Пределы числовых последовательностей
Содержание
Предел числовой последовательности
ОПРЕДЕЛЕНИЕ 1. Число a называют пределом числовой последовательности
a1 , a2 , … an , …
если для любого положительного числа ε найдется такое натуральное число N , что при всех n > N выполняется неравенство
| an – a | < ε .
Условие того, что число a является пределом числовой последовательности
a1 , a2 , … an , … ,
записывают с помощью обозначения
и произносят так: «Предел an при n , стремящемся к бесконечности, равен a ».
То же самое соотношение можно записать следующим образом:
an → a при .
Словами это произносится так: «an стремится к a при n , стремящемся к бесконечности».
ЗАМЕЧАНИЕ. Если для последовательности
a1 , a2 , … an , …
найдется такое число a , что an → a при , то эта последовательность ограничена.
ОПРЕДЕЛЕНИЕ 2. Говорят, что последовательность
a1 , a2 , … an , …
стремится к бесконечности, если для любого положительного числа C найдется такое натуральное число N , что при всех n > N выполняется неравенство
| an| > C .
Условие того, что числовая последовательность
a1 , a2 , … an , … ,
стремится к бесконечности, записывают с помощью обозначения
или с помощью обозначения
при
.
ПРИМЕР 1. Для любого числа k > 0 справедливо равенство
ПРИМЕР 2 . Для любого числа k > 0 справедливо равенство
ПРИМЕР 3. Для любого числа a такого, что | a | < 1, справедливо равенство
ПРИМЕР 4. Для любого числа a такого, что | a | > 1, справедливо равенство
ПРИМЕР 5 . Последовательность
– 1 , 1 , – 1 , 1 , … ,
заданная с помощью формулы общего члена
an = (– 1)n ,
предела не имеет.
Свойства пределов числовых последовательностей
Рассмотрим две последовательности
a1 , a2 , … an , … , и b1 , b2 , … bn , … .
Если при существуют такие числа a и b , что
и
,
то при существуют также и пределы суммы, разности и произведения этих последовательностей, причем
Если, кроме того, выполнено условие
то при существует предел дроби
причем
Для любой непрерывной функции f (x) справедливо равенство
Вывод формулы для суммы членов бесконечно убывающей геометрической прогрессии
Рассмотрим геометрическую прогрессию
b1 , b2 , … bn , … ,
знаменатель которой равен q .
Для суммы первых n членов геометрической прогрессии
Sn = b1 + b2 + … + bn , n = 1, 2, 3, …
справедлива формула
Если для суммы всех членов бесконечно убывающей геометрической прогрессии ввести обозначение
S = b1 + b2 + … + bn + … ,
то будет справедлива формула
В случае бесконечно убывающей геометрической прогрессии знаменатель q удовлетворяет неравенству
| q | < 1 ,
поэтому, воспользовавшись cвойствами пределов числовых последовательностей и результатом примера 3, получаем
Итак,
Примеры вычисления пределов последовательностей. Раскрытие неопределенностей
ОПРЕДЕЛЕНИЕ 3. Если при нахождении предела дроби выясняется, что и числитель дроби, и знаменатель дроби стремятся к , то вычисление такого предела называют раскрытием неопределенности типа
.
Часто неопределенность типа удается раскрыть, если и в числителе дроби, и в знаменателе дроби вынести за скобки «самое большое» слагаемое. Например, в случае, когда в числителе и в знаменателе дроби стоят многочлены, «самым большим» слагаемым будет член с наивысшей степенью.
ПРИМЕР 6. Найти предел последовательности
РЕШЕНИЕ. Сначала преобразуем выражение, стоящее под знаком предела, воспользовавшись свойствами степеней:
ОТВЕТ.
ПРИМЕР 7 . Найти предел последовательности
ОТВЕТ.
В следующих двух примерах показано, как можно раскрыть неопределенности типа.
ПРИМЕР 8 . Найти предел последовательности
РЕШЕНИЕ. Сначала преобразуем выражение, стоящее под знаком предела, приводя дроби к общему знаменателю:
Преобразуем дробь, вынося за скобки «самое большое» слагаемое в числителе дроби и «самое большое» слагаемое в каждой из скобок знаменателя дроби:
Теперь, используя cвойства пределов последовательностей и результат примера 1, получаем
ОТВЕТ.
ПРИМЕР 9. Найти предел последовательности
РЕШЕНИЕ. В рассматриваемом примере неопределенность типа возникает за счет разности двух корней, каждый из которых стремится к
. Для того, чтобы раскрыть неопределенность, умножим и разделим выражение, стоящее под знаком предела, на сумму этих корней и воспользуемся формулой сокращенного умножения «разность квадратов».
Из-за большого размера формул подробные вычисления видны только на устройствах с разрешением экрана по ширине не менее 768 пикселей (например, на стационарных компьютерах, ноутбуках и некоторых планшетах). На Вашем мобильном устройстве отображается только результат описанных операций.
Преобразуем дробь, вынося за скобки «самое большое» слагаемое в числителе дроби и «самое большое» слагаемое из-под каждого корня в знаменателе дроби, а затем сокращая дробь на n2:
Теперь, используя cвойства пределов последовательностей и результат примера 1, получаем
ОТВЕТ.
ПРИМЕР 10. Найти предел последовательности
РЕШЕНИЕ. Замечая, что для всех k = 2, 3, 4, … выполнено равенство

получаем
ОТВЕТ. 1 .
Число e. Второй замечательный предел
Рассмотрим последовательность
![]() |
(1) |
В дисциплине «Математический анализ», которую студенты естественнонаучных и технических направлений высших учебных заведений изучают на 1 курсе, доказывают, что последовательность (1) монотонно возрастает и ограничена сверху. Из теоремы Вейерштрасса о монотонных и ограниченных последовательностях, доказательство которой выходит за рамки школьного курса математики, вытекает, что последовательность (1) имеет конечный предел. Этот предел принято обозначать буквой e.
Таким образом, справедливо равенство
![]() |
(2) |
причем расчеты показывают, что число
e = 2,718281828459045…
и является иррациональным и трансцендентным числом.
Число e играет исключительно важную роль в естествознании и, в частности, служит основанием натуральных логарифмов и основанием показательной функции
y = e x,
которую называют «экспонента».
Число e также является пределом последовательности
|
|
(3) |
что позволяет вычислять число e с любой точностью. Конечно же, доказательство формулы (3) выходит за рамки школьного курса математики.
ЗАМЕЧАНИЕ. Предел (2), в котором для последовательностей раскрывается неопределенность типа , называют вторым замечательным пределом. В разделе нашего справочника «Пределы функций» можно ознакомиться со вторым замечательным пределом для функций.
Содержание:
Предел последовательности
С понятием последовательности вы ознакомились ещё в основной школе, когда изучали арифметическую и геометрическую прогрессии. Несколько последовательностей рассматривались. А именно:
1) бесконечная последовательность рациональных приближений числа
2) последовательность степеней с основанием 3, показателями которых являются рациональные приближения числа 
Числовой последовательностью называется функция 


