14
Янв 2014
АЛГЕБРАИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ
Выделение полного квадрата под корнем
Часто в процессе преобразований или решения уравнений встречаются выражения, содержащие корень под знаком квадратного корня. В большинстве случаев эти выражения можно упростить, выделив полный квадрат под корнем.
Посмотрим, как это делается.
Найти значение выражения:
Упростим первое слагаемое. Предположим, мы можем представить выражение 

Если слагаемое 

Разделим второе уравнение на 2:
То есть произведение чисел 

Выражение 

или

Проверим, в каком случае

Следовательно,
Внимание! Помним, что квадратный корень из квадрата выражения равен модулю этого выражения.

Упростим второе слагаемое.
Представим подкоренное выражение в виде квадрата разности.
Получим систему:
Разделим второе уравнение на 2:
То есть произведение чисел 

Выражение 

или

Проверим, в каком случае



Следовательно, 

Итак, после упрощения корней мы получили равенство:
Ответ: 3

Факт 1.
(bullet) Возьмем некоторое неотрицательное число (a) (то есть (ageqslant 0)). Тогда (арифметическим) квадратным корнем из числа (a) называется такое неотрицательное число (b), при возведении которого в квадрат мы получим число (a): [sqrt a=bquad text{то же самое, что }quad a=b^2] Из определения следует, что (ageqslant 0, bgeqslant 0). Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть (100^2=10000geqslant 0) и ((-100)^2=10000geqslant 0).
(bullet) Чему равен (sqrt{25})? Мы знаем, что (5^2=25) и ((-5)^2=25). Так как по определению мы должны найти неотрицательное число, то (-5) не подходит, следовательно, (sqrt{25}=5) (так как (25=5^2)).
Нахождение значения (sqrt a) называется извлечением квадратного корня из числа (a), а число (a) называется подкоренным выражением.
(bullet) Исходя из определения, выражения (sqrt{-25}), (sqrt{-4}) и т.п. не имеют смысла.
Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от (1) до (20): [begin{array}{|ll|}
hline
1^2=1 & quad11^2=121 \
2^2=4 & quad12^2=144\
3^2=9 & quad13^2=169\
4^2=16 & quad14^2=196\
5^2=25 & quad15^2=225\
6^2=36 & quad16^2=256\
7^2=49 & quad17^2=289\
8^2=64 & quad18^2=324\
9^2=81 & quad19^2=361\
10^2=100& quad20^2=400\
hline end{array}]
Факт 3.
Какие действия можно выполнять с квадратными корнями?
(bullet) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть [sqrt apmsqrt bne sqrt{apm b}] Таким образом, если вам нужно вычислить, например, (sqrt{25}+sqrt{49}), то первоначально вы должны найти значения (sqrt{25}) и (sqrt{49}), а затем их сложить. Следовательно, [sqrt{25}+sqrt{49}=5+7=12] Если значения (sqrt a) или (sqrt b) при сложении (sqrt
a+sqrt b) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме (sqrt
2+ sqrt {49}) мы можем найти (sqrt{49}) – это (7), а вот (sqrt
2) никак преобразовать нельзя, поэтому (sqrt 2+sqrt{49}=sqrt
2+7). Дальше это выражение, к сожалению, упростить никак нельзя
(bullet) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть [sqrt acdot sqrt b=sqrt{ab}quad text{и}quad
sqrt a:sqrt b=sqrt{a:b}] (при условии, что обе части равенств имеют смысл)
Пример: (sqrt{32}cdot sqrt 2=sqrt{32cdot
2}=sqrt{64}=8);
(sqrt{768}:sqrt3=sqrt{768:3}=sqrt{256}=16);
(sqrt{(-25)cdot (-64)}=sqrt{25cdot 64}=sqrt{25}cdot sqrt{64}=
5cdot 8=40).
(bullet) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем (sqrt{44100}). Так как (44100:100=441), то (44100=100cdot 441). По признаку делимости число (441) делится на (9) (так как сумма его цифр равна 9 и делится на 9), следовательно, (441:9=49), то есть (441=9cdot 49).
Таким образом, мы получили: [sqrt{44100}=sqrt{9cdot 49cdot 100}=
sqrt9cdot sqrt{49}cdot sqrt{100}=3cdot 7cdot 10=210] Рассмотрим еще один пример: [sqrt{dfrac{32cdot 294}{27}}=
sqrt{dfrac{16cdot 2cdot 3cdot 49cdot 2}{9cdot 3}}= sqrt{
dfrac{16cdot4cdot49}{9}}=dfrac{sqrt{16}cdot sqrt4 cdot
sqrt{49}}{sqrt9}=dfrac{4cdot 2cdot 7}3=dfrac{56}3]
(bullet) Покажем, как вносить числа под знак квадратного корня на примере выражения (5sqrt2) (сокращенная запись от выражения (5cdot
sqrt2)). Так как (5=sqrt{25}), то [5sqrt2=sqrt{25}cdot sqrt2=sqrt{25cdot 2}=sqrt{50}] Заметим также, что, например,
1) (sqrt2+3sqrt2=4sqrt2),
2) (5sqrt3-sqrt3=4sqrt3)
3) (sqrt a+sqrt a=2sqrt a).
Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число (sqrt2) мы не можем. Представим, что (sqrt2) – это некоторое число (a). Соответственно, выражение (sqrt2+3sqrt2) есть не что иное, как (a+3a) (одно число (a) плюс еще три таких же числа (a)). А мы знаем, что это равно четырем таким числам (a), то есть (4sqrt2).
Факт 4.
(bullet) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака (sqrt {} ) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа (16) можно, потому что (16=4^2), поэтому (sqrt{16}=4). А вот извлечь корень из числа (3), то есть найти (sqrt3), нельзя, потому что нет такого числа, которое в квадрате даст (3).
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа (sqrt3, 1+sqrt2, sqrt{15}) и т.п. являются иррациональными.
Также иррациональными являются числа (pi) (число “пи”, приблизительно равное (3,14)), (e) (это число называют числом Эйлера, приблизительно оно равно (2,7)) и т.д.
(bullet) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой (mathbb{R}).
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.
Факт 5.
(bullet) Модуль вещественного числа (a) – это неотрицательное число (|a|), равное расстоянию от точки (a) до (0) на вещественной прямой. Например, (|3|) и (|-3|) равны 3, так как расстояния от точек (3) и (-3) до (0) одинаковы и равны (3).
(bullet) Если (a) – неотрицательное число, то (|a|=a).
Пример: (|5|=5); (qquad |sqrt2|=sqrt2).
(bullet) Если (a) – отрицательное число, то (|a|=-a).
Пример: (|-5|=-(-5)=5); (qquad |-sqrt3|=-(-sqrt3)=sqrt3).
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число (0), модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная (x) (или какая-то другая неизвестная), например, (|x|), про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: (|x|).
(bullet) Имеют место следующие формулы: [{large{sqrt{a^2}=|a|}}] [{large{(sqrt{a})^2=a}},
text{ при условии } ageqslant 0] Очень часто допускается такая ошибка: говорят, что (sqrt{a^2}) и ((sqrt a)^2) – одно и то же. Это верно только в том случае, когда (a) – положительное число или ноль. А вот если (a) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо (a) число (-1). Тогда (sqrt{(-1)^2}=sqrt{1}=1), а вот выражение ((sqrt {-1})^2) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что (sqrt{a^2}) не равен ((sqrt a)^2)!
Пример: 1) (sqrt{left(-sqrt2right)^2}=|-sqrt2|=sqrt2), т.к. (-sqrt2<0);
(phantom{00000}) 2) ((sqrt{2})^2=2).
(bullet) Так как (sqrt{a^2}=|a|), то [sqrt{a^{2n}}=|a^n|] (выражение (2n) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) (sqrt{4^6}=|4^3|=4^3=64)
2) (sqrt{(-25)^2}=|-25|=25) (заметим, что если модуль не поставить, то получится, что корень из числа равен (-25); но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) (sqrt{x^{16}}=|x^8|=x^8) (так как любое число в четной степени неотрицательно)
Факт 6.
Как сравнить два квадратных корня?
(bullet) Для квадратных корней верно: если (sqrt a<sqrt b), то (a<b); если (sqrt a=sqrt b), то (a=b).
Пример:
1) сравним (sqrt{50}) и (6sqrt2). Для начала преобразуем второе выражение в (sqrt{36}cdot sqrt2=sqrt{36cdot 2}=sqrt{72}). Таким образом, так как (50<72), то и (sqrt{50}<sqrt{72}). Следовательно, (sqrt{50}<6sqrt2).
2) Между какими целыми числами находится (sqrt{50})?
Так как (sqrt{49}=7), (sqrt{64}=8), а (49<50<64), то (7<sqrt{50}<8), то есть число (sqrt{50}) находится между числами (7) и (8).
3) Сравним (sqrt 2-1) и (0,5). Предположим, что (sqrt2-1>0,5): [begin{aligned}
&sqrt 2-1>0,5 big| +1quad text{(прибавим единицу к обеим
частям)}\[1ex]
&sqrt2>0,5+1 big| ^2 quadtext{(возведем обе части в
квадрат)}\[1ex]
&2>1,5^2\
&2>2,25 end{aligned}] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и (sqrt 2-1<0,5).
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве (-3<sqrt2) нельзя (убедитесь в этом сами)!
(bullet) Следует запомнить, что [begin{aligned}
&sqrt 2approx 1,4\[1ex]
&sqrt 3approx 1,7 end{aligned}] Знание приблизительного значения данных чисел поможет вам при сравнении чисел!
(bullet) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем (sqrt{28224}). Мы знаем, что (100^2=10,000), (200^2=40,000) и т.д. Заметим, что (28224) находится между (10,000) и (40,000). Следовательно, (sqrt{28224}) находится между (100) и (200).
Теперь определим, между какими “десятками” находится наше число (то есть, например, между (120) и (130)). Также из таблицы квадратов знаем, что (11^2=121), (12^2=144) и т.д., тогда (110^2=12100), (120^2=14400), (130^2=16900), (140^2=19600), (150^2=22500), (160^2=25600), (170^2=28900). Таким образом, мы видим, что (28224) находится между (160^2) и (170^2). Следовательно, число (sqrt{28224}) находится между (160) и (170).
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце (4)? Это (2^2) и (8^2). Следовательно, (sqrt{28224}) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем (162^2) и (168^2):
(162^2=162cdot 162=26224)
(168^2=168cdot 168=28224).
Следовательно, (sqrt{28224}=168). Вуаля!
Содержание:
Квадратные корни
Уравнение х2 = 9 имеет два решения: 3 и -3. Говорят, что 3 и -3 — квадратные корни из числа 9.
Квадратным корнем из числа а называют число, I квадрат которого равен а.
Примеры:
Квадратными корнями из числа:
- а) 1600 являются 40 и — 40, поскольку 402 = 1600 и (-40)2 = 1600;
- б) 0,49 являются 0,7 и 0,7, поскольку 0,72 = 0,49 и (-0,7)2 = 0,49.
Среди известных вам чисел нет такого, квадрат которого был бы равен отрицательному числу, поэтому квадратного корня из отрицательного числа не существует.
Квадратный корень из числа 0 равен нулю. Квадратный корень из положительного числа имеет два значения: одно из них положительное, другое — противоположное ему отрицательное число.
Неотрицательное значение квадратного корня называют арифметическим значением этого корня.
Арифметическое значение квадратного корня из числа a обозначают символом
Примечание. Символом 
Вычисление арифметического значения квадратного корня называют извлечением квадратного корня.
Из небольших чисел, являющихся точными квадратами чисел, извлекать квадратные корни желательно устно.
| а | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 |
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Квадратные корни из больших натуральных чисел можно находить, пользуясь таблицей квадратов.
Например, 

