В данной публикации мы рассмотрим формулы, с помощью которых можно найти произведение двух комплексных чисел, представленных в алгебраической или тригонометрической форме. Также приведены примеры для лучшего понимания теоретического материала.
- Умножение в алгебраической форме
- Произведение в тригонометрической форме
Умножение в алгебраической форме
Произведением двух комплексных чисел x = a1 + b1i и y = a2 + b2i также является комплексное число z:
z = x ⋅ y = (a1a2 – b1b2) + (a1b2 + b1a2) ⋅ i
Формула получается путем перемножения двучленов (a1 + b1i)(a2 + b2i). При этом не забываем, что i2 = -1.
Пример 1
Найдем произведением комплексных чисел: x = 3 + 7i и y = 2 – i.
Решение:
x ⋅ y = (3 + 7i)(2 – i) = 3 ⋅ 2 – 3 ⋅ i + 7i ⋅ 2 – 7i ⋅ i = 6 – 3i + 14i – 7i2 = 6 + 11i – 7 ⋅ (-1) = 13 + 11i.
Произведение в тригонометрической форме
Комплексные числа могут быть заданы в тригонометрической форме, например x = |x| ⋅ (cos φ1 + i ⋅ sin φ1) и y = |y| ⋅ (cos φ2 + i ⋅ sin φ2).
В этом случае формула произведения выглядит следующим образом:
x ⋅ y = |x| ⋅ |y| ⋅ [cos(φ1 + φ2) + i ⋅ sin(φ1 + φ2)]
Пример 2
Выполним умножение двух комплексных чисел: x = 2 ⋅ (cos 15° + i ⋅ sin 15°) и y = 5 ⋅ (cos 30° + i ⋅ sin 30°).
Решение:
|x| ⋅ |y| = 2 ⋅ 5 = 10
φ1 + φ2 = 15° + 30° = 45°
x ⋅ y = 10 ⋅ (cos 45° + i ⋅ sin 45°)
Тригонометрическая форма комплексных чисел
29 ноября 2021
Второй урок по комплексным числам. Если вы только начинаете изучать эту тему (что такое комплексная единица, модуль, сопряжённые), см. первый урок: «Что такое комплексное число».
Сегодня мы узнаем:
- Что такое тригонометрическая форма
- Умножение и деление комплексных чисел в тригонометрической форме
- Формула Муавра (возведение в степень)
- Дополнение 1. Геометрический подход, чтобы не путать, где синус, а где косинус
- Дополнение 2. Как быстро и надёжно искать аргумент комплексного числа?
Начнём с ключевого определения.
1. Тригонометрическая форма
Определение. Тригонометрическая форма комплексного числа — это выражение вида
[z=left| z right|cdot left( cos text{ }!!varphi!!text{ }+isin text{ }!!varphi!!text{ } right)]
где $left| z right|$ — модуль комплексного числа, $text{ }!!varphi!!text{ }$ — некоторый угол, который называется аргумент комплексного числа (пишут $text{ }!!varphi!!text{ }=arg left( z right)$).
Любое число $z=a+bi$, отличное от нуля, можно записать с тригонометрической форме. Для этого нужно вычислить модуль и аргумент. Например:
Записать в тригонометрической форме число $z=sqrt{3}+i$.
Переписываем исходное число в виде $z=sqrt{3}+1cdot i$ и считаем модуль:
[left| z right|=sqrt{{{left( sqrt{3} right)}^{2}}+{{1}^{2}}}=2]
Выносим модуль за скобки:
[z=sqrt{3}+1cdot i=2cdot left( frac{sqrt{3}}{2}+frac{1}{2}cdot i right)]
Вспоминаем тригонометрию, 10-й класс:
[frac{sqrt{3}}{2}=cos frac{text{ }!!pi!!text{ }}{6};quad frac{1}{2}=sin frac{text{ }!!pi!!text{ }}{6}]
Окончательный ответ:
[z=2cdot left( cos frac{text{ }!!pi!!text{ }}{6}+icdot sin frac{text{ }!!pi!!text{ }}{6} right)]
Понятно, что вместо $frac{text{ }!!pi!!text{ }}{6}$ с тем же успехом можно взять аргумент $frac{13text{ }!!pi!!text{ }}{6}$. Синус и косинус не поменяется. Главное — выбрать такой аргумент, чтобы в тригонометрической форме не осталось никаких минусов. Все минусы должны уйти внутрь синуса и косинуса. Сравните:
Записать в тригонометрической форме число $z=-1-i$.
Правильно:
[z=sqrt{2}cdot left( cos frac{5text{ }!!pi!!text{ }}{4}+isin frac{5text{ }!!pi!!text{ }}{4} right)]
Неправильно:
[begin{align} & z=-sqrt{2}cdot left( cos frac{text{ }!!pi!!text{ }}{4}+isin frac{text{ }!!pi!!text{ }}{4} right) \ & z=sqrt{2}cdot left( -cos frac{text{ }!!pi!!text{ }}{4}-isin frac{text{ }!!pi!!text{ }}{4} right) \ & z=sqrt{2}cdot left( cos frac{3text{ }!!pi!!text{ }}{4}-isin frac{3text{ }!!pi!!text{ }}{4} right) \ end{align}]
2. Умножение и деление комплексных чисел
Комплексные числа, записанные в тригонометрической форме, очень удобно умножать и делить.
Теорема. Пусть даны два комплексных числа:
[begin{align} & {{z}_{1}}=left| {{z}_{1}} right|cdot left( cos alpha +isin alpha right) \ & {{z}_{2}}=left| {{z}_{2}} right|cdot left( cos beta +isin beta right) \ end{align}]
Тогда их произведение равно
[{{z}_{1}}cdot {{z}_{2}}=left| {{z}_{1}} right|cdot left| {{z}_{2}} right|cdot left( cos left( alpha +beta right)+isin left( alpha +beta right) right)]
А если ещё и $left| {{z}_{2}} right|ne 0$, то их частное равно
[frac{{{z}_{1}}}{{{z}_{2}}}=frac{left| {{z}_{1}} right|}{left| {{z}_{2}} right|}cdot left( cos left( alpha -beta right)+isin left( alpha -beta right) right)]
Получается, что при умножении комплексных чисел мы просто умножаем их модули, а аргументы складываем. При делении — делим модули и вычитаем аргументы. И всё!
Найти произведение и частное двух комплексных чисел:
[begin{align} & {{z}_{1}}=2cdot left( cos frac{pi }{3}+isin frac{pi }{3} right) \ & {{z}_{2}}=5cdot left( cos frac{pi }{6}+isin frac{pi }{6} right) \ end{align}]
Считаем произведение:
[begin{align} {{z}_{1}}cdot {{z}_{2}} & =2cdot 5cdot left( cos left( frac{pi }{3}+frac{pi }{6} right)+isin left( frac{pi }{3}+frac{pi }{6} right) right)= \ & =10cdot left( cos frac{pi }{2}+isin frac{pi }{2} right) \ end{align}]
Считаем частное:
[begin{align} frac{{{z}_{1}}}{{{z}_{2}}} & =frac{2}{5}cdot left( cos left( frac{pi }{3}-frac{pi }{6} right)+isin left( frac{pi }{3}-frac{pi }{6} right) right)= \ & =0,4cdot left( cos frac{pi }{6}+isin frac{pi }{6} right) \ end{align}]
По сравнению со стандартной (алгебраической) формой записи комплексных чисел экономия сил и времени налицо.:)
3. Формула Муавра
Пусть дано комплексное число в тригонометрической форме:
[z=left| z right|cdot left( cos text{ }!!varphi!!text{ }+isin text{ }!!varphi!!text{ } right)]
Возведём его в квадрат, умножив на само себя:
[begin{align} {{z}^{2}} & =zcdot z = \ & =left| z right|left| z right|cdot left( cos left( text{ }!!varphi!!text{ + }!!varphi!!text{ } right)+isin left( text{ }!!varphi!!text{ + }!!varphi!!text{ } right) right)= \ & ={{left| z right|}^{2}}cdot left( cos 2text{ }!!varphi!!text{ }+isin 2text{ }!!varphi!!text{ } right) \ end{align}]
Затем возведём в куб, умножив на себя ещё раз:
[{{z}^{3}}={{left| z right|}^{3}}cdot left( cos 3varphi +isin 3varphi right)]
Несложно догадаться, что будет дальше — при возведении в степень $n$. Это называется формула Муавра.
Формула Муавра. При возведении всякого комплексного числа
[z=left| z right|cdot left( cos varphi +isin varphi right)]
в степень $nin mathbb{N}$ получим
[{{z}^{n}}={{left| z right|}^{n}}cdot left( cos left( nvarphi right)+isin left( nvarphi right) right)]
Простая формула, которая ускоряет вычисления раз в десять! И кстати: эта формула работает при любом $nin mathbb{R}$, а не только натуральном. Но об этом позже. Сейчас примеры:
Вычислить:
[{{left( sqrt{3}-i right)}^{16}}]
Представим первое число в тригонометрической форме:
[begin{align} sqrt{3}-i & = 2cdot left( frac{sqrt{3}}{2}+icdot left( -frac{1}{2} right) right)= \ & =2cdot left( cos left( -frac{pi }{6} right)+isin left( -frac{pi }{6} right) right) \ end{align}]
По формуле Муавра:
[begin{align} & {{left( 2cdot left( cos frac{11pi }{6}+isin frac{11pi }{6} right) right)}^{16}}= \ & ={{2}^{16}}cdot left( cos frac{88pi }{3}+isin frac{88pi }{3} right)= \ & ={{2}^{16}}cdot left( cos frac{4pi }{3}+isin frac{4pi }{3} right) \ end{align}]
Последним шагом мы воспользовались периодичностью синуса и косинуса, уменьшив аргумент сразу на 28π.
