План урока:
Площадь прямоугольного треугольника
Площадь произвольного треугольника
Площадь параллелограмма
Площадь ромба
Площадь трапеции
Площадь прямоугольного треугольника
Пусть в прямоугольном треугольнике известны два его катета. Обозначим их буквами а и b. Как тогда вычислить площадь такого треуг-ка?
Прямоугольный треугольник можно достроить до прямоугольника:
Площадь получившегося прямоугольника равна произведению чисел а и b. С другой стороны, прямоугольник состоит из двух треуг-ков площадью S, поэтому его общая площадь составляет 2S. Тогда можно записать, что
Задание. Катеты прямоугольного треугольника имеют длины 3 и 4. Определите его площадь.
Решение. Просто подставляем в формулу вместе букв a и b числа 3 и 4:
Задание. Площадь прямоугольного треугольника равна 100, а один катет больше другого вдвое. Найдите оба катета.
Решение. Пусть меньший катет равен х, тогда больший катет будет равен 2х. Выразим площадь прямоугольного треугольника через х:
Естественно, нас интересует только положительный корень, а отрицательный можно отбросить:
x = 10
Меньший катет оказался равным 10, тогда больший катет, который вдвое больше, будет равен 20.
Ответ: 10; 20.
Задание. Найдите площадь фигуры, показанной на рисунке. Сторона каждой клеточки имеет длину, равную единице:
Решение. Эту фигуру можно разбить на квадрат со стороной 8 и два прямоугольных треуг-ка, то есть всего на три фигуры:
Подсчитаем площадь каждой из трех фигур по отдельности:
Чтобы найти площадь всей фигуры, достаточно просто сложить три полученных числа:
Задание. Вычислите площадь треуг-ка, изображенного на рисунке (площадь каждой отдельной клеточки составляет единицу):
Решение. Здесь проблема заключается в том, что треуг-к прямоугольным не является. Однако можно построить прямоуг-к, который будет состоять сразу из 4 треуг-ков:
Мы можем найти как площадь всего прямоугольника (обозначим ее как S), так и площади трех прямоугольных треуг-ков S1, S2 и S3:
Площадь произвольного треугольника
Перейдем к более сложному случаю, когда необходимо подсчитать площадь произвольного треугольника, не являющегося прямоугольным. Предположим, надо найти площадь произвольного ∆АВС. Опустим из А на сторону ВС высоту АН:
В результате мы получили два прямоугольных треуг-ка, ∆АВН и ∆АCН. Мы уже знаем, как найти их площади:
Общая площадь всего ∆АВС равна сумме площадей ∆АВН и ∆АСН. Запишем ее и вынесем общий множитель АН/2 за скобки:
В скобках стоит сумма ВН + НС. Но ведь эта сумма равна длине стороны ВС! Тогда окончательно формулу можно записать в виде:
Получили, что для вычисления площади произвольного треугольника надо сначала умножить его высоту на сторону, на которую она падает, а далее поделить результат на 2. Однако для полного доказательства этого факта надо рассмотреть особый случай, когда высота в треуг-ке падает не на сторону, а на ее продолжение (такая ситуация возникает в тупоугольном треуг-ке):
На рисунке снова получились всё те же прямоугольные треуг-ки ∆АСН и ∆АВН. Запишем формулы их площади:
Отличие в том, что на этот раз площадь АВС можно вычислить не как сумму, а как разницу этих площадей:
Итак, можно сформулировать следующее правило:
Примечание. Часто сторону, на которую опущена высота, называют основанием треуг-ка.
Задание. Вычислите площадь ∆АВС, если сторона АВ имеет длину 7, а высота СН равна 4.
Решение. В данной задаче на сторону длиной 7 падает высота длиной 4. Надо просто подставить эти числа в формулу:
Задание. Докажите, что медиана треуг-ка разбивает его на два равновеликих треуг-ка.
Решение.
Пусть в ∆АВС проведена медиана СМ. Требуется доказать, что
Важно заметить, что СН будет являться высотой не только для ∆АВС, но также и для ∆СВМ и ∆САМ. Обозначим СН как h, а АВ как а. Тогда мы можем найти длины отрезков ВМ и АМ, ведь медиана делит сторону АВ пополам:
Получили одно и то же значение, то есть площади треуг-ков равны.
В рассмотренной задаче мы использовали тот факт, что у нескольких треуг-ков может быть общая высота. Общая высота используется и в многих других геометрических задачах.
Задание. Предложите способ, как разделить треуг-к, показанный на рисунке, на три равновеликих треуг-ка:
Чтобы треуг-ки были равновелики, достаточно, чтобы у них была общая высота, а основания, на которые эта высота падает, были бы равны друг другу. Поэтому можно просто поделить нижнюю сторону на три одинаковых отрезка (длиной по 7 клеток) и соединить концы полученных отрезков с противоположной вершиной:
Красной линией здесь показаны границы треуг-ков, а штриховой – их общая высота СН. Вычислить площадь каждого из треуг-ков можно по следующим формулам:
Но отрезки BD, DE и EA одинаковы (по 7 клеточек), поэтому одинаковы будут и площади:
Заметим, что необязательно делить на три одинаковых отрезка именно нижнюю сторону. Допустимы и два других варианта решения:
Но и это не единственные решения задачи. Попробуйте самостоятельно предложить ещё несколько вариантов.
Формула площади треуг-ка показывает, что между длинами высот и сторон есть взаимосвязь.
Задание.В ∆РЕТ РЕ = 72, ЕТ = 45. Высота ТН имеет длину 40. Найдите высоту РМ.
Решение.
Зная ТН и РЕ, мы сможем найти площадь треуг-ка:
Теперь запишем эту формулу площади в ином виде, когда используется высота МР и сторона ЕТ
Величину SРЕТ мы только что вычислили, а длина ЕТ известна из условия, поэтому можно подставить их в формулу:
Площадь параллелограмма
Для вычисления площади параллелограмма введем понятие «высота параллелограмма». Так называют перпендикуляр, опущенный на сторону параллелограмма (ее в такой ситуации часто называют основанием) из одной из вершин параллелограмма. Важно понимать, что высоты могут упасть не на само основание, а на его продолжение. Так как у каждого параллелограмма есть 4 вершины, а из каждой из них можно опустить высоту на две противоположных вершины, то всего у параллелограмма должно быть 8 высот:
На рисунке синим показаны высоты параллелограмма, а красным цветом отмечены продолжения оснований. Оказывается, что площадь параллелограмма равна произведению его высоты и основания, на которую она опущена. Докажем это.