Обозначают числовые последовательности
Числовые последовательности задают описательно, перечнем членов, либо с помощью формулы 
Например:
В курсе геометрии, чтобы вывести формулы длины окружности и площади круга, рассматривают последовательности вписанных в круг и описанных вокруг круга многоугольников. При этом отмечают, что при неограниченном увеличении числа сторон многоугольника его периметр всё ближе и ближе приближается к длине окружности (рис. 41).
Так получают первое интуитивное понятие предела числовой последовательности. В курсе математического анализа — это одно из важнейших понятий. Рассмотрим его подробнее.
Пусть задано числовую последовательность 
Как видим, с увеличением номера члена последовательности сами члены последовательности всё ближе и ближе приближаются к числу 1. Поскольку расстоянием между точками, которые соответствуют числам на координатной прямой, есть модуль разности этих чисел, то можно утверждать, что для данной последовательности
Очевидно, что при росте числа 
В данном случае для любого достаточно малого числа 

Например, в рассмотренной выше последовательности для 




В этом случае говорят, что число 1 является пределом заданной числовой последовательности.
Число 




Обозначают: 


Пример №503
Вычислите предел последовательности
Решение:
Запишем несколько членов заданной последовательности: 






Следовательно,
Докажите самостоятельно и запомните, что
Если числовая последовательность 
Рассмотрим свойства сходящихся последовательностей:
- Если последовательность имеет предел, то этот предел единственный.
- Предел постоянной последовательности равен значению любого члена этой последовательности, то есть
- Предел суммы (разности) двух сходящихся последовательностей равен сумме (разности) пределов этих последовательностей, то есть:
- Предел произведения двух сходящихся последовательностей равен произведению пределов этих последовательностей, т.е.
- Если последовательности
— сходящиеся,
то числовая последовательность выполняется равенство
тоже сходящаяся и выполняется равенство
Пример №504
Найдите предел последовательности
Решение:
Эту последовательность можно представить в виде суммы двух сходящихся последовательностей 
Для вычисления предела последовательности, которая задается как отношение двух многочленов 
Для того чтобы вычислить предел числовой последовательности, которая задаётся как отношение двух многочленов 


Пример №505
Вычислите
Решение:
Здесь 


Пример №506
Вычислите:
Решение:
Заметим, что здесь не происходит деление на ноль, поскольку знаменатель лишь стремится к нулю, но ему не равен.
Проанализируем полученные ответы. В примере 3 степень числителя меньше степени знаменателя. Это означает, что знаменатель стремится к бесконечности быстрее, чем числитель, а следовательно, предел их отношения будет равняться нулю. В примере 4, в задании а) степени числителя и знаменателя одинаковы и в результате получили отношение коэффициентов при старших степенях. В задании б) степень числителя больше степени знаменателя. Это означает, что числитель стремится к бесконечности быстрее, чем знаменатель, а потому предел их отношения равен бесконечности. Итак, имеем еще такое правило.
Для того чтобы вычислить предел числовой последовательности при 



Пример №507
Пользуясь определением предела числовой последовательности, докажите, что
Решение:
Нужно доказать, что существует такое 


Пусть 



Итак, пределом заданной последовательности является число 2.
Пример №508
Вычислите:
Решение:
а) Умножим и разделим выражение, стоящее под знаком предела, на сопряжённое.
б) Разделим числитель и знаменатель дроби на 
Предел числовой последовательности
Общее понятие функции. Числовые последовательности
Определение 2.1. Пусть X, Y —два произвольных множества. Функцией f с областью определения X и множеством значений из Y называется такое соответствие между X и Y, при котором любому 






Отмстим, что 
Пример 2.1. X — множество человек, присутствующих на лекции; Y = N. Функция у = f(x) определяется как год рождения х. Ясно, что 
Определение 2.2. Числовой последовательностью называется функция с областью определения N и множеством значений, принадлежащим 

Определение 2.3. Пусть 





Пример 2.2. Последовательность 












Лемма 2.1. Функция f ограничена на множество 

□ 








Следствие. Последовательность 

Подобные утверждения, формулировка которых содержит логический знак 




Определение и простейшие свойства предела последовательности
Определение 2.4. 
Обозначение: 
Определение 2.5 (геометрическое определение предела). Число а называется пределом последовательности 


Ясно, что вне 


Определение 2.5′. Число а называется пределом последовательности 



На языке кванторов это можно записать так:
Любая подобная запись, где квантор существования 


Напишем на языке кванторов отрицание последнего определения (число а не является пределом последовательности 
Здесь уже нельзя считать, что 
Пример 2.3.
□ Докажем требуемое равенство по определению предела. Нужно, чтобы 


По принципу Архимеда найдётся натуральное число 

Попробуем явно записать функциональную зависимость 

Ясно, что в качестве натурального числа 


Определение 2.6. Последовательность, имеющая предел, называется сходящейся. Последовательность, не имеющая предела, называется расходящейся.
Лемма 2.2. Сходящаяся последовательность имеет ровно один предел.
□ Пусть 
Зафиксируем 

По определению предела:
Тогда если 




Для доказательства большинства утверждений в теории пределов последовательностей достаточно представить себе геометрическую картинку (в данном случае рис. 2.3). После этого, как правило, уже несложно привести аккуратное доказательство.
Часто бывает удобно в качестве области определения последовательности рассматривать не всё множество N, а множество целых чисел, не меньших некоторого фиксированного целого числа 


В силу геометрического определения предела, сходимость последовательности и величина предела не зависят от конечного числа членов (конечное число членов можно выбросить, добавить, заменить — сходимость и величина предела не изменятся). При исследовании сходимости можно считать, что хп определена при 

Лемма 2.3. Если последовательность 



□ Вне отрезка [m, М] имеется не более конечного числа членов 





Лемма 2.4. Сходящаяся последовательность ограничена.
□ Пусть 



Обратное неверно. Ограниченная последовательность не обязана сходиться.
Пример 2.4. Рассмотрим последовательность 






□ Пусть 


Рассмотрим
Но одно из чисел 

Мы будем часто использовать обозначение sign [ (читается «сигнум», что по латыни означает «знак»). По определению
График функции у = sign ж изображён на рис. 2.4.
Лемма 2.5. Если 



если a > 0, то найдётся номер 

если a < 0, то найдётся номер 

□ Пусть a > 0. Рассмотрим в определении предела 



Отсюда моментально следует
Лемма 2.6 (о сохранении знака). Если 








Определение 2.7. Последовательность an называется бесконечно малой, если
Лемма 2.7. 