Следующую задачу в разных вариациях любят давать на контрольных работах и экзаменах:
Вычислить:
[{{left( left( -frac{sqrt{2}}{2} right)+left( -frac{sqrt{2}}{2} right)i right)}^{2022}}]
Теперь второе число запишем в комплексной форме:
[begin{align} & left( -frac{sqrt{2}}{2} right)+left( -frac{sqrt{2}}{2} right)i= \ & =1cdot left( cos frac{5pi }{4}+isin frac{5pi }{4} right) \ end{align}]
По формуле Муавра:
[begin{align} & {{left( 1cdot left( cos frac{5pi }{4}+isin frac{5pi }{4} right) right)}^{2022}}= \ & ={{1}^{2022}}cdot left( cos frac{5055pi }{2}+isin frac{5055pi }{2} right)= \ & =1cdot left( cos frac{3pi }{2}+isin frac{3pi }{2} right)=-i \ end{align}]
Вот так всё просто! Следующие два раздела предназначены для углублённого изучения. Для тех, кто хочет действительно разобраться в комплексных числах.
4. Дополнение 1. Геометрический подход
Многие путают местами косинус и синус. Почему комплексная единица стоит именно у синуса? Вспомним, что есть декартова система координат, где точки задаются отступами по осям $x$ и $y$:
А есть полярная система координат, где точки задаются поворотом на угол $varphi $ и расстоянием до центра $r$:
А теперь объединим эти картинки и попробуем перейти из декартовой системы координат в полярную:
Комплексное число $z=a+bi$ задаёт на плоскости точку $C$, удалённую от начала координат на расстояние
[AC=sqrt{{{a}^{2}}+{{b}^{2}}}=left| z right|]
Треугольник $ABC$ — прямоугольный. Пусть $angle BAC=varphi $. Тогда:
[begin{align} & AB=ACcdot cos varphi =left| z right|cdot cos varphi \ & BC=ACcdot sin varphi =left| z right|cdot sin varphi \ end{align}]
С другой стороны, длины катетов $AB$ и $BC$ — это те самые отступы $a$ и $b$, с помощью которых мы задаём комплексное число. Поэтому:
[begin{align} a+bi & =left| z right|cos varphi +icdot left| z right|sin varphi = \ & =left| z right|left( cos varphi +isin varphi right) \ end{align}]
Итак, мы перешли от пары $left( a;b right)$ к паре $left( left| z right|;varphi right)$, где $left| z right|$ — модуль комплексного числа, $varphi $ — его аргумент (проще говоря, угол поворота).
Важное замечание. А кто сказал, что такой угол $varphi $ существует? Возьмём число $z=a+bi$ и вынесем модуль за скобку:
[begin{align} z & =a+bi= \ & =sqrt{{{a}^{2}}+{{b}^{2}}}cdot left( frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}}}+icdot frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}}} right)= \ & =left| z right|cdot left( cos text{ }!!varphi!!text{ }+isin text{ }!!varphi!!text{ } right) \ end{align}]
Осталось подобрать такой угол $varphi $, чтобы выполнялось два равенства:
[begin{align} & frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}}}=cos text{ }!!varphi!!text{ } \ & frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}}}=sin text{ }!!varphi!!text{ } \ end{align}]
Такой угол обязательно найдётся, поскольку выполняется основное тригонометрическое тождество:
[begin{align} {{sin }^{2}}text{ }!!varphi!!text{ } & +{{cos }^{2}}text{ }!!varphi!!text{ }= \ & ={{left( frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}}} right)}^{2}}+{{left( frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}}} right)}^{2}}= \ & =frac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}+frac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=1 \ end{align}]
На практике основная трудность заключается именно в поиске подходящего аргумента.
5. Дополнение 2. Как найти аргумент?
В учебниках пишут много разной дичи, типа вот этой:
Формула правильная, но пользы от неё — ноль. Запомнить сложно, а применять и вовсе невозможно. Мы пойдём другим путём.
5.1. Точки на координатных осях
Для начала рассмотрим точки, лежащие осях координат.
Тут всё очевидно:
- На положительной полуоси абсцисс $varphi =0$ (фиолетовая точка $A$).
- На отрицательной — $varphi =pi $ (синяя точка $B$).
- На положительной полуоси ординат $varphi =frac{pi }{2}$ (зелёная точка $B$).
- На отрицательной — $varphi =frac{3pi }{2}$ (красная точка $C$). Однако ничто не мешает рассмотреть $varphi =-frac{pi }{2}$ — результат будет тем же самым.:)
5.2. Точки с арктангенсом
А если точки не лежат на осях, то в записи комплексного числа $a+bi$ числа $ane 0$ и $bne 0$. Рассмотрим вспомогательный угол
[{{varphi }_{1}}=operatorname{arctg}left| frac{b}{a} right|]
Очевидно, это острый угол:
[0 lt operatorname{arctg}left| frac{a}{b} right| lt frac{pi }{2}]
Зная знаки чисел $a$ и $b$, мы немедленно определим координатную четверть, в которой располагается искомая точка. И нам останется лишь отложить вспомогательный угол ${{varphi }_{1}}$ от горизонтальной оси в эту четверть.
В правой полуплоскости мы откладываем от «нулевого» луча:
Точка $Aleft( 3;4 right)$ удалена от начала координат на расстояние 5:
[begin{align} 3+4i & =5cdot left( cos varphi +isin varphi right) \ varphi & =operatorname{arctg}frac{4}{3} end{align}]
Для точки $Bleft( 6;-6 right)$ арктангенс оказался табличным:
[6-6i=6sqrt{2}cdot left( cos left( -frac{pi }{4} right)+isin left( -frac{pi }{4} right) right)]
В левой полуплоскости откладываем от луча, соответствующего углу $pi $:
Итого для точки $Cleft( -2;5 right)$ имеем:
[begin{align} -2+5i & =sqrt{29}cdot left( cos varphi +isin varphi right) \ varphi & =pi -operatorname{arctg}frac{5}{2} end{align}]
И, наконец, для точки $Dleft( -5;-3 right)$:
[begin{align} -5-3i & =sqrt{34}cdot left( cos varphi +isin varphi right) \ varphi & =pi +operatorname{arctg}frac{3}{5} end{align}]
Звучит просто, выглядит красиво, работает идеально! Но требует небольшой практики. Пробуйте, тренируйтесь и берите на вооружение.
А в следующем уроке мы научимся извлекать корни из комплексных чисел.:)
Смотрите также:
- Как извлекать корни из комплексных чисел
- Комплексные числа — первый и самый важный уок
- Тест к параграфу «Что такое логарифм» (легкий)
- Тест к уроку «Площади многоугольников без координатной сетки» (средний)
- Четырехугольная пирамида: как найти координаты вершин
- Задача C1: тригонометрические уравнения и формула двойного угла
Содержание:
- Умножение комплексных чисел в алгебраической форме
- Умножение комплексных чисел в геометрической форме
Умножение комплексных чисел в алгебраической форме
Определение
Произведением двух комплексных чисел $z_{1}=a_{1}+b_{1} i$ и
$z_{2}=a_{2}+b_{2} i$$z_{2}=a_{2}+b_{2} i$ называется
комплексное число
$z$, равное
$z=z_{1} cdot z_{2}=left(a_{1} a_{2}-b_{1} b_{2}right)+left(a_{1} b_{2}+b_{1} a_{2}right) i$
На практике чаще всего комплексные числа перемножают как алгебраические двучлены
$left(a_{1}+b_{1} iright)left(a_{2}+b_{2} iright)$, просто раскрыв скобки, в
полученном результате надо учесть, что $i^{2}=-1$ .
Пример
Задание. Найти произведение комплексных чисел
$z_{1}=2+3 i$ и
$z_{2}=-1+i$ .
Решение. Перемножим заданные комплексные числа как два двучлена, то есть
$z_{1} cdot z_{2}=(2+3 i)(-1+i)=2 cdot(-1)+2 cdot i+3 i cdot(-1)+3 i cdot i=$
$=-2+2 i-3 i+3 i^{2}=-2-i+3 cdot(-1)=-5-i$
Ответ. $z_{1} cdot z_{2}=-5-i$
Умножение комплексных чисел в геометрической форме
Если комплексные числа $z_{1}$ и
$z_{2}$ заданы в
геометрической форме:
$z_{1}=left|z_{1}right|left(cos phi_{1}+i sin phi_{1}right)$,
$z_{2}=left|z_{2}right|left(cos phi_{2}+i sin phi_{2}right)$, то произведением этих чисел есть число
$z_{1} z_{2}=left|z_{1}right| cdotleft|z_{2}right|left[cos left(phi_{1}+phi_{2}right)+i sin left(phi_{1}+phi_{2}right)right]$
То есть модуль произведения двух комплексных чисел в тригонометрической форме равен произведению
модулей сомножителей, а аргумент равен сумме аргументов сомножителей.

