Наклонной, проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.
Конец отрезка, лежащий в плоскости, называется основанием наклонной.
(AB) — наклонная;
(B) — основание наклонной.
Перпендикуляром, проведённым из данной точки к данной плоскости, называется отрезок, соединяющий данную точку с точкой плоскости, и лежащий на прямой, перпендикулярной плоскости.
Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.
(AC) — перпендикуляр;
(C) — основание перпендикуляра.
Расстоянием от точки до плоскости называется длина перпендикуляра, проведённого из этой точки к плоскости.
Отрезок, соединяющий основания перпендикуляра и наклонной, проведённых из одной и той же точки, называется проекцией наклонной.
(CB) — проекция наклонной (AB) на плоскость
α
.
Треугольник (ABC) прямоугольный.
Углом между наклонной и плоскостью называется угол между этой наклонной и её проекцией на плоскость.
(CBA) — угол между наклонной (AB) и плоскостью
α
.

Если (AD > AB), то (DC > BC).
Если из данной точки к данной плоскости провести несколько наклонных, то большей наклонной соответствует большая проекция.
(DAB) — угол между наклонными;
∠
(DCB) — угол между проекциями.
Отрезок (DB) — расстояние между основаниями наклонных.
Источники:
Рис. 1-5. Наклонная, перпендикуляр к плоскости, © ЯКласс.
Перпендикуляр и наклонная к прямой
Если через какую-нибудь точку, взятую вне прямой, провести прямую, перпендикулярную к ней, то отрезок от данной точки до прямой для краткости называют одним словом перпендикуляр.
Отрезок СО — перпендикуляр к прямой АВ. Точка О называется основанием перпендикуляра СО (рис).
Если прямая, проведённая через данную точку, пересекает другую прямую, но не перпендикулярна к ней, то отрезок её от данной точки до точки пересечения с другой прямой называют наклонной к этой прямой.
Отрезок ВС — наклонная к прямой АО. Точка С называется основанием наклонной (рис.).
Если из концов какого-нибудь отрезка опустим перпендикуляры на произвольную прямую, то отрезок прямой, заключённый между основаниями перпендикуляров, называется проекцией отрезка на эту прямую.
Отрезок А’В’ — проекция отрезка АВ на ЕС. Отрезок ОМ’ — также называется проекцией отрезка ОМ на ЕС.
Проекцией отрезка КР, перпендикулярного к ЕС, будет точка К’ (рис.).
2. Свойства перпендикуляра и наклонных.
Теорема 1. Перпендикуляр, проведённый из какой-нибудь точки к прямой, меньше всякой наклонной, проведённой из той же точки к этой прямой.
Отрезок АС (рис.) является перпендикуляром к прямой ОВ, а АМ — одна из наклонных, проведённых из точки А к прямой ОВ. Требуется доказать, что АМ > АС.
В ΔМАС отрезок АМ является гипотенузой, а гипотенуза больше каждого из катетов этого треугольника. Следовательно, АМ > АС. Так как наклонная АМ взята нами произвольно, то можно утверждать, что всякая наклонная к прямой больше перпендикуляра к этой прямой (а перпендикуляр короче всякой наклонной), если они проведены к ней из одной и той же точки.
Верно и обратное утверждение, а именно: если отрезок АС (рис.) меньше всякого другого отрезка, соединяющего точку АС любой точкой прямой ОВ, то он является перпендикуляром к ОВ. В самом деле, отрезок АС не может быть наклонной к ОВ, так как тогда он не был бы самым коротким из отрезков, соединяющих точку А с точками прямой ОВ. Значит, он может быть только перпендикуляром к ОВ.
Длина перпендикуляра, опущенного из данной точки на прямую, принимается за расстояние от данной точки до этой прямой.
Теорема 2. Если две наклонные, проведённые к прямой из одной и той же точки, равны, то равны и их проекции .
Пусть ВА и ВС — наклонные, проведённые из точки В к прямой АС (рис.), причём АВ = ВС. Нужно доказать, что равны и их проекции.
Для доказательства опустим из точки В перпендикуляр ВО на АС. Тогда АО и ОС будут проекции наклонных АВ и ВС на прямую АС. Треугольник АВС равнобедренный по условию теоремы. ВО — высота этого треугольника. Но высота в равнобедренном треугольнике, проведённая к основанию, является в то же время и медианой этого треугольника.
Теорема 3 (обратная). Если две наклонные, проведённые к прямой из одной и той же точки, имеют равные проекции, то они равны между собой.
Пусть АС и СВ — наклонные к прямой АВ (рис.). СО ⊥ АВ и АО = ОВ.
Требуется доказать, что АС = ВС.
В прямоугольных треугольниках АОС и ВОС катеты АО и ОВ равны. СО — общий катет этих треугольников. Следовательно, ΔAOС = ΔВОС. Из равенcтва треугольников вытекает, что АС = ВС.
Теорема 4. Если из одной и той же точки проведены к прямой две наклонные, то та из них больше, которая имеет большую проекцию на эту прямую.
Пусть АВ и ВС — наклонные к прямой АО; ВО ⊥ АО и АО>СО. Требуется доказать, что АВ > ВС.
1) Наклонные расположены по одну сторону перпендикуляра.
Угол АСЕ внешний по отношению к прямоугольному треугольнику СОВ (рис.), а поэтому ∠АСВ > ∠СОВ, т. е. он тупой. Отсюда следует, что АВ > СВ.
2) Наклонные расположены по обе стороны перпендикуляра. Для доказательства отложим на АО от точки О отрезок ОК = ОС и соединим точку К с точкой В (рис.). Тогда по теореме 3 имеем: ВК = ВС, но АВ > ВК, следовательно, АВ > ВС, т. е. теорема справедлива и в этом случае.
Теорема 5 (обратная). Если из одной и той же точки проведены к прямой две наклонные, то большая наклонная имеет и большую проекцию на эту прямую.
Пусть КС и ВС — наклонные к прямой КВ (рис.), СО ⊥ КВ и КС > ВС. Требуется доказать, что КО > ОВ.
Между отрезками КО и ОВ может быть только одно из трёх соотношений:
КО не может быть меньше ОВ, так как тогда по теореме 4 наклонная КС была бы меньше наклонной ВС, а это противоречит условию теоремы.
Точно так же КО не может равняться ОВ, так как в этом случае по теореме 3 КС = ВС, что также противоречит условию теоремы.
Следовательно, остаётся верным только последнее соотношение, а именно, что КО > ОВ.
Как найти проекцию наклонной
Раздел ІІ. СТЕРЕОМЕТРИЯ
§8. ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ. ПРОЕКЦИЯ НАКЛОННОЙ НА ПЛОСКОСТЬ.
2. Свойства перпендикуляра и наклонной.
Рассмотрим свойства перпендикуляра и наклонной.
1) Перпендикуляр, опущенный из данной точки к плоскости, меньше любой наклонной, проведенной из этой же точки к плоскости.
На рисунке 411: АН АК.
2) Если две наклонные, проведенные из данной точки к плоскости, равны, то равны их проекции.
На рисунке 412 из точки А к плоскости а проведены две наклонные АК и А K 1 и перпендикуляр АН и АК = АК 1 . Тогда по свойству: НК = НК1.
3) Если две наклонные, проведенные из данной точки к данной плоскости, имеют равные проекции, то они равны между собой.
На рисунке 412 из точки А к плоскости а проведены две наклонные АК и А K 1 и перпендикуляр АН, причем КН = К 1 Н. Тогда по свойству: АК = АК 1 .
4) Если из данной точки проведены к плоскости две наклонные, то большая наклонная имеет большую проекцию.
На рисунке 413 из точки А к плоскости а проведены две наклонные АК и А L и перпендикуляр АН, A К > AL . Тогда по свойству: H К > HL .
5) Если из данной точки проведены к плоскости две наклонные, то большей из них является та, которая имеет большую проекцию на данную плоскость.
На рисунке 413 из точки А к плоскости а проведены две наклонные АК и А L и перпендикуляр АН, НК > Н L . Тогда по свойству: АК > А L .
Пример 1. Из точки к плоскости проведены две наклонные, длины которых 41 см и 50 см. Найти проекции наклонных, если они относятся, как 3 : 10, и расстояние от точки до плоскости.
Решения. 1) А L = 41 см; АК = 50 см (рис. 413). По свойством имеем Н L НК. Обозначим Н L = 3 х см, НК = 10 х см, АН = h см. АН — расстояние от точки А до плоскости α .
4) Приравнивая, получаем 41 2 — 9х 2 = 50 2 — 100 х 2 ; х 2 = 9; х = 3 (учитывая х > 0). Итак, Н L = 3 ∙ 3 = 9 (см), НК = 10 ∙ 3 = 30 (см).
Пример 2. С данной точки к плоскости проведены две наклонные, каждая по см. Угол между наклонными равен 60°, а угол между их проекциями — прямой. Найти расстояние от точки до плоскости.
1) АС = ВС = см — наклонные, ВАС = 60°; ВНС = 90° (рис. 414). Необходимо найти АН.
2) В рівнобедреному треугольнике АВС: 
3) Так как АВ = АС, то НВ = НС ; обозначим НВ = НС = х см. Тогда в ∆ ВНС :
Как найти проекцию наклонной
Задачи по динамике.
I и II закон Ньютона.
Ввод и направление осей.
Проецирование сил на оси.
Решение систем уравнений.
Самые типовые задачи по динамике
Начнем с I и II законов Ньютона.
Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых. Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.
I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.
Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.
II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.
Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело ( сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.
При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.
Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².
Обязательно в таких задачах делать рисунок, и показывать силы, которые дествуют на машину:
На Ось Х: движение с ускорением
На Ось Y: нет движения (здесь координата, как была ноль так и останется, машина не поднимает в горы или спускается вниз)
Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае — с минусом.
По оси X: сила тяги направлена вправо, так же как и ось X, ускорение так же направлено вправо.
Fтр = μN, где N — сила реакции опоры. На оси Y: N = mg, тогда в данной задаче Fтр = μmg.
Коэффициент трения — безразмерная величина. Следовательно, единиц измерения нет.
Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.
Сделаем рисунок, покажем силы, которые дествуют на груз
T — сила натяжения нити
На ось X: нет сил
Разберемся с направлением сил на ось Y:
Выразим T (силу натяжения) и подставим числительные значения:
Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.
Далеко не всегда все силы, действующие на тело, направлены вдоль осей.
Простой пример: мальчик тянет санки
Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей.