□ Пусть 

Отметим, что если 



Лемма 2.8. Сумма двух бесконечно малых последовательностей является бесконечно малой.
□ Пусть 
Тогда при 

т.е. 
Лемма 2.9. Произведение бесконечно малой последовательности на ограниченную является бесконечно малой.
□ Если последовательность 
Если 
Тогда при 


Следствие 1. Если 


□ Следует из того, что постоянная последовательность ограничена. ■
Следствие 2. Произведение двух бесконечно малых последовательностей является бесконечно малой.
□ Следует из того, что одну из этих последовательностей можно рассматривать просто как имеющую предел, следовательно, ограниченную. ■
Пример 2.5. 


Теорема 2.1 (об арифметических операциях с пределами). Пусть 
□ 
1)

2)


3)Так как 










Последовательность 








Следствия. В условиях теоремы 2.1
Теорема 2.2 (предельный переход в неравенстве).
Если 



□ Пусть a > b. Рассмотрим 


При 

Следствие. Если найдётся номер 



Замечание. Если 





Теорема 2.3. Если 



Тогда при всех 


В официальной литературе теорема 2.3 называется теоремой о трёх последовательностях или теоремой о зажатой переменной. Тем не менее на студенческом жаргоне и в различных внутривузовских изданиях она обычно называется «теоремой о двух милиционерах». В самом деле, если два представителя силовых структур 




Лемма 2.10. Если 
1) При 
2) Пусть 0 < q < 1. Тогда 


Так как 


3) Пусть -1 < q < 0. Тогда рассмотрим 



Доказанные утверждения позволяют вычислять некоторые простые пределы.
Пример 2.6
(и вообще, предел последовательности отношения двух многочленов от 
Пример 2.7
(здесь использована лемма 2.10).
Пример 2.8
Последовательность 



Аналогично примеру 2.6, 

Монотонные последовательности. Теорема Вейерштрасса
Определение 2.8. Последовательность 




Применяем обозначения: 




Теорема 2.4 (Вейерштрасса). Если последовательность 



Докажем первую часть теоремы; вторая доказывается аналогично. По теореме 1.5 последовательность 

Удобно обозначить
В силу возрастания последовательности, для всех 

Итак:
а отсюда следует, что 
Теорема Вейерштрасса — чистая теорема существования. Она не даст непосредственной возможности вычислять значение предела.
Пример 2.9. Рассмотрим последовательность
(символ 



поэтому
Последовательность 



Пример 2.10. Рассмотрим последовательность 


□ Напомним формулу бинома Ньютона:
—так называемые биномиальные коэффициенты. Напомним также, что n! (n факториал) — это произведение всех натуральных чисел от 



Имеем
Нетрудно заметить, что при
Поэтому так как при 


поэтому 
Иногда теорема Вейерштрасса позволяет установить сходимость последовательности, после чего, переходя к пределу в рекуррентном соотношении, можно вычислить значение предела.
Пример 2.11. Докажем, что если 
□ Если 

Пусть теперь а > 1. Тогда 







Мы уже видели, что последовательность 
Последовательность 




Теорема Кантора о вложенных отрезках
Если проанализировать изложенный выше материал, то можно заметить, что только три утверждения: теорема 1.4 Дедекинда, теорема 1.5 о точных верхней и нижней гранях и теорема 2.4 Вейерштрасса о пределе монотонной ограниченной последовательности — характерны именно для действительных чисел и выражают свойство их полноты (непрерывности). Все остальные утверждения имели бы место и во множестве рациональных чисел. Например, если 



Лемма 2.11. Пусть 
□Как известно, для любого п выполняется неравенство
Тогда
Значит, 

Приведём ещё одну очень важную теорему, выражающую свойство полноты действительных чисел.
Теорема 2.5 (Кантора о вложенных отрезках). Если 




□Так как для всех n
то для любых натуральных n и m выполняется неравенство 














Пусть теперь 
(мы учли, что







Если существует ещё одна точка 


Пример 2.12. 

Пример 2.13. 



Пример 2.14. Для последовательности вложенных интервалов теорема теряет силу. Пусть 
Бесконечно большие последовательности
Наряду с 

Определение 2.9. При
Определение 2.10. Говорят, что 
Говорят, что 
В последнем случае последовательность называется бесконечно большой.
В определении конечного предела по существу малые 

Очевидно, что если 




Пример 2.15.
□



Пример 2.16. 
Пример 2.17. 




Очевидно, что 




Лемма 2.12. Бесконечно большая последовательность является неограниченной.
□

Ясно, что бесконечно большая последовательность неограничена.
Обратное неверно. Неограниченная последовательность не обязана быть бесконечно большой.
Пример 2.18. Рассмотрим последовательность
Она неограничена, но не является бесконечно большой.
□Последовательность неограничена за счёт четных номеров. 