236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Найти произведение чисел
$z_{1}=3 cdotleft(cos 10^{circ}+i sin 10^{circ}right)$,
$z_{2}=2 cdotleft(cos 50^{circ}+i sin 50^{circ}right)$ .
Решение. Модуль произведения равен
$|z|=3 cdot 2=6$, а аргумент
$phi=10^{circ}+50^{circ}=60^{circ}$, а тогда искомое число в
тригонометрической форме имеет вид:
$z=|z|(cos phi+i sin phi)=6 cdotleft(cos 60^{circ}+i sin 60^{circ}right)$
Запишем результат в
алгебраической форме, для этого вычислим значения соответствующих тригонометрических
функций, будем в результате иметь:
$z=6 cdotleft(frac{1}{2}+i cdot frac{sqrt{3}}{2}right)=3+3 sqrt{3} i$
Ответ. $z=6 cdotleft(cos 60^{circ}+i sin 60^{circ}right)=3+3 sqrt{3} i$
Читать дальше: деление комплексных чисел.
Пусть
даны два числа в тригонометрической
форме:
,
Тогда
их произведение можно найти по формуле:
(5)
т.е.
модуль произведения комплексных чисел
равен произведению их модулей, а аргумент
произведения равен сумме аргументов
сомножителей. Формула (5) имеет место
для любого конечного числа сомножителей:
если
,
то
(6)
Деление
комплексных чисел в тригонометрической
форме производится по формуле
91
,
(7)
т.е
модуль частного двух комплексных чисел
равен частному модулей, а аргумент
частного – разности аргументов.
Применяя
формулу (7) к частному случаю
,
найдём тригонометрическую форму
обратного
числа
:
(8)
Пример.
Умножить
числа:
,
.
Решение:
.
Пример.
Даны комплексные числа
,
Найти
частное
.
Решение:
Пример.
Найти число, обратное к
.
Решение:
Согласно формуле (8) получим
.
2.1.3 Возведение в степень комплексных чисел в тригонометрической форме
Если
,
то формула (6) принимает вид
(9)
Формула
(9) называется формулой
Муавра.
Она показывает, что для возведения
комплексного числа в натуральную степень
нужно возвести в эту степень его модуль,
а аргумент умножить на показатель
степени. Если
,
то формула (9) принимает вид
(10)
Пример.
Вычислить
.
Решение:
чтобы
воспользоваться формулой Муавра, найдём
тригонометрическую форму числа
.
Имеем
.
Тогда

