Как найти перпендикуляр в треугольнике
В геометрии одна задача может скрывать в себе множество подзадач, требующих от решающего их человека наличия большого количества знаний. Так для операций с треугольниками, нужно знать о соотношениях между медианами, биссектрисами и сторонами, уметь разными способами вычислять площадь фигур, а также находить перпендикуляр.

Инструкция
Обратите внимание на то, что перпендикуляр в треугольнике необязательно должен лежать внутри фигуры. Высота, опущенная на основание, может оказаться и на продолжении стороны, как это происходит в том случае, если один из углов больше девяноста градусов, или совпадать со стороной, если треугольник прямоугольный.
Воспользуйтесь формулой для вычисления высоты треугольника, если задача содержит все требуемые для этого данные. Для нахождения перпендикуляра составьте дробь, в числителе которой удвоенный квадратный корень из следующего произведения: р*(р-а)(р-в)(р-с), где а, в и с – стороны треугольника, а р – его полупериметр. В знаменателе дроби должна стоять длина того основания, на которое опущен перпендикуляр.
Найдите высоту треугольника, воспользовавшись формулой для вычисления площади этой фигуры: для этого достаточно удвоенную площадь поделить на длину основания. Для нахождения площади используйте другие формулы: например, найти эту величину можно через полупроизведение двух сторон треугольника на синус угла между ними.
Запомните основное соотношение между высотами треугольника: оно обратно пропорционально отношению оснований. Также выучите стандартные формулы, позволяющие быстро найти перпендикуляр в равностороннем и равнобедренном треугольнике. В первом случае высота являет собой произведение стороны треугольника на синус угла в 60 градусов (как следствие формулы для вычисления площади), во втором – удвоенному корню из разности квадрата двойной длины боковой стороны и квадрата основания.
Посчитайте перпендикуляр треугольника, введя данные в графы онлайн-калькулятора. Для этого вам необходимо знать длины сторон данной фигуры, так как расчет проводится по первой указанной выше формуле, использующей полупериметр.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Как найти основание перпендикуляра опущенного из точки на прямую
Перпендикуляр, опущенный из точки на прямую
(не проходящую через ), представляется уравнениями
или в векторной форме уравнениями
Взятое отдельно, уравнение (2) представляет плоскость (рис. 175), проведенную через перпендикулярно (§ 155), а уравнение (3) — плоскость проведенную через точку и прямую
Замечание. Если прямая проходит через точку то уравнение (3) обращается в тождество (через точку, взятую на прямой можно провести бесчисленное множество перпендикуляров , § 120). Пример. Найти уравнение перпендикуляра, опущенного из точки (1; 0; 1) на прямую
Найти также основание перпендикуляра. Решение. Уравнения (1а) можно записать в симметричном виде (§ 151) так:
Искомый перпендикуляр представляется уравнениями
или после упрощений
Координаты основания К перпендикуляра найдем, решив систему трех уравнений (16), (2в). Уравнение должно удовлетворяться само собой. Получаем .
Замечание. Система трех уравнений (1б), (3в) имеет бесчисленное множество решений (так как плоскость проходит через прямую а не пересекает ее).
Проекция точки на прямую
Пусть необходимо спроектировать точку на прямую Ах+Ву+С=0. проекцией точки на прямую является основание перпендикуляра, опущенного из точки на прямую. Нормалью к данной прямой является вектор . Составим уравнение проецирующей прямой. Она проходит через точку и параллельна вектору . Подставив координаты точки и вектора в каноническое уравнение прямой , получим: . Теперь необходимо найти координаты точки пересечения данной прямой и проектирующей, для чего объединим их в систему: решение этой системы есть координаты точки, являющейся проекцией точки на прямую
Пример: Даны вершины треугольника : ; ; . Найти:
1) уравнение высоты, опущенной из вершины ;
2) точку пересечения высоты и стороны ;
3) точку пересечения медиан треугольника .
Решение: 1) Составим уравнение высоты , проходящей через точку перпендикулярно вектору :
2) Составим уравнение стороны :
Найдем точку пересечения высоты и стороны .Обозначим эту точку N, она является проекцией точки А на сторону ВС. Для нахождения точки N, решим следующую систему уравнений:
Перпендикуляр к прямой
Что такое перпендикуляр к прямой? Как построить перпендикуляр к прямой? Сколько перпендикуляров можно провести из точки к прямой? Что такое наклонная? Что называется проекцией наклонной? Об этом — ниже.
Перпендикуляр, опущенный из точки A на прямую a — это отрезок, лежащий на прямой, перпендикулярной прямой a, один конец которого — точка A, второй — точка пересечения этих двух прямых.
Как построить перпендикуляр к прямой?
На рисунке 1 изображены прямая a и точка A, не лежащая на прямой a.
Чтобы построить перпендикуляр, воспользуемся угольником.
Угольник располагаем так,
чтобы одна сторона прямого угла проходила вдоль прямой a,
а вторая — через точку A.
Если провести через точку A вдоль стороны угольника прямую,
то получим прямую b, перпендикулярную данной прямой a.
Нам нужно построить перпендикуляр, то есть отрезок — часть этой прямой.
Соединим точку A с точкой на пересечении прямых a и b
(назовем вторую точку B).
Отрезок AB — перпендикуляр, проведенный из точки A к прямой a.
Точка B называется основанием перпендикуляра.
Расстояние от точки до прямой измеряется длиной перпендикуляра.
Расстояние от точки A до прямой a (рисунок 4) равно длине отрезка AB.
Из данной точки к данной прямой можно провести только один перпендикуляр.
Любой другой отрезок, который соединяет точку A с точкой на прямой a, называется наклонной.
Наклонной, проведенной из точки A к прямой a, называется отличный от перпендикуляра отрезок, соединяющий точку A с некоторой точкой на прямой a.
На рисунке 5 AC — наклонная, проведенная из точки A к прямой a.
Точка C называется основанием наклонной AC.
Отрезок, который соединяет основание перпендикуляра с основанием данной наклонной, называется проекцией этой наклонной на прямую.
На рисунке 6 BC — проекция наклонной AC на прямую a.
Перпендикуляр часто встречается при решении задач, связанных с треугольниками. В частности, определение высоты треугольника опирается на перпендикуляр.
Содержание:
Я думаю, что мы еще никогда не жили в такой геометрический период. Все вокруг — геометрия. Ле Корбюзье
Перпендикулярность прямых в пространстве
В модуле 3 мы рассматривали взаимное расположение прямых в пространстве.
Естественно, что пересекающиеся прямые
образуют углы. Углом между прямыми является меньший из двух смежных. Например, на рисунке 5.1 изображены две пересекающиеся прямые
Две прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом.
Свойства перпендикулярных прямых пространства выражают теоремы 1-4.
Теорема 1
Через произвольную точку прямой в пространстве можно провести перпендикулярную ей прямую.
Доказательство:
Пусть 