Опустим в параллелограмме АВСD высоты ВН и СК:
В результате получили четырехуг-к ВНКС, который является прямоугольником, ведь все его углы прямые. Очевидно, что ∆АВН и ∆DCK равные. Это можно доказать тем, что они являются прямоугольными, у них есть одинаковые гипотенузы АВ и CD (они равны как противоположные стороны параллелограмма) и одинаковые катеты ВН и СК (это уже противоположные стороны прямоугольника ВНКС).
Раз они равны, то одинаковы и их площади:
Но величину S3 можно заменить на S2. В свою очередь полученная сумма равна площади прямоугольника ВНКС, которая может быть вычислена как произведение его смежных сторон:
Но ВН – это высота, а НК – основание параллелограмма. То есть мы доказали следующее утверждение:
Задание. Найдите площадь параллелограмма, изображенного на рисунке:
Решение. По рисунке несложно определить длину как основания, так и высоты параллелограмма:
Далее надо просто перемножить эти длины:
Примечание. Конечно, если вы вдруг забыли формулу площади параллелограмма, можно просто разделить его на прямоугольник и два прямоугольных треуг-ка:
Дальше можно просто посчитать по отдельности S1, S2и S3, после чего сложить их. Попробуйте сделать это самостоятельно.
Задание. Площадь параллелограмма равна 162 см2, а одна из его высот вдвое короче основания, к которому она проведена. Найдите эту высоту и основание.
Решение. В данной задаче не потребуется даже рисунок. Обозначим высоту буквой h, тогда основание, которое вдвое длиннее, составляет 2h. Произведение этих чисел – это площадь, то есть оно равно 162:
Высота равна 9, а основание будет вдвое больше, то есть его длина равна 18.
Ответ: 9 и 18.
Задание. Смежные стороны параллелограмма ABCD имеют длину 12 и 14 см, а угол между ними равен 30°. Вычислите его площадь.
Решение. Опустим на сторону длиной 14 см высоту:
Для вычисления площади надо сначала найти высоту ВН. Её можно определить из ∆АВН. Он является прямоугольным, а его острый угол∠А = 30°. У такого треуг-ка катет, лежащий против 30°, вдвое меньше АВ:
Площадь ромба
Многие четырехуг-ки, изученные нами ранее, являются частными случаями параллелограмма. Для прямоугольника и квадрата мы уже знаем формулы вычисления площади. Осталось разобраться с ромбом. Ясно, что его площадь можно найти также, как и у параллелограмма. Однако площадь ромба можно посчитать и зная только его диагонали.
Построим ромб и проведем в нем диагонали:
Нам уже известно, что диагонали ромба пересекаются под прямым углом, а точка их пересечения является серединой для каждой диагонали:
Получается, что диагонали разбивают ромб на 4 одинаковых прямоугольных треуг-ка. Высчитаем, к примеру, SAOB:
В результате мы доказали следующее утверждение:
Задание. Одна диагональ ромба равна 3,2 дм, а другая составляет 14 см. Найдите его площадь.
Решение. Для начала надо перевести все длины в одинаковые единицы измерения. Заменим дециметры на сантиметры:
Задание. Одна диагональ ромба в три раза длиннее другой, а площадь фигуры составляет 150. Вычислите длину диагоналей ромба.
Решение. Обозначим меньшую диагональ как х, тогда вторая будет равна 3х. Выразим площадь через х:
Вторая диагональ ромба будет втрое длиннее, то есть ее длина равна 3•10 = 30
Ответ: 10 и 30 см.
Площадь трапеции
Осталось рассмотреть единственный известный нам вид четырехуг-ка, который не является параллелограммом. Это трапеция. Для вычисления ее площади также потребуется высота. Под ней подразумевают перпендикуляр, опущенный из вершины трапеции на одно из ее оснований. Другими словами, высота трапеции – это расстояние между основаниями трапеции.
В произвольной трапеции ABCD, где АD – большее основание, опустим из В высоту (то есть перпендикуляр) на AD, а из D– высоту на ВС. Также проведем диагональ ВD:
Ясно, что общая площадь трапеции будет равна сумме площадей ∆АВDи ∆ВСD. В свою очередь площадь каждого из них можно подсчитать по стороне и опущенной на нее высоте. Высоты мы как раз и провели, это ВН и DK, поэтому можно записать:
Теперь заметим, что отрезки ВН и КD одинаковы, ведь фигура ВНDК является прямоугольником. Тогда площадь ∆ВСD можно записать в таком виде:
В итоге мы доказали, что для вычисления площади трапеции следует ее высоту умножить на сумму длин оснований, после чего поделить результат на два. Обычно этот факт записывают следующим образом:
Задание. У трапеции АВСD основаниями являются АВ (21 см) и CD (17 см). Высота ВН составляет 7 см. Найдите площадь трапеции.
Решение. Это простая задача на использование формулы площади трапеции:
Задание. Найдите площадь прямоугольной трапеции, показанной на рисунке (площадь клеточки равна единице):
Решение. На рисунке показана прямоугольная трапеция. Её высота равна длине ее правой боковой стороны трапеции. Покажем размеры, необходимые нам для выполнения расчета:
Считаем площадь:
Задание. Тупой угол равнобедренной трапеции составляет 135°. Проведенная из этого угла высота делит противолежащее основание на отрезки длиной 14 и 34 см. Какова площадь трапеции?
Решение. Выполним построение:
Найдем острый угол трапеции. Так как CD||АВ, то
Рассмотрим ∆АDH. Он прямоугольный, а один из его острых углов равен 45°. Тогда и второй острый угол также равен 45°. То есть это равнобедренный треуг-к. Это помогает найти длину высоты DH:
ведь это прямоугольныетреуг-ки с равными гипотенузой и катетом:
Из равенства треуг-ков следует, что
Итак, сегодня мы узнали, как вычислять площади треуг-ков и некоторых видов четырехуг-ков. В большинстве случаев предварительно необходимо найти высоту в многоугольнике. В будущем мы узнаем ещё несколько формул для вычисления площадей фигур.
Содержание:
Изучив материал этой лекции, вы узнаете формулу, с помощью которой можно найти сумму углов выпуклого многоугольника.
- Вы расширите свои представления о такой знакомой вам величине, как площадь.
- Вы научитесь находить площадь параллелограмма, треугольника, трапеции.
Определение многоугольников
Рассмотрим фигуру, состоящую из точек
Фигура, образованная этими отрезками, ограничивает часть плоскости, выделенную на рисунке 195 зеленым цветом. Эту часть плоскости вместе с отрезками 