92
2.1.4 Извлечение корня из комплексных чисел в тригонометрической форме
Корнем
n-ой
степени,
из числа
z
такое комплексное число u,
для которого
Операция нахождения корней n-ой
степени из комплексного числа z
называется извлечением
корня n-ой
степени
из числа z
и результат её обозначается
.
Пусть
.
Тогда корни n-ой
степени из числа z
будем
вычислять по следующей формуле:
,
(11)
где
,
и все эти значения различны.
Пример.
Вычислить
.
Решение:
имеем:
.
Тогда
.
Отсюда по формуле (11) получим:
,
где
к = 0,1,2,3,4,5.
Тогда получаем
,
,
,
,
,
.
Геометрическая
интерпретация корней
дана на рисунке, откуда видно, что числа
изображаются вершинами правильного
шестиугольника, вписанного в окружность
радиусом
с центром в начале координат.
Пример.
Найти
.
Решение:
Полагая
получим:
,
,
,
.
Пример.
Найти
.
93
Решение:

Полагая,
получим:
,
;
.
2.1.5 Показательная форма комплексных чисел
Рассматривая
комплексные числа вида
,
зависящие
от действительной переменной
и комплекснозначные функции вида
(
Л. Эйлер заметил, что относительно
операций умножения и дифференцирования
эти выражения имеют одни и те же
свойства, т.е. они представляют модели
одной и той же логической структуры:
Таким
образом, выражения
и
имеют одну и ту же логическую сущность,
в связи с этим Эйлер предложил формулу
=
,
(12)
которая
теперь известна как
формула
Эйлера.
Пусть дано
комплексное число в тригонометрической
форме
.
Применяя формулу Эйлера, получим
,
(13)
которая
называется показательной
формой комплексного числа.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Хроника возникновения комплексных чисел:
Исследование.
1) Подтвердите примерами справедливость следующих высказываний. Если высказывание ложно, то сделайте так, чтобы оно стало истинным.
- а) Если а и b — натуральные числа, то корень уравнения х + а = b также является натуральным числом.
- б) Если а и b -целые числа, то корень уравнения ах = b также является целым числом
- в) Если а неотрицательное рациональное число, то корень уравнения х1 = а также является рациональным числом.
- г) Если а неотрицательное действительное число, то корень уравнения х2 = а также является действительным числом.
2) Существует ли действительное число квадрат которого равен -1?
3)
- а) Существуют ли действительные корни уравнения х2 = а при
- б) Можно ли решить эту задачу расширив множество действительных чисел?
4) Существует ли однозначное соответствие между множеством действительных чисел и множеством точек на числовой оси? А какие числа соответствуют точкам на координатной плоскости?
На множестве действительных чисел уравнение х2 = -1 не имеет решений. Значит, мы должны расширить множество действительных чисел так, чтобы корни этого уравнения входили в него. Для этого введём новое число и примем, что оно является корнем уравнения х2 + 1 = 0, т.е. 