Теорема 2
Если две пересекающиеся прямые соответственно параллельны двум перпендикулярным прямым, то они также перпендикулярны.
Доказательство:
Пусть 























Четырехугольники 










Итак, четырехугольник 








Теорема 3
Через любую точку пространства, не принадлежащую прямой, можно провести прямую, перпендикулярную данной (рис. 5.4, а).
Теорема 4
Если прямая перпендикулярна одной из двух параллельных прямых и лежит с ними в одной плоскости, то она перпендикулярна и второй прямой (рис. 5.4, б).
Доказательство теорем 3 и 4 выполните самостоятельно.
Расположение трех прямых в пространстве, когда они между собой попарно перпендикулярны и имеют общую точку, является особым случаем (рис. 5.4, в).
Отметим, что в пространстве существует множество плоскостей, которые можно провести через одну и ту же прямую. Выбирая точку А вне прямой, мы попадем на одну из этих плоскостей и в выбранной плоскости к данной прямой через точку А проводим прямую, перпендикулярную данной.
Итак, в пространстве к прямой можно провести сколь угодно много перпендикулярных прямых, проходящих через данную точку этой прямой.
Пример №1
Прямые 



Дано: 
Найти:
Решение:
Из 




Из 


Ответ. 6,5 см
Почему именно так?
Каждая пара данных прямых 







: известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом.
— сторона
.
: один катет известен по условию, второй — найден из
; неизвестной является третья сторона — гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка
.
Перпендикулярность прямой и плоскости в пространстве
Мы уже рассматривали взаимное расположение прямой и плоскости, детально ознакомились со случаем, когда прямая не пересекает плоскость. В этом параграфе мы рассмотрим случай, когда прямая пересекает плоскость и, кроме того, образует с произвольной прямой этой плоскости, проходящей через точку пересечения, прямой угол. Такую прямую называют перпендикулярной плоскости. Все другие неперпендикулярные прямые, пересекающие плоскость, называют наклонными.
Моделью прямой, перпендикулярной плоскости, может быть установленная вышка, столб, вкопанный в землю, гвоздь, вбитый в стену, и т.п.
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна произвольной прямой, которая лежит на этой плоскости и проходит через их точку пересечения.
Чтобы определить, будет ли прямая 



Теорема 5 (признак перпендикулярности прямой и плоскости)
Если прямая перпендикулярна двум пересекающимся прямым этой плоскости, то она перпендикулярна и данной плоскости.
Доказательство:
Пусть 











Для этого выполним дополнительное построение:
- отложим в разных полупространствах на прямой
от точки
равные отрезки
и
;
- обозначим на прямой
некоторую точку
, а на прямой
— точку
; соединим точки:
с
,
с
,
с
,
с
и
с
;
- проведем через точку
произвольную прямую
, которая пересечет
в точке
, и также соединим ее с
и
.
Рассмотрим образованные при этом треугольники.
— медиана и высота;
по построению;
— общая сторона треугольников
и
;
. Итак,
по двум сторонам и углу между ними. Отсюда
.
. Равенство отрезков
и
доказывается аналогично, как и равенство отрезков
и
.
, поскольку
и
-общая сторона. Отсюда вытекает равенство соответствующих углов:
.
по двум сторонам и углу между ними:
— общая сторона;
по доказательству выше. Итак,
, т.е.
— равнобедренный:
— основание треугольника,
— середина
, поэтому
— медиана
. В равнобедренном треугольнике медиана является высотой, т.е.
, а это означает, что
. Поскольку прямая
— произвольная прямая плоскости
, проходит через точку пересечения прямой
и плоскости
, перпендикулярна прямой
, то
.
Теорема доказана.
Отметим, что вы впервые столкнулись с таким громоздким доказательством. Доказательство не следует заучивать наизусть или запоминать шаги, необходимо понять его и последовательно, опираясь на известные факты, изложить рассуждения. Для этого важно спланировать последовательность логических шагов и не допускать ошибок.
Итак, для установления перпендикулярности прямой и плоскости достаточно проверить перпендикулярность прямой двум прямым плоскости, проходящим через точку их пересечения (по признаку).
Из данной теоремы вытекают два следствия.
Следствие 1. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой.
Доказательство:
Пусть 
























Следствие 2. Две прямые, перпендикулярные одной плоскости, параллельны.
Доказательство:
Пусть 




















Пример №2
Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости.
Доказательство:
Рассмотрим два случая.
Первый случай. Пусть точка 













