Содержание
- Определение числовой последовательности
- Арифметическая прогрессия .
- Определение арифметической прогрессии
- Свойства арифметической прогрессии.
- Формула n-го члена арифметической прогрессии
- Доказательство формулы n-го члена арифметической прогрессии
- Примеры арифметических прогрессий.
- Арифметическая прогрессия, формулы.
- Геометрическая прогрессия.
- Свойства геометрической прогрессии.
- Примеры геометрических прогрессий.
- Геометрическая прогрессия, формулы.
- Бесконечно убывающая геометрическая прогрессия
- Связь арифметической и геометрической прогрессий
Определение числовой последовательности
Числовая последовательность — это множество чисел, каждому из которых можно присвоить уникальный номер.
Последовательности можно задавать разными способами:
- Словесно — когда правило последовательности объясняется словами: «Последовательность простых чисел: 4, 6, 10, 19, 21, 33…»
- Аналитически — когда указана формула ее n-го члена: yn = f(n). Последовательность yn = C называют постоянной или стационарной.
- Рекуррентно — когда указывается правило, которое помогает вычислить n-й член последовательности, если известны её предыдущие члены.
Арифметическая прогрессия — (an), задана таким соотношением:
a1 = a, an+1= an + d.
Последовательность Фибоначчи — когда каждое следующее число равно сумме двух предыдущих чисел: an+1 = an + an-1.
Пример: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…
- Графически — когда график последовательности состоит из точек с абсциссами
1, 2, 3, 4…
Так как алгебраическая числовая последовательность — это частный случай числовой функции, то ряд свойств функций рассматриваются и для последовательностей.
Свойства числовых последовательностей:
- Последовательность {yn} называют возрастающей, если каждый ее член кроме первого больше предыдущего:y1 < y2 < y3 < … < yn < yn+1 < …
- Последовательность {yn} называют убывающей, если каждый ее член кроме первого меньше предыдущего: y1 > y2 > y3 > … > yn > yn+1 > …
Возрастающие и убывающие последовательности называют монотонными последовательностями.
- Последовательность можно назвать периодической, если существует такое натуральное число T, что начиная с некоторого N, выполняется равенство: yn = yn+T. Число T — длина периода.
Запишем числа, которые первые пришли в голову: 7, 19, 0, -1, 2, -11, 0… Сколько бы чисел не написали, всегда можно сказать, какое из них первое, какое — второе и так до последнего. То есть мы можем их пронумеровать.
Пример числовой последовательности выглядит так:
В такой математической последовательности каждый номер соответствует одному числу. Это значит, что в последовательности не может быть двух первых чисел и т.д. Первое число (как и любое другое) — всегда одно.
N-ный член алгебраической последовательности — это число с порядковым номером n.
Всю последовательность можно обозначить любой буквой латинского алфавита, например, a. Каждый член этой последовательности — той же буквой с индексом, который равен номеру этого члена: a1, a2,…, a10…, an.
N-ый член последовательности можно задать формулой. Например:
- Формула an = 3n — 5 задает последовательность: −2, 1, 4, 7, 10…
- Формула an = 1 : (n + 2) задает последовательность: 13, 14, 15, 16…
Арифметическая прогрессия .
Арифметическая прогрессия — это ряд чисел, в котором все член получаются из предыдущего методом добавления к нему 1-го и того же числа d, которое называется разностью арифметической прогрессии.
Или другими словами: арифметическая прогрессия — численная последовательность, которая имеет вид:

(шаг либо разность прогрессии):
Всякий (n-й) член прогрессии можно вычислить с помощью формулы общего члена:
Арифметическая прогрессия — это монотонная последовательность . При 



Определение арифметической прогрессии
Так как числовая последовательность — это частный случай функции, которая определена на множестве натуральных чисел, арифметическую прогрессию можно назвать частным случаем числовой последовательности.
Рассмотрим основные определения и как найти арифметическую прогрессию.
Арифметическая прогрессия — это числовая последовательность a1, a2,…, an,… для которой для каждого натурального n выполняется равенство:
an+1= an + d, где d — это разность арифметической прогрессии.
Описать словами эту формулу можно так: каждый член арифметической прогрессии равен предыдущему, сложенному с одним и тем же числом d.
Разность между последующим и предыдущим членами, то есть разность арифметической прогрессии можно найти по формуле:
Если известны первый член a1 и n-ый член прогрессии, разность можно найти так:
Арифметическая прогрессия бывает трех видов:
- Возрастающая — арифметическая прогрессия, у которой положительная разность, то есть d > 0.
Пример: последовательность чисел 11, 14, 17, 20, 23… — это возрастающая арифметическая прогрессия, так как ее разность d = 3 > 0.
- Убывающая — арифметическая прогрессия, у которой отрицательная разность, то есть d < 0.
Пример: последовательность чисел 50, 48, 46, 44, 43… — это убывающая арифметическая прогрессия, так как ее разность d = –2 < 0.
- Стационарная — арифметическая прогрессия, у которой разность равна нулю, то есть d = 0.Пример: последовательность чисел 23, 23, 23, 23, 23… — это стационарная арифметическая прогрессия, так как ее разность d = 0.
Свойства арифметической прогрессии.
- Общий член арифметической прогрессии.
Член арифметической прогрессии с номером
можно найти с помощью формулы:

где 

- Характеристическое свойство арифметической прогрессии.
Последовательность 


- Сумма 1-х
членов арифметической прогрессии.
Сумму 1-х 










- Сходимость арифметической прогрессии.
Арифметическая прогрессия 


- Связь между арифметической и геометрической прогрессиями.
Есть 




Формула n-го члена арифметической прогрессии
Из определения арифметической прогрессии следует, что равенство истинно:
Поэтому:
и т.д.
Значит,
Переведем с языка формул на русский: если мы знаем первый член и разность арифметической прогрессии, то можем найти любой ее член.
Арифметическую прогрессию можно назвать заданной, если известен ее первый член и разность.
Формулу an = a1 + d * (n — 1) называют формулой n-го члена арифметической прогрессии.
Доказательство формулы n-го члена арифметической прогрессии
Формулу n-го члена арифметической прогрессии можно доказать при помощи метода математической индукции.
Пусть дано:
Нужно доказать:
Как доказываем:
- Формула
верна при n = 1.
Действительно,
Согласно принципу математической индукции формула
верна для любого натурального числа.
Примеры арифметических прогрессий.
1, -1, -3, -5, -7 — первые пять членов арифметической прогрессии, в которой
и 