Расширим множество действительных чисел так, чтобы в него входили все действительные числа и число 












Следствие: для комплексных чисел а + 

а + 

Пример. Из равенства 
Решение: Из равенства действительных и мнимых частей получаем: х = 5

Суммой комплексных чисел 
Действия над комплексными числами
Произведением комплексных чисел 


Значит, два комплексных числа умножаются по правилу умножения многочленов при условии, что 
Пример №1
Рассмотрим частные случаи степеней мнимых единиц:
Как видно, натуральные степени мнимой единицы 


Пример №2
Вычислите: а) 
Решение: а) 
Число 







Произведение взаимно сопряжённых комплексных чисел является действительным числом: 
В частном случае, сопряжённым для действительного числа является само число, для мнимого — произведение числа и (-1).
Для каждого комплексного числа 



Вычитание и частное комплексных чисел определяется равенствами:
Для нахождения отношения комплексных чисел, удобнее числитель и знаменатель умножить на число, сопряжённое для знаменателя .
Пример №3
Найдём разность и отношение чисел 
Решение:
Все свойства арифметических операций для действительных чисел, справедливы для комплексных чисел. Как следствие, получаем, что любые алгебраические тождества справедливы для множества комплексных чисел. Например, для комплексных чисел 

Квадратный корень комплексного числа
Число, квадрат которого равен 


Пример №4
Найдём квадратный корень комплексного числа
Решение: Пусть 
Из равенства действительных и мнимых частей имеем:
Отсюда получаем решение (2; -1) и (-2; 1). Значит,
Примечание: В отличии от действительных чисел, говоря о квадратном корне комплексного числа, имеется в виду каждое из двух значений, различающихся знаками. Корни квадратного уравнения 
Пример №5
Решим уравнение 
Решение:

Легко можно проверить, что также в силе остаётся и теорема Виета. Для квадратного уравнения с действительными коэффициентами комплексные корни являются сопряжёнными числами. Комплексное число 


Пример:
Точки, соответствующие комплексно сопряжённым числам располагаются симметрично оси абсцисс.
Модуль и аргумент комплексного числа
Тригонометрическая форма комплексного числа
Пусть на комплексной плоскости комплексному числу 


Отсюда:
Расстояние, от начала координат до точки соответствующей комплексному числу, называется модулем комплексного числа и обозначается как: 
Угол, образованный конечной стороной угла поворота луча ОМ,
называется аргументом 

Из 
Модуль числа 




Для аргумента комплексного числа, обычно берётся угол принадлежащий промежутку [0; 
Пример №6
Найдём модуль и аргумент комплексного числа
Решение: Из того, что
и принимая внимание, что угол 
получим:
Из формул 

Тогда
Для комплексного числа 

В частном случае для модуля и аргумента числа 
Пример №7
Запишем комплексное число
в тригонометрической форме.
Решение:
Так как угол 
Действия над комплексными числами, заданными в тригонометрической форме
Найдём произведение комплексных чисел, заданных в тригонометрической форме 
Чтобы найти произведение комплексных чисел, заданных в тригонометрической форме, надо перемножить их модули и сложить их аргументы.
Пример:
Теперь найдём отношение
Модуль отношение равен отношению модулей делимого и делителя, а аргумент равен разности аргументов делимого и делителя.
Пример:
Возвести число 
Модуль степени комплексного числа с натуральным показателем равен степени модуля основания, а аргумент равен аргументу основания умноженному на показатель степени n.
Пример:
Формулу 
Отсюда
Из равенства двух комплексных чисел имеем:
Аналогичным образом можно написать формулы для 
Корень n-ой степени комплексного числа
Найдём значение выражения 
Запишем в виде 
виде 
Возведём каждую из двух сторон в n-ую степень:
Если два комплексных числа, заданных в тригонометрической форме равны, то их модули равны, а аргументы отличаются на 
Это значит,
Таким образом,
Отсюда при 


Обозначим корни 
Как видно, модули корней 


Корнем 






Запишем 

Для 
Из равенства двух комплексных чисел получим:
Значения при 

Поэтому, должно соблюдаться следующее:
Формула корни n-ой степени комплексного числа
Если 
Пример №8
Найдём все значения
Решение: пусть 
Отсюда
При
При
При
Для чего нужны комплексные числа
Комплексные числа возникают в связи с задачей решения квадратных уравнений. Так, оставаясь в множестве действительных чисел, невозможно решить квадратное уравнение, дискриминант которого меньше нуля.
Комплексные числа необходимы в различных приложениях математики. В частности, теория функций комплексной переменной является действенным инструментом при использовании математических методов в различных областях науки.
Арифметические операции над комплексными числами
Комплексным числом называется выражение вида 


Число 





Действительное число






Числа 
Два комплексных числа 



Арифметические операции на множестве комплексных чисел определяются следующим образом.
1.Сложение (вычитание) комплексных чисел
2. Умножение комплексных чисел
В частности,
т.е. мнимая единица есть число, квадрат которого равен — 1.
3. Деление двух комплексных чисел
Нетрудно убедиться в том, что все арифметические операции (16.1)-(16.3) над комплексными числами определяются естественным образом из правил сложения и умножения многочленов 

Пример №9
Даны комплексные числа
Найти
Решение:




Если для геометрического изображения действительных чисел используются точки числовой прямой, то для изображения комплексных чисел служат точки координатной плоскости
Плоскость называется комплексной, если каждому комплексному числу 

Оси 


Тригонометрическая и показательная формы комплексного числа
С каждой точкой 




Угол 








Очевидно (см. рис. 16.1), что
Следовательно, комплексное число
Представление комплексного числа в виде (16.6), где 

Сформулируем некоторые свойства арифметических операций над комплексными числами.
1. При сложении (вычитании) комплексных чисел их радиусы-векторы складываются (вычитаются) по правилу параллелограмма.
На рис. 16.2 показаны радиусы-векторы комплексных чисел

2. Модуль произведения (частного) двух комплексных чисел равен произ ведению (частному) модулей этих чисел, а его аргумент — сумме (разности) аргументов этих чисел, т.е.
Геометрически умножение числа


Пример №10
Комплексные числа 
Решение:
По формуле (16.4) найдем модуль комплексного числа 