Отношение противолежащего катета к гипотенузе — это синус.
Отношение прилежащего катета к гипотенузе — это косинус.
Сила тяги на ось Y — отрезок (вектор) BC.
Сила тяги на ось X — отрезок (вектор) AC.
Если это непонятно, посмотрите задачу №4.
Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле , ведь сила, которая действуют на ось X— это Fнcosα. При каком угле косинус максимален? Чем больше будет этот катет, тем сильнее горизонтальная сила.
Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34 Н, второй — 21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.
Введем оси и спроецируем силы:
Получаем два прямоугольных треугольника. Гипотенузы AB и KL — силы натяжения. LM и BC — проекции на ось X, AC и KM — на ось Y.
Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска?
Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае ( здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).
Рассмотрим поподробнее ΔKOM:

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!
Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:
Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время.
Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с² и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.
Сделаем рисунок с силами:
Введем оси X и Y. Спроецируем mg на оси:
Запишем второй закон Ньютона на X и Y:
Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.
Самое сложное — понять, какие силы куда действуют, и как угол влияет на них.
Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!
Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)
Запишем какие силы действуют на оси:
Ускорение в данной задачи центростремительное!
Поделим одно уравнение на другое:
Тангенс — это отношение противолежащего катета к прилежащему:
Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.
В качестве закрепления материала решите несколько похожих задач с подсказками и ответами.
На чтение 8 мин Просмотров 3.7к. Опубликовано 04.07.2019
Содержание
- Теоретические материалы
- Предупреждение
- Проекция точки на плоскость − теория, примеры и решения
- Проекция прямой на плоскость
- Угол между прямой и плоскостью
- Теорема о трех перпендикулярах
Теоретические материалы
Глава 9. Прямые и плоскости в пространстве
9.5. Наклонные и их проекции на плоскость. Угол наклонной с плоскостью
Прямая, пересекающая плоскость, но не перпендикулярная к ней, называется наклонной к этой плоскости.
Точка пересечения перпендикуляра (наклонной) с плоскостью называется основанием перпендикуляра (наклонной).
Отрезок, соединяющий основания наклонной и перпендикуляра, проведенных к плоскости из одной и той же точки вне ее, называется проекцией наклонной на эту плоскость.
Если из одной и той же точки, взятой вне плоскости, проведены к этой плоскости перпендикуляр и наклонные, то:
1) две наклонные, имеющие равные проекции, равны;
2) из двух наклонных та больше, проекция которой больше;
3) (обратная) равные наклонные имеют равные проекции;
4) (обратная) большей наклонной соответствует большая проекция.
Повернув прямоугольные треугольники вокруг общего их катета (перпендикуляра к плоскости) до совмещения их плоскостей, получим все наклонные (гипотенузы) и их проекции (другие катеты) в одной плоскости, где эти теоремы верны.
Перпендикуляр к плоскости меньше всякой наклонной, проведенной к той же плоскости из той же точки вне ее (катет меньше гипотенузы).
Расстоянием точки от плоскости называется длина перпендикуляра, опущенного из этой точки на данную плоскость.
Углом между наклонной и плоскостью называется острый угол между наклонной и ее проекцией на эту плоскость.
Угол между наклонной и ее проекцией на плоскость является наименьшим из всех углов, образуемых данной наклонной с прямыми, лежащими в данной плоскости.
С помощю этого онлайн калькулятора можно найти проекцию точки на заданную плоскость. Дается подробное решение с пояснениями. Для построения проекции точки на данную плоскость введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Проекция точки на плоскость − теория, примеры и решения
Для нахождения проекции точки M на плоскость α, необходимо:
- построить прямую L, проходящую через точку M и ортогональной плоскости α.
- найти пересечение данной плоскости α с прямой L(Рис.1).
Общее уравнение плоскости имеет вид:
![]() |
(1) |
где n(A,B,C)− называется нормальным вектором плоскости.
Уравнение прямой, проходящей через точку M(x, y, z) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:
![]() |
(2) |
Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .
Таким образом, уравнение прямой, проходящей через точку M(x, y, z) и ортогональной плоскости (1) имеет следующий вид:
![]() |
(3) |
Для нахождения точку пересечения прямой L с плоскостью α, проще всего рассматривать параметрическое уравнение прямой. Составим ее
Выразим переменные x, y, z через рараметр t.
![]() |
(4) |
Подставим значения x,y,z из выражения (4) в (1) и решим относительно t.
A(At+x)+B(Bt+y)+C(At+z)+D=0,
A 2 t+Ax+B 2 t+By+C 2 t+Cz+D=0,
![]() |
(5) |
Подставляя значение параметра t в выражения (4), находим проекцию M1 точки M на плоскость (1).
Пример 1. Найти проекцию M1 точки M(4, -3, 2) на плоскость
![]() |
(6) |
Нормальный вектор плоскости имеет вид:
Подставляя координаты точки M и нормального вектора плоскости в (5), получим:
![]() |
(7) |
Из выражений (7) находим:
Проекцией точки M(4, -3, 2) на плоскость (6) является точка:
Проекция прямой на плоскость
Определение 1. Ортогональной проекцией точки на плоскость называют основание перпендикуляра, опущенного из этой точки на плоскость.
Рассмотрим рисунок 1, на котором изображены прямая p, перпендикулярная к плоскости α и пересекающая плоскость α в точке O.
Точка O является ортогональной проекцией на плоскость α каждой точки прямой p.
Замечание 1. Рассматриваемый в данном разделе случай ортогонального проектирования точки на плоскость α представляет собой частный случай более общего понятия проектирования точки на плоскость параллельно некоторой прямой, необязательно перпендикулярной к плоскости. Такое проектирование используется в нашем справочнике при определении понятия «призма».
Замечание 2. Если это не приводит к разночтениям, для упрощения формулировок термин «ортогональная проекция на плоскость» часто сокращают до термина «проекция на плоскость».