Арифметическая прогрессия, формулы.
Формула n-го члена:
Формулы суммы n первых членов:
Геометрическая прогрессия.
Геометрическая прогрессия — это последовательность чисел 
(знаменатель прогрессии), где 


Или другими словами: геометрическая прогрессия — это численная последовательность, каждое из чисел равняется предыдущему, умноженному на определенное постоянное число q для данной прогрессии, которое называется знаменателем геометрической прогрессии.
Каждый член геометрической прогрессии можно вычислить при помощи формулы:
Когда 



Название геометрическая прогрессия взяла из своего характеристического свойства:
т.е. все члены равны среднему геометрическому их соседей.
Свойства геометрической прогрессии.
- Логарифмы членов геометрической прогрессии (если они определены) образуют арифметическую прогрессию:
- Произведение 1-х n членов геометрической прогрессии рассчитывают при помощи формулы:

- Произведение элементов геометрической прогрессии, начиная с k-ого члена, и заканчивая n-ым членом, рассчитывают при помощи формулы:
- Сумма n 1-х членов геометрической прогрессии:
Примеры геометрических прогрессий.
- Последовательность площадей квадратов, в которой каждый последующий квадрат получают соединением середин сторон предыдущего — геометрическая прогрессия со знаменателем ½, не имеющая предела. Площади образующихся на каждом этапе треугольников тоже образуют нескончаемую геометрическую прогрессию со знаменателем ½, сумма которой равняется площади начального квадрата.
- Последовательность числа зёрен на клетках в задаче о зёрнах на шахматной доске.
- 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 — прогрессия со знаменателем 2 из 13 членов.
- 50; −25; 12,5; −6,25; 3,125; … — нескончаемо убывающая прогрессия со знаменателем -½.
— геометрическая прогрессия со знаменателем равным единице (и арифметическая прогрессия с шагом 0).
Геометрическая прогрессия, формулы.
- Формула n-го члена:
- Формулы суммы n первых членов:
- Сумма бесконечной прогрессии:
Бесконечно убывающая геометрическая прогрессия
Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1, то есть
|q| < 1.
Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю
–1 < q < 0.
При таком знаменателе последовательность знакопеременная. Например,
1, –1/2, 1/4, –1/8, . . . .
Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n. Это число всегда конечно и выражается формулой
| S = b1 + b2 + b3 + . . . = | b1 | . |
| 1 – q |
Например,
10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 – 0,1) = 11 1/9 ,
10 – 1 + 0,1 – 0,01 + . . . = 10 / (1 + 0,1) = 9 1/11 . ◄
Связь арифметической и геометрической прогрессий
Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.
Если
a1, a2, a3, . . .— арифметическая прогрессия с разностью d, то
ba1, ba2, ba3, . . . — геометрическая прогрессия с знаменателем bd.
Например,
1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и
71, 73, 75, . . . — геометрическая прогрессия с знаменателем 72. ◄
Если
b1, b2, b3, . . .— геометрическая прогрессия с знаменателем q, то
loga b1, loga b2, loga b3, . . . — арифметическая прогрессия с разностью loga q.
Например,
2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и
lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6.
Числовые последовательности (основные понятия)
Арифметическая прогрессия
Геометрическая прогрессия
Бесконечно убывающая геометрическая прогрессия
Связь арифметической и геометрической прогрессий
Числовые последовательности (основные понятия)
Если каждому натуральному числу n поставить в соответствие действительное число an, то говорят, что задано числовую последовательность:
a1, a2, a3, . . . , an, . . . .
Итак, числовая последовательность — функция натурального аргумента.
Число a1 называют первым членом последовательности, число a2 — вторым членом последовательности, число a3 — третьим и так далее. Число an называют n-м членом последовательности, а натуральное число n — его номером.
Из двух соседних членов an и an+1 последовательности член an+1 называют последующим (по отношению к an), а an — предыдущим (по отношению к an+1).
Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.
Часто последовательность задают с помощью формулы n-го члена, то есть формулы, которая позволяет определить член последовательности по его номеру.
► Например,
последовательность положительных нечётных чисел можно задать формулой
an = 2n –1,
а последовательность чередующихся 1 и –1 — формулой
bn = (–1)n+1. ◄
Последовательность можно определить рекуррентной формулой, то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.
► Например,
если a1 = 1, а an+1 = an + 5, то первые пять членов последовательности находим следующим образом:
a1 = 1,
a2 = a1 + 5 = 1 + 5 = 6,
a3 = a2 + 5 = 6 + 5 = 11,
a4 = a3 + 5 = 11 + 5 = 16,
a5 = a4 + 5 = 16 + 5 = 21.
Если а1 = 1, а2 = 1, an+2 = an + an+1, то первые семь членов числовой последовательности устанавливаем следующим образом:
a1 = 1,
a2 = 1,
a3 = a1 + a2 = 1 + 1 = 2,
a4 = a2 + a3 = 1 + 2 = 3,
a5 = a3 + a4 = 2 + 3 = 5,
a6 = a4 + a5 = 3 + 5 = 8,
a7 = a5 + a6 = 5 + 8 = 13. ◄
Последовательности могут быть конечными и бесконечными.
Последовательность называется конечной, если она имеет конечное число членов. Последовательность называется бесконечной, если она имеет бесконечно много членов.
► Например,
последовательность двузначных натуральных чисел:
10, 11, 12, 13, . . . , 98, 99
конечная.
Последовательность простых чисел:
2, 3, 5, 7, 11, 13, . . .
бесконечная. ◄
Последовательность называют возрастающей, если каждый её член, начиная со второго, больше чем предыдущий.
Последовательность называют убывающей, если каждый её член, начиная со второго, меньше чем предыдущий.
► Например,
2, 4, 6, 8, . . . , 2n, . . . — возрастающая последовательность;
1, 1/2, 1/3, 1/4, . . . , 1/n, . . . — убывающая последовательность. ◄
Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью.
Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.
Арифметическая прогрессия
Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.
Иначе,
a1, a2, a3, . . . , an, . . .
является арифметической прогрессией, если для любого натурального числа n выполняется условие:
an+1 = an + d,
где d — некоторое число.
Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:
а2 – a1 = а3 – a2 = . . . = an+1 – an = d.
Число d называют разностью арифметической прогрессии.
Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.
► Например,
если a1 = 3, d = 4, то первые пять членов последовательности находим следующим образом:
a1 =3,
a2 = a1 + d = 3 + 4 = 7,
a3 = a2 + d = 7 + 4 = 11,
a4 = a3 + d = 11 + 4 = 15,
a5 = a4 + d = 15 + 4 = 19. ◄
Для арифметической прогрессии с первым членом a1 и разностью d её n-й член может быть найден по формуле:
an = a1 + (n – 1)d.
► Например,
найдём тридцатый член арифметической прогрессии
1, 4, 7, 10, . . .
Имеем,
a1 =1, d = 3,
a30 = a1 + (30 – 1)d =1 + 29·3 = 88. ◄
Так как
an–1 = a1 + (n – 2)d,
an = a1 + (n – 1)d,
an+1 = a1 + nd,
то, очевидно,
то есть,
каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.
Так как верно и обратное утверждение, то имеет место следующее утверждение:
числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.
► Например,
докажем, что последовательность, которая задаётся формулой an = 2n – 7, является арифметической прогрессией.
Воспользуемся приведённым выше утверждением. Имеем:
an = 2n – 7,
an–1 = 2(n – 1) – 7 = 2n – 9,
an+1 = 2(n + 1) – 7 = 2n – 5.
Следовательно,
| an+1 + an–1 |
= |
2n – 5 + 2n – 9 |
= 2n – 7 = an, |
| 2 |
2 |
что и доказывает нужное утверждение. ◄
Отметим, что n-й член арифметической прогрессии можно найти не толь через a1, но и любой предыдущий ak, для чего достаточно воспользоваться формулой
an = ak + (n – k)d.
► Например,
для a5 можно записать
a5 = a1 + 4d,
a5 = a2 + 3d,
a5 = a3 + 2d,
a5 = a4 + d. ◄
Так как
an = an–k + kd,
an = an+k – kd,
то, очевидно,
то есть,
любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.
Кроме того, для любой арифметической прогрессии справедливо равенство:
am + an = ak + al,
если
m + n = k + l.
► Например,
в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .
1) a10 = 28 = (25 + 31)/2 = (a9 + a11)/2;
2) 28 = a10 = a3 + 7d = 7 + 7·3 = 7 + 21 = 28;
3) a10 = 28 = (19 + 37)/2 = (a7 + a13)/2;
4) a2 + a12 = a5 + a9, так как
a2 + a12 = 4 + 34 = 38,
a5 + a9 = 13 + 25 = 38. ◄
Сумма
Sn = a1 + a2+ a3 + . . .+an,
первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:
Отсюда, в частности, следует, что если нужно просуммировать члены
ak, ak+1, . . . , an,
то предыдущая формула сохраняет свою структуру:
| Sn – Sk–1 = ak + ak+1 + . . . + an = | ak + an |
· (n – k + 1) . |
| 2 |
► Например,
в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .
S10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;
10 + 13 + 16 + 19 + 22 + 25 + 28 = S10 – S3 = (10 + 28) · (10 – 4 + 1)/2 = 133. ◄
Если дана арифметическая прогрессия, то величины a1, an, d, n и Sn связаны двумя формулами:
| an = a1 + (n – 1)d и Sn = | a1 + an |
· n . |
| 2 |
Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.
Арифметическая прогрессия является монотонной последовательностью. При этом:
- если d > 0, то она является возрастающей;
- если d < 0, то она является убывающей;
- если d = 0, то последовательность будет стационарной.
Геометрическая прогрессия
Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.
Иначе,
b1, b2, b3, . . . , bn, . . .
является геометрической прогрессией, если для любого натурального числа n выполняется условие:
bn+1 = bn · q,
где q ≠ 0 — некоторое число.
Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:
b2/b1 = b3/b2 = . . . = bn+1/bn = q.
Число q называют знаменателем геометрической прогрессии.
Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.
► Например,
если b1 = 1, q = –3, то первые пять членов последовательности находим следующим образом:
b1 = 1,
b2 = b1 ·
q = 1 · (–3) = –3,
b3 = b2 ·
q = –3 · (–3) = 9,
b4 = b3 ·
q = 9 · (–3) = –27,
b5 = b4 ·
q = –27 · (–3) = 81. ◄
Для геометрической прогрессии с первым членом b1 и знаменателем q её n-й член может быть найден по формуле:
bn = b1 ·
qn–1.
► Например,
найдём седьмой член геометрической прогрессии 1, 2, 4, . . .
Имеем,
b1 = 1, q = 2,
b7 = b1 · q6
= 1 · 26 = 64. ◄
Так как
bn–1 = b1 ·
qn–2,
bn = b1 ·
qn–1,
bn+1 = b1 ·
qn,
то, очевидно,
bn2 = bn–1 · bn+1,
то есть,
каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.
Так как верно и обратное утверждение, то имеет место следующее утверждение:
числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.
► Например,
докажем, что последовательность, которая задаётся формулой bn = –3 · 2n, является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:
bn = –3 · 2n,
bn–1 = –3 · 2n–1,
bn+1 = –3 · 2n+1.
Следовательно,
bn2 = (–3 · 2n)2 = (–3 · 2n–1) · (–3 · 2n+1) = bn–1 · bn+1,
что и доказывает нужное утверждение. ◄
Отметим, что n-й член геометрической прогрессии можно найти не только через b1, но и любой предыдущий член bk, для чего достаточно воспользоваться формулой
bn = bk ·
qn–k.
► Например,
для b5 можно записать
b5 = b1 ·
q4,
b5 = b2 ·
q3,
b5 = b3 ·
q2,
b5 = b4 ·
q. ◄
Так как
bn = bk ·
qn–k,
bn = bn–k ·
qk,
то, очевидно,
bn2 = bn–k · bn+k
то есть,
квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.
Кроме того, для любой геометрической прогрессии справедливо равенство:
bm · bn = bk · bl,
если
m + n = k + l.
► Например,
в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .
1) b62 = 322 = 1024 = 16 · 64 = b5 · b7;
2) 1024 = b11 = b6 ·
q5 = 32 · 25 = 1024;
3) b62 = 322 = 1024 = 8 · 128 = b4 · b8;
4) b2 · b7 = b4 · b5, так как
b2 · b7 = 2 · 64 = 128,
b4 · b5 = 8 · 16 = 128. ◄
Сумма
Sn = b1 + b2 + b3 + . . . + bn
первых n членов геометрической прогрессии со знаменателем q ≠ 0 вычисляется по формуле:
А при q = 1 — по формуле
Sn = nb1
Заметим, что если нужно просуммировать члены
bk, bk+1, . . . ,bn,
то используется формула:
| Sn – Sk–1 = bk + bk+1 + . . . + bn = bk · | 1 – qn–k+1 |
. |
| 1 – q |
► Например,
в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .
S10 = 1 + 2 + . . . + 512 = 1 · (1 – 210) / (1 – 2) = 1023;
64 + 128 + 256 + 512 = S10 – S6 = 64 · (1 – 210–7+1) / (1 – 2) = 960. ◄
Если дана геометрическая прогрессия, то величины b1, bn, q, n и Sn связаны двумя формулами:
| bn = b1 · qn–1 и Sn = b1 · | 1 – qn |
. |
| 1 – q |
Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.
Для геометрической прогрессии с первым членом b1 и знаменателем q имеют место следующие свойства монотонности:
- прогрессия является возрастающей, если выполнено одно из следующих условий:
b1 > 0 и q > 1;
b1 < 0 и 0 < q < 1;
- прогрессия является убывающей, если выполнено одно из следующих условий:
b1 > 0 и 0 < q < 1;