С помощью калькулятора можно извлекать квадратные корни с большей точностью. Например, чтобы извлечь квадратный корень из 1000, набираем это число, затем нажимаем клавишу 
Следовательно, 
Если таким способом найти значение 

Хотите знать ещё больше?
Извлекать квадратные корни из натуральных чисел вавилонские учёные умели ещё 4 тыс. лет тому назад Они составили таблицу квадратов многих натуральных чисел и, пользуясь ею, находили квадратные корни. Если число m не было точным квадратом натурального числа, то они искали ближайшее приближённое значение а квадратного корня из m, представляли число m в виде m = а2 + b и применяли правило, которое сейчас можно записать в виде формулы 

Проверка. 10,42 = 108,16.
Это правило извлечения квадратных корней было известно и учёным Древней Греции.
Известны и другие алгоритмы извлечения квадратных корней, но теперь это удобнее делать с помощью калькулятора.
Квадратный корень из произведения, дроби, степени
Арифметический корень из а — неотрицательное значение квадратного корня из неотрицательного числа а. Поэтому для любого неотрицательного числа а выполняется тождество 
Примеры:
Верны и такие тождества:
— для неотрицательных значений а и b;
— для неотрицательного а и положительного b;
— для неотрицательного а и натурального к.
Докажем эти тождества:
1. Если а и b — произвольные неотрицательные числа, то числа 
Следовательно, 
2. Если 


Следовательно, 

3. Если число а — неотрицательное, a k — натуральное, то числа 



Доказанные три теоремы кратко можно сформулировать так.
- Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел (теорема о корне из произведения).
- Корень из дроби, числитель которой неотрицательный, а знаменатель положительный, равен корню из числителя, делённому на корень из знаменателя (теорема о корне из дроби).
- Корень из степени a , в котором числа а — неотрицательное и k — натуральное, равен ст (теорема о корне из степени)
Примечание. Здесь под «корнем» понимают только квадратный арифметический корень.
Теорему о корне из произведения можно распространить на три множителя и более. Действительно, если числа а, b и с — неотрицательные, то 

Из теоремы о корне из степени следует, что 



Равенство 

Примеры:
Хотите знать ещё больше?
В сформулированных выше теоремах представлены только простейшие случаи преобразования арифметических значений квадратных корней: если все числа под корнями положительные или неотрицательные Но бывают и такие выражения, в которых под знаком корня — произведение либо частное двух отрицательных чисел. В этом случае можно использовать определения квадратного корня, арифметического значения квадратного корня и т. д.
Например, 

Из теоремы 3 несложно получить такое следствие.
Если натуральное число 
Ведь обе части этого равенства — числа неотрицательные, их квадраты — равны.
Выполним вместе!
Пример:
Найдите значение выражения: а) 



Решение:
О т в е т. а) 35; б) 1,2; в) 6; г)
Преобразование выражений с корнями
Выражения с квадратными корнями можно складывать, вычитать, умножать, возводить в степень и делить (на делитель, отличный от нуля).
Примеры:
Рассмотрим и другие преобразования выражений с корнями.
Подобное преобразование называют вынесением множителя за знак корня. В последнем примере за знак корня вынесен множитель 10.
Преобразование, обратное вынесению множителя за знак корня, называют внесением множителя под знак корня.
В атом примере под знак корня вносим множитель 0,3. Рассмотренные преобразования осуществляются на основании теоремы о корне из произведения.
Если знак корня находится в знаменателе дроби, то такую дробь можно заменить тождественной, знаменатель которой не имеет корней. Достаточно умножить члены дроби на соответствующее выражение. Например,
Такие преобразования называют освобождением дроби от иррациональности в знаменателе.
Эти преобразования можно выполнять также с выражениями, содержащими переменные. Например,
Примечание. При вынесении переменной за знак корня необходимо помнить, что равенство 



Пример:
Вынесите множитель за знак корня: a)
Решение:
а) 



При внесении переменной под знак корня следует помнить, что под корень можно вносить лишь положительные числа.
Пример:
Внесите множитель под знак корня: а) 
Решение:
а) 



Используя словосочетание «выражения с корнями», в этой главе мы будем говорить только о «выражениях с арифметическими квадратными корнями». Но в математике выражения с корнями имеют более широкий смысл поскольку корни бывают не только квадратные, но и кубические четвёртой, пятой …. n-й степеней. Корни из числа а таких степеней обозначают символами:
Выражения, содержащие любые из таких корней, называют выражениями с корнями, или иррациональными выражениями. Выражения с арифметическими квадратными корнями — это только часть иррациональных выражений (рис 45) .
Рис. 45 Раньше знаки корней 

Выполним вместе!
Пример:
Упростите выражение: а) 


Решение:
a) 

в) 

Пример:
Разложите на множители выражение: a) 


Решение:
а) 


Ответ, a) 


Пример:
Освободитесь от иррациональности в знаменателе дроби:
а) 

Решение:
а) 
Ответ. а)

ИСТОРИЧЕСКИЕ СВЕДЕНИЯ
Квадратные корни из чисел вавилонские математики умели вычислять ещё 4 тыс. лет тому назад. Находили даже приближённые значения квадратных корней, пользуясь правилом, которое теперь можно записать (при небольших значениях с) в виде приближённого равенства:







ОСНОВНОЕ В ГЛАВЕ
Квадратным корнем из числа а называют число, квадрат которого равен а. Например, число 16 имеет два квадратных корня: 4 и -4. Неотрицательное значение квадратного корня из числа а называют арифметическим значением корня я обозначают символом 
Для любого действительного 






Квадратные корни. Арифметический квадратный корень
Рассмотрим квадрат, площадь которого равна 49 квадратным единицам. Пусть длина его стороны составляет 

Корнями этого уравнения являются числа 7 и —7. Говорят, что числа 7 и —7 являются квадратными корнями из числа 49.
Определение: Квадратным корнем из числа 
Приведем несколько примеров.
Квадратными корнями из числа 9 являются числа 3 и —3. Действительно,
Квадратными корнями из числа 

Действительно,
Квадратным корнем из числа 0 является только число 0. Действительно, существует лишь одно число, квадрат которого равен нулю, — это число 0.
Поскольку не существует числа, квадрат которого равен отрицательному числу, то квадратного корня из отрицательного числа не существует.
Положительный корень уравнения 
Определение: Арифметическим квадратным корнем из числа 

Арифметический квадратный корень из числа 


Запись 

Выражение, стоящее под радикалом, называют подкоренным выражением. Например, в записи 

Действие нахождения арифметического квадратного корня из числа называют извлечением квадратного корня.
Рассмотрим несколько примеров:






Вообще, равенство 

Этот вывод можно представить в другой форме: для любого неотрицательного числа 

Например, 



Подчеркнем, что к понятию квадратного корня мы пришли, решая уравнение вида 

Поиск корней уравнения 
В одной системе координат построим графики функций 

Уравнение 




При 




Графический метод также позволяет сделать следующий вывод: если 







Например, уравнение 

Пример:
Найдите значение выражения
Решение:
Применив правило возведения произведения в степень и тождество 
Пример:
Решите уравнение:
Решение:
1) Имеем: 
Ответ: 36.
2)
Ответ: 7.
Пример:
Решите уравнение
Решение:



Ответ: 1; 9. ▲
Пример:
Решите уравнение
Решение:



Ответ:
Пример:
При каких значениях 
Решение:
1) Выражение 


Ответ: при
2) Данное выражение имеет смысл, если выполняются два условия: имеет смысл выражение 




Ответ: при 
Пример:
Решите уравнение:
Решение:
1) Левая часть данного уравнения имеет смысл, если подкоренные выражения 





Ответ: корней нет.
2) Левая часть данного уравнения является суммой двух слагаемых, каждое из которых может принимать только неотрицательные значения. Тогда их сумма будет равна нулю, если каждое из слагаемых равно нулю. Следовательно, одновременно должны выполняться два условия: 

Имеем,
Решением последней системы, а значит, и исходного уравнения, является число 2.
Ответ: 2.
3) Используя условие равенства произведения нулю, получаем:



Однако при 

Ответ: 2.
Свойства арифметического квадратного корня
Легко проверить, что 




Вообще, справедлива следующая теорема.
Теорема: Для любого действительного числа а выполняется равенство
Доказательство: Для того чтобы доказать равенство 

Имеем: 
Также из определения модуля следует, что
Следующая теорема обобщает доказанный факт.
Теорема: (арифметический квадратный корень из степени). Для любого действительного числа 

Доказательство этой теоремы аналогично доказательству теоремы 15.1. Проведите это доказательство самостоятельно.
Теорема: (арифметический квадратный корень из произведения). Для любых действительных чисел 



Доказательство: Имеем: 


Следовательно, выражение 
Эту теорему можно обобщить для произведения трех и более множителей. Например, если 

Теорема: (арифметический квадратный корень из дроби). Для любых действительных чисел 



Доказательство этой теоремы аналогично доказательству теоремы 15.3. Проведите это доказательство самостоятельно.
Понятно, что из двух квадратов с площадями 






Пример:
Найдите значение выражения:
Решение:
Пример:
Найдите значение выражения:
Решение:
1) Заменив произведение корней корнем из произведения, получим:
2) Заменив частное корней корнем из частного (дроби), получим:
Пример:
Упростите выражение: 

Решение:
1) По теореме об арифметическом квадратном корне из степени имеем:
2) Имеем: 


3) Имеем: 




4) Имеем: 

Пример:
Найдите значение выражения:
Решение:
1) Преобразовав подкоренное выражение по формуле разности квадратов, получаем:
Пример:
Постройте график функции
Решение:
Поскольку 
Если 
Если 
Следовательно,
График функции изображен на рисунке 28.
Тождественные преобразования выражений, содержащих квадратные корни
Пользуясь теоремой об арифметическом квадратном корне из произведения, преобразуем выражение 



Такое преобразование называют внесением множителя под знак корня. В данном случае был внесен под знак корня множитель 4.
Пример:
Вынесите множитель из-под знака корня:

Решение:
1) Представим число, стоящее под знаком корня, в виде произведения двух чисел, одно из которых является квадратом рационального числа:
2)
3) Поскольку подкоренное выражение должно быть неотрицательным, то из условия следует, что 
4) Из условия следует, что 
5) Из условия следует, что 

Пример:
Внесите множитель под знак корня:
Решение:
2) Если 


3) Из условия следует, что 
4) Из условия следует, что 
Пример:
Упростите выражение:
Решение:
1) Имеем:
2)
3) Применяя формулы сокращенного умножения (квадрат двучлена и произведение разности и суммы двух выражений), получим:
Пример:
Разложите на множители выражение:

Решение:
1) Представив данное выражение в виде разности квадратов, получим:
2) Поскольку по условию 
3) Применим формулу квадрата разности:
4) Имеем:
5)
6)
Пример:
Сократите дробь:
если
Решение:
1) Разложив числитель данной дроби на множители, получаем:
2)
3) Поскольку по условию 

Освободиться от иррациональности в знаменателе дроби означает преобразовать дробь так, чтобы ее знаменатель не содержал квадратного корня.
Пример:
Освободитесь от иррациональности в знаменателе дроби:
Решение:
1) Умножив числитель и знаменатель данной дроби на 
2) Умножив числитель и знаменатель данной дроби на выражение 
Пример:
Докажите тождество
Решение:
Пример:
Упростите выражение
Решение:
Представив подкоренное выражение в виде квадрата суммы, получаем:
Растут ли в огороде радикалы?
В Древней Греции действие извлечения корня отождествляли с поиском стороны квадрата по его площади, а сам квадратный корень называли «стороной».
В Древней Индии слово «мула» означало «начало», «основание», «корень дерева». Это же слово стали употреблять и по отношению к стороне квадрата, возможно, исходя из такой ассоциации: из стороны квадрата, как из корня, вырастает сам квадрат. Вероятно, поэтому в латинском языке понятия «сторона» и «корень» выражаются одним и тем же словом — radix. От этого слова произошел термин «радикал».
Слово radix можно также перевести как «редис», то есть корнеплод — часть растения — видоизмененный корень, который может являться съедобным.
В XIII-XV вв. европейские математики, сокращая слово radix, обозначали квадратный корень знаками 


В XVI в. стали использовать знак 
В XVII в. выдающийся французский математик Рене Декарт, соединив знак 

Множество и его элементы. Подмножество
Мы часто говорим: стадо баранов, букет цветов, коллекция марок, косяк рыб, стая птиц, рой пчел, собрание картин, набор ручек, компания друзей.
Если в этих парах перемешать первые слова, то может получиться смешно: букет баранов, косяк картин, стадо друзей. В то же время такие словосочетания, как коллекция рыб, коллекция птиц, коллекция картин, коллекция ручек и т. д., вполне приемлемы. Дело в том, что слово «коллекция» достаточно универсальное. Однако в математике есть термин, которым можно заменить любое из первых слов в данных парах. Это слово множество.
Приведем еще несколько примеров множеств:
Отдельным важнейшим множествам присвоены общепринятые названия и обозначения:
Как правило, множества обозначают прописными буквами латинского алфавита: 
Объекты, составляющие данное множество, называют элементами этого множества. Обычно элементы обозначают строчными буквами латинского алфавита: 
Если 









Если множество 

Если 

Задавать множество с помощью фигурных скобок, в которых указан список его элементов, удобно в тех случаях, когда множество состоит из небольшого количества элементов.
Определение: Два множества 




Если множества 

Из определения следует, что множество однозначно определяется своими элементами. Если множество записано с помощью фигурных скобок, то порядок, в котором выписаны его элементы, не имеет значения. Так, для множества, состоящего из трех элементов 
Поскольку из определения равных множеств следует, что, например, 
Заметим, что 



Чаще всего множество задают одним из следующих двух способов.
Первый способ состоит в том, что множество задают указанием (перечислением) всех его элементов. Мы уже использовали этот способ, записывая множество с помощью фигурных скобок, в которых указывали список его элементов. Ясно, что не всякое множество можно задать таким способом. Например, множество четных чисел так задать невозможно.
Второй способ состоит в том, что указывают характеристическое свойство элементов множества, то есть свойство, которым обладают все элементы данного множества и только они. Например, свойство «натуральное число при делении на 2 дает в остатке 1» задает множество нечетных чисел.
Если задавать множество характеристическим свойством его элементов, то может оказаться, что ни один объект этим свойством не обладает.
Обратимся к примерам.
Приведенные примеры указывают на то, что удобно к совокупности множеств отнести еще одно особенное множество, не содержащее ни одного элемента. Его называют пустым множеством и обозначают символом
Заметим, что множество 
Рассмотрим множество цифр десятичной системы счисления: 

Определение: Множество 


Это записывают так: 





Рассмотрим примеры:
Для иллюстрации соотношений между множествами пользуются схемами, которые называют диаграммами Эйлера.
На рисунке 20 изображены множество 



Из определений подмножества и равенства множеств следует, что если 

Если в множестве 




Любое множество 
- Заказать решение задач по высшей математике
Пример:
Выпишите все подмножества множества
Решение:
Имеем:
Числовые множества
Натуральные числа — это первые числа, которыми начали пользоваться люди. С ними вы ознакомились в детстве, когда учились считать предметы. Все натуральные числа образуют множество натуральных чисел, которое обозначают буквой
Практические потребности людей привели к возникновению дробных чисел. Позже появилась необходимость рассматривать величины, для характеристики которых положительных чисел оказалось недостаточно. Так возникли отрицательные числа.
Все натуральные числа, противоположные им числа и число нуль образуют множество целых чисел, которое обозначают буквой
Например,
Множество натуральных чисел является подмножеством множества целых чисел, то есть
Целые и дробные (как положительные, так и отрицательные) числа образуют множество рациональных чисел, которое обозначают буквой 
Понятно, что 

Каждое рациональное число можно представить в виде отношения 


С возможностью такого представления связано название «рациональное число»: одним из значений латинского слова ratio является «отношение».
В 6 классе вы узнали, что каждое рациональное число можно представить в виде конечной десятичной дроби или в виде бесконечной периодической десятичной дроби. Для дроби 


Например,
Число 


Заметим, что любую конечную десятичную дробь и любое целое число можно представить в виде бесконечной периодической десятичной дроби. Например,
Следовательно, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.
Справедливо и такое утверждение: каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.
В 9 классе вы научитесь записывать бесконечную периодическую десятичную дробь в виде обыкновенной дроби.
Сумма и произведение двух натуральных чисел являются натуральными числами. Однако разность натуральных чисел не всегда обладает таким свойством. Например,
Сумма, разность, произведение двух целых чисел являются целыми числами. Однако частное целых чисел не всегда обладает таким свойством. Например,
Сумма, разность, произведение и частное (кроме деления на нуль) двух рациональных чисел являются рациональными числами.
Итак, действие вычитания натуральных чисел может вывести результат за пределы множества 