За счёт нечётных номеров последовательность не является бесконечно большой:
Это верно. Возьмём, например, Е = 1. Для любого номера 



Схема, изображённая на рис. 2.9, должна помочь разобраться в понятиях, связанных со сходимостью, ограниченностью и т.д., а также усвоить связь между этими понятиями.
Лемма 2.13. 1) Если последовательность 

2) Если последовательность 




□1)








2) Доказательство аналогично.
Лемму 2.13 символически можно записать так: 






Пример 2.19. Во всех случаях 
ограничена, но расходится.
Традиционно принято рассматривать 7 типов неопределённостей: 

Теоремы об арифметических действиях с пределами нельзя автоматически переносить на бесконечные символы. Если в каком-то случае такой перенос имеет место, то нужно доказать соответствующее утверждение.
Лемма 2.14. Если 


□Достаточно провести доказательство для случая, когда 





значит
Можно привести ещё немало символических записей с участием бесконечных символов, которые фактически применяются в различных рассуждениях. При этом нужно уметь аккуратно формулировать и доказывать возникающие утверждения (аналогично лемме 2.14). Например:
Лемма 2.15. 1) Если
2) если 
□1) Так как 



2)Доказательство аналогично.
Эта лемма является аналогом теоремы 2.3 для случая бесконечно больших последовательностей.
Пример 2.20.
□Так как 



Теорема 2.6 (аналог теоремы Вейерштрасса для неограниченных последовательностей). Если последовательность 


□Докажем первую часть теоремы, вторая доказывается аналогично. Так как 
(естественно, можно считать, что Е > 0, при Е 


Значит,
В отличие от теоремы Вейерштрасса 2.4 эта теорема имеет место и во множестве рациональных чисел, она не является характерной именно для действительных чисел.
Для неограниченной сверху последовательности мы считаем по определению, что 


Односторонние пределы
Введём символы а + 0 и а — 0 («а справа» и «а слева»), 

Определение 2.11. При
Определение 2.12. Говорят, что 
(т.е. 
Говорят, что 
(т.е. 
Ясно, что в обоих этих случаях 

Пример 2.21. 


Очевидно, что 

В дальнейшем под словами «6 стандартных предельных символов (СПС)» будем понимать
Частичные пределы. Теорема Больцано-Вейерштрасса
Определение 2.13. Пусть 



Определение 2.14. Число 


Пример 2.22. Рассмотрим последовательность 


Условие строгого возрастания последовательности 












Лемма 2.16. Если 

□По геометрическому определению предела, сохраняющемуся для любого СПС а, вне любой 



Следствие. Если 
Под частичными пределами можно понимать также символы 
Если 


Теорема 2.7 (критерий частичного предела). Пусть a — один из символов 



































Для 






Заметим, что если в любой 





В примере 2.22 других частичных пределов, кроме 1 и — 1, последовательность 



Пример 2.23. 



Пример 2.24. 




Пример 2.25. Пусть 
















Как мы знаем, ограниченная последовательность может расходиться, но при этом иметь частичные пределы (пример 2.22). Это не случайно, имеет место
Теорема 2.8 (Больцано-Вейерштрасса). Любая ограниченная последовательность имеет сходящуюся подпоследовательность (т.е. имеет конечный частичный предел).
□Пусть для всех 



















По теореме Кантора о вложенных отрезках существует единственная точка с, принадлежащая всем отрезкам 









Теорема 2.9 (аналог теоремы Больцано-Вейерштрасса для неограниченных последовательностей).
Если последовательность 



□Докажем первую часть теоремы: вторая доказывается аналогично. Зафиксируем Е > 0. Так как 








Итак, любая последовательность имеет частичный предел: ограниченная — конечный, неограниченная — равный 

Отмстим, что теорема Больцано-Вейерштрасса характерна именно для действительных чисел и выражает свойство их полноты (непрерывности). Её аналог — теорема 2.9 — выполняется и во множестве рациональных чисел.
Теорема 2.10 (о единственном частичном пределе). Пусть последовательность 

□Пусть для любого номера n выполняется неравенство 




Если это не так, то найдётся 




На 




Определение 2.15. Предельным множеством последовательности 

Определение 2.16. Верхним пределом последовательности 








Пример 2.26. Если 









Лемма 2.17. Для любой последовательности 



□Неравенство 









Неравенство 
Лемма 2.18. 1) Последовательность 


2) последовательность 


□Докажем первую часть леммы, вторая доказывается аналогично. Если 



Теорема 2.11. Пусть 

□Из леммы 2.18 следует, что последовательность 


Пример 2.27. Рассмотрим последовательность 






можно взять 


Далее при всех 





В нашем случае
Теорема 2.12. Верхний и нижний пределы числовой последовательности являются частичными пределами (таким образом, конечный верхний (нижний) предел является наибольшим (соответственно наименьшим) частичным пределом).
□ Пусть сначала 
Рассмотрим произвольное 

















Наконец, если 


Случай нижнего предела рассматривается аналогично. ■
Критерий Коши сходимости последовательности
Определение 2.17. Последовательность 





Теорема 2.13 (критерий Коши). Последовательность 



Тогда для любых 
значит, последовательность фундаментальна.



Зафиксируем 

Таким образом, последовательность 

По теореме Больцано-Вейерштрасса последовательность 



Но в 


Тогда (см. рис. 2.13) 
Полученное противоречие показывает единственность частичного предела. ■
На практике критерий Коши удобно использовать для доказательства расходимости последовательности.
Пример 2.28. Докажем, что последовательность 

□Отрицание определения фундаментальности звучит так:
В самом деле, рассмотрим 





Рассмотрим другую форму записи определения фундаментальности. Ясно, что можно считать 



Последовательность 
Последовательность 
Пример 2.29. 
□Имеем
Это выражение меньше 


Итак, 
Отмстим, что номер 

Пример 2.30. 
□Имеем
(в сумме р слагаемых, самое маленькое равно 

Итак, 
В качестве предостережения приведём неверное «доказательство» того, что эта последовательность сходится.
Имеем 
Отсюда нельзя сделать вывод о фундаментальности последовательности 




Пример 2.31. Если р — фиксированное натуральное число, 




Ответ: нет (рассмотреть последовательность из примера 2.30).
Доказательство 

- Заказать решение задач по высшей математике
Пределы числовых последовательностей
Определение 2.1. Пусть Х и Y – множества произвольной природы
и каждому элементу x 
y 
или f:X →Y , или 
областью определения (f )D функции f , D(f )=X, а множество

П р и м е р 2.1

Определение 2.2. Числовой последовательностью называется произвольная функция f : N →R. При этом числа 



П р и м е р 2.2

Определение 2.3. Число a называется пределом числовой последовательности





П р и м е р 2.3
Доказать, что
Доказательство
Пусть 
Пусть N – натуральное число, большее 