Стороны, являющиеся соседними отрезками, называют соседними сторонами многоугольника. Вершины, являющиеся концами одной стороны, называют соседними вершинами многоугольника.
Две соседние стороны многоугольника образуют угол многоугольника. Например, на рисунке 196 

Многоугольник называют по количеству его углов: треугольник, четырехугольник, пятиугольник и т. п.
Многоугольник обозначают по его вершинам. Например, на рисунке 197 изображен пятиугольник ABCDE. В обозначении многоугольника буквы, стоящие рядом, соответствуют соседним вершинам. Например, пятиугольник, изображенный на рисунке 197, можно обозначить еще и так: CDEAB, EABCD, EDCBA и т. д.
Периметром многоугольника называют сумму длин всех его сторон.
Отрезок, соединяющий несоседние вершины многоугольника, называют диагональю. Например, на рисунке 198 отрезок АЕ — диагональ шестиугольника ABCDEF.
На рисунке 199 изображен многоугольник, все углы которого меньше развернутого. Такой многоугольник называют выпуклым. Из сказанного следует, что любой треугольник является выпуклым многоугольником. Заметим, что многоугольники, изображенные на рисунках 196-198, не являются выпуклыми.
Выпуклый многоугольник обладает такими свойствами:
- выпуклый многоугольник расположен в одной полуплоскости относительно любой прямой, содержащей его сторону (рис. 200);
- выпуклый многоугольник, отличный от треугольника, содержит любую свою диагональ (рис. 201).
Если многоугольник не является выпуклым, то он такими свойствами не обладает (рис. 198, 202).
Теорема 19.1. Сумма углов выпуклого n-угольника равна
Доказательство. Для случая n = 3 теорема была доказана в 7 классе (теорема 16.1).
Пусть 
Докажем, что сумма всех его углов равна 180° (n-2).
Проведем все его диагонали, выходящие из вершины 
Отметим, что эта теорема справедлива и для любого многоугольника, не являющегося выпуклым.
Определение. Окружность называют описанной около многоугольника, если она проходит через все его вершины.
На рисунке 204 изображена окружность, описанная около многоугольника. В этом случае также говорят, что многоугольник вписан в окружность.
Центр окружности, описанной около многоугольника, равноудален от всех его вершин. Следовательно, этот центр принадлежит серединным перпендикулярам всех сторон многоугольника, вписанного в окружность.
Около многоугольника можно описать окружность, если существует точка, равноудаленная от всех его вершин. Следовательно, если серединные перпендикуляры всех сторон многоугольника пересекаются в одной точке, то около такого многоугольника можно описать окружность.
Определение. Окружность называют вписанной в многоугольник, если она касается всех его сторон.
На рисунке 205 изображена окружность, вписанная в многоугольник. В этом случае также говорят, что многоугольник описан около окружности.
Центр окружности, вписанной в многоугольник, равноудален от всех его сторон. Следовательно, этот центр принадлежит биссектрисам всех углов многоугольника, описанного около окружности.
Понятие площади многоугольника. Площадь прямоугольника
С такой величиной, как площадь, вы часто встречаетесь в повседневной жизни: площадь квартиры, площадь дачного участка, площадь поля и т. п.
Опыт подсказывает вам, что равные земельные участки имеют равные площади, что площадь квартиры равна сумме площадей всех ее помещений (комнат, кухни, коридора и т. д.).
Вы знаете, что площади земельных участков измеряют в сотках (арах) и гектарах; площади регионов и государств — в квадратных километрах; площадь квартиры — в квадратных метрах.
На этих практических знаниях о площади основывается определение площади многоугольника.
Определение. Площадью многоугольника называют положительную величину, которая обладает следующими свойствами:
- равные многоугольники имеют равные площади;
- если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
- за единицу измерения площади принимают единичный квадрат, то есть квадрат со стороной, равной единице измерения длины.
Измерить площадь многоугольника — это значит сравнить его площадь с площадью единичного квадрата. В результате получают числовое значение площади данного многоугольника. Это число показывает, во сколько раз площадь данного многоугольника отличается от площади единичного квадрата.
Например, если клетку вашей тетради принять за единичный квадрат, то площадь многоугольника, изображенного на рисунке 207, будет равна 11 квадратным единицам (кратко записывают: 11 ед.2).
Обычно для нахождения площади используют формулы, то есть вычисляют площадь многоугольника по определенным элементам (сторонам, диагоналям, высотам и т. д.). Некоторые из формул вы уже знаете. Например, вы неоднократно применяли формулу S = ab, где S — площадь прямоугольника, а и b — длины его соседних сторон.
Для доказательства этой формулы потребуется следующая лемма.
Лемма. Площадь квадрата со стороной 
Доказательство. Рассмотрим единичный квадрат и разделим его на 

Из определения площади многоугольника (свойство 1) следует, что все эти квадраты имеют равные площади. По свойству 2 сумма площадей этих квадратов равна площади единичного квадрата, то есть 1 ед.2. Поэтому площадь каждого маленького квадрата равна
Теорема 20.1. Площадь прямоугольника равна произведению длин его соседних сторон.
Доказательство. На рисунке 209 изображен прямоугольник ABCD, длины соседних сторон которого равны a и b: АВ = а, ВС = b. Докажем для случая, когда а и b — рациональные числа, что площадь S прямоугольника вычисляют по формуле S = ab.
Числа а и b представим в виде обыкновенных дробей с одинаковыми знаменателями:


Разделим сторону АВ на р равных частей, а сторону ВС — на q равных частей. Через точки деления проведем прямые, параллельные сторонам прямоугольника. Тогда прямоугольник будет разделен на 
Согласно лемме площадь каждого квадрата равна 
Рассмотрение случая, когда хотя бы одно из чисел а или b является иррациональным, выходит за рамки школьного курса геометрии.
Определение. Многоугольники, имеющие равные площади, называют равновеликими.
Из определения площади (свойство 1) следует, что все равные фигуры равновелики. Однако не все фигуры, имеющие равные площади, являются равными. Например, на рисунке 210 изображены два многоугольника, каждый из которых составлен из семи единичных квадратов. Эти многоугольники равновелики, но не равны.
Площадь параллелограмма
Теорема 21.1. Площадь параллелограмма равна произведению его стороны и высоты, проведенной к этой стороне.
Доказательство. На рисунке 214 изображены параллелограмм ABCD, площадь которого равна S, и его высота ВМ. Докажем, что S = ВС • ВМ.
Проведем высоту CN. Легко показать (сделайте это самостоятельно), что четырехугольник MBCN — прямоугольник. Покажем, что он равновелик данному параллелограмму.
Площадь параллелограмма равна сумме площадей треугольника АВМ и трапеции MBCD. Площадь прямоугольника равна сумме площадей указанной трапеции и треугольника DCN. Однако треугольники АВМ и DCN равны по гипотенузе и острому углу (отрезки АВ и CD равны как противолежащие стороны параллелограмма, углы 1 и 2 равны как соответственные при параллельных прямых АВ и DC и секущей AD). Значит, эти треугольники равновелики. Отсюда следует, что параллелограмм ABCD и прямоугольник MBCN равновелики.
По теореме 20.1 площадь прямоугольника MBCN равна произведению длин сторон ВС и ВМ. Тогда S = ВС • ВМ, где S — площадь параллелограмма ABCD.
Для завершения доказательства надо рассмотреть случаи, когда основание М высоты ВМ не будет принадлежать стороне AD (рис. 215) или совпадет с вершиной D (рис. 216). И в этом случае параллелограмм ABCD и прямоугольник MBCN будут равновеликими. Докажите этот факт самостоятельно.
Если обозначить длины стороны параллелограмма и проведенной к ней высоты соответственно буквами а и h, то площадь S параллелограмма вычисляют по формуле
Площадь треугольника
Теорема 22.1. Площадь треугольника равна половине произведения его стороны и проведенной к ней высоты.
Доказательство. На рисунке 220 изображены треугольник АВС, площадь которого равна S, и его высота ВМ. Докажем, что
Через вершины В и С треугольника проведем прямые, параллельные сторонам АС и АВ соответственно (рис. 220). Пусть эти прямые пересекаются в точке N. Четырехугольник ABNC — параллелограмм по определению. Треугольники АВС и NCB равны (докажите это самостоятельно). Следовательно, равны и их площади. Тогда площадь треугольника АВС равна половине площади параллелограмма ABNC. Высота ВМ треугольника АВС является также высотой параллелограмма
ABNC. Отсюда
Если воспользоваться обозначениями для высот и сторон треугольника АВС, то согласно доказанной теореме имеем:
где S — площадь треугольника.
Следствие. Площадь прямоугольного треугольника равна половине произведения его катетов.
Докажите эту теорему самостоятельно.
Пример №1
Докажите, что площадь ромба равна половине произведения его диагоналей.
Решение:
На рисунке 221 изображен ромб ABCD, площадь которого равна S. Его диагонали АС и BD пересекаются в точке О. Докажем, что
Поскольку диагонали ромба перпендикулярны, то отрезки АО и СО являются высотами треугольников BAD и BCD соответственно. Тогда можно записать:
Площадь трапеции
Теорема 23.1. Площадь трапеции равна произведению полусуммы ее оснований и высоты.
Доказательство. На рисунке 224 изображена трапеция ABCD (AD||BC), площадь которой равна S. Отрезок CN — высота этой трапеции. Докажем, что
Проведем диагональ АС и высоту AM трапеции. Отрезки AM и CN являются высотами треугольников АВС и ACD соответственно.
Имеем:
Если обозначить длины оснований трапеции и ее высоты соответственно буквами 
Следствие. Площадь трапеции равна произведению ее средней линии и высоты.
Равносоставленные и равновеликие многоугольники
Если некоторый многоугольник можно разрезать на части и составить из них другой многоугольник, то такие два многоугольника называют равносоставленными.
Например, если прямоугольник разрезать вдоль его диагонали (рис. 228), то получим два равных прямоугольных треугольника, из которых можно составить равнобедренный треугольник (рис. 229). Фигуры на рисунках 228 и 229 — равно составленные.
Очевидно, что равносоставленные многоугольники являются равновеликими. Этот факт применяют при доказательстве теорем и решении задач. Например, доказывая теорему 21.1, мы фактически разрезали параллелограмм на треугольник АВМ и трапецию MBCD, из которых составили прямоугольник MBCN (см. рис. 215).
Если треугольник разрезать вдоль средней линии, то из полученных треугольника и трапеции можно составить параллелограмм (рис. 230).
Легко установить (сделайте это самостоятельно), что такое разрезание треугольника приводит к еще одному доказательству теоремы о площади треугольника (теорема 22.1). Этой же цели служит разрезание треугольника на части, из которых можно составить прямоугольник (рис. 231).
Евклид в своей знаменитой книге «Начала» формулирует теорему Пифагора так:
«Площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах».
Если показать, что можно разрезать квадраты, построенные на катетах, на части и составить из этих частей квадрат со стороной, равной гипотенузе, то тем самым будет доказана теорема Пифагора.
На рисунке 232 показан один из возможных способов такого разрезания. Квадраты, построенные на катетах, разрезаны на части, площади которых равны 
Из определения площади многоугольника следует, что равносоставленные многоугольники являются равновеликими. Но совсем неочевидной является такая теорема.
Теорема. Любые два равновеликих многоугольника являются равносоставленными.
Впервые этот факт доказал в 1832 г. венгерский математик Фаркаш Бойяи. Позднее немецкий математик Пауль Гервин нашел другое доказательство. Поэтому эту теорему называют теоремой Бойяи—Гервина.
Теорема Чевы
На сторонах ВС, СА и АВ треугольника АВС отметим произвольные точки 
Если точки 
Если три прямые пересекаются в одной точке, то их называют конкурентными.
Теорема Чевы дает общий критерий конкурентности произвольных трех чевиан.
Теорема. Для того чтобы, чевианы 
Доказательство. Докажем сначала необходимое условие конкурентности: если чевианы 
Воспользовавшись результатом ключевой задачи 757, можно записать (рис. 235):
Перемножив записанные равенства, получим равенство (*).
Докажем теперь достаточное условие конкурентности: если выполняется равенство (*), то чевианы 
Пусть чевианы 