Тогда в плоскости 







Второй случай. Пусть точка 












Перпендикуляр и наклонная. Теорема о трех перпендикулярах
Рассмотрим изображение прямой а, перпендикулярной плоскости 

Отрезок называется перпендикулярным плоскости, если он лежит на прямой, перпендикулярной плоскости.
Итак, на прямой 


На рисунке 5.21 изображены различные случаи расположения перпендикулярного плоскости отрезка:
- отрезок
лежит по одну сторону от плоскости
и не пересекает ее (рис. 5.21, а);
- отрезок
пересекает плоскость
(концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
- отрезок
лежит по одну сторону от плоскости
и точка
— конец отрезка — принадлежит плоскости
(рис. 5.21, в).
Чаще всего на практике встречается третий случай. Такой отрезок 
Перпендикуляром, проведенным из данной точки к данной плоскости, называется отрезок, который соединяет данную точку с точкой плоскости и лежит на прямой, перпендикулярной этой плоскости (рис. 5.21, в). Конец отрезка, лежащий на плоскости, называется основанием перпендикуляра.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, который соединяет данную точку с точкой плоскости и не является перпендикуляром к плоскости. Конец отрезка, лежащий на плоскости, называется основанием наклонной. Отрезок, который соединяет основание перпендикуляра и основание наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
На рисунке 5.22 отрезок 















Углом между наклонной и плоскостью называется угол между наклонной и проекцией этой наклонной на плоскость.
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости провести к ней перпендикуляр и наклонные, то:
- из точки, не принадлежащей плоскости, можно провести один и только один перпендикуляр и множество наклонных;
- длина перпендикуляра меньше длины любой наклонной;
- наклонные, имеющие равные проекции, равны между собой, и наоборот, равные наклонные имеют равные проекции;
- из двух наклонных большую длину имеет та, которая имеет большую проекцию, и наоборот, большая наклонная имеет большую проекцию.
Докажите эти свойства самостоятельно.
Широко используется свойство прямой, перпендикулярной проекции наклонной или наклонной, которое называют теоремой о трех перпендикулярах.
Теорема 6 (о трех перпендикулярах)
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и наклонной. И наоборот, если прямая, проведенная на плоскости через основание наклонной, перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Дано:
Доказать: прямая 
Доказательство:
Докажем вторую часть теоремы. Пусть 



















Пример №3
Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если одна из них на 26 см больше другой, а проекции наклонных равны 12 см и 40 см.
Дано: 






Найти: 

Решение:
Пусть 







В 






Из (1) и (2) имеем: 

Ответ. 15 см и 41 см.
Почему именно так?




Алгебраический метод решения упрощает процесс поиска решения. Находим общий катет для 


Отсюда имеем равенство: 
Перпендикулярность плоскостей
Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (рис. 5.31).
Если 
Моделями перпендикулярных плоскостей в окружающем мире являются различные конфигурации предметов. Например, шкатулка с крышкой, двери, окна, которые открываются, и т.д. Принцип «открывания» частей моделей основывается на перпендикулярности прямых, проведенных перпендикулярно прямой пересечения (линии крепления) (рис. 5.32).
Перпендикулярные плоскости обладают такими свойствами:
- Любая плоскость, перпендикулярная линии пересечения перпендикулярных плоскостей, пересекает их по перпендикулярным прямым. И наоборот, плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна линии их пересечения.
- Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная их линии пересечения, перпендикулярна другой плоскости.
- Если две плоскости взаимно перпендикулярны и из произвольной точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Рассмотрим их несколько позднее. Докажем сначала признак перпендикулярности двух плоскостей.
Теорема 7 (признак перпендикулярности плоскостей)
Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Дано: 


Доказательство:
Построим произвольную плоскость 






























Теорема доказана.
Теперь вернемся к свойствам перпендикулярных прямых и плоскостей и докажем некоторые из них.
Теорема 8
Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная линии их пересечения, перпендикулярна второй плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости 





Проведем через точку 









Теорема 9
Если две плоскости взаимно перпендикулярны и из некоторой точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости 





Итак, дано 














Теорема доказана.
Остальные свойства докажите самостоятельно.
Пример №4
Из точек 








Дано:
Найти:
Решение:
Поскольку 









Из 






Отсюда, учитывая что 

Ответ. 11 см.
Почему именно так?
Для каждой геометрической задачи важно построить цепочку логических рассуждений. В этой задаче важно видеть не только прямоугольные треугольники на плоскостях 








Перпендикулярность прямой и плоскости
А) Напомним, что перпендикулярными называют прямые, угол между которыми равен 90°. Перпендикулярные прямые могут быть пересекающимися и могут быть скрещивающимися. На рисунке 210 перпендикулярные прямые 



Прямая называется перпендикулярной плоскости, если она перпендикулярна каждой прямой этой плоскости.
Перпендикулярность прямой 




Прямая 






Окружающее пространство даёт много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Столбы с осветительными лампами и колонны устанавливают перпендикулярно горизонтальной поверхности земли (рис. 211).
Из теоремы 6 параграфа 5 следует, что при определении угла между прямыми эти прямые можно заменять параллельными прямыми. Поэтому если одна из параллельных прямых перпендикулярна плоскости, то и другая также перпендикулярна этой плоскости. Верно и обратное утверждение.
Теорема 1. Если две прямые перпендикулярны плоскости, то они параллельны друг другу.
Доказательство: Пусть прямые 




Через какую-либо точку 

















Пусть имеются плоскость 





Следующая теорема устанавливает признак перпендикулярности прямой и плоскости.
Теорема 2. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.
Доказательство: Пусть прямая 