Определение 2. Проекцией фигуры a на плоскость α называют фигуру a’, образованную проекциями всех точек фигуры a на плоскость α.
Определение 3. Прямую, пересекающую плоскость и не являющуюся перпендикуляром к плоскости, называют наклонной к этой плоскости (рис. 2).
Все возможные случаи, возникающие при ортогональном проектировании прямой на плоскость представлены в следующей таблице
Если прямая PO пересекает плоскость α в точке O и является наклонной к плоскости α, а точка P’ является проекцией произвольной точки P этой прямой на плоскость α, то прямая P’O, лежащая в плоскости α, является проекцией прямой PO на плоскость α.
На рисунке прямая PO, где P – любая точка прямой a, является перпендикуляром к плоскости α.
Если прямая a параллельна плоскости α , то проекцией прямой a является прямая a’, лежащая в плоскости α, параллельная прямой a и проходящая через основание O перпендикуляра PO.
Если прямая a лежит в плоскости, то ее проекция a’, совпадает с прямой a .
Если прямая перпендикулярна плоскости α и пересекает плоскость α в точке O , то точка O и является проекцией этой прямой на плоскость α.
Если прямая PO пересекает плоскость α в точке O и является наклонной к плоскости α, а точка P’ является проекцией произвольной точки P этой прямой на плоскость α, то прямая P’O, лежащая в плоскости α, является проекцией прямой PO на плоскость α.
На рисунке прямая PO, где P – любая точка прямой a, является перпендикуляром к плоскости α.
Если прямая a параллельна плоскости α , то проекцией прямой a является прямая a’, лежащая в плоскости α, параллельная прямой a и проходящая через основание O перпендикуляра PO.
Если прямая a лежит в плоскости, то ее проекция a’, совпадает с прямой a .
Если прямая перпендикулярна плоскости α и пересекает плоскость α в точке O , то точка O и является проекцией этой прямой на плоскость α.
Угол между прямой и плоскостью
Все возможные случаи, возникающие при определении понятия угла между прямой и плоскостью, представлены в следующей таблице.
| Фигура | Рисунок | Свойство проекции |
| Наклонная к плоскости α | ![]() |
|
| Прямая, параллельная плоскости | ![]() |
|
| Прямая, лежащая на плоскости | ![]() |
|
| Прямая, перпендикулярная к плоскости | ![]() |
Углом между наклонной к плоскости (прямая PO ) и плоскостью называют угол между этой наклонной и ее проекцией на плоскость (прямая P’O. )
На рисунке это угол φ
Если прямая параллельна плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая лежит в плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая перпендикулярна плоскости, то угол между прямой и плоскостью считается равным 90° ( 
Углом между наклонной к плоскости (прямая PO ) и плоскостью называют угол между этой наклонной и ее проекцией на плоскость (прямая P’O )
На рисунке это угол φ
Если прямая параллельна плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая лежит в плоскости, то угол между прямой и плоскостью считается равным нулю.
Если прямая перпендикулярна плоскости, то угол между прямой и плоскостью считается равным 90° ( 
Теорема о трех перпендикулярах
Теорема о трех перпендикулярах. Если наклонная a к плоскости α перпендикулярна к прямой b, лежащей на плоскости α, то и проекция наклонной a’ на плоскость α перпендикулярна к прямой b.
Доказательство. Рассмотрим следующий рисунок 3.
На рисунке 3 буквой O обозначена точка пересечения наклонной a с плоскостью α. Точка P – произвольная точка на прямой a, а точка P’ – это проекция точки P на плоскость α. Проведем через точку O прямую b’, параллельную прямой параллельную прямой b. Если прямая b проходит через точку O, то прямая b’, совпадет с прямой b.
Поскольку PP’ – перпендикуляр к плоскости α, то прямая PP’ перпендикулярна к прямой b’. Прямая a перпендикулярна к прямой b’ по условию. Таким образом, прямая b’ перпендикулярна к двум пересекающимся прямым PO и PP’, лежащим в плоскости POP’. В силу признака перпендикулярности прямой и плоскости получаем, что прямая b’ перпендикулярна к плоскости POP’, откуда вытекает, что прямая b’ перпендикулярна и к прямой a’, лежащей на плоскости POP’.
Теорема, обратная теореме о трех перпендикулярах. Если проекция a’ наклонной a к плоскости α перпендикулярна к прямой b, лежащей на плоскости α, то и сама наклонная a перпендикулярна к прямой b.
Доказательство. Как и для доказательства прямой теоремы о трех перпендикулярах, воспользуемся рисунком 3.
Прямая a’ перпендикулярна к прямой b по условию обратной теоремы. Прямая PP’ перпендикулярна к прямой b’, поскольку PP’ – перпендикуляр к плоскости α. Таким образом, прямая b’, перпендикулярна к двум пересекающимся прямым P’O и PP’, лежащим в плоскости POP’. В силу признака перпендикулярности прямой и плоскости прямая b’ перпендикулярна к плоскости POP’. Тогда, в частности, прямая b’ перпендикулярна к прямой a, лежащей на плоскости POP’.
| Фигура | Рисунок | Определение |
| Наклонная к плоскости α | ![]() |
|
| Прямая, параллельная плоскости | ![]() |
|
| Прямая, лежащая на плоскости | ![]() |
|
| Прямая, перпендикулярная к плоскости | ![]() |
Геометрия, 10 класс
Урок №10. Перпендикуляр и наклонные
Перечень вопросов, рассматриваемых в теме.
- Определение перпендикуляра, наклонной и проекции наклонной на плоскость;
- Доказательство теоремы о трех перпендикулярах;
- Определение угла между прямой и плоскостью.
Глоссарий по теме
Теорема о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.
Обратная теорема: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции.
Определение: углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.
Основная литература:
Атанасян Л. С., Бутузов В. Ф. Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.
Дополнительная литература:
Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения
Рассмотрим плоскость α и точку А, не лежащую в этой плоскости (рис. 1). Проведем через точку А прямую, перпендикулярную к плоскости α, и обозначим буквой Н точку пересечения этой прямой с плоскостью α. Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости α, а точка Н — основанием перпендикуляра. Отметим в плоскости α какую-нибудь точку М, отличную от Н, и проведем отрезок AM. Он называется наклонной, проведенной из точки А к плоскости α, а точка М – основанием наклонной. Отрезок НМ называется проекцией наклонной на плоскость α.
(Рис. 1)