Сопоставляя это равенство с равенством (*), приходим к выводу, что 

Напомню:
Сумма углов выпуклого n-угольника
Сумма углов выпуклого n-угольника равна 180° (n — 2).
Окружность, описанная около многоугольника
Окружность называют описанной около многоугольника, если она проходит через все его вершины.
Окружность, вписанная в многоугольник
Окружность называют вписанной в многоугольник, если она касается всех его сторон.
Площадь многоугольника
Площадью многоугольника называют положительную величину,
которая обладает следующими свойствами:
- равные многоугольники имеют равные площади;
- если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
- за единицу измерения площади принимают единичный квадрат, то есть квадрат со стороной, равной единице измерения длины.
Площадь прямоугольника
Площадь прямоугольника равна произведению длин его соседних сторон.
Равновеликие многоугольники
Многоугольники, имеющие равные площади, называют равновеликими.
Площадь параллелограмма
Площадь параллелограмма равна произведению его стороны и высоты, проведенной к этой стороне.
Площадь треугольника
Площадь треугольника равна половине произведения его стороны и проведенной к ней высоты.
Площадь прямоугольного треугольника
Площадь прямоугольного треугольника равна половине произведения его катетов.
Площадь трапеции
- Площадь трапеции равна произведению полусуммы ее оснований и высоты.
- Площадь трапеции равна произведению ее средней линии и высоты.
Ломанная линия и многоугольники
Ломаная линия состоит из таких нескольких последовательно-соединенных отрезков: конец первого является началом второго, конец второго является началом третьего и т.д. Если конечная точка последнего отрезка совпадает с начальной точкой первого отрезка, то ломаная называется замкнутой. Многоугольник — это фигура, образованная замкнутой ломаной линией, в которой смежные отрезки не лежат на одной прямой, а несмежные — не пересекаются.
- Многоугольник — это плоская фигура.
- Стороны состоят из конечного числа отрезков.
- Многоугольник это замкнутая фигура, делящая плоскость на 2 части: внутреннюю замкнутую область и внешнюю бесконечную область.
- Многоугольник обозначают буквами, указывающими его вершины.
Многоугольники бывают выпуклые и вогнутые. Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой содержащей его сторону. Если не лежит в одной полуплоскости — вогнутым.
Многоугольник называется правильным, если у него все стороны все углы конгруэнтны.
В многоугольнике количество вершин, сторон и углов одинаковые. Многоугольник с 

Соответственно количеству сторон, многоугольники называются треугольными, четырехугольными, пятиугольными, шестиугольными т.д. Из любой вершины выпуклого 

Внутренние и внешние углы многоугольника
Угол, образованный двумя сторонами, исходящими из данной вершины называется внутренним углом при данной’ вершине выпуклого многоугольника. Угол, смежный с внутренним углом многоугольника называется внешним. Сумма внутренних и внешних углов (взятых по одному при каждой вершине) многоугольника при любой вершине равна 
Теорема 1. Сумма внутренних углов выкуплого 


Следствие: Каждый внутренний угол правильного 
Теорема 2. Сумма внешних углов выкуплого многоугольника равен 
Следствие 2. Каждый внешний угол правильного 

Пример №2
Один из внешних углов правильного многоугольника равен 
a) найдите градусную меру внутреннего угла многоугольника;
b) найдите число сторон многоугольника.
Решение: а) 
Внутренний угол:
b)
Многоугольники вписанные в окружность и описанные около окружности
Определение 1. Многоугольник называется вписанным в окружность, если все его вершины лежат на окружности, а окружность называется описанной около многоугольника. На рисунке треугольник 
Определение 2. Многоугольник называется описанным около окружности, если все его стороны касаются окружности, а окружность называется вписанной в многоугольник. На рисунке четырехугольник 
Окружность, вписанная в треугольник и описанная около нее
Теорема 1. В любой треугольник можно вписать окружность. Центром этой окружности будет точка пересечения биссектрис углов треугольника.
Теорема 2. Около любого треугольника можно описать окружность. Центром этой окружности будет точка пересечения серединных перпендикуляров к сторонам треугольника.
Теорема 3. Если в окружность вписан прямоугольный треугольник, то гипотенуза является диаметром этой окружности.
Обратная теорема. Если сторона треугольника, вписанного в окружность, является диаметром, то этот треугольник — прямоугольный.
Доказательство 1-ой теоремы (текстовое). Проведем биссектрисы углов 










Доказательство 2-ой теоремы. Через середины сторон 









Замечание: Около данного треугольника можно описать только одну окружность. В данную окружность можно вписать бесконечное количество треугольников.
Свойства четырехугольников, вписанных в окружность и описанного около нее
В отличие от треугольников, не во всякий четырехугольник можно вписать или описать окружность.
Теорема 4. В любом описанном четырехугольнике суммы противоположных сторон равны.
Обратная теорема. Если суммы противоположных сторон четырехугольника равны, то в этот четырехугольник можно вписать окружность.
Теорема 5. Сумма двух противоположных углов четырехугольника, вписанного в окружность, равна
Обратная теорема. Если сумма противоположных углов четырехугольника равна 
Доказательство теоремы 4: Пусть точки 
Если сложить почленно эти равенства, получим 
Отношение стороны треугольника, вписанного в окружность, к синусу противолежащего угла равно диаметру этой окружности:
Исследуйте данное доказательство для случая, когда центр окружности расположен внутри треугольника, обсудите и напишите в тетради.
В любой правильный многоугольник можно вписать и описать окружность. Центры этих окружностей совпадут. Биссектрисы углов правильного многоугольника пересекаются в точке 