Проведём через точку 






























Следствие 1. Если прямая перпендикулярна одной из параллельных плоскостей, то она перпендикулярна и другой плоскости.
Пусть плоскости 


















Следствие 2. Если одной прямой перпендикулярны две плоскости, то они параллельны.
Проведите самостоятельно обоснование этого утверждения, используя рисунок 216
Б) Теорема 3. Через каждую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.
Доказательство: Пусть даны прямая 












В случае, когда точка 









Докажем теперь, что построенная плоскость а единственная. Допустим, что это не так. Пусть через точку 























Теорема 4. Через каждую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
Доказательство: Пусть даны точка 



















Прямая 







Следствие 3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Пусть 










Пример №5
Докажите, что если рёбра 






Решение:



Поскольку 

Поскольку 





Используя рисунок 226, докажите самостоятельно обратное утверждение: «Если отрезки 






Пример №6
В правильной треугольной пирамиде 



Решение:











Пример №7
Докажите, что диагональ 


Решение:














Используя рисунок 228, установите, в какой точке прямая 
Пространственное моделирование
При выполнении задания на определение вертикальности столба для забора (рис. 240) ученик проверил вертикальность первого из столбов, а дальше, измерив высоту первого и второго столбов и расстояние между ними снизу и сверху, сделал вывод о том, что и второй столб тоже вертикальный. Определите, обеспечивают ли полученные учеником сведения правильность его вывода. Ответ обоснуйте.
Расстояния
А) Пусть даны плоскость 









Соединим точку 






Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости проведены к этой плоскости две наклонные (рис. 242), то:
- а) наклонные, имеющие равные проекции, равны между собой;
- б) та наклонная больше, проекция которой больше;
- в) равные наклонные имеют равные проекции;
- г) большая наклонная имеет большую проекцию.
Свойства перпендикуляров и наклонных докажите самостоятельно, используя рисунок.
Теорема 5. Перпендикуляр к плоскости, проведённый из некоторой точки, меньше любой наклонной к этой плоскости, проведённой из той же точки.
Доказательство: Пусть отрезок 



В соответствии с утверждением теоремы 5, из всех расстояний от данной точки до различных точек данной плоскости наименьшим является расстояние, измеренное по перпендикуляру.
Б) Расстоянием от точки до плоскости называется длина перпендикуляра, проведённого из этой точки к плоскости.
Когда мы говорим, например, что уличный фонарь находится на высоте 8 м от земли, то подразумеваем, что расстояние от фонаря до поверхности земли, измеренное по перпендикуляру, проведённому от фонаря к плоскости земли, составляет 8 м (рис. 244).
Теорема 6. Расстояние от любой точки одной из параллельных плоскостей к другой плоскости одно и то же и равно длине их общего перпендикуляра.
Доказательство: Пусть даны параллельные плоскости 

























Расстоянием между параллельными плоскостями называется длина перпендикуляра, проведённого из какой-либо точки одной плоскости к другой плоскости.
Все точки одной стены комнаты находятся на одинаковом расстоянии от противоположной стены (рис. 246). Это расстояние и есть ширина комнаты.
Теорема 7. Расстояние от любой точки прямой, параллельной плоскости, до этой плоскости одно и то же и равно перпендикуляру, проведённому из какой-либо точки прямой к плоскости.
Используя рисунок 247, проведите доказательство теоремы самостоятельно.
Расстоянием между прямой и параллельной ей плоскостью называется длина перпендикуляра, проведённого из какой-либо точки прямой к плоскости.
Все точки края стола находятся на одном расстоянии от пола (рис. 248).
Теорема 8. Две скрещивающиеся прямые имеют единственный общий перпендикуляр.
Доказательство: Пусть даны скрещивающиеся прямые 





Пусть 


























Этим самым существование общего перпендикуляра скрещивающихся прямых обосновано. Докажем теперь его единственность.
Пусть скрещивающиеся прямые 






Точки 














Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра.
Из доказательства теоремы 8 следует, что расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из них до плоскости, содержащей другую прямую и параллельную первой.
Чтобы найти расстояние между скрещивающимися прямыми, можно действовать по-разному.
а) Можно построить отрезок с концами на этих прямых, перпендикулярный им обеим, и найти его длину.
Пример №8
Найдём расстояние между прямыми, которые содержат ребро куба длиной 
Решение:
Пусть нужно найти расстояние между прямыми 






б) Можно построить плоскость, которая содержит одну из прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию от этой плоскости до другой прямой.
Пример №9
В правильной четырёхугольной пирамиде 




Решение:
Пусть 









Пусть 










Теперь
в) Можно построить две параллельные плоскости, каждая из которых содержит одну из скрещивающихся прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию между этими плоскостями.
Пример №10
Найдём расстояние между прямыми, содержащими непересекающиеся диагонали двух смежных граней куба с ребром
Решение:
Пусть нужно найти расстояние между прямыми 













Диагональ 








Плоскость 






















Ответ:
Диагональ куба делится плоскостью треугольника, сторонами которого служат диагонали граней куба, имеющие с рассматриваемой диагональю куба общую точку, в отношении 1 : 2.
г) Можно построить плоскость, перпендикулярную одной из скрещивающихся прямых, и построить проекцию на неё другой прямой. Тогда искомое расстояние будет равно длине перпендикуляра, опущенного из точки, являющейся проекцией первой прямой на построенную плоскость, на проекцию другой прямой.
Пример №11
В четырёхугольной пирамиде 



Решение:
Из теоремы 8 следует, что на прямых 






Пусть 









Определим, в какие точки спроектируются точки 





Поскольку точки 








Длину 


Получим 
Ответ:
Пример №12
Точка 


Решение:







Тогда
Ответ: 20 см.
Пример №13
Из вершины 







Решение:

















Угол между прямой и плоскостью
А) С помощью чисел, выражающих расстояние между двумя прямыми и величину угла между ними, можно описать взаимное расположение этих прямых в пространстве. Если прямые 









Теорема 9. Если прямая плоскости перпендикулярна проекции наклонной на эту плоскость, то она перпендикулярна и самой наклонной, а если прямая плоскости перпендикулярна наклонной к плоскости, то она перпендикулярна и проекции этой наклонной.
Доказательство: Пусть отрезки 



Пусть прямая 


Прямая 







Пусть прямая 




Прямая 




Теорема 9 называется теоремой о трёх перпендикулярах, потому что в ней идёт речь об отношении перпендикулярности между тремя прямыми. Приведём примеры использования этой теоремы.
Пример №14
Из вершины 




Решение:
Искомое расстояние — длина перпендикуляра, опущенного из точки 










Найдём сначала высоту 


Треугольник 

Ответ: 36,6.
Пример №15
Докажем, что если данная точка пространства равноудалена от сторон многоугольника, то в этот многоугольник можно вписать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Доказательство: Пусть точка 







Соединим точку 






Треугольники 




Пример №16
Если данная точка пространства равноудалена от вершин многоугольника, то около этого многоугольника можно описать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Используя рисунок 272, проведите доказательство этого утверждения самостоятельно.
Б) Теперь введём понятие угла между прямой и плоскостью. Пусть дана плоскость 






Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной ей, называется угол между прямой и её проекцией на плоскость.
Угол между прямой и плоскостью — наименьший из углов, которые образует эта прямая со всеми прямыми плоскости. Докажите утверждение самостоятельно.
Если прямая 



Если прямая 



Пример №17
В треугольной пирамиде 


Решение:
Пусть 







Искомый угол между медианой 



тогда
Значит,
Ответ:
При вычислении угла между скрещивающимися прямыми бывает полезной следующая теорема о трёх косинусах.
Угол 








Доказательство: Пусть точка 










Пусть 







и
Пример №18
В треугольной пирамиде 





Решение:
Используем теорему о трёх косинусах, учитывая, что угол 






Поскольку 
то 

Ответ:
Пример №19
Основанием треугольной пирамиды 








Решение:











Ответ: 5 см.
Пример №20
Докажите, что если луч 






Решение:
Пусть 











Пространственное моделирование
Определим, как при движении на эскалаторе можно оценить глубину расположения станции метро, длину эскалатора (рис. 289).
Обратим внимание на то, что при спуске или подъёме на эскалаторе мы проезжаем вдоль ряда ламп, расположенных на равных расстояниях друг от друга. Нормативами задаётся освещённость тоннеля, исходя из которой устанавливается и расстояние между соседними лампами. Также учтём, что оптимальный угол наклона линии эскалатора к плоскости земли равен 30°.
Будем рассматривать эскалатор как наклонную к плоскости земли. Тогда глубину расположения станции можно интерпретировать как длину перпендикуляра к плоскости земли.
Для ответа на вопрос достаточно рассмотреть прямоугольный треугольник 


- а) Подсчитайте длину эскалатора, учитывая, что расстояние между лампами равно а.
- б) Составьте формулу для нахождения глубины закладки станции метро.
Перпендикулярность плоскостей
А) Два луча на плоскости с общим началом разделяют эту плоскость на две части, каждая из которых называется углом.
Аналогично две полуплоскости с общей границей разделяют пространство на две части (рис. 290). Каждую из этих частей вместе с полуплоскостями называют двугранным углом. Полуплоскости, ограничивающие двугранный угол, называют гранями угла, а общую прямую — ребром двугранного угла (рис. 291).
Обычно рассматривают меньший из двугранных углов с данными гранями (рис. 292). Точки угла, не лежащие на его гранях, составляют внутреннюю область двугранного угла (рис. 293).
Двугранный угол обычно обозначают по ребру: 




Моделью двугранного угла может служить двускатная крыша (рис. 295), стена вместе с открытой дверью (рис. 296), полураскрытая книга (рис. 297).
Для измерения двугранных углов вводится понятие линейного угла. Выберем на ребре 














Понятно, что двугранный угол имеет бесконечно много линейных углов (рис. 299).
Теорема 10. Все линейные углы двугранного угла равны друг другу.
Доказательство: Пусть 


Отложим на сторонах углов 














Измерение двугранных углов связывается с измерением их линейных углов. В зависимости от того, каким — острым, прямым, тупым, развёрнутым — является линейный угол двугранного угла, отличают острые, прямые, тупые, развёрнутые двугранные углы. Двугранный угол, изображённый на рисунке 301, — острый, на рисунке 302 — прямой, на рисунке 303 — тупой.
Две пересекающиеся плоскости разделяют пространство на четыре двугранных угла с общим ребром (рис. 304). Если один из них равен 

Если один из двугранных углов, образовавшихся при пересечении двух плоскостей, прямой, то три остальных также прямые (рис. 305).
Б) Плоскости, при пересечении которых образуются прямые двугранные углы, называются перпендикулярными плоскостями.
Для обозначения перпендикулярности плоскостей, как и для обозначения перпендикулярности прямых, используют знак
Моделями перпендикулярных плоскостей могут служить столешница и боковина стола (рис. 306), пол в комнате и дверь в неё (рис. 307).
Теорема 11. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то такие плоскости перпендикулярны.
Доказательство: Пусть через прямую 