Рассмотрим прямоугольный треугольник АМН. Сторона АН — катет, а сторона AM — гипотенуза, поэтому АН < AM. Поэтому перпендикуляр, проведенный из данной точки к плоскости, меньше любой наклонной, проведенной из той же точки к этой плоскости.
Следовательно, из всех расстояний от точки А до различных точек плоскости α наименьшим является расстояние до точки Н. Это расстояние, т. е. длина перпендикуляра, проведенного из точки А к плоскости α, называется расстоянием от точки А до плоскости α.
Стоит отметить, что в случае двух параллельных плоскостей, расстоянием между ними будет расстояние от произвольной точки одной плоскости до другой плоскости. Например, все точки потолка находятся на одинаковом расстоянии от пола. Если же прямая параллельна плоскости, то все точки прямой равноудалены от этой плоскости. В этом случае расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью. Например, все точки прямой b равноудалены от потолка комнаты.
Если мы имеем дело со скрещивающимися прямыми, то расстоянием между ними будет расстояние между одной из этих прямых и плоскостью, проходящей через другую прямую параллельно первой.
Сформулируем теорему о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.
(Рис. 2)
На рисунке 2: АН — перпендикуляр к плоскости α, AM — наклонная, а — прямая, проведенная в плоскости α через точку М перпендикулярно к проекции наклонной НМ. Докажем, что прямая а перпендикулярна наклонной AM.
Рассмотрим плоскость АМН. Прямая а перпендикулярна к НМ по условию. Так как прямая а, лежит в плоскости α, а эта плоскость перпендикулярна отрезку AH, то прямая а перпендикулярна к этой плоскости. Отсюда следует, что прямая а перпендикулярна к любой прямой, лежащей в плоскости АМН, в частности прямая а перпендикулярна отрезку АМ. Теорема доказана.
Эта теорема называется теоремой о трех перпендикулярах, так как в ней говорится о связи между тремя перпендикулярами АН, НМ и AM.
Справедлива также обратная теорема: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции.
Введем теперь понятие проекции произвольной фигуры на плоскость. Проекцией точки на плоскость называется основание перпендикуляра, проведенного из этой точки к плоскости, если точка не лежит в плоскости, и сама точка, если она лежит в плоскости.
Обозначим буквой F какую-нибудь фигуру в пространстве. Если мы построим проекции всех точек этой фигуры на данную плоскость, то получим фигуру F1, которая называется проекцией фигуры F на данную плоскость (рис. 3).
(Рис. 3)
Докажем теперь, что проекцией прямой на плоскость, не перпендикулярную к этой прямой, является прямая (рис. 4).
Данную плоскость обозначим буквой α. Произвольную прямую, не перпендикулярную к плоскости, обозначим буквой а. Из какой-нибудь точки М прямой а проведем перпендикуляр МН к плоскости α и рассмотрим плоскость β, проходящую через прямую a и перпендикуляр МН. Плоскости α и β пересекаются по некоторой прямой а1.
Докажем, что эта прямая и является проекцией прямой а на плоскость α. В самом деле, возьмем произвольную точку М1 прямой а и проведем в плоскости β прямую М1Н1, параллельную прямой МН.
Так как отрезок MH перпендикуляр к плоскости α и отрезок MH параллелен М1Н1, то отрезок М1Н1 тоже перпендикулярен плоскости α.
Этим мы доказали, что проекция произвольной точки прямой а лежит на прямой а1.
Аналогично доказывается, что любая точка прямой а1 является проекцией некоторой точки прямой а. Следовательно, прямая а1 — проекция прямой а на плоскость α. Что и требовалось доказать.
(Рис. 4)
Теперь введем понятие угла между прямой и плоскостью.
Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.
Примеры и разбор решения заданий тренировочного модуля
Пример 1. Докажем, что угол между φ0 между данной прямой AM и плоскостью α является наименьшим из всех углов φ, которые данная прямая образует с прямыми, проведенными в плоскости α через точку А.
(Рис. 5)
Обозначим буквой Н основание перпендикуляра (рис. 5), проведенного из точки М к плоскости α.
Рассмотрим произвольную прямую р в плоскости α, проходящую через точку А и отличную от прямой АН.
Угол между прямыми AM и р обозначим через φ.
Докажем, что φ больше чем φ0.
Из точки М проведем перпендикуляр MN к прямой р. Если точка N совпадает с точкой А, то φ равняется 90 градусам и поэтому φ больше чем φ 0. Рассмотрим случай, когда точки А и N не совпадают. Отрезок AM — общая гипотенуза прямоугольных
треугольников ANM и АНМ, поэтому
sinφ=MN/AM
Так как наклонная MN больше, чем перпендикуляр МН, то синус угла φ больше, чем синус угла φ0. Поэтому угол φ больше, чем угол φ0. Что и требовалось доказать.
Тестовый вопрос №7. Прямая AM перпендикулярна плоскости равностороннего треугольника ABC, точка H середина стороны BC. Найдите угол между прямой MH и плоскостью ABC, если AM = a, HB = a.
Решение. Искомый угол – MHA.
Рассмотрим треугольник ABC. Он равносторонний. Это означает, что его медиана так же является высотой и биссектрисой. Так как HB = a, следовательно, любая сторона треугольника имеет длину 2a. Рассмотрим треугольник AHB. Он прямоугольный, т.к. AH медиана и высота. По теореме Пифагора вычислим длину стороны AH: 
Далее рассмотрим треугольник MHA, он прямоугольный, т.к. MA перпендикулярна плоскости ABC. Зная это мы можем выразить тангенс искомого угла: 
Ответ: ∠MHA = 30˚.
Тестовый вопрос №8. Из точки O к плоскости α проведена наклонная, длина которой равна 17 см, проекция наклонной равна 15 см. На каком расстоянии от плоскости находится точка O?
Решение. Нарисуем рисунок. OH – перпендикуляр, OM – наклонная, длина которой 17 см, MH – проекция наклонной, длина которой 15 см.
Треугольник OHM – прямоугольный, т.к. OH – перпендикуляр. Поэтому OH – искомое расстояние. Найдем его по теореме Пифагора: 
Ответ: 8 сантиметров.
Содержание:
Я думаю, что мы еще никогда не жили в такой геометрический период. Все вокруг — геометрия. Ле Корбюзье
Перпендикулярность прямых в пространстве
В модуле 3 мы рассматривали взаимное расположение прямых в пространстве.
Естественно, что пересекающиеся прямые
образуют углы. Углом между прямыми является меньший из двух смежных. Например, на рисунке 5.1 изображены две пересекающиеся прямые
Две прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом.
Свойства перпендикулярных прямых пространства выражают теоремы 1-4.
Теорема 1
Через произвольную точку прямой в пространстве можно провести перпендикулярную ей прямую.
Доказательство:
Пусть 