Задача на построение: Постройте правильный шестиугольник.
1. Нарисуйте отрезок 
2. Циркулем нарисуйте окружность, радиус которой равен длине этого отрезка.
3. Не меняя раствора циркуля, разбейте всю окружность на части одинаковой длины и отметьте их точками.
4. Соедините последовательно отмеченные точки. Получится правильный шестиугольник, вписанный в окружность.
Если соединить попарно некоторые вершины правильного шестиугольника 



Площадь правильного многоугольника
Центр правильного многоугольника. Центр окружности, описанного около правильного многоугольника или вписанного в него, является центром правильного многоугольника. Центр правильного многоугольника находится на одинаковом расстоянии от всех вершин и всех сторон многоугольника.
Апофема правильного многоугольника. Перпендикуляр, проведенный из центра многоугольника к его стороне, называется апофемой. Апофема правильного многоугольника равна радиусу вписанной окружности.
Выполните следующее упражнение по шагам и выведите формулу зависимости площади правильного многоугольника от апофемы.
1. Нарисуйте правильный пятиугольник 
2. Из центра 

3. Соедините точки 


4. Выразите площадь треугольника 


5. Соедините точки 

6. Обратите внимание на то, что площадь пятиугольника равна сумме площадей этих треугольников. Площадь пятиугольника:


Площадь правильного многоугольника:
Соединив центр правильного 





Пример №3
В окружность радиусом равным единице, вписан правильный пятиугольник. Найдите площадь пятиугольника. Решение:
Площадь многоугольника:
Нужно найти апофему 

Центральный угол 



Тогда 


Сторона пятиугольника:

Историческое сведение. В 3-ем веке до н.э. Архимед — древнегреческий ученый, для того, чтобы определить численное значение 

1. Принимая за единицу диаметр окружности, найдите периметр вписанного шестиугольника.
2. Покажите, что длина окружности с единичным диаметром равна 
3. Нарисуйте радиус окружности. Найдите периметр описанного шестиугольника.
4. Напишите неравенство: 
Увеличив число сторон многоугольника в 2 раза и продолжая вычисления для 12-ти, а затем для 96-ти угольного многоугольника Архимед, определил, что значения 


Паркетирование
Паркетированием называется покрытие площади фигурами до заполнения всей пустоты.
Если сумма углов при общей вершине многоугольника равна 



Справочный материал по многоугольникам
Многоугольник и его элементы.
Сумма углов выпуклого многоугольника. многоугольник, вписанный в окружность, и многоугольник, описанный около окружности.
Рассмотрим фигуру 










Очевидно, что количество вершин многоугольника равно количеству его сторон.
Сумму длин всех сторон многоугольника называют его периметром.
Наименьшее количество вершин (сторон) у многоугольника — три. В этом случае имеем треугольник. Еще одним отдельным видом многоугольника является четырехугольник.
Многоугольник, у которого 

Две стороны многоугольника называют соседними, если они имеют общую вершину. Стороны многоугольника, не имеющие общей вершины, называют несоседними. Например, стороны 



Две вершины многоугольника называют соседними, если они принадлежат одной стороне, а вершины многоугольника, не принадлежащие одной стороне, называют несоседними.
Например, вершины 



Отрезок, соединяющий две несоседние вершины многоугольника, называют диагональю многоугольника. На рисунке 214 изображены диагонали многоугольника 

Пример №4
Сколько диагоналей имеет 
Решение:
Из каждой вершины 





Ответ.
Углы, стороны которых содержат соседние стороны многоугольника, называют углами многоугольника. Пятиугольник 
Если каждый из углов многоугольника меньше развернутого, то такой многоугольник называют выпуклым. Если хотя бы один угол многоугольника больше развернутого, то такой многоугольник называют невыпуклым.
Многоугольник 


Теорема (о сумме углов выпуклого 

Доказательство:
Выберем во внутренней области многоугольника произвольную точку 







Углы выпуклого многоугольника называют еще его внутренними углами. Угол, смежный с внутренним углом многоугольника, называют внешним углом многоугольника. На рисунке 218 угол 

Очевидно, что каждый многоугольник имеет по два внешних угла при каждой вершине.
Пример №5
Докажите, что сумма внешних углов выпуклого 
Решение:
Сумма внутреннего и внешнего углов при каждой вершине многоугольника равна 180°. Поэтому сумма всех внутренних и внешних углов 


Многоугольник называют вписанным в окружность, если все его вершины лежат на окружности. Окружность при этом называют описанной около многоугольника (рис. 219).
Около многоугольника не всегда можно описать окружность. Если же это возможно, то центром такой окружности является точка пересечения серединных перпендикуляров к сторонам многоугольника (как и в случае треугольника).
Многоугольник называют описанным около окружности, если все его стороны касаются окружности. Окружность при этом называют вписанной в многоугольник (рис. 220).
Не в каждый многоугольник можно вписать окружность. Если же это возможно, то центром такой окружности является точка пересечения биссектрис внутренних углов многоугольника (как и в случае треугольника).
Многоугольник и его свойства
Вы уже знаете, что такое треугольник и четырёхугольник. Более общим является понятие многоугольника. На рисунке 327 вы видите многоугольник ABCDEF. Он состоит из отрезков АВ, ВС, CD, DE, EFy FA, размещённых таким образом, что смежные отрезки не лежат на одной прямой, а несмежные -не имеют общих точек. Отрезки, из которых состоит многоугольник, называются его сторонами, углы, образованные смежными сторонами, — углами, а вершины этих углов — вершинами многоугольника.
В зависимости от количества вершин (углов либо сторон) многоугольник называется треугольником, четырёхугольником, пятиугольником и т. д. Многоугольник с n вершинами называется n-угольником.
Многоугольник обозначают названиями его вершин, например шестиугольник ABCDEF (рис. 327), пятиугольник 

Ни одна из прямых, проходящих через стороны многоугольника 

В дальнейшем мы будем рассматривать лишь выпуклые многоугольники.
Периметром многоугольника называется сумма длин всех его сторон. Его обозначают буквой Р.
Посмотрите на рисунок 330. В шестиугольнике ABCDEF отрезки AC, AD, АЕ соединяют вершину А с несоседними вершинами. Это — диагонали шестиугольника.
Диагональю n-угольника называется отрезок, который соединяет две несоседние его вершины.
Теорема (о сумме углов n-угольника).
Сумма углов n-угольника равна 180° • (n — 2).
Дано: 