Вы ознакомились с новым действием — извлечением квадратного корня. Возникает естественный вопрос: всегда ли квадратный корень из неотрицательного рационального числа является рациональным числом? Иными словами, может ли действие извлечения квадратного корня из рационального числа вывести результат за пределы множества
Рассмотрим уравнение 





Следовательно, действие извлечения корня из рационального числа может вывести результат за пределы множества
Ни одно иррациональное число не может быть представлено в виде дроби 

Иррациональные числа могут быть представлены в виде бесконечных непериодических десятичных дробей.
Например, с помощью специальной компьютерной программы можно установить, что
Числа 


Иррациональные числа возникают не только в результате извлечения квадратных корней. Их можно конструировать, строя бесконечные непериодические десятичные дроби.
Например, число 

Вместе множества иррациональных и рациональных чисел образуют множество действительных чисел. Его обозначают буквой 
Теперь «цепочку» 
Связь между числовыми множествами, рассмотренными в этом пункте, иллюстрирует схема, изображенная на рисунке 23.
Длину любого отрезка можно выразить действительным числом. Eh-от факт позволяет установить связь между множеством 








Над действительными числами можно выполнять четыре арифметических действия: сложение, вычитание, умножение, деление (кроме деления на ноль), в результате будем получать действительное число. Эти действия обладают известными вам свойствами:
Действительные числа можно сравнивать, используя правила сравнения десятичных дробей, то есть сравнивая цифры в соответствующих разрядах. Например,
Любое положительное действительное число больше нуля и любого отрицательного действительного числа. Любое отрицательное действительное число меньше нуля. Из двух отрицательных действительных чисел больше то, у которого модуль меньше.
Если отметить на координатной прямой два действительных числа, то меньшее из них будет расположено слева от большего.
Находя длину окружности и площадь круга, вы пользовались приближенным значением числа 






В заключение подчеркнем, что из любого неотрицательного действительного числа можно извлечь квадратный корень и в результате этого действия получить действительное число. Следовательно, действие извлечения квадратного корня из неотрицательного действительного числа не выводит результат за пределы множества
Открытие иррациональности
Решая графически уравнение 





представить в виде несократимой дроби 


Тогда
Из последнего равенства следует, что число 






Таким образом, числитель и знаменатель дроби 
Приведенный пример показывает, что существуют отрезки (в нашем случае это отрезки 

Этот факт был открыт в школе великого древнегреческого ученого Пифагора.
Сначала пифагорейцы считали, что для любых отрезков 


Например, на рисунке 25 имеем:
и 


Если для отрезков существует общая мера, то их называют соизмеримыми. Например, отрезки 

Итак, древнегреческие ученые считали, что любые два отрезка соизмеримы. А из этого следовало, что длину любого отрезка можно выразить рациональным числом.
Действительно, пусть некоторый отрезок 







Однако сами же пифагорейцы сделали выдающееся открытие. Они доказали, что диагональ и сторона квадрата несоизмеримы, то есть если сторону квадрата принять за единицу, то длину диагонали квадрата выразить рациональным числом нельзя.
Для доказательства рассмотрим произвольный квадрат 








Это открытие изменило один из фундаментальных постулатов древнегреческих ученых, заключавшийся в том, что отношение любых двух величин выражается отношением целых чисел.
Существует легенда о том, что пифагорейцы держали открытие иррациональных чисел в строжайшей тайне, а человека, разгласившего этот факт, покарали боги: он погиб при кораблекрушении.
ГЛАВНОЕ В ПАРАГРАФЕ 2
Свойства функции
Область определения:
Область значений: множество неотрицательных чисел.
График: парабола.
Нуль функции:
Свойство графика: если точка 

Квадратный корень
Квадратным корнем из числа 
Арифметический квадратный корень
Арифметическим квадратным корнем из числа 
Равные множества
Два множества 





Подмножество
Множество 



Обозначения числовых множеств




Связь между числовыми множествами
Свойства арифметического квадратного корня
Для любого действительного числа 
Для любого действительного числа 

Для любых действительных чисел 



Для любых действительных чисел 


выполняется равенство
Для любых неотрицательных чисел 


Свойства функции
Область определения: множество неотрицательных чисел.
Область значений: множество неотрицательных чисел.
График: ветвь параболы.
Нуль функции:
Большему значению аргумента соответствует большее значение функции.
———
Квадратные корни
Функция y=x2 её график и свойства
Функция 
Пример №223
Пусть сторона квадрата равна 



Если обозначить независимую переменную через 



Составим таблицу значений функции 
Отметим на координатной плоскости точки 


Сформулируем некоторые свойства функции
1. Область определения функции состоит из всех чисел.
2. Область значений функции состоит из всех неотрицательных чисел, то есть
Действительно, так как 

3. Графиком функции является парабола с вершиной в точке 
4. Противоположным значениям аргумента соответствует одно и то же значение функции.
Действительно, это следует из того, что 
Пример №224
Решите графически уравнение
Решение:
График функции 


Убедимся, что числа 1 и -3 являются корнями уравнения:
1) для
2) для
Следовательно, 3 и -1 — корни уравнения
Ответ. -3; 1.
Пример №225
Между какими последовательными целыми числами лежит корень уравнения
Решение:
Решим уравнение графически, построив графики функций 


Откуда 

Графики пересекаются в одной точке, абсцисса которой является корнем уравнения и заключена между числами 1 и 2.
Таким образом, корень уравнения 
Ответ. Между числами 1 и 2.
Арифметический квадратный корень
Если известна сторона квадрата, можно легко найти его площадь. Но часто приходится решать и обратную задачу: по известной площади квадрата находить его сторону.
Пример №226
Площадь квадрата равна 
Решение:
Пусть длина стороны квадрата равна 




Корни уравнения 
Квадратным корнем из числа 

Например, квадратными корнями из числа 100 являются числа 10 и -10, потому что 

Число 4, являющееся неотрицательным корнем уравнения . 
Арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен
Арифметический квадратный корень из числа 



Пример №227
1) 
2) 
Вообще равенство 
Так как 
Выражение 
Например, не имеют смысла выражения
Действие нахождения значения арифметического квадратного корня называют извлечением квадратного корня. Из небольших чисел квадратный корень желательно извлекать устно. Извлекать квадратный корень из больших чисел поможет таблица квадратов двузначных натуральных чисел на форзаце или калькулятор.
Пример №228
Найдите значение корня
Решение:
По таблице квадратов двузначных натуральных чисел имеем: 
Пример №229
Вычислите
Решение:
Сначала нужно найти значение выражения 
Ответ. 35.
Рассмотрим уравнение 





Систематизируем данные о решениях уравнения 
Пример №230
Решите уравнение:
Ответ. 1) 49; 2) решений нет; 3) 13.
Множество. Подмножество. Числовые множества. Рациональные числа. Иррациональные числа. Действительные числа
Понятие множества является одним из основных понятий математики. Под множеством будем понимать совокупность объектов, имеющих общую природу (или объединенных по общему признаку), сами объекты при этом будем называть элементами множества.
Как правило, множества обозначают большими латинскими буквами. Если, например, множество 










Множества, количество элементов которых можно выразить натуральным числом, называют конечными.
Множество, не содержащее ни одного элемента, называют пустым множеством. Его обозначают символом 
Множества, количество элементов которых нельзя выразить натуральным числом и которые не являются пустыми, называют бесконечными.
Если каждый элемент множества 


Записывают это следующим образом: 
Пример №231
Пусть 







Считают, что пустое множество является подмножеством любого множества, то есть
Целые числа и дробные числа образуют множество рациональных чисел.
Множество натуральных чисел обозначают буквой 


Можно утверждать, что
Любое рациональное число можно представить в виде 


Например
Рациональное число можно также представить и в виде десятичной дроби. Для этого достаточно числитель дроби разделить на ее знаменатель. Например,
В последнем случае мы получили бесконечную десятичную периодическую дробь. Дроби 
Таким образом, каждое рациональное число можно представить в виде бесконечной десятичной периодической дроби.
Справедливо и обратное утверждение:
Каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.
Например,
В правильности этих равенств легко убедиться, выполнив соответствующее деление.
Но в математике существуют числа, которые нельзя записать в виде 


Числа, которые нельзя записать в виде 


Префикс «иp» означает отрицание, иррациональные значит не рациональные.
Например, иррациональными являются числа 
Каждое иррациональное число можно представить в виде бесконечной десятичной непериодической дроби.
Рациональные числа вместе с иррациональными числами образуют множество действительных чисел.
Множество действительных чисел обозначают буквой
Так как каждое натуральное число является целым числом, то множество 





Действительные числа, записанные в виде бесконечных десятичных непериодических дробей, можно сравнивать по тем же правилам, что и конечные десятичные дроби. Например,
В задачах с практическим содержанием действительные числа (для выполнения арифметических действий) заменяют на их приближенные значения, округленные до определенного разряда.
Пример №232
Вычислите 
Решение:
Заметим, что при сложении, вычитании, умножении, делении и возведении в степень действительных чисел справедливы те же свойства и ограничения, что и при действиях с рациональными числами.
Понятие числа появилось очень давно.
А еще раньше Оно является одним из самых общих понятий математики. Потребность в измерениях и подсчетах обусловила появление положительных рациональных чисел. Именно тогда возникли и использовались натуральные числа и дробные числа, которые рассматривались как отношение натуральных чисел.
Следующим этапом развития понятия числа является введение в практику отрицательных чисел. В Древнем Китае эти числа появились во II в. до н. э. Там умели складывать и вычитать отрицательные числа. Отрицательные числа толковали как долг, а положительные — как имущество. В Индии в VII в. эти числа воспринимали так же, но еще и умели их умножать и делить.
Уже древние вавилоняне около 4 тыс. лет назад знали ответ на вопрос: «Какова должна быть длина стороны квадрата, чтобы его площадь равнялась 