У п р а ж н е н и е 2.1.
Доказать, что
Геометрически равенство 




окрестность 
Например, для последовательности 
Определение 2.4. Последовательность 
если 
Теорема 2.1. (необходимый признак сходимости последовательности).
Если последовательность сходится, то она ограничена.
Доказательство
Из соотношений (2.1) следует, что все члены сходящейся последова-
тельности после номера N лежат в интервале
Определение 2.5. Последовательность 
Говорят, что бесконечно большая последовательность имеет предел 
Если все члены бесконечно большой последовательности, начиная с некоторого номера, становятся положительными, то есть 
Если все члены бесконечно большой последовательности, начиная с некоторого номера, становятся отрицательными, то есть

П р и м е р 2.4
Бесконечно большие последовательности не являются сходящимися и отличаются по своим свойствам от свойств сходящихся последовательностей.
Определение 2.6. Числовая последовательность называется возрастающей
(убывающей), если
Возрастающие (убывающие) последовательности называются строго монотонными.
Числовая последовательность называется неубывающей (невозрастающей), если
Неубывающие (невозрастающие) последовательности называются
монотонными.
Теорема 2.3. Пусть последовательности 

Доказательство
Докажем, например, формулу 
сходится, то она ограничена, то есть 


Так как последовательность 

Так как последовательность 

(считаем, что 0≠ b; если 0= b, то второго слагаемого в формуле (2.3) нет).
Пусть 

Определение 2.8. Пусть 



П р и м е р 2.7
П р и м е р 2.8
П р и м е р 2.9
П р и м е р 2.10
Теорема 2.4. а. Пусть последовательность 


б. Пусть последовательность 


П р и м е р 2.11
Определение 2.9. Последовательность 

Легко видеть, что число а в определении 2.9 единственно, поэтому
определения 2.3 и 2.9 эквивалентны.
Из определения 2.9 следует, что последовательность 
(не имеет предела), если 
——
Числовая последовательность и ее предел
Понятие числовой последовательности
Определение 2.1. Если каждому натуральному числу 

Числа 





Частным случаем последовательности являются арифметическая и геометрическая прогрессии.
Пример 2.1.
Определение 2.2. Последовательность называется ограниченной, если существуют такие числа 


При этом говорят, что число 

Определение 2.2′. Последовательность 

Заметим, что не всякая последовательность ограничена.
Пример 2.2. Последовательность 


Определение 2.3. Последовательность 
Пример 2.3. Последовательность 
Если изображать члены последовательности точками координатной прямой, то все члены ограниченной последовательности лежат на некотором отрезке. Для неограниченной последовательности вне любого отрезка найдутся члены этой последовательности.
Определение 2.4. Если из некоторого бесконечного подмножества членов последовательности 



Определение 2.5. Суммой, разностью, произведением, отношением последовательностей 


Произведением последовательности 

Бесконечно большие и бесконечно малые последовательности
Определение 2.6. Последовательность 


Заметим, что если последовательность бесконечно большая, то она является неограниченной, но не наоборот, т. е. неограниченная последовательность не обязательно будет ББП.
Определение 2.7. Последовательность 

Пример 2.4. 

Теорема 2.1. Если последовательность 





Доказательство.
Пусть 





т. е. для 


Аналогично доказывается вторая часть теоремы.
Свойства БМП
1. Алгебраическая сумма любого конечного числа БМП есть БМП.
2. Произведение любого конечного числа БМП есть БМП.
3. Произведение ограниченной последовательности на БМП есть БМП.
Следствие 2.1*. Произведение БМП иа число есть БМП.
Сходящиеся последовательности
Определение 2.8. Число 



Последовательность, имеющая предел, называется сходящейся, в противном случае — расходящейся.
Из (2.1) рассмотрим условие
Последние неравенства означают, что при 



Определение 2.8′. Число 






Пример 2.5. Доказать, что
Решение. Согласно условию, требуется доказать, что число «1» является пределом последовательности 



Из неравенства 







Поэтому для выполнения условия 

Теорема 2.2. Числовая последовательность 
где 
Доказательство.
Необходимость. Пусть 



Достаточность. Пусть 


Свойства сходящихся последовательностей
1. Сходящаяся последовательность имеет единственный предел.
2. Всякая подпоследовательность сходящейся последовательности сходится к тому же пределу.
3. Сходящаяся последовательность ограничена.
4. Если последовательность 




5. Пусть 
выполняется неравенство 
6. Пусть для последовательностей 


7. Если последовательности 


7.1.
7.2.
7.3.
7.4.
Таким образом, согласно свойству 7, арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами.
На основании свойства 2 можно получить условие расходимости последовательности.
Следствие 2.2*. Если из последовательности 





Пример 2.6. Доказать, что последовательность 
Решение. Выделим из исходной последовательности две подпоследовательности :
Так как 
Замечание 2.1. Обратное к свойству 3, вообще говоря, не верно, т. е. ограниченная последовательность может не быть сходящейся.
Определение 2.9. Последовательность 
— возрастающей, если
— неубывающей, если
— убывающей, если
— невозрастающей, если
Все указанные последовательности называются также монотонными, а возрастающая и убывающая последовательности — строго монотонными.
Теорема 2.3. Для того чтобы монотонная последовательность сходилась, необходимо и достаточно, чтобы она была ограниченной.
Доказательство.
Необходимость. Согласно свойству 3, всякая сходящаяся последовательность ограничена.
Достаточность. Пусть 


Рассмотрим числовое множество 








Таким образом, 


Аналогично доказывается случай монотонно невозрастающей последовательности.
Замечание 2.2. На основании данной теоремы можно доказать существование предела последовательности 
где 
Теорема 2.4* (Больцапо-Вейерштрасса). Из всякой ограниченной последовательности чисел можно выделить сходящуюся подпоследовательность.
Определение 2.10. Совокупность отрезков 

Система вложенных отрезков будет системой стягивающихся отрезков, если

Теорема 2.5 (Кантора). Всякая последовательность вложенных стягивающихся отрезков имеет единственную общую точку, принадлежащую всем отрезкам.
Доказательство.
Из (2.2) следует, что монотонные последовательности концов отрезков 

Тогда
Из теоремы 2.3 следует, что общей точкой, принадлежащей отрезкам 
Пример 2.7. Найти предел
Решение.
Ответ.
Пример 2.8. Найти предел
Решение.
Ответ. 0.
Пример 2.9. Найти предел
Решение.
Ответ: 
Пример 2.10. Найти предел
Решение.
Ответ:
—-
Предел последовательности и функция
Число 




Если числовая последовательность 
Число 







Если каждая из функций 


Сформулированные свойства правильны также для пределов последовательностей и для предела на бесконечности.