Доказательство. В заданном n-угольнике диагонали 

Угол, смежный с углом многоугольника (рис. 332), называется внешним углом многоугольника.
Многоугольники могут быть вписанными в окружность (рис. 333) или описанными около окружности (рис. 334). Попытайтесь дать определения и сравните их с указанными в учебнике.
Многоугольник все вершины которого лежат на окружности, называется вписанным, в эту окружность, а окружность — описанной около этого многоугольника.
Многоугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот многоугольник.
Стороны вписанного многоугольника и его диагонали — это хорды окружности. Каждый его угол является вписанным углом (рис. 335).
Стороны описанного многоугольника являются касательными к окружности, а его диагонали — секущими (рис. 336).
1. Геометрическая фигура называется простой, если её можно разбить на конечное количество треугольников. Многоугольник — это простая фигура (см. рис. 330 и 331), а окружность не является простой фигурой (рис. 337). Даже вписав в окружность многоугольник с очень большим количеством сторон, мы только приблизим его контур к окружности. Поэтому в геометрии длину окружности и площадь круга находят другими методами, чем периметр и площадь многоугольника.
2. У вас может возникнуть вопрос: Всегда ли из равенства сторон многоугольника следует равенство его углов и наоборот? Нет, это свойство лишь треугольника. Вы знаете пример четырёхугольника, в котором все стороны равны, а углы — не равны. Это ромб. В прямоугольнике все углы равны, а вот стороны — нет. Среди многоугольников с большим количеством вершин также можно выделить равносторонние многоугольники, в которых не все углы равны (рис. 338), и равноугольные многоугольники, в которых не все стороны равны
Понятие площади
Многоугольник разбивает плоскость на две области — внутреннюю (рис. 345) и внешнюю (рис. 346).
Многоугольник вместе с его внутренней областью называется плоским многоугольником.
Каждый плоский многоугольник (например, многоугольник F на рис. 347) занимает часть плоскости. Если эту часть плоскости выразить некоторым числом, то получим площадь многоугольника. Далее будем говорить «площадь многоугольника», имея в виду, что многоугольник -плоский. Это относится и к другим плоским фигурам.
Площадь обозначают буквой S. Иногда указывают название фигуры, например 

На рисунке 348 фигуры 

Единицы измерения площади кратко записываем так: 1 см2, а говорим: «один квадратный сантиметр». Говорить «сантиметр в квадрате» -неправильно!
Некоторые единицы измерения площади имеют специальные названия: ар (квадрат со стороной 10м), гектар (квадрат со стороной 100 м) и т. д.
На рисунке 349 вы видите квадрат ABCD со стороной 2 см. Он состоит из четырёх квадратов площадью 1 см2, поэтому его площадь равна 4 см2.
Можем записать:
Ясно, что площадь любой фигуры выражается положительным числом. Изменится ли площадь квадрата ABCD, если за единицу измерения принять 1 мм2? Нет, площадь квадрата не изменится, но будет выражена иначе:
На рисунке 350 длина стороны квадрата KLMN равна 2,5 см. Он вмещает четыре квадрата площадью 1 см2 и ещё 9 маленьких квадратов площадью 0,25 см2. Поэтому 
Ясно, что площадь любой фигуры равна сумме площадей частей, из которых она состоит.
Из предыдущих классов вы знаете, что площадь квадрата со стороной а можно вычислить иначе — по формуле площади квадрата:
Для квадратов ABCD и KLMN получим:
Поскольку 4 см2 < 6,25 см2, то можем записать:
Формулу площади квадрата будем считать основной, поэтому принимаем её без доказательства. Для других фигур формулы площади нужно выводить, исходя из основных свойств площади. Сформулируем их.
Основные свойства площади
- Площадь каждой фигуры больше нуля.
- Равные фигуры имеют равные площади.
- Площадь фигуры равна сумме площадей фигур, из которых она состоит.
- Единицей измерения площади является площадь квадрата со стороной, равной единице длины.
Основные свойства площади подсказывают способ выведения формул площади.
Для того чтобы вывести формулу площади многоугольника, нужно: либо разбить его на части, формулы площадей которых известны, либо дополнить его до такой фигуры, формула площади которой известна.
Теорема (о площади прямоугольника).
Площадь прямоугольника равна произведению его смежных сторон.
Дано: ABCD— прямоугольник (рис. 351),
AB=a,AD=b.
Доказать:
Доказательство. Достроим данный прямоугольник ABCD до квадрата AMKN со стороной о + b (рис. 352). Тогда S
С другой стороны, квадрат AMKNcociom из двух прямоугольников ABCD и OKLC и двух квадратов ВМОС и DNLC. Поэтому, по третьему свойству площади,
Прямоугольники ABCD и OKLC равны, поскольку равны смежные стороны а и b. Поэтому, по второму свойству площади, 
Далее получим:
Следствие. Площадь прямоугольного треугольника с катетами а и b равна половине произведения катетов.
Действительно, диагональ АС разбивает прямоугольник ABCD со сторонами а и b (рис. 353) на два равных прямоугольных треугольника ABC и ADC с катетами а и b. Поэтому
Пример №6
Докажите, что отношение площадей подобных прямоугольных треугольников равно квадрату их коэффициента подобия.
Решение:
Пусть один из заданных прямоугольных треугольников (рис. 354) имеет катеты 



Докажем, что
Поскольку треугольники подобны, то 
У вас может возникнуть вопрос: Как доказать, что площадь квадрата равна квадрату его стороны? Пусть сторона квадрата ABCD равна а. Возможны два случая: сторону АВ можно разбить на целое число п единичных отрезков (рис. 355); на стороне АВ можно разместить л единичных отрезков, но остаётся ещё отрезок, который короче единичного (рис. 356).
Рассмотрим первый случай (рис. 355). Разобьём сторону АВ на п единичных отрезков (на рисунке их три), тогда о — n • 1 — n. Аналогично разобьём сторону AD. Через точки деления проведём прямые, перпендикулярные АВ и AD. Эти прямые разбивают квадрат ABCD на 
Поэтому 
Рассмотрим второй случай (рис. 356). Пусть на отрезке АВ помещается n единичных отрезков и остаётся ещё отрезок длиной меньше 1. Это означает, что отрезок АК из п единичных отрезков меньше отрезка АВ, а отрезок AM из n + 1 единичных отрезков — больше этого отрезка. Получаем неравенство: n < а < n + 1.
Чтобы точнее оценить площадь заданного квадрата, разделим единичный отрезок на т равных частей. Тогда длина каждой части будет равна 
Пусть на отрезке АК их помещается 
Число а будет лежать в пределах 



При увеличении количества точек деления число т станет как угодно большим. Площадь квадрата ABCD и квадрат числа а будут лежать в пределах, разность которых как угодно мала:
А это возможно лишь в случае, если
3. Символ S для обозначения площади фигуры происходит от латинского слова superficils, что означает «поверхность».
Параллелограмм и его площадь
Вы уже знаете формулы площадей трёх фигур -квадрата, прямоугольника и прямоугольного треугольника. Выведем формулу площади параллелограмма.
Теорема (о площади параллелограмма).
Площадь параллелограмма равна произведению его стороны на высоту, проведённую к этой стороне.
Дано: ABCD — параллелограмм (рис. 367), DH— высота, АВ= a, DH= 
Доказать: 
Доказательство. Проведём из вершины С высоту СМ= DH = 