Например, с помощью этого метода:
Проверим точность результата:
Такой метод вычисления приближенного значения квадратного корня использовался и в Древней Греции. Его детально описал Герон Александрийский (I в. н. э.).
В эпоху Возрождения (XV — нач. XVII в.) европейские математики обозначали корень латинским словом Radix (корень), потом — сокращенно — буквой 


Тождество (√a)2=a, a⩾0 уравнение
x2=a
Тождество
уравнение 
Напомним, что для любых значений 




Для любого 
Пример №233
Вычислите:
Решение:

Рассмотрим уравнение 

Так как квадрат числа не может быть отрицательным, то при 

Если 

Если 








Пример №234
Решите уравнение:
Решение:
2) уравнение корней не имеет, то есть

4) Имеем:
Таким образом, получим два корня:
Ответ.
Свойства арифметического квадратного корня
Сравним значения выражений
Имеем: 
Теорема (о корне из произведения). Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел, то есть при 
Доказательство: Так как 



Имеем: 
Доказанная теорема распространяется и на случай, когда множителей под знаком корня три и больше.
Следствие. Корень из произведения неотрицательных множителей равен произведению корней из этих множителей.
Доказательство: Докажем это следствие, например, для трех чисел
Имеем:
Пример №235
Замечание 1. Очевидно, что выражение 






Если в равенстве 
Произведение корней из неотрицательных чисел равно корню из произведения этих чисел.
Пример №236
Рассмотрим квадратный корень из дроби.
Теорема (о корне из дроби). Корень из дроби, числитель которой неотрицателен, а знаменатель -положителен, равен корню из числителя, деленному на корень из знаменателя, то есть при
Доказательство: Так как 


Кроме того,
Имеем: 
Пример №237
Замечание 2. По аналогии с замечанием 1, тождество, только что рассмотренное нами, можно записать и так:
Если в равенстве 
Частное, числитель которого является корнем из неотрицательного числа, а знаменатель — корнем из положительного числа, равно корню из частного этих чисел.
Пример №238
Рассмотрим, как извлечь квадратный корень из квадрата.
Теорема (о корне из квадрата). Для любого значения справедливо равенство
Доказательство: Так как 

Пример №239
Рассмотрим квадратный корень из степени.
Теорема (о корне из степени). Для любого значения 

Доказательство: 

Пример №240
Вычислите:
Решение:
Пример №241
Упростите выражение:
Решение:







Ответ.
Тождественные преобразования выражений, содержащих квадратные корни
Рассмотрим тождественные преобразования выражений, содержащих квадратные корни.
Вынесение множителя из-под знака корня
Воспользуемся теоремой о корне из произведения для преобразования выражения
Говорят, что множитель вынесли из-под знака корня. В данном случае из-под знака корня вынесли множитель 2.
Пример №242
Вынесите множитель из-под знака корня в выражении
Решение:
Выражение 






Так как 
Следовательно,
Ответ.
Внесение множителя под знак корня
Рассмотрим тождественное преобразование, обратное к предыдущему. Воспользуемся правилом умножения корней:
Говорят, что множитель внесли под знак корня. В данном случае под знак корня внесли множитель 2.
Отметим, что под знак корня можно вносить только положительный множитель.
Пример №243
Внести множитель под знак корня:
Решение:
2) Множитель 
— если
— если
Ответ.
Сложение, вычитание, умножение, деление и возведение в степень выражений, содержащих квадратные корни
Используя свойства умножения и деления корней, можно выполнять арифметические действия с выражениями, содержащими квадратные корни.
Пример №244
Используя тождество 
Пример №245
Рассмотрим примеры, где квадратные корни можно складывать.
Пример №246
Упростите выражение
Решение:
Слагаемые содержат общий множитель 
Обычно решение записывают короче:
Заметим, что выражения 
Пример №247
Упростите выражение
Решение:
В каждом из слагаемых можно вынести множитель из-под знака корня, в результате получим подобные радикалы и приведем их:
Ответ.
Пример №248
Упростите выражение:
Решение:
Применим формулы сокращенного умножения.
Ответ.
Сокращение дробей
Пример №249
Сократите дробь:
Решение:
1) Учитывая, что 
2) Учитывая, что 
Ответ.
Избавление от иррациональности в знаменателе дроби
Пример №250
Преобразуйте дробь 
Решение:
Учитывая, что 
Ответ.
В таких случаях говорят, что избавились от иррациональности в знаменателе дроби.
Пример №251
Избавьтесь от иррациональности в знаменателе дроби
Решение:
Умножим числитель и знаменатель дроби на 
Ответ.
Заметим, что выражение 



Взаимно сопряженными также являются выражения
Функция y= √x её график и свойства
Функция 
Пример №252
Пусть 



Рассмотрим функцию 

Составим таблицу значений функции 
Отметим эти точки на координатной плоскости (рис. 15). Если бы мы отметили на этой плоскости больше точек, координаты которых удовлетворяют уравнению 

Графиком этой функции является ветвь параболы.
Обобщим свойства функции
1. Областью определения функции является множество всех неотрицательных чисел:
2. Областью значений функции является множество всех неотрицательных чисел:
3. График функции — ветвь параболы, выходящая из точки 
Большему значению аргумента соответствует большее значение функции
Последнее свойство дает возможность сравнивать значения выражении, содержащих корни.
Пример №253
Сравните числа:
Решение:
1) Так как


