaystyle 500) таких же деталей второй рабочий делает за ( displaystyle {{t}_{2}}={{t}_{1}}+10) часов.
То есть: ( displaystyle {{t}_{1}}=frac{600}{x}, a {{t}_{2}}={{t}_{1}}+10=frac{500}{x-5}).
Приравняв ( displaystyle {{t}_{1}}), получаем уравнение:
Математика
Тема. Формула работы.
Цели: 1. Познакомить с понятиями
«производительность», «время работы», «работа»; установить взаимосвязь между
этими величинами; вывести формулу работы А = в х с; соотнести данную формулу с
ранее изученными.
2.
Развивать навыки умножения на трехзначное число, сравнения и преобразования
именованных чисел, быстрого устного счета.
Формирование УУД
на уроке: 1.Познавательные,
развиваем умения извлекать информацию из схем, иллюстраций, текстов.
2. Регулятивные, прогнозировать предстоящую работу, осуществлять
познавательную и личностную рефлексию.
3. Личностные, формируем мотивацию к обучению и целенаправленной познавательной
деятельности
4. Коммуникативные, развиваем умение слушать и понимать других, умение
работать в паре
Ход урока.
1.Самоопределение
к деятельности. (1-2 мин.)
Начинается урок,
Он пойдет ребятам
впрок,
Постарайтесь все
понять,
Учитесь тайны
открывать,
Ответы полные
давать,
Чтоб за работу
получать
Только лишь
отметку «пять»!
2. Актуализация
знаний и мотивация. (4-5 мин)
— А зачем вообще нужны формулы?
(показывают, как решать похожие между собой задачи)
— А какие пословицы о работе или о труде вы знаете?
*Безделье-
мать пороков.
*Трудолюбив
как муравей.
*Не
спеши языком, торопись делом.
*Без
труда не вытащишь рыбку из пруда.
*Рабочие
руки не знают скуки.
*Дело
мастера боится.
*Всякое
умение трудом дается.
*Без
труда нет добра.
3 Постановка
учебной задачи.
-Вот песочные
часы, песок высыпается в нижнюю часть за 1 минуту. Перед вами карточки с
заданиями. Проведем «Блиц- турнир». Сколько заданий вы успеете выполнить за
одну минуту.
Проверьте
выполненные задания по доске и отметьте сколько заданий выполнено
— Минута закончилась.
Переверните листок, проверьте правильность решения. Поставьте + или – за
решение
-Сколько заданий за 1
минуту выполнили?
-А сколько бы вы
выполнили за 40 минут, если бы решали весь урок аналогичные задания?
( 3 х 40=120 (з.); 4
х 40= 160 (з) и т. д.)
-Что такое 40 минут?
(Время выполнения задания)
— Что обозначает
число 3? (Количество заданий, выполняемых за 1 минуту)
-А что обозначает
число 120? ( Количество заданий, которое можно выполнить за урок)
4. «Открытие
детьми нового знания.
— Как вы думаете, над
чем нам сегодня предстоит работать?
(будем учиться
находить время работы, кол- во заданий ,и всю работу)
— В математике
существуют понятия: (карточки)
работа, время
работы и производительность.
— А как вы
понимаете слово «производительность»?
( это объем работы,
выполненной за единицу времени)
-В случае с
заданиями на «Блиц- турнире» что будет являться производительностью труда?
(кол-во заданий,
которые выполнили за 1 мин.)
-Одинаковой ли
была производительность у каждого из вас?
(она разная)
—Когда умножали
производительность своего труда на время 40 мин., что вы получили?
(кол-во заданий,
которое можем выполнить за весь урок, объем всей работы)
—Почему объем
работы оказался разным у разных учеников?
(потому что разная
производительность труда)
Если объем всей
работы обозначим буквой А,
время работы – t,
а производительность
– буквой v,
то какую формулу
зависимости работы от времени и производительности вы можете записать?
Объем работы Время
работы Производительность
А t v
5. Первичное
закрепление (4-5мин)
-Откройте учебник с.
44
№1 — устно
— Проговаривание
вслух №2 (таблица на доске)
№3 (таблица на доске)
6. Самостоятельная
работа с проверкой по эталону.
(4-5мин)
№5
Анализ условия
задачи.
Поиск решения.
|
Эталон А = v 208 х 365 = 75920 (ав.) Ответ: 75920
|
7. Включение в
систему знаний и повторение. (7-8 мин.)
№4
— Предлагаю работу в парах. 1 в. Объясняет под а), 2 в. под б)
8. Рефлексия.
-Что нового узнали?
— Где можно использовать знание формулы?
— Что нужно еще?
Д/з Составить задачи на альбомных листах на нахождение работы,
производительности , времени в виде таблицы.
Как решать задачи с работой по математике
Как утверждают многие источники, решение задач развивает логическое и интеллектуальное мышление. Задачи «на работу» являются одними из самых интересных. Для того, чтобы научиться решать такие задачи, необходимо уметь представлять процесс работы, о которой в них говорится.