Теорема 2
Если две пересекающиеся прямые соответственно параллельны двум перпендикулярным прямым, то они также перпендикулярны.
Доказательство:
Пусть 























Четырехугольники 










Итак, четырехугольник 








Теорема 3
Через любую точку пространства, не принадлежащую прямой, можно провести прямую, перпендикулярную данной (рис. 5.4, а).
Теорема 4
Если прямая перпендикулярна одной из двух параллельных прямых и лежит с ними в одной плоскости, то она перпендикулярна и второй прямой (рис. 5.4, б).
Доказательство теорем 3 и 4 выполните самостоятельно.
Расположение трех прямых в пространстве, когда они между собой попарно перпендикулярны и имеют общую точку, является особым случаем (рис. 5.4, в).
Отметим, что в пространстве существует множество плоскостей, которые можно провести через одну и ту же прямую. Выбирая точку А вне прямой, мы попадем на одну из этих плоскостей и в выбранной плоскости к данной прямой через точку А проводим прямую, перпендикулярную данной.
Итак, в пространстве к прямой можно провести сколь угодно много перпендикулярных прямых, проходящих через данную точку этой прямой.
Пример №1
Прямые 



Дано: 
Найти:
Решение:
Из 




Из 


Ответ. 6,5 см
Почему именно так?
Каждая пара данных прямых 







: известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом.
— сторона
.
: один катет известен по условию, второй — найден из
; неизвестной является третья сторона — гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка
.
Перпендикулярность прямой и плоскости в пространстве
Мы уже рассматривали взаимное расположение прямой и плоскости, детально ознакомились со случаем, когда прямая не пересекает плоскость. В этом параграфе мы рассмотрим случай, когда прямая пересекает плоскость и, кроме того, образует с произвольной прямой этой плоскости, проходящей через точку пересечения, прямой угол. Такую прямую называют перпендикулярной плоскости. Все другие неперпендикулярные прямые, пересекающие плоскость, называют наклонными.
Моделью прямой, перпендикулярной плоскости, может быть установленная вышка, столб, вкопанный в землю, гвоздь, вбитый в стену, и т.п.
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна произвольной прямой, которая лежит на этой плоскости и проходит через их точку пересечения.
Чтобы определить, будет ли прямая 



Теорема 5 (признак перпендикулярности прямой и плоскости)
Если прямая перпендикулярна двум пересекающимся прямым этой плоскости, то она перпендикулярна и данной плоскости.
Доказательство:
Пусть 











Для этого выполним дополнительное построение:
- отложим в разных полупространствах на прямой
от точки
равные отрезки
и
;
- обозначим на прямой
некоторую точку
, а на прямой
— точку
; соединим точки:
с
,
с
,
с
,
с
и
с
;
- проведем через точку
произвольную прямую
, которая пересечет
в точке
, и также соединим ее с
и
.
Рассмотрим образованные при этом треугольники.
— медиана и высота;
по построению;
— общая сторона треугольников
и
;
. Итак,
по двум сторонам и углу между ними. Отсюда
.
. Равенство отрезков
и
доказывается аналогично, как и равенство отрезков
и
.
, поскольку
и
-общая сторона. Отсюда вытекает равенство соответствующих углов:
.
по двум сторонам и углу между ними:
— общая сторона;
по доказательству выше. Итак,
, т.е.
— равнобедренный:
— основание треугольника,
— середина
, поэтому
— медиана
. В равнобедренном треугольнике медиана является высотой, т.е.
, а это означает, что
. Поскольку прямая
— произвольная прямая плоскости
, проходит через точку пересечения прямой
и плоскости
, перпендикулярна прямой
, то
.
Теорема доказана.
Отметим, что вы впервые столкнулись с таким громоздким доказательством. Доказательство не следует заучивать наизусть или запоминать шаги, необходимо понять его и последовательно, опираясь на известные факты, изложить рассуждения. Для этого важно спланировать последовательность логических шагов и не допускать ошибок.
Итак, для установления перпендикулярности прямой и плоскости достаточно проверить перпендикулярность прямой двум прямым плоскости, проходящим через точку их пересечения (по признаку).
Из данной теоремы вытекают два следствия.
Следствие 1. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой.
Доказательство:
Пусть 
