Плоскости 





В плоскости 










Теорема 11 выражает признак перпендикулярности плоскостей.
Следствие. Плоскость, перпендикулярная линии пересечения двух данных плоскостей, перпендикулярна каждой из них (рис. 309).
Докажем теперь утверждение, обратное утверждению теоремы 11.
Теорема 12. Если через точку одной из перпендикулярных плоскостей провести прямую, перпендикулярную другой плоскости, то эта прямая принадлежит первой плоскости.
Доказательство: Пусть две перпендикулярные плоскости 






Через точку 
















Пример №21
Точка 



Решение:
Прямая 








Следствие. Если две пересекающиеся плоскости перпендикулярны третьей плоскости, то их линия пересечения перпендикулярна той же плоскости (рис. 312).
Пример №22
В правильной треугольной пирамиде 


Решение:
Пусть 



Из равенства треугольников 



Из прямоугольных треугольников 



Поэтому
Ответ:
В) При вычислениях бывает полезной теорема о трёх синусах.
Теорема 13. Линейный угол 


Доказательство: Пусть прямая 


















Следствие 1. Если точка 







Пример №23
Стороны 








Решение:
Пусть искомый угол равен 







Следствие 2. Пусть рёбра 




Пример №24
Плоскости правильных треугольника 


Решение:








Тогда по теореме Пифагора
Ответ:
Пример №25
Из точек 







Решение:
Пусть 















Тогда по теореме Пифагора
Из треугольника
Поэтому
Ответ:
Пространственное моделирование
Отдельным видом параллельного проектирования, применяемого в геометрии для изображения пространственных фигур, является ортогональное проектирование.
Ортогональной проекцией точки на плоскость 
Ортогональной проекцией фигуры на плоскость называется множество ортогональных проекций всех точек этой фигуры на плоскость.
Если 