Пример №7
В параллелограмме стороны равны 8 см и 6,4 см, а высота, проведённая к большей стороне, — 6 см. Найдите высоту параллелограмма, проведённую к меньшей его стороне.
Решение:
Пусть ABCD— данный параллелограмм (рис. 369), в котором ab =6,4 см, ВС — 8 см, DM= 6 см.
Требуется найти высоту DH.
Площадь параллелограмма ABCD можно выразить двумя способами: либо как произведение стороны ВС на высоту DAf, либо как произведение стороны АВ на высоту DH.
Для того чтобы найти длину неизвестной стороны или высоту параллелограмма, выразите площадь двумя способами: через одну из двух смежных сторон параллелограмма и высоту, проведённую к ней, и через другую смежную сторону и соответствующую ей высоту. Составьте и решите уравнение относительно искомой величины.
Можно ли найти площадь ромба по стороне и высоте, проведённой к ней? Можно, поскольку ромб — частный вид параллелограмма.
Вы знаете, как находить площадь прямоугольного треугольника по его катетам. Воспользуемся этим, чтобы вывести ещё одну формулу площади ромба.
Теорема (о площади ромба по его диагоналям).
Площадь ромба равна половине произведения его диагоналей.
Дано: ABCD — ромб (рис. 370), АС и BD — диагонали,
Доказать:
Доказательство. В ромбе ABCD все стороны равны. Его диагонали АС и BD взаимно перпендикулярны и в точке пересечения делятся пополам. Поэтому они разбивают ромб на четыре равных прямоугольных треугольника ABO, СВО, CDO и ADO с катетами
Поскольку площадь ромба равна сумме площадей этих треугольников, то
Следствие. Площадь квадрата равна половине квадрата его диагонали.
Утверждение следует из того, что квадрат — это частный вид ромба и имеет равные диагонали, пусть d. Следовательно,
1. У вас может возникнуть вопрос: Зависит ли формула площади параллелограмма ABCD от расположения высоты DH (рис. 368)? Нет, не зависит. В расположении точки H возможны три случая. Один из них рассмотрен в учебнике. Ещё два случая: точка Н находится либо в вершине В параллелограмма (рис. 371), либо на продолжении его стороны АВ (рис. 372).
Во втором случае (рис. 371) параллелограмм ABCDсостоит из двух равных прямоугольных треугольников ABD u CDB, поэтому
В третьем случае (рис. 372) доказательство аналогично изложенному в учебнике. Проведите это самостоятельно.
2. Для фигур, имеющих равные площади, используют специальное название — равновеликие. Например, параллелограмм ABCD и прямоугольник HMCD на рисунке 372 являются равновеликими. Понятно, что два равных многоугольника всегда равновелики, но не любые два равновеликих многоугольника равны.
Два многоугольника называются равносоставленными, если их можно разбить на одинаковое количество попарно равных многоугольников, в частности треугольников. Таковы, например, параллелограмм ABCD и прямоугольник
HMCD на рисунке 368, поскольку каждый состоит из общей для них трапеции и равных прямоугольных треугольников ADH и ВСМ.
Между равновеликими и равносоставленными фигурами существует такая связь: равносоставленные многоугольники являются равновеликими (из определения о равносоставленных многоугольниках); равновеликие многоугольники являются равносоставленными. Последнее утверждение известно, как «теорема Больяи — Гервина», доказанная в XIX в. Интересно, что Фаркаш Больяи (1775 — 1856, Венгрия), доказавший теорему, был отцом Яноша Больяи (1802 — 1860) — одного из творцов неевклидовой геометрии. Янош Больяи.
Треугольник и его площадь
Вы уже знаете, как вычислить площадь прямоугольного треугольника по его катетам. Возникает вопрос: Как найти площадь любого треугольника по его стороне и высоте, проведённой к этой стороне?
Теорема (о площади треугольника).
Площадь треугольника равна половине произведения его стороны на высоту, проведённую к этой стороне.
Дано: 
Доказать:
Доказательство. На стороне АВ заданного треугольника ABC построим равный ему треугольник BAD (рис. 381). Образованный четырёхугольник ADBC— параллелограмм, поскольку, по построению, AD = ВС, BD = АС. В нём сторона ВС= а, высота АН=

Следовательно:
Пример №8
Докажите, что площадь треугольника равна произведению его полупериметра на радиус вписанной окружности.
Решение:
Пусть ABC — данный треугольник (рис. 382), в котором ВС= а, АС— b, АВ= с, 
Докажем, что
Соединим отрезками вершины треугольника ABC с центром О вписанной в него окружности (рис. 383). Получаем три треугольника — ВОС, АОС и АОВ. В каждом из них радиус вписанной окружности r является высотой, проведённой к стороне, равной соответственно a, b или с.
Поэтому


1. Способы вычисления площади треугольника (а также прямоугольника и трапеции) были известны ещё в Древнем Египте. Сведения об этом дошли до нас на папирусах. Среди них наиболее известные — папирус Ринда (около 1800 г. до н. э.), содержащий 84 задачи с решениями (страница из этого папируса на рис. 384), и так называемый московский папирус (около 1600 г. до н. э.), он содержит 25 задач с решениями. Чтобы найти площадь треугольника, древние египтяне основание треугольника делили пополам и умножали на высоту. А для определения площади равнобедренного треугольника использовали полупроизведение его боковых сторон.
2. Геометрические расчёты по точным формулам проводились и в древнем Вавилоне. Сведения сохранились на клинописных табличках (образец вы видите на рис. 385). Дошедшие до нас тексты свидетельствуют, что вавилоняне знали и использовали в практических задачах пропорциональность параллельных отрезков. Например, они умели вычислять длину отрезков AW, СМ и ВМ (рис. 386) в треугольнике ABC по его стороне АС= 30, разности S, — S2 = 42 площадей трапеции и треугольника, на которые разбивается данный треугольник параллельной прямой MN, и разности ВМ — СМ = 20. Сейчас для решения этой задачи нам пришлось бы составлять систему уравнений.
Трапеция и её площадь
Вы знаете, чтобы вывести формулы площадей прямоугольника, параллелограмма или треугольника, надо составить из этих фигур такие, площади которых умеете находить. Воспользуемся этим способом и выведем формулу площади трапеции.
Теорема (о площади трапеции).
Площадь трапеции равна произведению полусуммы её оснований на высоту.
Дано: ABCD— трапеция (рис. 397),
AB и CD — основания, СН— высота, АВ=о, CD=b, CH=h. а + b
Доказать:
Доказательство. Проведём в трапеции диагональ АС (рис. 398). Она разбивает трапецию на два треугольника ABC и ADC. Высота h трапеции является высотой треугольника ABC, проведённой к стороне АВ = а, и равна высоте треугольника ADC, проведённой к стороне CD = b. Площадь трапеции равна сумме площадей этих треугольников, поэтому
Пример №9
Диагонали АС и BD трапеции ABCD пересекаются в точке О (рис. 399). Докажите, что треугольники AOD и ВОС имеют равные площади.
Решение:
Рассмотрим треугольники ABD и ABC. В них сторона АВ— общая, а высоты, проведённые к этой стороне, равны высоте трапеции. Поэтому 
Следовательно, площади треугольников AOD и ВОС равны как разности равных площадей.
Для того чтобы установить, что неравные фигуры имеют равные площади, нужно доказать, что площади этих фигур равны либо сумме равных площадей, либо разности равных площадей.
1. У вас может возникнуть вопрос: Существует ли трапеция, средняя линия которой делит её площадь пополам?
Существование фигуры с заданными свойствами можно доказать, если привести пример такой фигуры. Однако не всегда этот путь — самый простой. История свидетельствует о том, что иногда на поиски примера, подтверждающего существование некоторого математического объекта, учёные затрачивали многие годы. Чтобы упростить поиск, проводят предварительные аналитические расчёты. Именно это мы и сделаем, чтобы ответить на поставленный вопрос. Пусть трапеция ABCD (рис. 400) имеет основания а и b и высоту h. Средняя линия MN разбивает её на две трапеции с равными высотами 