Аналогично 
Теперь по формулам (16.7) и (16.8)
Так как в соответствии с формулами (16.7) и (16.8) при умножении комплексных чисел их модули перемножаются, а аргументы складываются, легко получить формулу возведения комплексного числа в натуральную степень 
Пример №11
Найти
Решение:
По формуле Муавра (16.9)

Пусть
Тогда, используя определение корня и формулу Муавра (16.9), получим
или
Отсюда следует, что
Итак,
где
При 
Таким образом, корень 

Пример №12
Найти
Решение:
В примере 16.2 было получено
откуда получаем три значения корня
На комплексной плоскости найденные значения корня представляют равноотстоящие друг от друга точки 

Связь между тригонометрическими и показательными функциями выражается формулой Эйлера.
Отсюда следует показательная форма комплексного числа.
где
В заключение отметим, что в показательной форме, так же как и в тригонометрической, легко проводить операции умножения, деления, возведения в степень, извлечение корня из комплексных чисел.
Формы записи комплексного числа
Решение простейшего квадратного уравнения 
Определение: Выражение 
Определение: Комплексным числом называется выражение вида
Определение: Приведенная форма записи комплексного числа называется алгебраической.
Определение: Два комплексных числа 
Определение: Комплексное число называется нулевым, если вещественная и мнимая части равны нулю.
Определение: Комплексно-сопряженным к комплексному числу 
Пример №13
Записать комплексно-сопряженное число к комплексному числу
Решение:
Согласно определению комплексно-сопряженного числа получаем
Замечание: Двойное комплексное сопряжение приводит к исходному комплекс- ному числу, т.е.
Решение квадратных уравнений с отрицательным дискриминантом невозможно в области вещественных чисел, так как нельзя извлекать корень четной степени из отрицательного числа на множестве действительных чисел. Однако это ограничение снимается в области комплексных чисел.
Пример №14
Решить квадратное уравнение
Решение:
Вычислим дискриминант уравнения 

Замечание: Решение квадратного уравнения с отрицательным дискриминантом всегда состоит из комплексно-сопряженных корней.
Комплексное число 

Рис. 2. Изображение комплексного числа на комплексной плоскости.
Пример №15
Изобразить на комплексной плоскости число z = 2-3i (Рис. 3).
Решение:
Рис. 3. Изображение комплексного 

Определение: Полученная форма записи комплексного числа называется тригонометрической.
Обратный переход от полярной системы отсчета к декартовой системе координат осуществляется по формулам:


Замечание: Аргумент комплексного числа 
Действия с комплексными числами
1. Для того чтобы сложить (найти разность) два комплексных числа 

Пример №16
Найти сумму и разность чисел 
Решение:
Найдем сумму заданных комплексных чисел 

Рис. 4. Изображение комплексных чисел на комплексной плоскости.
Замечание: Отметим, что
2. Для того чтобы найти произведение двух комплексных чисел 

Замечание: Отметим, что
Замечание: Произведение комплексных чисел в тригонометрической форме записи имеет вид 


3. Деление комплексного числа 

Замечание: Деление этих чисел в тригонометрической форме записи имеет вид: 
Показательная форма записи комплексного числа
Известно, что любую дифференцируемую функцию можно представить по формуле Тейлора-Маклорена (см. Лекцию № 22, Первый семестр), например,
Последняя формула называется формулой Эйлера. Используя эту формулу,
запишем комплексное число 

Комплексные числа и арифметические операции
Как известно, под комплексным числом понимается выражение вида
где х и у — действительные числа, a i — мнимая единица.
Числа вида 

Действительные числа х и у называются соответственно действительной и мнимой частями числа z и обозначаются следующим образом:
Под модулем комплексного числа z понимается неотрицательное число
Сопряженным числом 
Таким образом,
На множестве комплексных чисел следующим образом определено отношение равенства двух чисел, а также операции сложения, вычитания, умножения и деления.
I. Пусть z1=x1+iy1 и z2=x2+iy2.Тогда

В частности, z = 0 
II. z1±z2= (x1± x2) + i(y1 ± y2)-
Отсюда следует, что
Re (z1 ± z2) — Re z1 ± Re z2,
Im (z1 ± z2) — Imz1 ± 1mz2
III. z1z2 = (x1x2 — y1y2) + i(x1y2+x2y1).
Отсюда, в частности, получаем важное соотношение




Заметим, что правило умножения III получается формально путем умножения двучленов 



Очевидно также, что для 



Легко проверить следующие свойства:
1)
- Заказать решение задач по высшей математике
Комплексная плоскость
Рассмотрим плоскость с прямоугольной системой координат Оху. Каждому комплексному числу z = х + iy может быть поставлена в соответствие точка плоскости z(x, у) (рис. 161), причем это соответствие взаимно однозначно. Плоскость, на которой реализовано такое соответствие, называют комплексной плоскостью, и вместо комплексных чисел говорят о точках комплексной плоскости.
На оси Ох расположены действительные числа: z =
Заметим, что г = |z| представляет собой расстояние точки г от начала координат.
С каждой точкой z связан радиус-вектор этой точки Oz; угол, образованный радиусом-вектором точки z с осью Ох, называется аргументом ф = Arg z этой точки. Здесь 
Для аргумента ср имеем (рис. 161)
где
Примеры: 1) arg 2 = 0; 2) arg (-1) = 

Модуль г и аргумент ф комплексного числа z можно рассматривать (рис. 161) как полярные координаты точки z. Отсюда получаем
Таким образом, имеем тригонометрическую форму комплексного числа
где
Теорема: При сложении комплексных чисел их радиусы-векторы складываются (по правилу параллелограмма).
Действительно, если число 