«…Разум заключается не только в знаниях, но и в умении применять знания на деле…»
(Аристотель).
- Ортогональное проецирование
- Декартовы координаты на плоскости
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Теорема синусов и теорема косинусов
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
Все формулы для треугольника
1. Как найти неизвестную сторону треугольника
Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.
a , b , c — стороны произвольного треугольника
α , β , γ — противоположные углы
Формула длины через две стороны и угол (по теореме косинусов), ( a ):
* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение
Формула длины через сторону и два угла (по теореме синусов), ( a):
2. Как узнать сторону прямоугольного треугольника
Есть следующие формулы для определения катета или гипотенузы
a , b — катеты
c — гипотенуза
α , β — острые углы
Формулы для катета, ( a ):
Формулы для катета, ( b ):
Формулы для гипотенузы, ( c ):
Формулы сторон по теореме Пифагора, ( a , b ):
3. Формулы сторон равнобедренного треугольника
Вычислить длину неизвестной стороны через любые стороны и углы
b — сторона (основание)
a — равные стороны
α — углы при основании
β — угол образованный равными сторонами
Формулы длины стороны (основания), (b ):
Формулы длины равных сторон , (a):
4. Найти длину высоты треугольника
Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).
Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.
H — высота треугольника
a — сторона, основание
b, c — стороны
β , γ — углы при основании
p — полупериметр, p=(a+b+c)/2
R — радиус описанной окружности
S — площадь треугольника
Формула длины высоты через стороны, ( H ):
Формула длины высоты через сторону и угол, ( H ):
Формула длины высоты через сторону и площадь, ( H ):
Формула длины высоты через стороны и радиус, ( H ):
Серединный перпендикуляр — определение, свойства и формулы
Общие сведения
Серединным перпендикуляром отрезка называют прямую, которая проходит под прямым углом через среднюю точку, т. е. середину отрезка. Для полного понимания материала следует остановиться на базовых элементах геометрии.
Точка — единица, при помощи которой строятся прямые, отрезки, лучи и фигуры. Прямая — простая фигура в форме бесконечной линии, состоящей из множества точек, лежащих в одной плоскости. Луч — базовая геометрическая фигура в виде бесконечной линии с одной стороны и точки-ограничителя — с другой. Иными словами, луч имеет начало, но не имеет конца. Отрезок — некоторая часть прямой (луча или другого отрезка), ограниченная двумя точками.
Кроме того, в геометрии серединный перпендикуляр встречается в треугольниках. Из определения можно сделать вывод, что им может быть прямая, отрезок и даже луч.
Аксиомы геометрии Евклида
Евклидовой геометрией называется наука о фигурах на плоскости, основанная на аксиомах и теоремах. Аксиома — базовое утверждение, не требующее доказательства. Оно используется для доказательства каких-либо теорем. Математики выделяют пять аксиом:
- Принадлежности.
- Порядка.
- Конгруэнтности.
- Параллельности прямых.
- Непрерывности.
Формулировка первой имеет такой вид: если существует в геометрическом пространстве плоскость, состоящая из множества точек, то через любые из них можно провести только одну прямую. Иными словами, можно взять произвольные две точки и провести через них одну прямую. Чтобы начертить еще одну прямую, следует взять две другие точки.
Следующее утверждение называется аксиомой порядка. Она гласит, что существует точка, которая лежит между двумя другими на прямой. Значение слова «конгруэнтность» не совсем понятно для новичка, однако нужно постепенно привыкать к терминологии. Оно обозначает «равенство». Третий геометрический факт формулируется таким образом: когда два отрезка или угла конгруэнтны третьему, тогда они равны между собой. Аксиома касается только отрезков и углов.
Чтобы убедиться в ее правильности, нужно разобрать следующий пример: длина первого отрезка составляет 10 см, второго — тоже, а третий равен первому. Необходимо доказать, что они равны между собой. Это делается очень просто:
- Вводятся обозначения: первый — MN, второй — OP и третий — RS.
- Устанавливаются значения по условию: MN = 10 см, ОР = 10 см, а RS = MN.
- Доказательство строится таким образом: MN = RS = 10 (см). Следовательно, отрезки равны, поскольку MN = ОР = RS = 10 (см).
Следует отметить, что данные действия оказались лишними — было потрачено время на понимание простой «истины». Параллельность прямых является также аксиомой и формулируется таким образом: если существует некоторая прямая на плоскости и точка, не лежащая на ней, то через последнюю можно провести только одну параллельную ей прямую.
И последняя аксиома называется Архимедовой. Ее формулировка имеет такой вид: для произвольных отрезков, лежащих на одной прямой, существует некоторая последовательность базовых элементов (точек), лежащих на одном и другом отрезках, таких, что заданные их части равны между собой. Иными словами, на одной прямой могут быть расположены равные между собой отрезки.
Информация о треугольниках
Треугольником является любая фигура, состоящая из трех вершин (точек) соединенных отрезками (сторонами), причем точки не лежат на одной прямой в одной плоскости. Они классифицируются по такому типу:
В первом случае фигуры делятся на остроугольные, тупоугольные и прямоугольные. Остроугольным называется треугольник, у которого все углы острые (меньше 90 градусов). У тупоугольного — один угол тупой (> 90), а в прямоугольном — один из углов равен 90 градусам. Следует отметить, что сумма градусных мер углов любого треугольника эквивалентна 180.
Когда стороны у треугольника неравны между собой, тогда его называют разносторонним. При равенстве двух боковых сторон он считается равнобедренным, у которого третья сторона — основание. Если все стороны равны, то значит, фигура является равносторонней или правильной.
У треугольника есть еще и другие параметры. Их называют медианой, биссектрисой и высотой. Первый параметр является отрезком, который проводится из любой вершины на среднюю точку стороны. Высота — часть прямой, которая проводится из произвольной вершины и перпендикулярна противоположной стороне. Биссектрисой называется прямая, делящая угол на две равные части.
Медиана, высота и биссектриса, проведенные из вершины к основанию, совпадают и эквивалентны серединному перпендикуляру в треугольниках равнобедренного и равностороннего типов. Это очень важно при решении задач. Еще одним признаком, по которому выполняется классификация — подобность треугольников. У них могут быть равными только углы и некоторые стороны. Они отличаются между собой по определенному параметру, который называется коэффициентом подобия. Последний влияет только на размерность сторон. Говорят, что фигуры подобны по определенному признаку (их всего три).
Основные теоремы
Теорема — гипотеза (предположение), которую нужно доказать. Они применяются для оптимизации расчетов и вычисления отдельных параметров заданной фигуры. Кроме того, существуют следствия, полученные при доказательстве таких научных предположений. Эти аспекты упрощают и автоматизируют вычисления. Например, при вычислении площади треугольника нет необходимости выводить формулу, достаточно воспользоваться уже готовой.
Математики выделяют всего три теоремы о СП, которые могут значительно упростить расчеты. К ним можно отнести следующие:
- Прямая.
- Обратная.
- Пересечение в треугольнике.
Первая теорема называется прямой о СП. Она показывает, каким свойством обладают точки серединного перпендикуляра. Ее формулировка следующая: произвольная точка, которая взятая на перпендикуляре, удалена на равные расстояния от конечных точек отрезка, ограничивающих его на плоскости.