Функция 

Функция 
Точка, в которой функция не является непрерывной, называется точкой разрыва функции, а сама функция в этой точке называется разрывной.
Теорема (Больцано—Коши). Если функция 



Производной функции f(x) в точке 

- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве
- Квадратные корни
- Квадратные уравнения
- Неравенства
- Числовые последовательности
Как найти предел числовой последовательности
Числовая последовательность ${x_n}$ – это правило, по которому каждому натуральному числу $n = 1,2,3,…$ устанавливается соответствующее число $x_n$, называющееся энным членом. Далее будем считать, что имеются в виду только действительные числа. Введём понятие и запишем определение.
Пределом числовой последовательности ${x_n}$ называется число $a$, такое что для любого положительного $varepsilon$ существует натуральное $N = N(varepsilon)$, при котором для всех $n > N$ выполняется неравенство $$|x_n — a| < varepsilon .$$
Обозначается он в математическом виде $$lim limits_{nto infty} x_n = a. $$ Аналогичная короткая форма записи принимает вид $$x_n to a text{ при } n to infty. $$
Чтобы успешно вычислить предел последовательности нужно знать основные равенства:
- При $k > 0$ справедливо $limlimits_{n to infty} frac{1}{n^k} = 0$
- При $k > 0$ справедливо $limlimits_{n to infty} n^k = infty $
- При $|a|<1$ справедливо $limlimits_{n to infty} a^n = 0 $
- При $|a|>1$ справедливо $limlimits_{n to infty} a^n = infty $
- У последовательности $-1,1,-1,1,…$, заданной как $x_n = (-1)^n$ нет предела.
Так же потребуется выучить основные свойства пределов последовательности:
- Сумма $limlimits_{nto infty} (a_n+b_n) = limlimits_{nto infty} a_n + limlimits_{nto infty} b_n = a+b $
- Разность $limlimits_{nto infty} (a_n-b_n) = limlimits_{nto infty} a_n — limlimits_{nto infty} b_n = a-b $
- Произведение $limlimits_{nto infty} (a_n cdot b_n) = limlimits_{nto infty} a_n cdot limlimits_{nto infty} b_n = a cdot b $
- Частное $limlimits_{nto infty} frac{a_n}{b_n} = frac{limlimits_ {nto infty} a_n}{limlimits_{nto infty} b_n} = frac{a}{b} $, если $limlimits_{nto infty} b_n neq 0 $
- Непрерывная функция $limlimits_{nto infty} f(a_n) = f (limlimits_{nto infty} a_n) = f(a) $.
| Пример 1 |
| Найти предел последовательности $limlimits_{nto infty} frac{3^{n+2}+2^{2n+1}}{5+4^{n+2}}$. |
| Решение |
|
Подставляем бесконечность в дробь вместо $n$ и получаем неопределенность вида $frac{infty}{infty}$. Чтобы от неё избавиться нужно вынести из числителя и знаменателя член с наивысшей степенью. Но прежде воспользуемся свойствами степеней для упрощения выражений. $$limlimits_{nto infty} frac{3^{n+2}+2^{2n+1}}{5+4^{n+2}} = limlimits_{n to infty} frac{9 cdot 3^n + 2 cdot 4^n}{5+16 cdot 4^n} = $$ Видим, что самые большие слагаемые содержат $4^n$, поэтому именно их выносим за скобки, не забывая за соответствующие множители перед ними. $$ = limlimits_{n to infty} frac{2 cdot 4^n( frac{9}{2} cdot (frac{3}{4})^n + 1)}{16 cdot 4^n (frac{5}{16} cdot frac{1}{4^n} +1)} = $$ Воспользовавшись первым равенством из теории замечаем, что $(frac{3}{4})^n = 0$ и $frac{1}{4^n} = 0$ при $nto infty$. Не забываем сократить дробь на $4^n$ и получаем окончательный ответ. $$ = frac{2 cdot (0 + 1)}{16 cdot (0 + 1)} = frac{2}{16} = frac{1}{8}$$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
| Ответ |
| $$ limlimits_{nto infty} frac{3^{n+2}+2^{2n+1}}{5+4^{n+2}} = frac{1}{8} $$ |
| Пример 2 |
| Вычислить предел последовательности $limlimits_{nto infty} frac{(5-n)^2+(5+n)^2}{(5-n)^2-(5+n)^2} $. |
| Решение |
|
Выносим из каждой скобки $n$ не забывая про квадрат. А далее выполним сокращение числителя и знаменателя на $n^2$. $$limlimits_{nto infty} frac{(5-n)^2+(5+n)^2}{(5-n)^2-(5+n)^2} = limlimits_{nto infty} frac{n^2(frac{5}{n}-1)^2 + n^2(frac{5}{n}+1)^2}{n^2(frac{5}{n}-1)^2-n^2(frac{5}{n}+1)^2} = $$ $$ = limlimits_{nto infty} frac{(frac{5}{n}-1)^2 + (frac{5}{n}+1)^2}{(frac{5}{n}-1)^2-(frac{5}{n}+1)^2} = frac{(0-1)^2 + (0+1)^2}{(0-1)^2-(0+1)^2} = $$ Нули в скобках появились из-за первого правила, согласно которому $limlimits_{nto infty} frac{1}{n^k} = 0$ при $k>0$. $$ = frac{1+1}{1-1} = frac{2}{0} = infty $$ Обратим внимание на то, что число в числителе деленное на ноль в знаменателе даёт бесконечность. |
| Ответ |
| $$limlimits_{nto infty} frac{(5-n)^2+(5+n)^2}{(5-n)^2-(5+n)^2} = infty$$ |
| Пример 3 |
| Найти предел числовой последовательности $limlimits_{nto infty} sqrt{n^2+2n}-n$. |
| Решение |
|
Подставим бесконечность вместо $n$ и получим неопределенность. $$limlimits_{nto infty} sqrt{n^2+2n}-n = infty — infty $$ Для устранения такой неопределенности нужно избавиться от иррациональности, то есть от корней. Сделаем это с помощью умножения и одновременного деления на сопряженное выражение. Оно отличается только противоположным знаком. $$limlimits_{nto infty} sqrt{n^2+2n}-n = limlimits_{nto infty} frac{(sqrt{n^2+2n}-n)(sqrt{n^2+2n}+n)}{sqrt{n^2+2n}+n} = $$ Теперь благодаря формуле $a^2-b^2 = (a-b)(a+b)$ сворачиваем выражение в числителе. $$ = limlimits_{nto infty} frac{n^2 + 2n — n^2}{sqrt{n^2+2n}+n} = limlimits_{nto infty} frac{2n}{sqrt{n^2+2n}+n} = $$ Если в лоб подставим вместо $n$ бесконечность, то найти решение не получится. Вылезет неопределенность $frac{infty}{infty}$. Чтобы этого не допустить вынесем старшую степень из знаменателя и сократим на $n$. $$ = limlimits_{n to infty} frac{2n}{n(sqrt{1+frac{2}{n}}+1)} = frac{2}{sqrt{1+0}+1} = 1$$ |
| Ответ |
| $$ limlimits_{nto infty} sqrt{n^2+2n}-n = 1 $$ |
Теория пределов – раздел математического анализа. Наряду с системами линейных уравнений и диффурами пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.
В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Понятие предела в математике
Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции , так как именно с ними чаще всего сталкиваются студенты. Но сначала — самое общее определение предела:
Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.
Для определенной в некотором интервале функции f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.
Звучит громоздко, но записывается очень просто:
Lim — от английского limit — предел.
Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.
Приведем конкретный пример. Задача — найти предел.
Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:
Кстати, если Вас интересуют базовые операции над матрицами, читайте отдельную статью на эту тему.
В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:
Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.
Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х. Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность. Что делать в таких случаях? Прибегать к хитростям!
Неопределенности в пределах
Неопределенность вида бесконечность/бесконечность
Пусть есть предел:
Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?
Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:
Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Еще один вид неопределенностей: 0/0
В таких случаях рекомендуется раскладывать числитель и знаменатель на множители. Но давайте посмотрим на конкретный пример. Нужно вычислить предел:
Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:
Сократим и получим:
Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.
Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:
Правило Лопиталя в пределах
Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?
Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.
Наглядно правило Лопиталя выглядит так:
Важный момент: предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.
А теперь – реальный пример:
Налицо типичная неопределенность 0/0. Возьмем производные от числителя и знаменателя:
Вуаля, неопределенность устранена быстро и элегантно.
Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос «как решать пределы в высшей математике». Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.
С понятием последовательности вы ознакомились ещё в основной школе, когда изучали арифметическую и геометрическую прогрессии. Несколько последовательностей:
1) бесконечная последовательность рациональных приближений числа 
1,4; 1,41; 1,414; 1,4142; 1,41421;… ; (*)
2) последовательность степеней с основанием 3, показателями которых являются рациональные приближения числа 