3) Внесем множитель в обоих выражениях под знак корня:
Так как 
Пример №254
Решите графически уравнение
Решение:
Поскольку мы пока не умеем строить график функции 
Построим графики функций 
Ответ. 4.
Пример №255
Постройте график функции
Ответ. График изображен на рисунке 18.
- Квадратные уравнения
- Неравенства
- Числовые последовательности
- Предел числовой последовательности
- Формулы сокращенного умножения
- Разложение многочленов на множители
- Системы линейных уравнений с двумя переменными
- Рациональные выражения
Вопросы
занятия:
· вспомнить основные
понятия, связанные с квадратными корнями;
· вспомнить свойства
арифметического квадратного корня;
· рассмотреть, какие преобразования можно
выполнять в выражениях, содержащих знак корня.
Материал
урока
Стоит напомнить, что квадратным корнем из числа
𝑎
называют такое число 𝑏, квадрат которого равен 𝑎
().
Например, числа 8 и –8 квадратные
корни из числа 64, так как и
.
Из любого неотрицательного действительного
числа существует квадратный корень.
Квадратный корень из отрицательного числа
не существует.
Если –
квадратный корень из числа а, то также
является квадратным корнем из числа а, и других квадратных корней из
числа а нет.
Также вы помните, что арифметическим квадратным
корнем из числа а называют неотрицательное число, квадрат которого
равен а и обозначается он так:
Например,
Знак называется
знаком арифметического квадратного корня.
Выражение, стоящее под знаком корня, называется подкоренным
выражением.
Извлечь квадратный корень из числа а
– это значит найти значение выражения .
Выражение при
не
имеет смысла.
Не путайте квадратный корень и арифметический
квадратный корень из числа.
Запись читают
«квадратный корень из а». Слово «арифметический» при чтении опускают.
Значок всегда
означает «арифметический квадратный корень из числа».
Из определения квадратного корня следует тождество:
Например,
Напомним, что над выражениями, содержащими квадратные
корни можно выполнять ряд преобразований. К таким преобразованиям относят: преобразования
корней из произведения, дроби и степени; умножение и деление корней;
вынесение множителя за знак корня, внесение множителя под знак корня
и избавление от иррациональности в знаменателе.
Теперь стоит повторить свойства арифметического
квадратного корня и их применения.
Итак, первое свойство: если и
,
то .
Чтобы извлечь квадратный корень из
произведения неотрицательных чисел, можно извлечь его из каждого сомножителя
отдельно и результаты перемножить.
Следует помнить, что это свойство распространяется и
на тот случай, когда подкоренное выражение представляет собой произведение трёх,
четырёх и т.д. неотрицательных множителей.
Например, если ,
,
,
то .
Сделаем вывод: корень из неотрицательных
множителей равен произведению корней из этих множителей.
Верно и обратное утверждение: произведение
корней из неотрицательных чисел равно корню из произведения этих чисел.
Задание.
Вычислить значение выражения:
а) ;
б) .
Первое выражение: .
Воспользуемся свойством корня из произведения. Тогда корень из произведения
этих чисел можно записать произведением корней, т.е. произведением .
Найдём значения каждого из корней. В результате получим,
Следующее выражение: .
Воспользуемся свойством корня из произведения. Тогда произведение этих корней
равно корню из произведения .
Затем представим подкоренное выражение в виде множителей, каждый из которых
является квадратом целого числа. Тогда произведение значений каждого корня
равно:
Следующее свойство: если
и
,
то .
Чтобы извлечь квадратный корень из дроби,
можно извлечь корень отдельно из числителя и знаменателя и первый результат
разделить на второй.
Сделаем вывод: корень из дроби, числитель
которой неотрицателен, а знаменатель положителен, равен корню из числителя, делённому
на корень из знаменателя.
Верно и обратное утверждение: частное корней
равно корню из частного этих чисел.
Задание.
Вычислить значение выражения:
а);
б) .
Первое выражение: .
Найдём его значение. Представим подкоренное выражение в виде неправильной дроби.
Получим,
Следующее выражение: .
Воспользуемся свойством корня из дроби. Тогда получим,
Перейдём к следующему свойству: при любом
значении а верно равенство: .
Равенство является
тождеством. Это тождество применяется при извлечении квадратного корня
из степени с чётным показателем.
Чтобы извлечь корень из степени с чётным
показателем, достаточно представить подкоренное выражение в виде квадрата
некоторого выражения и воспользоваться тождеством: .
Задание.
Найти значение выражения:
а) ;
б) ;
в) .
Первое выражение: .
Видим, в подкоренном выражении записана чётная степень. Применим свойство корня
из степени с чётным показателем. Тогда, получим,
Следующее выражение: .
Как и в предыдущем выражении под корнем имеем чётную степень. Значит,
можем воспользоваться свойством корня из чётной степени. Тогда получим,
И последнее выражение: .
Перепишем подкоренное выражение, как .
Теперь в подкоренном выражении имеем чётную степень. По свойству корня из
степени с чётным показателем получим,
А теперь давайте перейдём к таким преобразованиям
выражений, содержащих квадратные корни, как вынесение множителя из-под знака
корня и внесение множителя под знак корня.
Итак, если и
,
то .
Такое преобразование называют вынесением множителя
из-под знака корня.
Задание.
Вынесите множитель из-под знака корня:
а) ;
б) .
Первое выражение: .
Представим подкоренное выражение в виде произведения 16 и 2. Число 16 – это, в
свою очередь, 42. Тогда получим,
Следующее выражение: .
Аналогично предыдущему примеру, подкоренное выражение представим в виде произведения
4 и 17. Упростим произведение. В итоге получим,
Если и
,
то .
Если и
,
то .
Такое преобразование называют внесением множителя
под знак корня.
Задание.
Внесите множитель под знак корня:
а) ;
б) .
Первое выражение: .
Представим число 5 в виде арифметического квадратного корня. Выполним
умножение, применяя свойство корня из произведения. Получим,
Следующее выражение: .
Число 0,3
представим в виде произведения и
0,3. Затем число 0,3 представим в виде корня. Воспользуемся свойством корня из
произведения. Посчитаем. Получим,
Очень важное место в преобразовании выражений,
содержащих квадратные корни, занимает избавление от иррациональности в
знаменателе или числителе дроби.
Если ,
то .
Такое преобразование называют избавлением от
иррациональности в знаменателе дроби.
Задание.
Избавиться от иррациональности в знаменателе дроби:
а) ;
б) ;
в) .
Первое выражение: .
Чтобы избавиться от иррациональности в знаменателе дроби, нам пригодится
основное свойство дроби: если числитель и знаменатель дроби умножить или
разделить на одно и то же число, не равное нулю, то значение дроби не
изменится. Т.е. чтобы избавиться от корня в знаменателе дроби мы можем
числитель и знаменатель дроби умножить на этот корень. Умножим числитель и
знаменатель нашей дроби на .
Упростим числитель и знаменатель дроби. Получим,
Следующее выражение.
Умножим числитель и знаменатель дроби на .
Упростим. В итоге получим,
Следующее выражение немного посложнее: .
Но не стоит сразу пугаться! Чтобы избавиться от иррациональности в данной
дроби, нам следует обратиться к формуле разности квадратов. Для применения этой
формулы нам нужно умножить числитель и знаменатель дроби на выражение .
Сворачивая знаменатель по формуле разности квадратов, получим,
Посмотрите, мы избавились от иррациональности в
знаменателе. Выражение называют
сопряжённым выражением по отношению к выражению .
Поэтому очень часто вместо того чтобы говорить умножим числитель и знаменатель
на сумму или разность тех или иных выражений, говорят просто «умножим на
сопряжённое выражение знаменателю (числителю)».
А теперь давайте рассмотрим задания на преобразование
выражений, которые содержат квадратные корни.
Задание.
Упростить выражение:
.
Рассмотрим выражение: .
Каждое подкоренное выражение представим в виде произведения, таким образом,
чтобы хотя бы один из множителей являлся квадратом натурального числа. Затем
воспользуемся свойством корня из произведения. Теперь применим свойство корня
из степени с чётным показателем. Упростим получившееся выражение. Обратите
внимание, все слагаемые в нашем примере имеют корни с одинаковыми подкоренными
выражениями. И отличаются лишь коэффициентами, записанными перед ними. Корни,
которые имеют одинаковые подкоренные выражения, являются подобными слагаемыми. Чтобы
привести подобные слагаемые достаточно сложить их коэффициенты и умножить на
одинаковое выражение, содержащее корень. Приведём подобные слагаемые в
нашем примере. Получим,
Задание.
Преобразовать выражение:
.
Воспользуемся формулой квадрата суммы. Упростим это
выражение. Воспользуемся следствием из определения квадратного корня. Затем
применим свойство корня из произведения. Приведём подобные. В итоге получим,
Задание.
Сократить дроби:
а) ;
б) .
Рассмотрим первую дробь: .
Напомним, что для выполнения сокращения дроби необходимо разложить выражения (в
числителе или знаменателе) на множители. Для этого используют вынесение общего
множителя за скобки или же применяют формулы сокращённого умножения. В нашем
случае в числителе дроби число 7 можно представить, как .
Тогда вынесем общий множитель за
скобку. Смотрите, дробь можно сократить на выражение .
После сокращения получим,
Теперь перейдём ко второй дроби: .
Заметим, что в числителе можно
представить, как ,
а 2, как .
Тогда числитель данной дроби можно разложить по формуле разности квадратов двух
выражений. Сократим дробь на выражение .
В результате получим,
Итоги урока
На этом уроке поговорили о «преобразовании
выражений, содержащих знак корня». Вспомнили основные понятия, связанные с
квадратными корнями. Поговорили о свойствах арифметического квадратного корня.
А затем рассмотрели, какие преобразования можно выполнять в выражениях,
содержащих знак корня.
Иррациональные выражения и их преобразования
В прошлый раз мы вспомнили (или узнали — кому как), что же такое корень n-й степени, научились извлекать такие корни, разобрали по винтикам основные свойства корней и решали несложные примеры с корнями.
Этот урок будет продолжением предыдущего и будет посвящён преобразованиям самых разных выражений, содержащих всевозможные корни. Такие выражения называются иррациональными. Здесь появятся и выражения с буквами, и дополнительные условия, и избавление от иррациональности в дробях, и некоторые продвинутые приёмы в работе с корнями. Те приёмы, которые будут рассматриваться в данном уроке, станут хорошей базой для решения задач ЕГЭ (и не только) практически любого уровня сложности. Итак, давайте приступим.
Прежде всего я продублирую здесь основные формулы и свойства корней. Чтобы не скакать из темы в тему. Вот они:

Формулы эти надо обязательно знать и уметь применять. Причём в обе стороны — как слева направо, так и справа налево. Именно на них и основывается решение большинства заданий с корнями любой степени сложности. Начнём пока с самого простого — с прямого применения формул или их комбинаций.
Простое применение формул
В этой части будут рассматриваться простые и безобидные примеры — без букв, дополнительных условий и прочих хитростей. Однако даже в них, как правило, имеются варианты. И чем навороченнее пример, тем больше таких вариантов. И у неопытного ученика возникает главная проблема — с чего начинать? Ответ здесь простой — не знаешь, что нужно — делай что можно. Лишь бы ваши действия шли в мире и согласии с правилами математики и не противоречили им.) Например, такое задание:
Вычислить:
Даже в таком простеньком примере возможны несколько путей к ответу.
Первый — просто перемножить корни по первому свойству и извлечь корень из результата:
Второй вариант такой: 

Решать можно как больше нравится. В любом из вариантов ответ получается один — восьмёрка. Мне, например, проще перемножить 4 и 128 и получить 512, а из этого числа отлично извлекается кубический корень. Если кто-то не помнит, что 512 — это 8 в кубе, то не беда: можно записать 512 как 29 (первые 10 степеней двойки, я надеюсь, помните?) и по формуле корня из степени:
Другой пример.
Вычислить: 
Если работать по первому свойству (всё загнать под один корень), то получится здоровенное число, из которого корень потом извлекать — тоже не сахар. Да и не факт, что он извлечётся ровно.) Поэтому здесь полезно в числе 
И теперь всё наладилось:
Осталось восьмёрку и двойку записать под одним корнем (по первому свойству) и — готово дело. 
Добавим теперь немного дробей.
Вычислить:
Пример совсем примитивный, однако и в нём имеются варианты. Можно с помощью вынесения множителя преобразовать числитель и сократить со знаменателем:
А можно сразу воспользоваться формулой деления корней:
Как видим, и так, и сяк — всяко правильно.) Если не споткнуться на полпути и не ошибиться. Хотя где тут ошибаться-то…
Разберём теперь самый последний пример из домашнего задания прошлого урока:
Упростить:
Совершенно немыслимый набор корней, да ещё и вложенных. Как быть? Главное — не бояться! Здесь мы первым делом замечаем под корнями числа 2, 4 и 32 — степени двойки. Первое что нужно сделать — привести все числа к двойкам: всё-таки чем больше одинаковых чисел в примере и меньше разных, тем проще.) Начнём отдельно с первого множителя:
Число 
Теперь, согласно корню из произведения:

В числе 
А с выражением 
Значит, первый множитель запишется вот так:

Вложенные корни исчезли, числа стали поменьше, что уже радует. Вот только корни разные, но пока так и оставим. Надо будет — преобразуем к одинаковым. Берёмся за второй множитель.)
Второй множитель преобразовываем аналогично, по формуле корня из произведения и корня из корня. Где надо — сокращаем показатели по пятой формуле:
Вставляем всё в исходный пример и получаем:
Получили произведение целой кучи совершенно разных корней. Неплохо было бы привести их все к одному показателю, а там — видно будет. Что ж, это вполне возможно. Наибольший из показателей корней равен 12, а все остальные — 2, 3, 4, 6 — делители числа 12. Поэтому будем приводить все корни по пятому свойству к одному показателю — к 12:
Считаем и получаем:
Красивого числа не получили, ну и ладно. Нас просили упростить выражение, а не посчитать. Упростили? Конечно! А вид ответа (целое число или нет) здесь уже не играет никакой роли.
Немного сложения / вычитания и формул сокращённого умножения
К сожалению, общих формул для сложения и вычитания корней в математике нету. Однако, в заданиях сплошь и рядом встречаются эти действия с корнями. Здесь необходимо понимать, что любые корни — это точно такие же математические значки, как и буквы в алгебре.) И к корням применимы те же самые приёмы и правила, что и к буквам — раскрытие скобок, приведение подобных, формулы сокращённого умножения и т.п.
Например, каждому ясно, что 
Если корни разные, то ищем способ сделать их одинаковыми — внесением/вынесением множителя или же по пятому свойству. Если ну никак не упрощается, то, возможно, преобразования более хитрые.
Смотрим первый пример.
Найти значение выражения: 
Все три корня хоть и кубические, но из разных чисел. Чисто не извлекаются и между собой складываются/вычитаются. Стало быть, применение общих формул здесь не катит. Как быть? А вынесем-ка множители в каждом корне. Хуже в любом случае не будет.) Тем более что других вариантов, собственно, и нету:
Стало быть, 
Вот и всё решение. Здесь мы от разных корней перешли к одинаковым с помощью вынесения множителя из-под корня. А затем просто привели подобные.) Решаем дальше.
Найти значение выражения:
С корнем из семнадцати точно ничего не поделаешь. Работаем по первому свойству — делаем из произведения двух корней один корень:
А теперь присмотримся повнимательнее. Что у нас под большим кубическим корнем? Разность ква.. Ну, конечно! Разность квадратов:
Теперь осталось только извлечь корень: 
Дальше очень похожий пример, но посложнее.
Вычислить:
Здесь придётся проявить математическую смекалку.) Мыслим примерно следующим образом: «Так, в примере произведение корней. Под одним корнем разность, а под другим — сумма. Очень похоже на формулу разности квадратов. Но… Корни — разные! Первый квадратный, а второй — четвёртой степени… Хорошо бы сделать их одинаковыми. По пятому свойству можно легко из квадратного корня сделать корень четвёртой степени. Для этого достаточно подкоренное выражение возвести в квадрат.»
Если вы мыслили примерно так же, то вы — на полпути к успеху. Совершенно верно! Превратим первый множитель в корень четвёртой степени. Вот так:
Теперь, ничего не поделать, но придётся вспомнить формулу квадрата разности. Только в применении к корням. Ну и что? Чем корни хуже других чисел или выражений?! Возводим:
«Хм, ну возвели и что? Хрен редьки не слаще. Стоп! А если вынести четвёрку под корнем? Тогда выплывет то же самое выражение, что и под вторым корнем, только с минусом, а ведь именно этого мы и добиваемся!»
Верно! Выносим четвёрку:

А теперь — дело техники:

Вот так распутываются сложные примеры. ) Теперь пора потренироваться с дробями.
Вычислить:
Ясно, что надо преобразовывать числитель. Как? По формуле квадрата суммы, разумеется. У нас есть ещё варианты разве? 
Во как! Получили в точности знаменатель нашей дроби. ) Значит, вся дробь, очевидно, равна единице:
Ещё пример. Только теперь на другую формулу сокращённого умножения.)
Вычислить:
Понятно, что квадрат разности надо в дело применять. Выписываем знаменатель отдельно и — поехали!
Выносим множители из-под корней:
Следовательно,

Теперь всё нехорошее великолепно сокращается и получается:
Что ж, поднимаемся на следующий уровень. 
Буквы и дополнительные условия
Буквенные выражения с корнями — штука более хитрая, чем числовые выражения, и является неиссякаемым источником досадных и очень грубых ошибок. Перекроем этот источник.) Ошибки всплывают из-за того, что частенько таких заданиях фигурируют отрицательные числа и выражения. Они либо даны нам прямо в задании, либо спрятаны в буквах и дополнительных условиях. А нам в процессе работы с корнями постоянно надо помнить, что в корнях чётной степени как под самим корнем, так и в результате извлечения корня должно быть неотрицательное выражение. Ключевой формулой в задачах этого пункта будет четвёртая формула:
С корнями нечётной степени вопросов никаких — там всегда всё извлекается что с плюсом, что с минусом. И минус, если что, выносится вперёд. Будем сразу разбираться с корнями чётных степеней.) Например, такое коротенькое задание.
Упростить: 

Казалось бы, всё просто. Получится просто икс. ) Но зачем же тогда дополнительное условие 


Что мы видим? На входе было отрицательное число, а на выходе — уже положительное. Было минус три, стало плюс три.) Возвращаемся к буквам. Вне всяких сомнений, по модулю это будет точно икс, но только сам икс у нас с минусом (по условию!), а результат извлечения (в силу арифметического корня!) должен быть с плюсом. Как получить плюс? Очень просто! Для этого достаточно перед заведомо отрицательным числом поставить минус.) И правильное решение выглядит так:
Кстати сказать, если бы мы воспользовались формулой 
|x| = -x при x<0.
Дальше тренируемся.)
Вынести множитель за знак корня: 

Первый взгляд — на подкоренное выражение. Тут всё ОК. При любом раскладе оно будет неотрицательным. Начинаем извлекать. По формуле корня из произведения, извлекаем корень из каждого множителя:
Откуда взялись модули, объяснять, думаю, уже не надо.) А теперь анализируем каждый из модулей.
Множитель |a| так и оставляем без изменений: у нас нету никакого условия на букву a. Мы не знаем, положительное она или отрицательная. Следующий модуль |b2| можно смело опустить: в любом случае выражение b2 неотрицательно. А вот насчёт |c3| — тут уже задачка.) Если 
А теперь — обратная задача. Не самая простая, сразу предупреждаю!
Внести множитель под знак корня: 
Если вы сразу запишете решение вот так

то вы попали в ловушку. Это неверное решение! В чём же дело?
Давайте вглядимся в выражение под корнем 




И ошибка здесь состоит в том, что мы вносим под корень неположительное число 

И теперь уже неотрицательное число (-b) спокойно вносим под корень по всем правилам:
Этот пример наглядно показывает, что, в отличие от других разделов математики, в корнях правильный ответ далеко не всегда вытекает автоматически из формул. Необходимо подумать и лично принять верное решение.) Особенно следует быть внимательнее со знаками в иррациональных уравнениях и неравенствах.
Разбираемся со следующим важным приёмом в работе с корнями — избавлением от иррациональности.
Избавление от иррациональности в дробях
Если в выражении присутствуют корни, то, напомню, такое выражение называется выражением с иррациональностью. В некоторых случаях бывает полезно от этой самой иррациональности (т.е. корней) избавиться. Как можно ликвидировать корень? Корень у нас пропадает при… возведении в степень. С показателем либо равным показателю корня, либо кратным ему. Но, если мы возведём корень в степень (т.е. помножим корень сам на себя нужное число раз), то выражение от этого поменяется. Нехорошо.) Однако в математике бывают темы, где умножение вполне себе безболезненно. В дробях, к примеру. Согласно основному свойству дроби, если числитель и знаменатель умножить (разделить) на одно и то же число, то значение дроби не изменится.
Допустим, нам дана вот такая дробь:
Можно ли избавиться от корня в знаменателе? Можно! Для этого корень надо возвести в куб. Чего нам не хватает в знаменателе для полного куба? Нам не хватает множителя 

Корень в знаменателе исчез. Но… он появился в числителе. Ничего не поделать, такова судьба.) Нам это уже не важно: нас просили знаменатель от корней освободить. Освободили? Безусловно.)
Кстати, те, кто уже в ладах с тригонометрией, возможно, обращали внимание на то, что в некоторых учебниках и таблицах, к примеру, 