Следствие 2. Две прямые, перпендикулярные одной плоскости, параллельны.
Доказательство:
Пусть 




















Пример №2
Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости.
Доказательство:
Рассмотрим два случая.
Первый случай. Пусть точка 













Тогда в плоскости 







Второй случай. Пусть точка 












Перпендикуляр и наклонная. Теорема о трех перпендикулярах
Рассмотрим изображение прямой а, перпендикулярной плоскости 

Отрезок называется перпендикулярным плоскости, если он лежит на прямой, перпендикулярной плоскости.
Итак, на прямой 


На рисунке 5.21 изображены различные случаи расположения перпендикулярного плоскости отрезка:
- отрезок
лежит по одну сторону от плоскости
и не пересекает ее (рис. 5.21, а);
- отрезок
пересекает плоскость
(концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
- отрезок
лежит по одну сторону от плоскости
и точка
— конец отрезка — принадлежит плоскости
(рис. 5.21, в).
Чаще всего на практике встречается третий случай. Такой отрезок 
Перпендикуляром, проведенным из данной точки к данной плоскости, называется отрезок, который соединяет данную точку с точкой плоскости и лежит на прямой, перпендикулярной этой плоскости (рис. 5.21, в). Конец отрезка, лежащий на плоскости, называется основанием перпендикуляра.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, который соединяет данную точку с точкой плоскости и не является перпендикуляром к плоскости. Конец отрезка, лежащий на плоскости, называется основанием наклонной. Отрезок, который соединяет основание перпендикуляра и основание наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
На рисунке 5.22 отрезок 















Углом между наклонной и плоскостью называется угол между наклонной и проекцией этой наклонной на плоскость.
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости провести к ней перпендикуляр и наклонные, то:
- из точки, не принадлежащей плоскости, можно провести один и только один перпендикуляр и множество наклонных;
- длина перпендикуляра меньше длины любой наклонной;
- наклонные, имеющие равные проекции, равны между собой, и наоборот, равные наклонные имеют равные проекции;
- из двух наклонных большую длину имеет та, которая имеет большую проекцию, и наоборот, большая наклонная имеет большую проекцию.
Докажите эти свойства самостоятельно.
Широко используется свойство прямой, перпендикулярной проекции наклонной или наклонной, которое называют теоремой о трех перпендикулярах.
Теорема 6 (о трех перпендикулярах)
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и наклонной. И наоборот, если прямая, проведенная на плоскости через основание наклонной, перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Дано:
Доказать: прямая 
Доказательство:
Докажем вторую часть теоремы. Пусть 



















Пример №3
Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если одна из них на 26 см больше другой, а проекции наклонных равны 12 см и 40 см.
Дано: 






Найти: 

Решение:
Пусть 







В 






Из (1) и (2) имеем: 

Ответ. 15 см и 41 см.
Почему именно так?




Алгебраический метод решения упрощает процесс поиска решения. Находим общий катет для 


Отсюда имеем равенство: 
Перпендикулярность плоскостей
Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (рис. 5.31).
Если 
Моделями перпендикулярных плоскостей в окружающем мире являются различные конфигурации предметов. Например, шкатулка с крышкой, двери, окна, которые открываются, и т.д. Принцип «открывания» частей моделей основывается на перпендикулярности прямых, проведенных перпендикулярно прямой пересечения (линии крепления) (рис. 5.32).
Перпендикулярные плоскости обладают такими свойствами:
- Любая плоскость, перпендикулярная линии пересечения перпендикулярных плоскостей, пересекает их по перпендикулярным прямым. И наоборот, плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна линии их пересечения.
- Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная их линии пересечения, перпендикулярна другой плоскости.
- Если две плоскости взаимно перпендикулярны и из произвольной точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Рассмотрим их несколько позднее. Докажем сначала признак перпендикулярности двух плоскостей.
Теорема 7 (признак перпендикулярности плоскостей)
Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Дано: 


Доказательство:
Построим произвольную плоскость 






























Теорема доказана.
Теперь вернемся к свойствам перпендикулярных прямых и плоскостей и докажем некоторые из них.
Теорема 8
Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная линии их пересечения, перпендикулярна второй плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости 





Проведем через точку 









Теорема 9
Если две плоскости взаимно перпендикулярны и из некоторой точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости 





Итак, дано 














Теорема доказана.
Остальные свойства докажите самостоятельно.
Пример №4
Из точек 








Дано:
Найти:
Решение:
Поскольку 









Из 






Отсюда, учитывая что 

Ответ. 11 см.
Почему именно так?
Для каждой геометрической задачи важно построить цепочку логических рассуждений. В этой задаче важно видеть не только прямоугольные треугольники на плоскостях 








Перпендикулярность прямой и плоскости
А) Напомним, что перпендикулярными называют прямые, угол между которыми равен 90°. Перпендикулярные прямые могут быть пересекающимися и могут быть скрещивающимися. На рисунке 210 перпендикулярные прямые 



Прямая называется перпендикулярной плоскости, если она перпендикулярна каждой прямой этой плоскости.
Перпендикулярность прямой 




Прямая 






Окружающее пространство даёт много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Столбы с осветительными лампами и колонны устанавливают перпендикулярно горизонтальной поверхности земли (рис. 211).
Из теоремы 6 параграфа 5 следует, что при определении угла между прямыми эти прямые можно заменять параллельными прямыми. Поэтому если одна из параллельных прямых перпендикулярна плоскости, то и другая также перпендикулярна этой плоскости. Верно и обратное утверждение.
Теорема 1. Если две прямые перпендикулярны плоскости, то они параллельны друг другу.
Доказательство: Пусть прямые 




Через какую-либо точку 

















Пусть имеются плоскость 





Следующая теорема устанавливает признак перпендикулярности прямой и плоскости.
Теорема 2. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.
Доказательство: Пусть прямая 








Проведём через точку 






























Следствие 1. Если прямая перпендикулярна одной из параллельных плоскостей, то она перпендикулярна и другой плоскости.
Пусть плоскости 


















Следствие 2. Если одной прямой перпендикулярны две плоскости, то они параллельны.
Проведите самостоятельно обоснование этого утверждения, используя рисунок 216
Б) Теорема 3. Через каждую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.
Доказательство: Пусть даны прямая 












В случае, когда точка 









Докажем теперь, что построенная плоскость а единственная. Допустим, что это не так. Пусть через точку 























Теорема 4. Через каждую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
Доказательство: Пусть даны точка 



















Прямая 







Следствие 3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Пусть 










Пример №5
Докажите, что если рёбра 






Решение:



Поскольку 

Поскольку 





Используя рисунок 226, докажите самостоятельно обратное утверждение: «Если отрезки 






Пример №6
В правильной треугольной пирамиде 



Решение:











Пример №7
Докажите, что диагональ 


Решение:














Используя рисунок 228, установите, в какой точке прямая 
Пространственное моделирование
При выполнении задания на определение вертикальности столба для забора (рис. 240) ученик проверил вертикальность первого из столбов, а дальше, измерив высоту первого и второго столбов и расстояние между ними снизу и сверху, сделал вывод о том, что и второй столб тоже вертикальный. Определите, обеспечивают ли полученные учеником сведения правильность его вывода. Ответ обоснуйте.
Расстояния
А) Пусть даны плоскость 









Соединим точку 






Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости проведены к этой плоскости две наклонные (рис. 242), то:
- а) наклонные, имеющие равные проекции, равны между собой;
- б) та наклонная больше, проекция которой больше;
- в) равные наклонные имеют равные проекции;
- г) большая наклонная имеет большую проекцию.
Свойства перпендикуляров и наклонных докажите самостоятельно, используя рисунок.
Теорема 5. Перпендикуляр к плоскости, проведённый из некоторой точки, меньше любой наклонной к этой плоскости, проведённой из той же точки.
Доказательство: Пусть отрезок 



В соответствии с утверждением теоремы 5, из всех расстояний от данной точки до различных точек данной плоскости наименьшим является расстояние, измеренное по перпендикуляру.
Б) Расстоянием от точки до плоскости называется длина перпендикуляра, проведённого из этой точки к плоскости.
Когда мы говорим, например, что уличный фонарь находится на высоте 8 м от земли, то подразумеваем, что расстояние от фонаря до поверхности земли, измеренное по перпендикуляру, проведённому от фонаря к плоскости земли, составляет 8 м (рис. 244).
Теорема 6. Расстояние от любой точки одной из параллельных плоскостей к другой плоскости одно и то же и равно длине их общего перпендикуляра.
Доказательство: Пусть даны параллельные плоскости 

























Расстоянием между параллельными плоскостями называется длина перпендикуляра, проведённого из какой-либо точки одной плоскости к другой плоскости.
Все точки одной стены комнаты находятся на одинаковом расстоянии от противоположной стены (рис. 246). Это расстояние и есть ширина комнаты.
Теорема 7. Расстояние от любой точки прямой, параллельной плоскости, до этой плоскости одно и то же и равно перпендикуляру, проведённому из какой-либо точки прямой к плоскости.
Используя рисунок 247, проведите доказательство теоремы самостоятельно.
Расстоянием между прямой и параллельной ей плоскостью называется длина перпендикуляра, проведённого из какой-либо точки прямой к плоскости.
Все точки края стола находятся на одном расстоянии от пола (рис. 248).
Теорема 8. Две скрещивающиеся прямые имеют единственный общий перпендикуляр.
Доказательство: Пусть даны скрещивающиеся прямые 





Пусть 


























Этим самым существование общего перпендикуляра скрещивающихся прямых обосновано. Докажем теперь его единственность.
Пусть скрещивающиеся прямые 






Точки 














Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра.
Из доказательства теоремы 8 следует, что расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из них до плоскости, содержащей другую прямую и параллельную первой.
Чтобы найти расстояние между скрещивающимися прямыми, можно действовать по-разному.
а) Можно построить отрезок с концами на этих прямых, перпендикулярный им обеим, и найти его длину.
Пример №8
Найдём расстояние между прямыми, которые содержат ребро куба длиной 
Решение:
Пусть нужно найти расстояние между прямыми 






б) Можно построить плоскость, которая содержит одну из прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию от этой плоскости до другой прямой.
Пример №9
В правильной четырёхугольной пирамиде 




Решение:
Пусть 









Пусть 










Теперь
в) Можно построить две параллельные плоскости, каждая из которых содержит одну из скрещивающихся прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию между этими плоскостями.
Пример №10
Найдём расстояние между прямыми, содержащими непересекающиеся диагонали двух смежных граней куба с ребром
Решение:
Пусть нужно найти расстояние между прямыми 













Диагональ 








Плоскость 






















Ответ:
Диагональ куба делится плоскостью треугольника, сторонами которого служат диагонали граней куба, имеющие с рассматриваемой диагональю куба общую точку, в отношении 1 : 2.
г) Можно построить плоскость, перпендикулярную одной из скрещивающихся прямых, и построить проекцию на неё другой прямой. Тогда искомое расстояние будет равно длине перпендикуляра, опущенного из точки, являющейся проекцией первой прямой на построенную плоскость, на проекцию другой прямой.
Пример №11
В четырёхугольной пирамиде 



Решение:
Из теоремы 8 следует, что на прямых 






Пусть 









Определим, в какие точки спроектируются точки 





Поскольку точки 








Длину 


Получим 
Ответ:
Пример №12
Точка 


Решение:







Тогда
Ответ: 20 см.
Пример №13
Из вершины 







Решение:

















Угол между прямой и плоскостью
А) С помощью чисел, выражающих расстояние между двумя прямыми и величину угла между ними, можно описать взаимное расположение этих прямых в пространстве. Если прямые 









Теорема 9. Если прямая плоскости перпендикулярна проекции наклонной на эту плоскость, то она перпендикулярна и самой наклонной, а если прямая плоскости перпендикулярна наклонной к плоскости, то она перпендикулярна и проекции этой наклонной.
Доказательство: Пусть отрезки 



Пусть прямая 


Прямая 







Пусть прямая 




Прямая 




Теорема 9 называется теоремой о трёх перпендикулярах, потому что в ней идёт речь об отношении перпендикулярности между тремя прямыми. Приведём примеры использования этой теоремы.
Пример №14
Из вершины 




Решение:
Искомое расстояние — длина перпендикуляра, опущенного из точки 










Найдём сначала высоту 


Треугольник 

Ответ: 36,6.
Пример №15
Докажем, что если данная точка пространства равноудалена от сторон многоугольника, то в этот многоугольник можно вписать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Доказательство: Пусть точка 







Соединим точку 






Треугольники 




Пример №16
Если данная точка пространства равноудалена от вершин многоугольника, то около этого многоугольника можно описать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Используя рисунок 272, проведите доказательство этого утверждения самостоятельно.
Б) Теперь введём понятие угла между прямой и плоскостью. Пусть дана плоскость 






Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной ей, называется угол между прямой и её проекцией на плоскость.
Угол между прямой и плоскостью — наименьший из углов, которые образует эта прямая со всеми прямыми плоскости. Докажите утверждение самостоятельно.
Если прямая 



Если прямая 



Пример №17
В треугольной пирамиде 


Решение:
Пусть 







Искомый угол между медианой 



тогда
Значит,
Ответ:
При вычислении угла между скрещивающимися прямыми бывает полезной следующая теорема о трёх косинусах.
Угол 