Следствие. Так как 

Теорема: При вычитании комплексных чисел их радиусы-векторы вычитаются. Так как 



Следствие. Расстояние между двумя точками 
Теоремы о модуле и аргументе
Теорема: Модуль произведения комплексных чисел равен произведению модулей этих чисел, а аргумент произведения равен сумме аргументов сомножителей. Действительно, если
то имеем
Отсюда
и
где значения многозначной функции Arg, стоящие в левой и правой частях равенства (1), следует подбирать соответствующим образом. Это замечание надо иметь в виду и для дальнейшего.
Следствие. Модуль целой положительной степени комплексного числа равен такой же степени модуля этого числа, а аргумент степени равен аргументу числа, умноженному на показатель степени, т. е.
(
Доказательство непосредственно вытекает из рассмотрения произведения равных сомножителей.
Пример №17
Построить точку 
Решение:
Имеем
Следовательно, при умножении на i вектор 
Теорема: Модуль частного двух комплексных чисел равен частному модулей этих чисел, а аргумент частного равен разности аргументов делимого и делителя. Пусть
Так как
то на основании теоремы 1 имеем
Отсюда
Извлечение корня из комплексного числа
Пусть
где 
Отсюда получаем
Таким образом,
Заметим, что здесь под 
Здесь в качестве числа k достаточно брать лишь значения 
Из формулы (4) следует, что корень 

Пример №18
Найти
Решение:
Так как 
Отсюда

Точки 

Понятие функции комплексной переменной
Пусть даны две комплексные плоскости Оху (плоскость г) и O’uv (плоскость w).
Определение: Если каждой точке z 

с областью определения Е, значения которой принадлежат множеству Е’ (рис. 166). Если множество значений функции f(z) исчерпывает все множество Е то Е’ называется множеством значений (областью изменения) функции f(z). В этом случае пишут
Множества Е и Е’ можно изображать на одной комплексной плоскости.
Таким образом, каждая комплексная функция реализует однозначное в одну сторону отображение одного множества на другое. Благодаря этому комплексные функции находят свое применение в таких науках, как гидродинамика и аэродинамика, так как с их помощью удобно описывать «историю» движения объема жидкости (или газа).
Раздел математики, изучающий свойства комплексных функций, носит название теории функций комплексной переменной.
Пример:
Во что переходит сектор Е
(рис. 167, а) при отображении
Решение:
Имеем
Поэтому отображенная область E’ представляет собой полукруг (рис. 167, б).
Определение комплексных чисел
Определение комплексного числа и основные функции комплексной переменной
Определение 7.1. Множеством комплексных чисел 





Операции сложения и умножения на множестве 
Лемма 7.1. Для любых комплексных чисел 
□ Докажем, например, свойство 4 (свойство 5 доказывается аналогично, свойства 1, 2, 3 очевидны).
Пусть 
Два последних комплексных числа совпадают. После раскрытия скобок оказывается, что оба они равны

Определение 7.2. Комплексное число 
Это определение оправдывается тем, что установлено взаимно однозначное соответствие между множеством пар 
Такое соответствие в высшей алгебре называется изоморфизмом.
Определение 7.3. Комплексное число (0,1) обозначается буквой
Легко видеть, что 
Далее, так как 




Иными словами, комплексные числа можно складывать и умножать, пользуясь известными законами сложения и умножения (лемма 7.1), имея в виду, что
Определение 7.4. Разностью двух комплексных чисел 








Проверим, что эти операции однозначно определены.
□ Пусть 






Для частного имеем: 





Такое деление можно осуществлять непосредственно:
Комплексное число 






Определение 7.5. Пусть 







Лемма 7.2. Для любых комплексных чисел 
Доказать эти утверждения будет предложено самостоятельно в качестве упражнения.
Множество комплексных чисел 










Аргументом числа 







Пример:
Записать в тригонометрической форме числа
□ 1)
При записи комплексного числа в тригонометрической форме обычно берут одно фиксированное («наиболее простое») значение аргумента. Возьмём 
2) 


Комплексные числа, записанные в тригонометрической форме, удобно умножать и делить. При умножении модули чисел перемножаются, аргументы складываются. При делении модули делятся, аргументы вычитаются.
Лемма 7.3. Пусть 
Если

Степень с целым показателем для комплексных чисел определяется так же, как и для действительных. Поэтому мы можем сформулировать
Следствие (формула Муавра). Если 

Иными словами, при возведении комплексного числа в целую степень модуль числа возводится в эту степень, а аргумент умножается на показатель степени.
Пример:
Применяя формулу Муавра, получить известные формулы тригонометрии для
□ Имеем: 


Определение 7.6. Пусть 






Лемма 7.4. Если 





□ Правая часть леммы очевидна, так как 








При замене 




Замечание. 




Пример №19
Найти все значения
□ 1) 


Первое из них — арифметическое значение кубического корня из положительного числа 8.
2) 
Получим 4 значения:
(см. рис. 7.3). 
3) 
Получим 3 значения:
(см. рис. 7.4). ■
Определение 7.7. Пусть 

Если 



Лемма 7.5. Для любых 
□ Пусть 
Далее, так как 
Пример №20
Вычислить
□ Имеем:
Так как при всех 




Определение 7.8. Логарифмом комплексного числа 



Лемма 7.6. Если 


□ Первая часть леммы следует из того, что 




Таким образом, множество значений функции 
Пример №21
Найти все значения 
Определение 7.9. Для любых 

Если

Аналогично,
Отметим также, что все известные формулы тригонометрии сохраняются для комплексных значений аргументов (при этом 
Так как
Легко видеть, что 

Комплекснозначные функции действительной переменной
Рассмотрим функцию 


Так как 

Определение 7.10. Комплекснозначная функция действительной переменной 


Для комплекснозначных функций сохраняются формулы производной суммы, произведения и частного.
Лемма 7.7. Если комплекснозначные функции действительной переменной 


в точке 
□ Докажем лемму для случая производной произведения. Утверждение для производной суммы доказывается проще, а для производной частного — несколько сложнее, но, по сути дела, аналогично.
Пусть 


Функция 

Легко видеть, что это выражение совпадает с
Пример №22
Доказать, что при любом 
т.е. привычная для действительных 
□ Пусть
Тогда
С другой стороны,
что совпадает с
Отметим, что производная комплекснозначной функции берётся по действительной переменной. Принципиально иная ситуация возникает при рассмотрении комплекснозначных функций комплексной переменной и при дифференцировании их по комплексной переменной. Здесь имеют место совершенно неожиданные эффекты (например, если функция дифференцируема в окрестности точки, то она имеет производные всех порядков в этой окрестности), которые студенты обычно изучают на III курсе (курс ТФКП — теория функций комплексной переменной).
Многочлены
Функция комплексной переменной
где 