b1 < 0 и q > 1.
Если q < 0, то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.
Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:
Pn = b1 · b2 · b3 · . . . · bn = (b1 · bn) n/2.
► Например,
1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128)8/2 = 1284 = 268 435 456;
3 · 6 · 12 · 24 · 48 = (3 · 48)5/2 = (1441/2)5 = 125 = 248 832.◄
Бесконечно убывающая геометрическая прогрессия
Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1, то есть
|q| < 1.
Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю
–1 < q < 0.
При таком знаменателе последовательность знакопеременная. Например,
1, –1/2, 1/4, –1/8, . . . .
Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n. Это число всегда конечно и выражается формулой
| S = b1 + b2 + b3 + . . . = | b1 | . |
| 1 – q |
► Например,
10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 – 0,1) = 11 1/9 ,
10 – 1 + 0,1 – 0,01 + . . . = 10 / (1 + 0,1) = 9 1/11 . ◄
Связь арифметической и геометрической прогрессий
Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.
Если
a1, a2, a3, . . .— арифметическая прогрессия с разностью d, то
ba1, ba2, ba3, . . . — геометрическая прогрессия с знаменателем bd.
► Например,
1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и
71, 73, 75, . . . — геометрическая прогрессия с знаменателем 72. ◄
Если
b1, b2, b3, . . .— геометрическая прогрессия с знаменателем q, то
loga b1, loga b2, loga b3, . . . — арифметическая прогрессия с разностью loga q.
► Например,
2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и
lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6. ◄
Смотрите также:
Обозначения и сокращения
Таблицы чисел
Алгебраические тождества
Степени
Арифметический корень n-й степени
Логарифмы
Графики элементарных функций
Построение графиков функций геометрическими методами
Тригонометрия
Таблицы значений тригонометрических функций
Предел и непрерывность функции
Треугольники
Четырёхугольники
Многоугольники
Окружность
Площади геометрических фигур
Прямые и плоскости
Многогранники
Тела вращения
Арифметическая прогрессия — одно из фундаментальных понятий алгебры и математического анализа. Она имеет много применений в различных областях, включая финансы, физику, экономику и другие науки.
Арифметическая прогрессия — последовательность из чисел, в которой каждый следующий член отличается от предыдущего на определенное значение. Это значение называют разностью или шагом арифметической прогрессии и обозначают буквой d. Разность может быть и отрицательным числом и даже равняться нулю.
Например, 2,7,12,17,22… — это арифметическая прогрессия, так как второй ее член (7) отличается от первого (2) на 5, третий член (12) отличается от второго (7) тоже на 5, четвертый член (17) отличается от третьего (12) снова на 5 и т. д. Получается у этой числовой последовательности каждый следующий элемент больше предыдущего на 5 и эта последовательность является арифметической прогрессией.
А вот последовательность 3, 5, 7, 10, 15… не является арифметической прогрессией. Подумайте почему.
Таким образом, чтобы найти следующий член прогрессии, необходимо добавить к нему разность (шаг).
{a_n=a_{n-1}+d}
Для того, чтобы найти член арифметической прогрессии, необходимо знать первый член и разность. Формула для этого выглядит так:
{a_n=a_1+(n-1)d}
Характеристическое свойство арифметической прогрессии
Если для последовательности чисел выполняется следующее равенство, то такую последовательность можно назвать арифметической прогрессией:
{a_n=frac {a_{n-1}+a_{n+1}}{2}, nge 2}
Сумма членов арифметической прогрессии
Для того, чтобы найти сумму первых n членов арифметической прогрессии, необходимо воспользоваться одной из формул:
{S_n=frac {a_1+a_n}{2} cdot n},
{S_n=frac {2a_1+d(n-1)}{2} cdot n}
В этих формулах a1 — первый член арифметической прогрессии, n — количество элементов для суммирования, an — член с номером n, d — разность прогрессии. На сайте вы можете найти сумму членов арифметической прогрессии онлайн.
Примеры арифметической прогрессии
2, 5, 8, 11, 14, 17…
Это арифметическая прогрессия, у которой первый член a1 равен 2, а разность d равна 3.
75, 70, 65, 60, 55…
В данном примере мы имеем дело с отрицательной разностью прогрессии. a1=75, d=-5.
Формулы арифметической прогрессии
| Определение арифметической прогрессии | {a_n=a_{n-1}+d} |
|---|---|
| Разность арифметической прогрессии | {d = a_{n+1}-a_n} |
| Формула n-го члена арифметической прогрессии | a_n=a_1+(n-1)d |
| Сумма первых n членов арифметической прогрессии |
{S_n=dfrac {a_1+a_n}{2} cdot n} {S_n=dfrac {2a_1+d(n-1)}{2} cdot n} |
| Характеристическое свойство арифметической прогрессии | a_n=dfrac {a_{n-1}+a_{n+1}}{2}, nge 2 |
Арифметические прогрессии широко применяются в финансовых расчетах, например, при расчете аннуитетов и амортизации. Они также используются в физике при описании равномерно ускоренного движения тела.
Понимание арифметических прогрессий может быть полезно не только в научных и технических областях, но и в повседневной жизни. Например, при планировании бюджета или распределении времени между задачами можно использовать концепцию арифметической прогрессии для более эффективного использования ресурсов.
Арифметическая прогрессия — это важное математическое понятие, которое широко используется в различных областях. Понимание ее смысла может быть полезно для решения различных задач и повышения эффективности в различных сферах деятельности.
Прогрессия — это последовательность величин, каждая последующая из них находится в некоторой, общей для всей прогрессии, зависимости от предыдущей.
Содержание:
Числовая последовательность
В жизни мы часто встречаемся с функциями, областью определения которых является множество натуральных чисел. Например, стоимость проезда в пригородном транспорте зависит от дальности поездки и задается функцией
Функция стоимости проезда задана таблично, областью определения функции является множество натуральных чисел 
Примером числовой последовательности является последовательность положительных четных чисел: 2; 4; 6; 8; … . Число 2 — первый член последовательности, число 4 — второй и т. д. Ясно, что на 5-м месте будет число 10 (пятый член последовательности), а на 100-м — число 200 (сотый член последовательности).
Еще один пример — последовательность чисел, обратных натуральным числам: 