Инструкция
Задачи «на работу» имеют свои особенности. Для их решения необходимо знать определения и формулы. Запомните следующее:
А=Р*t – формула работы;
P=A/t – формула производительности;
t=A/P – формула времени, где А — работа, Р- производительность труда, t- время.
Если в условии задачи не указана работа, то её принимайте за 1.
На примерах разберем, как решаются такие задачи.
Условие. Два рабочих, работая одновременно, вскопали огород за 6 ч. Первый рабочий мог бы выполнить ту же работу за 10 ч. За сколько часов второй рабочий может вскопать огород?
Решение: Примем всю работу за 1. Тогда, в соответствии с формулой производительности — P=A/t , 1/10 часть работы делает первый рабочий за 1час. 6/10 он делает за 6 часов. Следовательно, второй рабочий за 6 часов делает 4/10 работы ( 1 – 6/10). Мы определили, что производительность второго рабочего равна 4/10. Время совместной работы, по условию задачи, составляет 6 часов. За Х примем то, что надо найти, т.е. работу второго рабочего. Зная, что t=6, P=4/10, составим и решим уравнение:
0,4х=6,
х=6/0,4,
х=15.
Ответ: Второй рабочий может вскопать огород за 15 часов.
Разберем еще один пример: Для наполнения контейнера водой имеются три трубы. Первой трубе для наполнения контейнера необходимо времени в три раза меньше, чем второй, и на 2 ч больше, чем третьей. Три трубы, работая одновременно, наполнили бы контейнер за 3ч, но по условиям эксплуатации одновременно могут работать только две трубы. Определите минимальную стоимость наполнения контейнера, если стоимость 1ч работы одной из труб равно 230 рублей.
Решение: Эту задачу удобно решать с помощью таблицы.
1). Возьмем всю работу за 1. За Х возьмем время, необходимое третьей трубе. По условию первой трубе надо на 2 часа больше, чем третьей. Тогда первой трубе понадобиться (Х+2) часа. А третьей трубе надо в 3 раза больше времени, чем первой, т.е. 3(Х+2). Опираясь на формулу производительности, получим: 1/(Х+2) – производительность первой трубы, 1/3(Х+2) – второй трубы, 1Х – третьей трубы. Занесем все данные в таблицу.
Работа Время,час производительность
1 труба А=1 t=(Х+2) P=1/Х+2
2 труба А=1 t=3(Х+2) P=1/3(Х+2)
3 труба А=1 t=Х P=1/Х
Вместе А=1 t=3 P=1/3
Зная, что совместная производительность равна 1/3, составим и решим уравнение:
1/(Х+2)+1/3(Х+2)+1/Х=1/3
1/(Х+2)+1/3(Х+3)+1/Х-1/3=0
3Х+Х+3Х+6-Х2-2Х=0
5Х+6-Х2=0
Х2-5Х-6=0
При решении квадратного уравнения находим корень. Получается,
Х=6(часов) – время, которое понадобиться третьей трубе для наполнения контейнера.
Из этого следует, что время, которое надо первой трубе равно (6+2)=8 (часов), а второй = 24(часа).
2). Из полученных данных делаем вывод, что минимальное время — это время работы 1 и3 труб ,т.е. 14ч.
3). Определим минимальную стоимость наполнения контейнера двумя трубами.
230*14=3220(руб.)
Ответ: 3220 руб.
Есть задачи наиболее сложнее, где необходимо вводить несколько переменных.
Условие: Специалист и стажер, работая вместе, сделали определенную работу за 12 дней. Если бы сначала специалист выполнил один половину всей работы, а потом вторую половину закончил один стажер, то на все было бы потрачено 25 дней.
а) Найдите время, которое мог бы потратить специалист на завершение всей работы, при условии, что он будет работать один и быстрее стажера.
б) Как поделить работникам полученные за совместное выполнение работы 15000 рублей?
1).Пусть всю работу специалист может выполнить за X дней, а стажер за Y дней.
Получим, что за 1 день специалист выполняет за 1/X работы, а стажер за 1/Yработы.
2). Зная, что работая вместе, на всю работу у них ушло 12 дней, получим:
(1/X+1/Y)=1/12 – ‘это первое уравнение.
По условию, работая по очереди, в одиночку, было затрачено 25 дней, получим:
X/2+Y/2=25
X+Y=50
Y=50-X – это второе уравнение.
3) Подставим второе уравнение в первое, получим: (50 — х +х) / (х(х-50)) = 1/12
X2-50X + 600 = 0,х1= 20,х2=30 (тогда Y=20) не удовлетворяет условию.
Ответ: X=20,Y=30.
Деньги нужно делить обратно пропорционально затраченному на выполнение работы времени. Т.к. специалист работал быстрее и, как следствие, может сделать больше. Поделить деньги надо в отношении 3:2. Специалисту 15000/5*3 = 9000 руб.
Стажеру 15000/5*2 = 6000 руб.
Полезные советы: Если вы не поняли условие задачи, не надо приступать к ее решению. Сначала внимательно прочитайте задачу, выделите все, что известно, и что надо найти. Если это возможно, нарисуйте рисунок – схему. Так же можно воспользоваться таблицами. Использование таблиц и схем может облегчить понимание и решение задачи.