Числовой последовательностью называется функция 



Обозначают числовые последовательности 
Например:

В курсе геометрии, чтобы вывести формулы длины окружности и площади круга, рассматривают последовательности вписанных в круг и описанных вокруг круга многоугольников. При этом отмечают, что при неограниченном увеличении числа сторон многоугольника его периметр всё ближе и ближе приближается к длине окружности (рис. 41).

Так получают первое интуитивное понятие предела числовой последовательности. В курсе математического анализа — это одно из важнейших понятий. Рассмотрим его подробнее.
Пусть задано числовую последовательность 

Как видим, с увеличением номера члена последовательности сами члены последовательности всё ближе и ближе приближаются к числу 1. Поскольку расстоянием между точками, которые соответствуют числам на координатной прямой, есть модуль разности этих чисел, то можно утверждать, что для данной последовательности
Очевидно, что при росте числа п члены заданной последовательности всё меньше и меньше будут отличаться от числа 1. Например: 
В данном случае для любого достаточно малого числа 

Например, в рассмотренной выше последовательности для 




В этом случае говорят, что число 1 является пределом заданной числовой последовательности.

Число А называют пределом числовой последовательности 


Обозначают: 

Пример №1
Вычислите предел последовательности 
Решение:
Запишем несколько членов заданной последовательности:




Следовательно, такое число существует. Например, при 


То есть, начиная с 100-го члена последовательности расстояние между любым членом последовательности и числом 1 будет меньше 0,01.
Следовательно, 
Докажите самостоятельно и запомните, что 
Если числовая последовательность 
Рассмотрим свойства сходящихся последовательностей.
- Если последовательность имеет предел, то этот предел единственный.
- Предел постоянной последовательности равен значению любого члена этой последовательности, то есть

3. Предел суммы (разности) двух сходящихся последовательностей равен сумме (разности) пределов этих последовательностей , то есть:

4. Предел произведения двух сходящихся последовательностей равен произведению пределов этих последовательностей , т.е.

5.Если последовательности 





Пример №2
Найдите предел последовательности 
Решение:
Эту последовательность можно представить в виде суммы двух сходящихся последовательностей 


Для вычисления предела последовательности, которая задается как отношение двух многочленов 
Для того чтобы вычислить предел числовой последователь кости, которая задаётся как отношение двух многочленов 
Пример №3
Вычислите 
Решение:
Здесь 





Пример №4
Вычислите:
a) 

Решение:
a)
б) 
Заметим, что здесь не происходит деление на ноль, поскольку знаменатель лишь стремится к нулю, но ему не равен.
Проанализируем полученные ответы. В примере 3 степень числителя меньше степени знаменателя. Это означает, что знаменатель стремится к бесконечности быстрее, чем числитель, а следовательно, предел их отношения будет равняться нулю. В примере 4, в задании а) степени числителя и знаменателя одинаковы и в результате получили отношение коэффициентов при старших степенях. В задании б) степень числителя больше степени знаменателя. Это означает, что числитель стремится к бесконечности быстрее, чем знаменатель, а потому предел их отношения равен бесконечности. Итак, имеем еще такое правило.
Для того чтобы вычислить предел числовой последовательности при 

1 )m = k, то предел равен отношению коэффициентов при старших степенях заданных многочленов;
2) m < k , то предел равен нулю;
3) m> k, то предел равен бесконечности.
Пример №5
Пользуясь определением предела числовой последовательности, докажите, что 
Решение:
Нужно доказать, что существует такое 



Пусть 





Итак, пределом заданной последовательности является число 2.
Пример №6
Вычислите: а) 

Решение:
а) Умножим и разделим выражение, стоящее под знаком предела, на сопряжённое.