Если 


где
Теорема 7.1 (Безу). Остаток от деления многочлена 

□ Из (7.1) имеем при
Следствие. Многочлен 


□ Утверждение немедленно следует из теоремы Безу.
Таким образом, число 



Теорема 7.2 (основная теорема алгебры). Любой многочлен степени 
В настоящее время мы не располагаем математическим аппаратом для доказательства этой теоремы, поэтому примем её без доказательства. Доказана она будет очень просто в курсе ТФКП (и даже двумя способами — как простое следствие из теоремы Лиувилля или теоремы Руше).
Теорема 7.3. Многочлен с комплексными коэффициентами
раскладывается в произведение линейных множителей
где 

□ По основной теореме алгебры 





где 

Если раскрыть скобки в правой части (7.2), то коэффициент при 
Определение 7.11. Комплексное число 







Если 

В общем случае, учитывая кратность корней, многочлен 

где все комплексные числа


Лемма 7.8. Пусть 




□ Так как 

Так как 

Это и означает, что 

Следствие. Если 

□ Это очевидно из леммы 7.8, так как 
Теорема 7.4. Многочлен степени 

□ По теореме 7.3 и лемме 7.8
где 







Пусть 
Получили квадратный трёхчлен с действительными коэффициентами 



Теорема 7.4 является примером утверждения, в формулировке которого отсутствуют комплексные числа (чисто действительное утверждение), а естественное доказательство его получается с выходом во множество комплексных чисел. Таких утверждений можно встретить немало в различных математических курсах и прикладных науках.
Кстати, квадратный трехчлен с комплексными коэффициентами имеет такой же вид разложения на линейные множители, как и квадратный трёхчлен с действительными корнями в элементарной алгебре:
Корни 






Если 






Пример №23
Решить уравнение
□ 











Пример №24
Найти все значения 
□ Левая часть раскладывается на множители:
Поэтому один из корней равен 2. Квадратный трёхчлен 



Во множестве комплексных чисел 




Разложение правильной дроби в сумму простейших дробей
Мы будем рассматривать действительные дробно-рациональные функции 



Лемма 7.9. Если 



где 




□ Так как 









Так как степень G меньше степени Q и степень Р меньше степени Q, то степень числителя последней дроби меньше степени Q; значит, степень 



Утверждение леммы, очевидно, сохраняется, если все числа и многочлены считать комплексными.
Лемма 7.10. Пусть



где 



□ Пусть 




Такие числа А и В определены единственным образом, так как если 
и числа А, В находятся из системы 


Рассмотрим многочлен 








Значит, степень 



откуда
Последовательно выделяя из многочлена 

(здесь

Все слагаемые последней суммы называются простейшими дробями. Все коэффициенты, обозначенные символом 


Теорема 7.5. Любая правильная рациональная дробь с действительными коэффициентами раскладывается в сумму простейших дробей.
Пример №25
Разложить в сумму простейших дробей:
а) 





б)








в)





Вычисление комплексного числа
Определение 1.1. Многочленом (полиномом) степени n с действительными коэффициентами называется любое выражение вида
где
х – переменная.
Корнем многочлена (1.1) называется любое число 
Нетрудно заметить, что некоторые многочлены вообще не имеют
действительных корней, например:
Расширим множество действительных чисел. Добавим к этому
множеству символ i , такой что 
Тогда ±i – два корня уравнения
Определение 1.2. Множеством комплексных чисел называется множество
Суммой двух комплексных чисел 

Произведением двух комплексных чисел 
Для числа z= a +bi число а называется действительной частью,
число b – мнимой частью. Обозначения:
Относительно операций «+» и « · » комплексные числа С обладают
такими же свойствами, как и действительные числа. Эти операции
коммутативны и ассоциативны; для них существуют обратные операции:
вычитание и деление (кроме деления на 0).
Пример №26
Найти
Решение:
Теорема 1.1 (основная теорема алгебры). Любое уравнение вида (1.2)
имеет решение во множестве С.
Пример №27
Решить уравнение
Решение:
Определение 1.3. Для комплексного числа z =a +bi число z =a -bi называется комплексно-сопряженным, число 
Если рассмотреть плоскость с декартовой системой координат ( O,x,y ) и на оси Ох отложить а – действительную часть z, а на оси Oy – b – мнимую часть z, то получим взаимно однозначное соответствие между множеством С всех
комплексных чисел и множеством точек плоскости.
Такая плоскость называется комплексной плоскостью, рис. 1.1.
При этом 
Определение 1.4. Аргументом комплексного числа z =a +bi называется
угол 
направлением оси Ох Аргумент будем обозначать Argz . Аргумент
определен с точностью до 2 πn. При этом значение 
главным и обозначается argz.
Замечание.
При этом
Если 
тригонометрическая форма комплексного числа.
Теорема 1.2. Пусть
Доказательство

Из формул (1.5) следует, в частности, что 
Пример №28


Решение:
поэтому по формуле (1.3)
Тогда по формуле (1.4)
поэтому по формуле (1.3)
Тогда
Из формул (1.5), (1.6) видно, что аргумент 
умножении, делении, возведении в степень ведет себя как показатель
степени. Обозначим 
Тогда из теоремы 1.2 следует, что
Учитывая (1.7), формулу (1.4) для z можно переписать в виде 
Пример №29
Вычислить
Решение:
Согласно примеру 1.3
Поэтому
Определение 1.5. Корнем n-й степени из числа z 
число 


Из формулы (1.8) видно что 
если 
Пример №30
Найти
Решение:
- Координаты на прямой
- Координаты на плоскости
- Линейная функция
- Квадратичная функция
- Степенные ряды
- Элементы матричного анализа
- Уравнение линии
- Функции нескольких переменных

























































































































































































































































































































































