Последовательности могут быть конечными и бесконечными. Например, последовательность двузначных чисел 10; 11; …; 99 является конечной, так как содержит конечное число членов. А последовательность нечетных натуральных чисел — бесконечная.
Определение числовой последовательности
Определение:
Числовой последовательностью называется функция, определенная на множестве 
Числа, образующие последовательность (значения функции), называются членами последовательности. Они записываются буквами с индексами, обозначающими номер члена последовательности: 






Если 
Последовательности, так же как и функции, могут быть заданы различными способами.
Аналитический способ — это задание последовательности с помощью формулы ее 

С помощью формулы 
Например, пусть последовательность 

Чтобы найти некоторый член последовательности с помощью формулы 
Для задания последовательностей часто используется рекуррентный способ (от лат. recurrentis — возвращающийся). Он заключается в вычислении следующих членов последовательности по предыдущим.
Например, условия 


Пример №1
Найдите несколько членов последовательности 
Решение:
Запишем несколько членов этой последовательности в ряд: 1; 1; 2; 3; 5; … .
Полученную последовательность чисел называют последовательностью Фибоначчи по имени итальянского математика Леонардо Фибоначчи (1180—1240).
Формула n-го члена последовательности
Пример №2
Последовательность 


Решение:
Пример №3
Последовательность задана формулой 

а) -2; б) -7?
Решение:
Для того чтобы определить, является ли число членом последовательности, нужно определить, имеет ли натуральные корни уравнение:
а) 
б) 
Пример №4
Для каких членов последовательности 



Решение:
Подставим в неравенство 



Рекуррентный способ задания последовательности
Пример №5
Запишите 5 первых членов последовательности 
Решение:
Пример №6
Запишите несколько первых членов последовательности 
Задайте эту последовательность формулой 
Решение:
Получим следующую последовательность: 8; -8; 8; -8; …. На нечетных местах этой последовательности стоят члены, равные числу 8, а на четных — числу -8, значит, формула 
Арифметическая прогрессия
Рассмотрим задачу. В горной местности температура воздуха летом при подъеме на каждые 100 м в среднем понижается на 0,7 °С. У подножия горы температура равна 26 °С. Найдите температуру воздуха на высоте 100 м; 200 м; 300 м.
Решение:
Температура воздуха на высоте 100 м равна 26 °С — 0,7 °С = 25,3 °С. На высоте 200 м температура будет равна 25,3 °С — 0,7 °С = 24,6 °С, а на высоте 300 м — 24,6 °С — 0,7 °С = 23,9 °С.
Ответ: 25,3 °С; 24,6 °С; 23,9 °С.
Решая задачу, мы получили последовательность 26; 25,3; 24,6; … . Каждый член этой последовательности равен предыдущему, сложенному с числом -0,7. Многие практические задачи приводят к последовательностям такого вида. Они называются арифметическими прогрессиями (от лат. progression — движение вперед).
Определение арифметической прогрессией
Определение:
Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же для данной последовательности числом, т. е.
Число 
Из равенства 
Чтобы задать арифметическую прогрессию 

Например, если 
Если 
Если 
Чтобы вычислить любой член арифметической прогрессии, не вычисляя все предыдущие члены, используют формулу 
Выведем эту формулу. Если 

Сложим эти равенства:
После упрощения получим:
Так как число слагаемых 

Получили формулу
Формула 



Пример №7
Последовательность 

Решение:
По формуле 
Ответ: 249,5.
Пример №8
Последовательность 

Решение:
а) По условию 




б) Подставим значения 





Ответ: а) число 168 является членом этой прогрессии; б) число 201 не является членом этой прогрессии.
Характеристическое свойство арифметической прогрессии
В арифметической прогрессии каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего (соседних с ним)
членов, т. е. 

Доказательство. В арифметической прогрессии 




Найдем их среднее арифметическое:
Справедливо и обратное утверждение:
если в последовательности каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего (соседних с ним) членов, то последовательность является арифметической прогрессией.
Доказательство:
Пусть в некоторой числовой последовательности 








Оба утверждения можно объединить в одно, которое называется характеристическим свойством арифметической прогрессии:
числовая последовательность является арифметической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов:
Пример №9
Проверьте, является ли арифметической прогрессией последовательность, заданная формулой
Решение:
Запишем для 
Найдем среднее арифметическое этих членов:
По характеристическому свойству арифметической прогрессии последовательность 
Решение арифметической прогрессии
Пример №10
Последовательность 2; 12; 22; … является арифметической прогрессией. Продолжите последовательность.
Решение:
Так как последовательность является арифметической прогрессией, то найдем ее разность 
Пример №11
Известны члены арифметической прогрессии: 
Решение:
Найдем разность арифметической прогрессии:
Формула n-го члена арифметической прогрессии
Пример №12
Последовательность 
Решение:
По формуле 

Пример №13
Запишите формулу 
Решение:
По условию 





Подставим 

Пример №14
В арифметической прогрессии 

Решение:
Так как 



Пример №15
В арифметической прогрессии 
Решение:
По условию
Решим систему уравнений
Вычтем из второго уравнения первое, получим 


Характеристическое свойство арифметической прогрессии
Пример №16
Найдите восьмой член арифметической прогрессии 
Решение:
По характеристическому свойству арифметической прогрессии 
Пример №17
При каком значении 