б) Разделим числитель и знаменатель дроби на n. Имеем:

Предел и непрерывность функции

Часто говорят о значении функции в точке, пределе функции в точке, приращении функции в точке, непрерывности функции в точке. О каких точках идёт речь? О точках оси абсцисс — значениях аргумента.
Значение функции в точке
Пусть задано, например, функцию 

Предел функции в точке
Рассмотрим ту же функцию 

функции 
Другими словами: разность 



Существенная деталь: функция может иметь предел даже в такой точке, в которой она не определена, потому что знаменатель не может равняться нулю. Во всех остальных точках функция 






Хотя значение функции 
Определение предела функции можно сформулировать так.
Число b называется пределом функции f(x)в точке 





Пишут так:

Определение предела функции имеет простое геометрическое толкование: какое бы ни было достаточно малое наперёд за-данное положительное число (







Предел функции имеет интересные свойства. Например:
• функция не может иметь двух различных пределов в точке;
• если с — число, то 
Несколько свойств сформулируем в виде теоремы.
Теорема. Если каждая из функций f(x) и g(x) имеет предел в точке 


справедливы равенства:

Другими словами можно сказать так.
Постоянный множитель можно выносить за знак предела. Предел суммы (разности, произведения) функций равен сумме (разности, произведению) пределов данных функций. Предел отношения двух функций равен отношению их пределов, если предел делителя не равен нулю.
Эти свойства используют для вычисления пределов функций в заданных точках.
Пример №7
При условии, что 
а)
Решение:
a) 
б) 

Замечание. Решая такие упражнения, некоторые преобразования можно выполнять устно.
В предыдущих примерах для нахождения предела достаточно было подставить в данное выражение предельное значение аргумента. Но часто такая подстановка приводит к неопределённости вида 






Пример №8
Найдите 
Решение:
Поскольку при 

Чтобы её раскрыть, разложим числитель и знаменатель дроби на множители. Имеем:
Приращения аргумента и функции
Пусть дано, например, функцию 





Приращением аргумента в точке 



Приращение аргумента х обозначают символом 




Геометрически приращение аргумента изображается приращением абсциссы точки кривой, а приращение функции — приращением ординаты этой точки (рис. 47),
Свойства этих понятий показано на рисунках 47 и 48. Если функция f(x) — возрастающая и 




Непрерывность функции
Как связаны между собой приращения аргумента х и функции 








| Функция f(x) называется непрерывной в точке 
Иначе:
Преобразуем последнее равенство:

Поскольку 



Функция у =f(x) называется непрерывной в точке 

Использование последней формулы существенно упрощает вычисление пределов для непрерывных функций.
Функция называется непрерывной на промежутке, если она непрерывна в каждой его точке. График такой функции — непрерывная кривая (её можно провести, не отрывая карандаш от бумаги).
На рисунке 49 изображены графики функций, имеющих разрывы в точке х = 1; они не являются непрерывными в этой точке.
Непрерывными в каждой точке своей области определения есть элементарные функции — рациональные, тригонометрические, 

Теория пределов — большой и интересный раздел курса математического анализа, который изучается в университетах. В школе этот материал изучают обзорно, на основе наглядных представлений и интуиции. Представление о пределах и их свойствах желательно иметь для изучения производной и её применений — мощного аппарата для исследования многих реальных процессов.
Предлагаем вам ознакомиться с одним из интересных и важных фактов теории пределов. Рассмотрите таблицу, составленную с помощью Excel.
Как видим, при достаточно малых значениях 

В курсе математического анализа строго доказывается, что

Это равенство называется первым замечательным пределом. Его используют для нахождения пределов функций, связанных с тригонометрическими.
Пример №9
Вычислите предел 
Решение:

Пример №10
Решение:
а) В точке x = 3 предел каждой из дробей не существует, поэтому воспользоваться теоремами о пределах мы не можем. Упростим функцию, содержащуюся под знаком предела, выполнив действие вычитания. Имеем:
б) В тючке х = 1 данная функция не определена, но дробь 


Поскольку для вычисления предела при 


в) Умножим числитель и знаменатель дроби на выражения, сопряжённые к данным.

Пример №11
Найдите приращение функции 
Решение:
Способ 1. Имеем 


До этой формуле можно вычислить значение 




Способ 2. 


Пример №12
Для функции 
а) приращение функции при переходе от некоторой точки х к точке х + 
б) предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю.
Решение:
a) 


б) 


Вычисление пределов, производная функции, исследование функций
Пример №13
Вычислить предел 
Решение:

Таблица производных основных элементарных функций

Правила дифференцирования

Пример №14
Вычислить производную функции у(х), заданной в неявной форме 
Решение:
В случае неявного задания функции F(x,y) = 0 для нахождения ее производной нужно:
1) вычислить производную по переменной х функции F(x, у(х)),
2) приравнять эту производную нулю,
3) решить полученное уравнение относительно у'(х). В нашем случае получаем 

Отсюда получим, что 

Пример №15
Провести исследование функции
Решение:
1. Функция определена и непрерывна всюду, кроме точки х=1. Она равна нулю в точке х = 0.
2. Вычислим первую производную данной функции: 
3. Нахождение интервалов монотонности и точек экстремума функции.
Приравнивая первую производную функции нулю, находим ее критические точки (с учетом тех точек, где производная не существует): 












4. Найдем промежутки выпуклости и точки перегиба графика функции. Для этого исследуем знак второй производной:

Так как у»>0 при 








Точка х = 1 не задает точку перегиба, поскольку она не входит в область определения функции.
5. Найдем асимптоты графика.
Вертикальной асимптотой является прямая х= 1, поскольку

Найдем наклонные асимптоты графика функции 
Уравнение наклонной асимптоты имеет вид 

В результате получаем, что наклонной асимптотой является прямая у = х. Исследование функции закончено.

Эта лекция взята с главной страницы на которой находится курс лекций с теорией и примерами решения по всем разделам высшей математики:
Предмет высшая математика
Другие лекции по высшей математике, возможно вам пригодятся:
















































— сходящиеся, 
то числовая последовательность выполняется равенство
тоже сходящаяся и выполняется равенство



















































































































































































































































































































































































