Найдём отношение площадей 
Равенство площадей 
Интересно, что отрезок, соединяющий середины оснований трапеции (иногда его называют второй средней линией трапеции), делит площадь трапеции пополам. Докажите это самостоятельно, используя рисунок 401.
2. Изучая четырёхугольники, вы узнали о дельтоиде (рис. 402). Этот четырёхугольник, как и ромб, имеет взаимно перпендикулярные диагонали. Существуют трапеции со взаимно перпендикулярными диагоналями (рис. 403), а также произвольные четырёхугольники с аналогичным свойством (рис. 404). И ромб, и дельтоид, и указанная трапеция являются частными видами четырёхугольников со взаимно перпендикулярными диагоналями.
Докажите самостоятельно, что площадь четырехугольника со взаимно перпендикулярными диагоналями равна половине произведения этих диагоналей. Эта формула справедлива и для ромба, и для дельтоида, и для трапеции.
- Площадь многоугольника
- Правильные многоугольники
- Вписанные и описанные многоугольники
- Площадь прямоугольника
- Площади фигур в геометрии
- Площади поверхностей геометрических тел
- Вычисление площадей плоских фигур
- Преобразование фигур в геометрии
Загрузить PDF
Загрузить PDF
Очень легко вычислить площадь правильного треугольника (это многоугольник!) и очень непросто сделать это в случае неправильного одиннадцатиугольника (это тоже многоугольник!). Данная статья расскажет вам, как вычислять площадь различных многоугольников.
-
1
Формула для нахождения площади правильного многоугольника: Площадь = 1/2 х периметр х апофема.
- Периметр – сумма сторон многоугольника.
- Апофема – отрезок, соединяющий центр многоугольника и середину любой из его сторон (апофема перпендикулярна стороне).
-
2
Найдите апофему. Она, как правило, дана в условии задачи. Например, дан шестиугольник, апофема которого равна 10√3.
-
3
Найдите периметр. Если периметр не дан в условии задачи, то его можно найти по известной апофеме.
- Шестиугольник можно разбить на 6 равносторонних треугольников. Апофема делит одну сторону пополам, создавая прямоугольный треугольник с углами 30-60-90 градусов.
- В прямоугольном треугольнике сторона, противолежащая углу в 60 градусов, равна x√3; углу в 30 градусов равна «х»; углу 90 градусов равна 2x. Если значение стороны x√3 равно 10√3, то х = 10.
- «х» – это половина длины основания треугольника. Удвойте ее и найдете полную длину основания. В нашем примере основание треугольника равно 20 единицам. В свою очередь основание треугольника есть сторона шестиугольника. Таким образом, периметр шестиугольника равен 20 х 6 = 120.
-
4
Подставьте значения апофемы и периметра в формулу. В нашем примере:
- площадь = 1/2 х 120 х 10√3
- площадь = 60 х 10√3
- площадь = 600√3
-
5
Упростите ответ. Возможно, вам придется записать ответ в виде десятичной дроби (то есть избавиться от корня). С помощью калькулятора найдите √3 и полученное число умножьте на 600: √3 х 600 = 1039,2. Это ваш окончательный ответ.
Реклама
-
1
Найдите площадь треугольника. Формула: Площадь = 1/2 х основание х высота.
- Если вам дан треугольник с основанием 10 и высотой 8, то его площадь = 1/2 х 8 х 10 = 40.
-
2
Найдите площадь квадрата. Чтобы найти площадь квадрата, просто возведите в квадрат длину одной его стороны. Если умножить основание квадрата на его высоту, мы получим тот же ответ, так как основание и высота равны.
- Если сторона квадрата равна 6, то его площадь = 6 х 6 = 36.
-
3
-
4
Найдите площадь трапеции. Формула: Площадь = [(основание1 + основание2) х высота] / 2.
- Например, дана трапеция с основаниями 6 и 8 и высотой 10. Ее площадь = [(6 + 8)•10]/2 = (14 х 10)/2 = 140/2 = 70.
Реклама
-
1
Используйте координаты вершин неправильного многоугольника. Зная координаты вершин, можно определить площадь неправильного многоугольника.
-
2
Сделайте таблицу. Запишите координаты вершин (х,у) (вершины выбирать последовательно в направлении против часовой стрелки). В конце списка еще раз напишите координату первой вершины.
-
3
Умножьте значение координаты «х» первой вершины на значение координаты «у» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна 82).
-
4
Умножьте значение координаты «у» первый вершины на значение координаты «х» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна -38).
-
5
Вычтите сумму, полученную в шаге 4, из суммы, полученной в шаге 3. В нашем примере: (82) — (-38) = 120.
-
6
Разделите полученный результат на 2, чтобы найти площадь многоугольника: S=120/2 = 60 (квадратных единиц).
Реклама
Советы
- Если вы записываете координаты вершин в направлении по часовой стрелке, вы получите отрицательную площадь. Таким образом, это можно использовать для описания цикла или последовательности данного набора вершин, формирующих многоугольник.
- Данная формула находит площадь с учетом формы многоугольника. Если многоугольник имеет форму цифры 8, то необходимо из площади с вершинами против часовой стрелки вычесть площадь с вершинами по часовой стрелке.
Реклама
Похожие статьи
Об этой статье
Эту страницу просматривали 439 748 раз.
Была ли эта статья полезной?
Многоугольником считается фигура,имеющая количество сторон больше или равное 3.
1)Площадь треугольника со сторонами a,b,c, и высотами h1,h2,h3,
площадь S =a*h1/2=b*h2/2=c*h3/2,
или по формуле Герона :
S= V p*(p-a)*(p-b)*(p-c),
где p — полупериметр.
Площадь четырехугольника:
1)площадь квадрата :S = a^2,
2)площадь прямоугольника :S = a *b,
3)площадь параллелограмма : S =a * h1 = b *h2,
4)площадь ромба S = a *h =d1*d2,
где a,b -стороны четырёхугольника,h1,h2-высоты,d1,d2-диагонали ромба.
5)площадь произвольного четырёхугольника определяется путем разбивки его по диагонали и нахождения площади каждого треугольника отдельно.
Площадь правильного многоугольника равна произведению полупериметра =n*a,на апофему h
S=(n*a)*h/2
где а-сторона многоугольника,n-число сторон,h-апофема.
Площадь многоугольника
На чтение 2 мин Просмотров 3.2к. Опубликовано 22 января, 2021
Одна из прикладных задач, которые решает геометрия — вычисление площадей многоугольников. Это необходимо строителям, земледельцам, конструкторам, летчикам, геологам. Даже в повседневной жизни знание формул, показывающих, как узнать площадь многоугольника, часто выручает при ремонте квартиры или дома.
Сначала определимся, что такое многоугольник, и что такое площадь. В геометрии многоугольником называют фигуру на плоскости, образованную замкнутой ломаной линией с количеством звеньев более 2-х. Это все известные и неизвестные нам фигуры, начиная от треугольника — квадрат, трапеция, ромб, шестиугольник, восьмиугольник и т.д. Готовые формулы, как найти площадь многоугольника созданы практически для каждой правильной фигуры с конечным количеством сторон. А вот что делать с неправильными?
Площади самых распространенных многоугольников можно найти по готовым формулам:
Правильным многоугольником называется фигура, у которой все стороны равны, а смежные углы одинаковые. Площадь — часть плоскости, в которой лежит фигура, заключенная между ее сторонами. Если многоугольник нарисован в тетради в клеточку, то площадь — это количество квадратиков внутри фигуры. За единицу площади принят квадратный метр (м2), или квадратный сантиметр (см2), в зависимости от размеров многоугольника.
- Квадратный метр — площадь квадрата со сторонами длиной в 1 м;
- Квадратный сантиметр — площадь квадрата со стороной 1 см.
- В одном м2 помещается 10000 см2;
- 1 см2 = 1 ∙ 10-4 см.
Площадь многоугольника не обязательно равна целому числу квадратных единиц. Если у вас получится площадь, например, 22, 3 см2, расстраиваться не нужно. Есть еще квадратные миллиметры и более мелкие единицы.
Универсальный способ вычисления площади правильного многоугольника
Чтобы не запоминать десятки готовых формул, можно выучить только одну — как найти площадь многоугольника через периметр. Способ этот простой и не требует большого объема вычислений. Для работы нужны только линейка и карандаш.






































































































































































































