Решение:
По характеристическому свойству прогрессии последовательность является арифметической прогрессией, если каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов:
Решим полученное уравнение:
Формула суммы n первых членов арифметической прогрессии
Рассмотрим задачу. Двое друзей решили улучшить знание английского языка и каждый день учить на 3 новых слова больше, чем в предыдущий. Сколько слов выучит каждый из друзей за 10 дней, если они начнут с одного слова?
Для решения этой задачи нужно найти сумму десяти первых членов арифметической прогрессии 
Возникает вопрос: как найти эту сумму, не вычисляя всех десяти членов прогрессии?
В общем виде эта задача приводит к необходимости вывода формулы суммы 
Для того чтобы вывести эту формулу, докажем свойство: суммы двух членов конечной арифметической прогрессии, равноудаленных от ее концов, равны между собой и равны сумме первого и последнего ее членов, т. е.
В общем виде:
Доказательство:
Преобразуем слагаемые в левой части равенства, воспользовавшись формулой 
Тогда получим:
С помощью доказанного свойства найдем, например, сумму всех натуральных чисел от 1 до 50.
Натуральные числа от 1 до 50 составляют арифметическую прогрессию 1; 2; 3; …; 50. Первый член этой прогрессии равен 1, последний равен 50. Всего в этой прогрессии 50 членов.
Поскольку 



Выведем формулу суммы 
Обозначим 



Сложим эти два равенства и получим:
По свойству 
Число всех таких пар сумм равно 



Идея такого доказательства принадлежит выдающемуся немецкому математику К. Гауссу (1777—1855).
Формулу суммы 




Если известен первый член прогрессии и разность, то удобно использовать формулу
Применим эту формулу к задаче о количестве выученных иностранных слов и получим: 
Пример №18
Найдите сумму пятидесяти первых членов арифметической прогрессии 3; 7; 11; 15; … .
Решение:
В этой прогрессии первый член равен 3, а разность 
для и получим:
Ответ: 5050.
Пример №19
В арифметической прогрессии 
Решение:
Применим формулу суммы 
Ответ: 1785.
Пример №20
Найдите сумму шести первых членов арифметической прогрессии, если ее первый член равен -2, а разность прогрессии равна 0,4.
Решение:
Воспользуемся формулой
так как 
Пример №21
Найдите сумму 4 + 7 + 10+ … + 100, если ее слагаемые — последовательные члены арифметической прогрессии.
Решение:
Последовательность 4, 7, 10, …, 100 является арифметической прогрессией, в которой 


Воспользуемся формулой суммы 

Пример №22
Найдите количество членов арифметической прогрессии, зная, что их сумма равна 430, первый член прогрессии равен -7, а разность прогрессии равна 3.
Решение:
Воспользуемся формулой суммы 



Так как 
Пример №23
В арифметической прогрессии 
Решение:
Найдем 



Решим полученную систему способом сложения:
Тогда
Примем четвертый член данной прогрессии за первый член некоторой другой прогрессии, тогда семнадцатый член данной прогрессии станет четырнадцатым (17 — 4 + 1 = 14) членом новой прогрессии. Искомая сумма равна:
Пример №24
Найдите сумму всех четных натуральных чисел, не превосходящих 300, которые при делении на 13 дают в остатке 5.
Решение:
Первое число в последовательности всех четных натуральных чисел, не превосходящих 300, которые при делении на 13 дают в остатке 5, — это число 18. Каждое следующее число равно предыдущему, сложенному с числом 26. Последнее четное число, которое при делении на 13 дает в остатке 5, — это число 278. Поскольку рассматриваются только четные числа, то разность прогрессии равна 26. Найдем номер числа прогрессии, равного 278: 

Геометрическая прогрессия
Рассмотрим задачу. Вкладчик положил в банк 1000 р. на
депозит, по которому сумма вклада увеличивается ежегодно на 5 %. Какая сумма будет у него через 1 год, 2 года, 6 лет?
Решение:
Начальная сумма в 1000 р. через год увеличится на 5 % и составит 105 % от 1000 р. Найдем 105 % = 1,05 от 1000 р.: 1000 • 1,05 = 1050 (р.).
Через два года сумма вклада станет равной 

Через шесть лет сумма будет равна
Многие практические задачи приводят к последовательностям такого вида. Они называются геометрическими прогрессиями.
Определение геометрической прогрессии
Определение:
Геометрической прогрессией называется числовая последовательность, первый член которой отличен от нуля, а каждый следующий, начиная со второго, равен предыдущему, умноженному на одно и то же для данной последовательности число, не равное нулю, т. е.
Число 
Из равенства 
Чтобы задать геометрическую прогрессию 

Например, если 
Если 
Если 
вид
Если
Чтобы вычислить любой член геометрической прогрессии, не вычисляя все предыдущие члены, используют формулу 
Выведем эту формулу. Если 

Перемножим эти равенства между собой:
Разделим обе части равенства на произведение 
Так как число множителей 

Получили формулу 
Формула 

Пример №25
Последовательность 

Решение:
По формуле
Ответ: 4374.
Пример №26
Последовательность 

Решение:
По условию 


Решим это уравнение:
Так как 8 — натуральное число, то число 320 является членом этой прогрессии с номером 8.
Ответ: число 320 является членом этой прогрессии.
- Заказать решение задач по высшей математике
Характеристическое свойство геометрической прогрессии
В геометрической прогрессии модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего (соседних с ним) ее членов, т. е. 
или 
Доказательство:
В геометрической прогрессии 




Найдем среднее пропорциональное (среднее геометрическое) соседних с 

Выполним преобразования в правой части равенства:
откуда получим, что

Справедливо и обратное утверждение:
- если в последовательности чисел, отличных от нуля, модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего (соседних с ним) ее членов, то последовательность является геометрической прогрессией.
Доказательство:
Пусть в некоторой числовой последовательности 

Тогда 






Оба утверждения можно объединить в одно, которое называется характеристическим свойством геометрической прогрессии:
- числовая последовательность, все члены которой отличны от нуля, является геометрической прогрессией тогда и только тогда, когда модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего ее членов:
Пример №27
Проверьте, является ли геометрической прогрессией последовательность, заданная формулой
Решение:
Запишем для 
Найдем среднее пропорциональное этих членов:
По характеристическому свойству геометрической прогрессии последовательность 
Решение геометрической прогрессии
Пример №28
Последовательность 2; 10; 50; … является геометрической прогрессией. Продолжите последовательность.
Решение:
Так как последовательность является геометрической прогрессией, то найдем ее знаменатель 
Пример №29
Известны члены геометрической прогрессии:
Найдите знаменатель этой прогрессии.
Решение:
Так как знаменатель геометрической прогрессии равен отношению любого ее члена к предыдущему, то
Формула n-го члена геометрической прогрессии:
Пример №30
Последовательность 
Решение:
По формуле 

Пример №31
Запишите формулу 
Решение:
По условию 





Подставим 

Пример №32
Найдите номер члена геометрической прогрессии 0,1; 0,3; …, равного 218,7.
Решение:
Найдем знаменатель прогрессии:
Известно, что 