Доказательство: Пусть точка 










Пусть 







и
Пример №18
В треугольной пирамиде 





Решение:
Используем теорему о трёх косинусах, учитывая, что угол 






Поскольку 
то 

Ответ:
Пример №19
Основанием треугольной пирамиды 








Решение:











Ответ: 5 см.
Пример №20
Докажите, что если луч 






Решение:
Пусть 











Пространственное моделирование
Определим, как при движении на эскалаторе можно оценить глубину расположения станции метро, длину эскалатора (рис. 289).
Обратим внимание на то, что при спуске или подъёме на эскалаторе мы проезжаем вдоль ряда ламп, расположенных на равных расстояниях друг от друга. Нормативами задаётся освещённость тоннеля, исходя из которой устанавливается и расстояние между соседними лампами. Также учтём, что оптимальный угол наклона линии эскалатора к плоскости земли равен 30°.
Будем рассматривать эскалатор как наклонную к плоскости земли. Тогда глубину расположения станции можно интерпретировать как длину перпендикуляра к плоскости земли.
Для ответа на вопрос достаточно рассмотреть прямоугольный треугольник 


- а) Подсчитайте длину эскалатора, учитывая, что расстояние между лампами равно а.
- б) Составьте формулу для нахождения глубины закладки станции метро.
Перпендикулярность плоскостей
А) Два луча на плоскости с общим началом разделяют эту плоскость на две части, каждая из которых называется углом.
Аналогично две полуплоскости с общей границей разделяют пространство на две части (рис. 290). Каждую из этих частей вместе с полуплоскостями называют двугранным углом. Полуплоскости, ограничивающие двугранный угол, называют гранями угла, а общую прямую — ребром двугранного угла (рис. 291).
Обычно рассматривают меньший из двугранных углов с данными гранями (рис. 292). Точки угла, не лежащие на его гранях, составляют внутреннюю область двугранного угла (рис. 293).
Двугранный угол обычно обозначают по ребру: 




Моделью двугранного угла может служить двускатная крыша (рис. 295), стена вместе с открытой дверью (рис. 296), полураскрытая книга (рис. 297).
Для измерения двугранных углов вводится понятие линейного угла. Выберем на ребре 














Понятно, что двугранный угол имеет бесконечно много линейных углов (рис. 299).
Теорема 10. Все линейные углы двугранного угла равны друг другу.
Доказательство: Пусть 


Отложим на сторонах углов 














Измерение двугранных углов связывается с измерением их линейных углов. В зависимости от того, каким — острым, прямым, тупым, развёрнутым — является линейный угол двугранного угла, отличают острые, прямые, тупые, развёрнутые двугранные углы. Двугранный угол, изображённый на рисунке 301, — острый, на рисунке 302 — прямой, на рисунке 303 — тупой.
Две пересекающиеся плоскости разделяют пространство на четыре двугранных угла с общим ребром (рис. 304). Если один из них равен 

Если один из двугранных углов, образовавшихся при пересечении двух плоскостей, прямой, то три остальных также прямые (рис. 305).
Б) Плоскости, при пересечении которых образуются прямые двугранные углы, называются перпендикулярными плоскостями.
Для обозначения перпендикулярности плоскостей, как и для обозначения перпендикулярности прямых, используют знак
Моделями перпендикулярных плоскостей могут служить столешница и боковина стола (рис. 306), пол в комнате и дверь в неё (рис. 307).
Теорема 11. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то такие плоскости перпендикулярны.
Доказательство: Пусть через прямую 



Плоскости 





В плоскости 










Теорема 11 выражает признак перпендикулярности плоскостей.
Следствие. Плоскость, перпендикулярная линии пересечения двух данных плоскостей, перпендикулярна каждой из них (рис. 309).
Докажем теперь утверждение, обратное утверждению теоремы 11.
Теорема 12. Если через точку одной из перпендикулярных плоскостей провести прямую, перпендикулярную другой плоскости, то эта прямая принадлежит первой плоскости.
Доказательство: Пусть две перпендикулярные плоскости 






Через точку 
















Пример №21
Точка 



Решение:
Прямая 








Следствие. Если две пересекающиеся плоскости перпендикулярны третьей плоскости, то их линия пересечения перпендикулярна той же плоскости (рис. 312).
Пример №22
В правильной треугольной пирамиде 


Решение:
Пусть 



Из равенства треугольников 



Из прямоугольных треугольников 



Поэтому
Ответ:
В) При вычислениях бывает полезной теорема о трёх синусах.
Теорема 13. Линейный угол 


Доказательство: Пусть прямая 


















Следствие 1. Если точка 







Пример №23
Стороны 








Решение:
Пусть искомый угол равен 







Следствие 2. Пусть рёбра 




Пример №24
Плоскости правильных треугольника 


Решение:








Тогда по теореме Пифагора
Ответ:
Пример №25
Из точек 







Решение:
Пусть 















Тогда по теореме Пифагора
Из треугольника
Поэтому
Ответ:
Пространственное моделирование
Отдельным видом параллельного проектирования, применяемого в геометрии для изображения пространственных фигур, является ортогональное проектирование.
Ортогональной проекцией точки на плоскость 
Ортогональной проекцией фигуры на плоскость называется множество ортогональных проекций всех точек этой фигуры на плоскость.
Если 


«…Разум заключается не только в знаниях, но и в умении применять знания на деле…»
(Аристотель).
- Ортогональное проецирование
- Декартовы координаты на плоскости
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Теорема синусов и теорема косинусов
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости


































































































: известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом.
— сторона
.
: один катет известен по условию, второй — найден из
; неизвестной является третья сторона — гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка
.


от точки
равные отрезки
и
;
некоторую точку
, а на прямой
— точку
; соединим точки:
с
,
с
,
с
,
и
произвольную прямую
, которая пересечет
в точке
— медиана и высота;
по построению;
— общая сторона треугольников
и
; 
. Итак,
по двум сторонам и углу между ними. Отсюда
.
. Равенство отрезков
и
доказывается аналогично, как и равенство отрезков
и
.
, поскольку
и
-общая сторона. Отсюда вытекает равенство соответствующих углов:
.
по двум сторонам и углу между ними:
— общая сторона;
по доказательству выше. Итак,
, т.е.
— равнобедренный:
— основание треугольника,
— середина
, поэтому
— медиана
. В равнобедренном треугольнике медиана является высотой, т.е.
, а это означает, что
. Поскольку прямая
— произвольная прямая плоскости
, проходит через точку пересечения прямой
и плоскости
, перпендикулярна прямой
, то
.



лежит по одну сторону от плоскости
и не пересекает ее (рис. 5.21, а);
пересекает плоскость
(концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
лежит по одну сторону от плоскости
и точка
— конец отрезка — принадлежит плоскости
(рис. 5.21, в).














































































































































































