Обратите внимание
Общая производительность равна сумме производительностей.
Источники:
- Задачи и решения.
- как найти работу математика
Текстовые задачи на производительность
Задачи на производительность включают в себя задачи, в которых фигурирует какой-либо рабочий процесс и его характеристики: работа, время и производительность. Эти параметры связаны через формулу совместной работы:
(A = Pt,)
где (A) – работа, (t) – время, (P) – производительность.
Через эту формулу можно выразить производительность и время:
(P = frac{A}{t})
(t = frac{A}{P})
С помощью этих формул можно выражать одни характеристики работы через другие. Рассмотрим пример.
Пример №1:
За 5 дней работы рабочие на заводе произвели 35 деталей для автомобилей. Сколько деталей в день изготавливалось на заводе?
-
Для того, чтобы найти производительность, зная работу и время, нужно поделить работу на время:
(P = frac{A}{t} = frac{35}{5} = 7 деталей/день)
Ответ: 7.
ЗАДАЧИ НА ОБЩУЮ РАБОТУ
Часто в задачах на производительность можно увидеть вопрос на общую работу, когда нам известно время работы отдельных заводов или людей, а нужно найти совместное время, производительность или работу. В таком случае мы не сможем сложить время, т. к. при совместной работе время не увеличивается. А наоборот уменьшается за счет увеличения производительности. Рассмотрим на примере, как находить общее время работы.
Пример №2:
Для производства инструментов нужно сделать 600 деталей. Первый завод сделает эту работу за 10 дней, а второй завод за 15. За сколько дней будут готовы все детали, если их будут делать сразу два завода?
-
Мы знаем работу и время производства деталей в первом заводе. Найдем их производительность:
(P_{1} = frac{600}{10} = 60 )
(деталей в день делает первый завод)
-
Также найдем производительность для второго завода:
(P_{2} = frac{600}{15} = 40 )
(деталей в день делает второй завод)
-
Тогда за один день два завода вместе сделают:
(P_{общ} = 60 + 40 = 100 деталей в день)
Это производительность является общей для заводов.
-
С такой производительностью они сделают 600 деталей за:
(t_{общ} = frac{600}{100} = 6 дней)
Мы узнали, за какое время заводы сделаю 600 деталей, если каждый день будут работать вместе. Запишем ответ.
Ответ: 6.
ЗАДАЧИ С ДОПОЛНИТЕЛЬНЫМ УСЛОВИЕМ
Это такие задачи, где мы знаем, разницу между одной характеристикой нескольких рабочих или заводов. Тогда дополнительное условие позволяется связать нам данные и составить уравнение. Рассмотрим на примере.
Пример №3:
Заказ на 110 деталей второй рабочий выполняет на 1 час быстрее, чем первый. Сколько деталей за час изготавливает первый рабочий, если известно, что второй за час изготавливает на 1 деталь больше.
-
Составим таблицу. Вместо искомого поставим переменную 𝑥. В данном случае это производительность первого рабочего, т. к. спрашивают, сколько деталей он делает за час. Тогда производительность второго рабочего на единицу больше:
-
При этом рабочие выполняют одинаковую работу – по 110 деталей, тогда заполним колонку работы:
-
Тогда, зная производительность и работу каждого, выразим время для обоих рабочих:
(t_{1} = frac{110}{x})
(t_{2} = frac{110}{x + 1})
-
Теперь, когда мы знаем все характеристики работы рабочих, можем использовать дополнительное условие, которое заключается в том, что второй выполняет этот объем работы на час быстрее, значит, составим уравнение, которое объединяет время работы обоих рабочих:
(frac{110}{x + 1} + 1 = frac{110}{x})
-
Теперь работаем только с уравнением. Приведем обе части уравнения к одному знаменателю, в данном случае к знаменателю ((x + 1)x). Преобразуем получившееся уравнение, перенесем все в одну сторону и раскроем скобки:
(frac{110x}{(x + 1)x} + frac{(x + 1)x}{(x + 1)x} = frac{110(x + 1)}{x(x + 1)})
(frac{110x}{(x + 1)x} + frac{(x + 1)x}{(x + 1)x} – frac{110(x + 1)}{x(x + 1)} = 0)
(frac{110x + x^{2} + x – 110x – 110}{(x + 1)x} = 0)
-
Дробь будет равна нулю, если числитель равен нулю, а знаменатель его НЕ равен, т. е. (x neq –1) и (x neq 0):
(110x + x^{2} + x – 110x – 110 = 0)
(x^{2} + x – 110 = 0)
-
По т. Виета:
({x_{1} + x_{1} = –1 }{x_{1}x_{1} = –110})
Тогда:
(leftlbrack frac{x_{1} = 10}{x_{2} = –11} right. )
-
Проверим корни на адекватность. Оба решения являются корнями уравнения, но вернемся к тому, что мы искали. Мы приняли за x производительность первого рабочего, а такая реальная характеристика, как выполненная за час работа не может быть отрицательной. Таким образом ответом данной задачи будет являться первый корень уравнения. Запишем ответ.
Ответ: 10.