Пример №33
Найдите знаменатель и первый член геометрической прогрессии 
Решение:
По условию
Составим систему уравнений
Разделим второе уравнение на первое и получим:
Подставим это значение 
Характеристическое свойство геометрической прогрессии
Пример №34
Найдите сорок девятый член геометрической прогрессии, если сорок восьмой ее член равен 4, а пятидесятый ее член равен 9.
Решение:
Воспользуемся характеристическим свойством геометрической прогрессии 


Пример №35
При каком значении 


Решение:
По характеристическому свойству прогрессии последовательность является геометрической прогрессией, если каждый ее член, начиная со второго, равен среднему пропорциональному предыдущего и последующего членов:
Решим полученное уравнение:
Формула суммы n первых членов геометрической прогрессии
Немало легенд связано с геометрической прогрессией.
Наиболее известная из них рассказывает об изобретателе шахмат.
По легенде, когда создатель шахмат показал свое изобретение правителю страны, тому так понравилась игра, что он дал изобретателю право самому выбрать награду. Мудрец попросил у правителя за первую клетку шахматной доски заплатить ему одно зерно пшеницы, за вторую — два, за третью — четыре и т. д., удваивая количество зерен на каждой следующей клетке (рис. 96).
Правитель быстро согласился и приказал казначею выдать мудрецу нужное количество зерна. Однако когда казначей показал расчеты, то оказалось, что расплатиться невозможно, разве только осушить моря и океаны и засеять все пшеницей.
Число зерен, которое попросил мудрец, равно сумме членов геометрической прогрессии 
Выведем формулу, по которой можно находить сумму 
Обозначим сумму 


Умножим обе части этого равенства на знаменатель прогрессии 
Вычтем из второго равенства первое и получим:
т. e. 



Если 

Формула суммы n первых членов геометрической прогрессии:
Вычислим по формуле суммы 
Первый член геометрической прогрессии 

Тогда
Такого количества пшеницы человечество не собрало за всю свою историю.
Пример №36
Найдите сумму десяти первых членов геометрической прогрессии 
Решение:
Применим формулу суммы 

Ответ: 511,5.
Пример №37
Найдите сумму двенадцати первых членов геометрической прогрессии 3; -6; 12; -24; … .
Решение:
Подставим в формулу 
Ответ. -4095.
Пример №38
Найдите сумму пяти первых членов геометрической прогрессии 
Решение:
Найдем знаменатель и первый член геометрической прогрессии:

По формуле 
Пример №39
Сумма членов геометрической прогрессии равна 605. Найдите количество членов прогрессии, если
Решение:
Подставим в формулу 

Пример №40
В геометрической прогрессии 

Решение:
Найдем знаменатель прогрессии:
Подставим в формулу 

По формуле 
Пример №41
В геометрической прогрессии 

Решение:
Зная, что третий член геометрической прогрессии равен 16, а ее знаменатель равен 2, по формуле 




По формуле суммы 
Сумма бесконечно убывающей геометрической прогрессии
Любую обыкновенную дробь можно записать в виде десятичной дроби — конечной или бесконечной периодической дроби. Например, 
Вы рассматривали правило записи конечной десятичной дроби в виде обыкновенной дроби (например, 
Выясним, как бесконечную периодическую десятичную дробь записать в виде обыкновенной дроби.
Рассмотрим, например, бесконечную периодическую десятичную дробь 0,(7) = 0,7777… . Определим, какой обыкновенной дроби равно это число.
Запишем дробь 0,(7) в виде суммы разрядных слагаемых:
В данном случае необходимо найти сумму бесконечного числа слагаемых.
Слагаемые этой суммы являются членами бесконечной
геометрической прогрессии со знаменателем 
Определение. Бесконечно убывающей геометрической прогрессией называется такая бесконечная геометрическая прогрессия, у которой знаменатель
Например, геометрическая прогрессия 
Геометрическая прогрессия 
Для того чтобы представить бесконечную периодическую десятичную дробь в виде обыкновенной, нужно найти сумму бесконечно убывающей геометрической прогрессии. Ее обозначают буквой 
Покажем идею вывода формулы суммы бесконечно убывающей геометрической прогрессии.
Рассмотрим бесконечную геометрическую прогрессию 




Представим, что п неограниченно возрастает (говорят, что стремится к бесконечности, и записывают 








Число 


Обозначим сумму бесконечно убывающей геометрической прогрессии буквой 
Вычислим по этой формуле сумму разрядных слагаемых:
Слагаемые этой суммы образуют бесконечно убывающую геометрическую прогрессию 
а знаменатель равен
Сумма бесконечно убывающей геометрической прогрессии:
Так как 


Значит,
Таким образом, бесконечную периодическую десятичную дробь 0,(7) можно записать в виде обыкновенной дроби 
Таким же способом можно любую бесконечную периодическую десятичную дробь представить в виде обыкновенной дроби.
Чтобы записать бесконечную периодическую десятичную дробь в виде обыкновенной дроби, нужно:
- Представить число в виде суммы разрядных слагаемых.
- Выделить сумму бесконечно убывающей геометрической прогрессии.
- Указать первый член
, и найти знаменатель этой прогрессии
- Найти сумму бесконечно убывающей геометрической прогрессии по формуле
- Вычислить сумму первых слагаемых и найденного значения суммы бесконечно убывающей геометрической прогрессии.
Запишите в виде обыкновенной дроби число
(1)
(2)
(3)
(4)
(5)
Бесконечно убывающая геометрическая прогрессия
Пример №42
В бесконечной геометрической прогрессии 
Решение:
Найдем знаменатель прогрессии: 

Пример №43
Является ли бесконечно убывающей геометрическая прогрессия:
а)
б)
в)
Решение:
а) Каждый член этой геометрической прогрессии, начиная со второго, равен предыдущему, умноженному на число 

б) Поскольку
в) Знаменатель прогрессии 

Пример №44
Найдите сумму бесконечно убывающей геометрической прогрессии, в которой 
Решение:
По формуле 
Пример №45
В бесконечно убывающей геометрической прогрессии 
Решение:
В формулу суммы бесконечно убывающей геометрической прогрессии 