Зачем нам освобождаться от иррациональности в дробях? Какая разница — в числителе корень сидит или в знаменателе? Калькулятор всё равно всё посчитает.) Ну, для тех, кто не расстаётся с калькулятором, разницы действительно практически никакой… Но, даже считая на калькуляторе, можно обратить внимание на то, что делить на целое число всегда удобнее и быстрее, чем на иррациональное. А уж про деление в столбик вообще умолчу.)
Следующий пример только подтвердит мои слова.
Освободиться от иррациональности в знаменателе дроби:
Как здесь ликвидировать квадратный корень в знаменателе? Если числитель и знаменатель помножить на выражение 
Такое выражение, которое при домножении какой-то суммы (или разности) выводит на разность квадратов, ещё называют сопряжённым выражением. В нашем примере сопряжённым выражением будет служить разность 
Что тут можно сказать? В результате наших манипуляций не то что корень из знаменателя исчез — вообще дробь исчезла! 
Освободиться от иррациональности в знаменателе дроби:
Как здесь выкручиваться? Формулы сокращённого умножения с квадратами сразу не катят — не получится полной ликвидации корней из-за того, что корень у нас в этот раз не квадратный, а кубический. Надо, чтобы корень как-то возвёлся в куб. Стало быть, применять надо какую-то из формул с кубами. Какую? Давайте подумаем. В знаменателе — сумма 
В качестве a у нас тройка, а в качестве b — корень кубический из пяти:
И снова дробь исчезла.) Такие ситуации, когда при освобождении от иррациональности в знаменателе дроби у нас вместе с корнями полностью исчезает сама дробь, встречаются очень часто. Как вам вот такой примерчик!
Вычислить:
Попробуйте просто сложить эти три дроби! Без ошибок! 
Ух ты, как интересно! Все дроби пропали! Напрочь. И теперь пример решается в два счёта:
Просто и элегантно. И без долгих и утомительных вычислений. 
Именно поэтому операцию освобождения от иррациональности в дробях надо уметь делать. В подобных навороченных примерах только она и спасает, да.) Разумеется, внимательность никто не отменял. Бывают задания, где просят избавиться от иррациональности в числителе. Эти задания ничем от рассмотренных не отличаются, только от корней очищается числитель.)
Более сложные примеры
Осталось рассмотреть некоторые специальные приёмы в работе с корнями и потренироваться распутывать не самые простые примеры. И тогда полученной информации уже будет достаточно для решения заданий с корнями любого уровня сложности. Итак — вперёд.) Для начала разберёмся, что делать со вложенными корнями, когда формула корня из корня не работает. Например, вот такой примерчик.
Вычислить:
Корень под корнем… К тому же под корнями сумма или разность. Стало быть, формула корня из корня (с перемножением показателей) здесь не действует. Значит, надо что-то делать с подкоренными выражениями: у нас просто нету других вариантов. В таких примерах чаще всего под большим корнем зашифрован полный квадрат какой-нибудь суммы. Или разности. А корень из квадрата уже отлично извлекается! И теперь наша задача — его расшифровать.) Такая расшифровка красиво делается через систему уравнений. Сейчас всё сами увидите.)
Итак, под первым корнем у нас вот такое выражение:
А вдруг, не угадали? Проверим! Возводим в квадрат по формуле квадрата суммы:
Всё верно.) Но… Откуда я взял это выражение 
Нет.) Мы его чуть ниже получим честно. Просто по данному выражению я показываю, как именно составители заданий шифруют такие квадраты. 

Итак, у нас под корнем явно тусуется выражение (a+b)2, и наша задача — найти a и b. В нашем случае сумма квадратов даёт 54. Вот и пишем:
Теперь удвоенное произведение. Оно у нас 
Получили вот такую системку:
Решаем обычным методом подстановки. Выражаем из второго уравнения, например, и подставляем в первое:
Решим первое уравнение:
Получили биквадратное уравнение относительно a. Считаем дискриминант:
Значит,
Получили аж четыре возможных значения a. Не пугаемся. Сейчас мы всё лишнее отсеем.) Если мы сейчас для каждого из четырёх найденных значений посчитаем соответствующие значения , то получим четыре решения нашей системы. Вот они:
И тут вопрос — а какое из решений нам подходит? Давайте подумаем. Отрицательные решения можно сразу отбросить: при возведении в квадрат минусы «сгорят», и всё подкоренное выражение в целом не изменится.) Остаются первые два варианта. Выбрать их можно совершенно произвольно: от перестановки слагаемых сумма всё равно не меняется.) Пусть, например, 

Итого получили под корнем квадрат вот такой суммы:
Всё чётко.)
Я не зря так детально описываю ход решения. Чтобы было понятно, как происходит расшифровка.) Но есть одна проблемка. Аналитический способ расшифровки хоть и надёжный, но весьма длинный и громоздкий: приходится решать биквадратное уравнение, получать четыре решения системы и потом ещё думать, какие из них выбрать… Хлопотно? Согласен, хлопотно. Этот способ безотказно работает в большинстве подобных примеров. Однако очень часто можно здорово сократить себе работу и найти оба числа творчески. Подбором.) Да-да! Сейчас, на примере второго слагаемого (второго корня), я покажу более лёгкий и быстрый способ выделения полного квадрата под корнем.
Итак, теперь у нас вот такой корень: 
Размышляем так: «Под корнем — скорее всего, зашифрованный полный квадрат. Раз перед удвоенным минус — значит, квадрат разности. Сумма квадратов первого и второго чисел даёт нам число 54. Но какие это квадраты? 1 и 53? 49 и 5? Слишком много вариантов… Нет, лучше начать распутывать с удвоенного произведения. Наши 





Получилось! Значит, наше подкоренное выражение — это на самом деле квадрат разности:

Вот такой вот способ-лайт, чтобы не связываться с системой. Не всегда работает, но во многих таких примерах его вполне достаточно. Итак, под корнями — полные квадраты. Осталось только правильно извлечь корни, да досчитать пример:
А теперь разберём ещё более нестандартное задание на корни.)
Докажите, что число A – целое, если 
Впрямую ничего не извлекается, корни вложенные, да ещё и разных степеней… Кошмар! Однако, задание имеет смысл.) Стало быть, ключ к его решению имеется.) А ключ здесь такой. Рассмотрим наше равенство
как уравнение относительно A. Да-да! Хорошо бы избавиться от корней. Корни у нас кубические, поэтому возведём-ка обе части равенства в куб. По формуле куба суммы:
Кубы и корни кубические друг друга компенсируют, а под каждым большим корнем забираем одну скобку у квадрата и сворачиваем произведение разности и суммы в разность квадратов:
Отдельно сосчитаем разность квадратов под корнями:
Отлично! Значит, всё наше равенство ещё сильнее упростится:

А теперь делаем финт ушами — заменяем сумму корней в скобках на A (согласно условию примера!).
Получаем кубическое уравнение 

Здесь как раз тот случай, когда один из корней легко угадывается — это 
Как разложить? Либо по схеме Горнера, либо делением «уголком» на скобку (A-4), либо даже группировкой (если представить -3A как -16A+13A). Объяснять подробно деление уголком или схему Горнера в теме про корни — уже совсем отклоняться от курса.) Кто в теме — и так поймёт.
А теперь легко заметить, что квадратный трёхчлен во вторых скобках имеет отрицательный дискриминант, а значит, наше уравнение имеет единственный действительный корень 
А теперь — поупрощаем некоторые дробные выражения с корнями. От простого — к сложному. Здесь всё точно так же, как и с многочленами. Только в применении к корням.) Я же говорил, что действия с корнями ничем не отличаются от таковых с буквами. И к корням с таким же успехом применима вся алгебра седьмого класса — формулы сокращённого умножения, разложение на множители, приведение подобных и т.п.
Например, такое задание.
Сократить дробь:
Пример явно намекает на применение формулы разности квадратов:
Спрашивается, а где же здесь квадраты? Сплошные корни… Сейчас покажу. 
Берём числитель нашей дробушки: 
Что такое 
Хорошо, а из 
По такой технологии, между прочим, можно совершенно любой корень превратить в совершенно любую степень. Какую хотим. 

Хотим из степеней корни делаем, хотим — наоборот, степени из корней. Что хотим, то и творим. Математика, однако! 
Итак, весь наш числитель можно представить как разность квадратов:
А дальше никаких проблем — раскладываем числитель на множители и сокращаем:
Следующий пример.
Упростить:
Действуем аналогично. Раскладываем на множители и сокращаем. 
А в знаменателе просто выносим общий множитель 
Подставляем всё в нашу дробь и сокращаем:
Как видим, разложение на множители очень популярно в теме с корнями. Очень! И особенно — формула разности квадратов. Именно поэтому формулы сокращённого умножения так важно знать и уметь применять. 
Ну и на десерт распутаем что-нибудь навороченное. )
Упростить:
Чтобы не запутаться и не наляпать ошибок, будем действовать по порядку. При взгляде на любой пример всегда задаём сами себе вопрос: «Что в примере мне больше всего не нравится?» В данном примере большинство скажет: «Числитель первой дроби!» Верно! Вот и упростим его отдельно: остальная часть примера от этого никак не пострадает.) Итак,
Вместо знака деления удобно использовать черту дроби. Вот так:
Сначала упростим дробь. Как? Попробуем сократить.) Для этого, ясное дело, надо разложить на множители числитель и знаменатель, да… Берём отдельно числитель 
Если теперь подставить вместо a выражение 

Со знаменателем полная аналогия:
Таким образом,
Теперь от упрощённой дроби отнимаем единичку. Как? Делаем из единички дробь и — вперёд!
Следующим пунктом идёт деление полученной дроби на выражение 
Уфф… Дальше… Отнимаем от полученного выражения дробь 
И, наконец, последнее усилие. Возводим результат в куб:
Ну как, всё понятно? Тогда — вперёд, набиваем руку и делаем примеры!
Вычислить:
Вынести множители за знак корня: 


Внести множители под знак корня: 

Освободиться от иррациональности в знаменателе дробей:


Вычислить:
Доказать, что A – целое число, если 
Упростить:
Ответы (пока) давать не буду — иначе неинтересно. 




















— для неотрицательных значений а и b;
— для неотрицательного а и положительного b;
— для неотрицательного а и натурального к.





























































































































































































































































x2=a
уравнение 



































































































































































































