Пример №46
Запишите бесконечную периодическую десятичную дробь 15,2(3) в виде обыкновенной дроби.
Решение:
(1)
(2)
(3)
(4)
(5)
- Единичная окружность — в тригонометрии
- Определение синуса и косинуса произвольного угла
- Определение тангенса и котангенса произвольного угла
- Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
- Наибольшее и наименьшее значения функции
- Раскрытие неопределенностей
- Дробно-рациональные уравнения
- Дробно-рациональные неравенства
Арифметическая прогрессия — это последовательность чисел, в которой разница между двумя соседними числами — постоянна.
Пример:
Последовательность 1, 2, 3, 4,… является арифметической прогрессией с шагом(разностью) прогрессии 1.
Пример:
Последовательность 3, 5, 7, 9, 11,… является арифметической прогрессией с разностью 2.
Пример:
Последовательность 20, 10, 0, -10, -20, -30,… является арифметической прогрессией с разностью -10.
Последовательности
Будем выписывать в порядке возрастания положительные четные числа. Первое такое число равно 2, второе 4, третье 6, четвертое 8 и т. д. Получим последовательность
2; 4; 6; 8; … .
Очевидно, что на пятом месте в этой последовательности будет число 10, на десятом — число 20, на сотом — число 200. Вообще для любого натурального числа п можно указать соответствующее ему положительное четное число; оно равно 2n.
Рассмотрим еще одну последовательность. Будем выписывать в порядке убывания правильные дроби с числителем, равным 1:

Для любого натурального числа n мы можем указать соответствующую ему дробь; она равна 


Числа, образующие последовательность, называют соответственно первым, вторым, третьим, четвертым и т. д. членами последовательности. Члены последовательности обычно обозначают буквами с индексами, указывающими порядковый номер члена. Например, 

Заметим, что последовательность может содержать конечное число членов. В таком случае ее называют конечной. Например, конечной является последовательность двузначных чисел:

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.
Часто последовательность задают с помощью формулы n-го члена последовательности. Например, последовательность положительных четных чисел можно задать формулой 

Пример:
Пусть последовательность задана формулой 
Рассматриваемая последовательность начинается так:
Пример:
Пусть последовательность задана формулой 
Получаем последовательность
Пример:
Формулой 
Рассмотрим еще один способ задания последовательности.
Пример:
Пусть первый член последовательности 
С помощью формулы 
Формулу, выражающую любой член последовательности, начиная с некоторого, через предыдущие (один или несколько), называют рекуррентной (от латинского слова recurro — возвращаться).
Определение арифметической прогрессии
Формула n-го члена арифметической прогрессии:
Рассмотрим последовательность натуральных чисел, которые при делении на 4 дают в остатке 1:
Каждый ее член, начиная со второго, получается прибавлением к предыдущему члену числа 4. Эта последовательность является примером арифметической, прогрессии.
Определение:
Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.
Иначе говоря, последовательность
где d — некоторое число.
Из определения арифметической прогрессии следует, что разность между любым ее членом, начиная со второго, и предыдущим членом равна d, т. е. при любом натуральном n верно равенство

Число d называют разностью арифметической прогрессии.
Чтобы задать арифметическую прогрессию, достаточно указать ее первый член и разность. Приведем примеры.
Если 

члены которой — последовательные натуральные числа.
Если 

которая является последовательностью положительных нечетных чисел.
Если 

которая является последовательностью отрицательных четных чисел.
Если 

все члены которой равны между собой.
Зная первый член и разность арифметической прогрессии, можно найти любой ее член, вычисляя последовательно второй, третий, четвертый и т. д. члены. Однако для нахождения члена прогрессии с большим номером такой способ неудобен. Постараемся отыскать способ, требующий меньшей вычислительной работы.
По определению арифметической прогрессии

Точно так же находим, что 



Мы получили формулу n-го члена арифметической прогрессии.
Приведем примеры решения задач с использованием этой формулы.
Пример:
Последовательность 
Имеем:

Пример:
Выясним, является ли число —122 членом арифметической прогрессии

В данной арифметической прогрессии 


Число —122 является членом арифметической прогрессии 

Значит, число —122 является 26-м членом данной арифметической прогрессии.
Формулу n-го члена арифметической прогрессии 

Отсюда ясно, что любая арифметическая прогрессия может быть задана формулой вида

где k и b — некоторые числа.
Верно и обратное: последовательность 

где k и b — некоторые числа, является арифметической прогрессией.
Действительно, найдем разность (n + 1)-го и n-го членов последовательности 
Значит, при любом n справедливо равенство 

Формула суммы n первых членов арифметической прогрессии
Пусть требуется найти сумму первых ста натуральных чисел. Покажем, как можно решить эту задачу, не выполняя непосредственного сложения чисел.
Обозначим искомую сумму через S и запишем ее дважды, расположив в первом случае слагаемые в порядке возрастания, а во втором — в порядке убывания:

Каждая пара чисел, расположенных друг под другом, дает в сумме 101. Число таких пар равно 100. Поэтому, сложив равенства почленно, получим:

Итак,

С помощью аналогичных рассуждений можно найти сумму первых членов любой арифметической прогрессии.
Обозначим сумму n первых членов арифметической прогрессии 

Сумма каждой пары членов прогрессии, расположенных друг под другом, равна 
и т. д.
Число таких пар равно n. Поэтому, сложиd почленно равенства (1) и (2), получим:

Разделив обе части последнего равенства на 2, получим формулу суммы п первых членов арифметической прогрессии:

Приведем примеры на вычисление суммы членов арифметической прогрессии.
Пример:
Найдем сумму первых тридцати членов арифметической прогрессии 4; 5,5; … .
В данной арифметической прогрессии 

Теперь вычислим сумму первых тридцати членов:

Заметим, что если заданы первый член и разность арифметической прогрессии, то удобно пользоваться формулой суммы, представленной в другом виде. Подставим в формулу (I) вместо 


Если для решения рассмотренной задачи воспользоваться формулой (II), то вычисления будут выглядеть так:

Пример:
Найдем сумму первых сорока членов последовательности 
Последовательность 

Найдем первый и сороковой члены этой арифметической прогрессии:

Пример:
Найдем сумму 1 + 2 + 3 + … + n, слагаемыми в которой являются все натуральные числа от 1 до n.
Применив формулу 

Пример:
Найдем сумму всех натуральных чисел, кратных шести и не превосходящих 250.
Натуральные числа, кратные шести, образуют арифметическую прогрессию, которую можно задать формулой 
Значит, число членов прогрессии, сумму которых надо найти, равно 41. Имеем:

Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат


























— геометрическая прогрессия со знаменателем равным единице (и арифметическая прогрессия с шагом 0).
























































































































































































, и найти знаменатель этой прогрессии 









