Для доказательства следует рассмотреть два прямоугольных треугольника с общей вершиной (искомая точка), общей стороной — катетом и равными катетами (по определению). Фигуры равны по одному из признаков равенства треугольников. Следовательно, их гипотенузы (стороны, равенство которых нужно доказать), равны между собой. Первая теорема доказана.
Следующая теорема — обратная: если точка удалена на равные расстояния от концов отрезка, то значит, она лежит на СП. В этом случае следует рассматривать равнобедренный треугольник, вершиной которого она является. Удалена точка на одинаковые расстояния от вершин основания по условию. Следовательно, этот факт доказывает, что полученный треугольник является равнобедренным, а в нем медиана, проведенная к основанию, является биссектрисой и высотой. Значит, она лежит на серединном перпендикуляре. Утверждение доказано.
Следующую теорему нет необходимости доказывать, поскольку известно, что в равнобедренном и равностороннем треугольниках высоты (медианы и биссектрисы) имеют общую точку пересечения. Они являются также и СП. Следовательно, это утверждение справедливо для них.
Важные свойства
Иногда трех теорем недостаточно для решения какой-либо сложной задачи. В этом случае необходимо знать еще и некоторые свойства СП:
- Центр описанной окружности вокруг треугольника соответствует точке их пересечения.
- Точка, взятая на СП, равноудалена от конечных точек отрезка и образует равнобедренный или равносторонний треугольник.
- В треугольниках равнобедренного и равностороннего типов им является высота, медиана и биссектриса.
В первом случае все зависит от типа треугольника. Если он является остроугольным, то центр лежит внутри него. Для тупоугольного — во внешнем пространстве, а в прямоугольном — на середине гипотенузы.
Следует отметить, что есть формулы для его расчета. Если предположить, что существует некоторый произвольный треугольник со сторонами а, b и с. Кроме того, для них выполняется условие a >= b >= c. Исходя из полученных данных, можно записать формулы перпендикуляров (Р), проведенных к определенной стороне:
- а: Pa = (2 * а * S) / (a^2 + b^2 — c^2).
- b: Pb = (2 * b * S) / (a^2 + b^2 — c^2).
- c: Pc = (2 * c * S) / (a^2 — b^2 + c^2).
Иными словами, Р является отношением удвоенного произведения стороны на площадь треугольника к сумме квадратов смежных сторон без квадрата противоположной. Кроме того, справедливы неравенства: Pa >= Pb и Pс >= Pb. Стороны — известные параметры, а вот площадь находится по некоторым соотношениям, которые выглядят следующим образом:
- Основание и высоту, проведенную к нему: S = (1/2) * a * Ha = (1/2) * b * Hb = (1/2) * c * Hc.
- Через радиус вписанной окружности: S = (1/2) * r * (a + b + c).
- Формулу Герона через полупериметр (р) и без него: S = [p * (p — a) * (p — b) * (p — c)]^(1/2) и S = 1/4 * [(a + b + c) * (b + c — a) * (а + c — b) * (a + b — c)]^(1/2).
В основном по таким соотношениям и нужно определить площадь. Полупериметр вычисляется таким образом: р = (а + b + с) / 2.
Бывают задачи, в которых необходимо просто подставить значения в формулу. Они называются простейшими. Однако встречаются и сложные. К ним относятся все виды без некоторых промежуточных параметров фигуры.
Пример решения задачи
В интернете попадаются примеры решения простых задач, а сложные приходится решать самостоятельно, просить помощи у кого-нибудь или покупать на сайтах готовое решение. Для примера нужно решить задание с такими данными:
- Прямоугольник, изображенный на рисунке 1 с диагональю равной d.
- Серединный перпендикуляр, проведенный к диагонали прямоугольника.
- Точка Е делит сторону на отрезки а и 2а.
Нужно найти: углы, указанные на рисунке, стороны и ОЕ. Кроме того, дополнительные данные можно узнать из чертежа, который используется для решения задачи (рис. 1). К любому заданию нужно делать графическое представление, поскольку оно позволяет избежать ошибок при вычислении
Рисунок 1. Чертеж для решения задачи.
Числовых значений нет, тогда необходимо решать в общем виде. Углы можно найти по такому алгоритму:
- Нужно рассмотреть треугольник ВДЕ. Он является равнобедренным, поскольку ОЕ — СП, а диагональ — отрезок. Следовательно, ВЕ = ДЕ = 2а.
- Необходимо найти угол ЕВО. Сделать это проблемно. Рекомендуется обратить внимание на треугольник АВЕ.
- При помощи тригонометрической функции синуса можно вычислить значение угла АBE: sin(АBE) = a/2а = 0,5. Следовательно, arcsin(0,5) = 30 (градусов).
- Угол СВЕ вычисляется следующим образом: 90 — 30 = 60 (градусов).
- Следовательно, искомый угол равен 30, поскольку 90 — 30 — 30 = 30.
- В равнобедренном треугольнике углы при основании равны между собой: ЕДО = ЕВО = 30 (градусов).
Для нахождения сторон нужно составить уравнение в общем виде, обозначив неизвестную величину АВ литерой «х». Рассмотрев прямоугольный треугольник АВЕ, по теореме Пифагора можно вычислить АВ: x = [4a^2 + a^2]^(1/2) = a * [5]^(1/2). Следовательно, АВ = a * [5]^(1/2) и ВС = 3а. ОЕ находится по формуле: ОЕ = (2 * 2 * а * S) / (8 * a^2 — d^2). Можно править соотношение таким образом через прямоугольный треугольник ДОЕ: ОЕ = [4 * a^2 — (d^2) / 4]^(1/2).
Таким образом, нахождение серединного перпендикуляра позволяет значительно уменьшить объемы вычислений. Однако для этого нужно знать не только основные теоремы, но и его свойства.
Как обозначается перпендикуляр треугольника
Основные сведения о перпендикуляре к прямой — что это такое, как находить
Определение перпендикулярности прямой и плоскости
Каким будет определение положения прямой и плоскости, зависит от наличия общих точек. Если их больше одной, то прямая лежит на данной плоскости, если одна — то она ее пересекает. Если прямая не имеет с плоскостью точек пересечения, то прямая и плоскость параллельны.
Пересечение прямой линии и плоскости может происходить под разными углами. Если при пересечении между прямой и плоскостью образуется прямой угол, то такая прямая является к плоскости перпендикуляром. При этом она перпендикулярна всем прямым линиям, принадлежащим данной плоскости. Из этого свойства вытекает следующее определение.
Перпендикулярной к плоскости называется прямая линия, которая перпендикулярна всем без исключения прямым, лежащим в выбранной плоскости.
Следствием из данного определения является свойство плоскости, для которой установлено наличие перпендикуляра. Оно формулируется следующим образом: «Если плоскость перпендикулярна некоторой прямой, то она является также перпендикулярной для всех прямых, параллельных данной прямой».
В решении задач на построение перпендикуляров к плоскости в конкретной точке существует только одно решение, поскольку через определенную точку можно провести только одну прямую, занимающую по отношению к плоскости перпендикулярное положение.
О единственности такой прямой в геометрии существует доказательство.
Проведение перпендикуляра из точки к прямой
В жизни с перпендикуляром можно столкнуться часто. Например, если по двум параллельным направляющим движутся тела, то кратчайшее расстояние между ними будет лежать именно по перпендикуляру.
Допустим, на уроке ученикам дали задание построить перпендикуляр к имеющейся площади. Особым условием является то, что проходить этот перпендикуляр должен через выбранную точку. Технически задача проста. Для ее исполнения нужен чертежный треугольник, один угол у которого является прямым, то есть составляет 90°.
Приложив его к прямой таким образом, что одна из сторон, образующих прямой угол, лежит на прямой, а другая — проходит через точку с определенными координатами, необходимо соединить эту точку и прямую.
Такой отрезок будет кратчайшим соединением точки с прямой линией (и выбранной плоскостью).
Взаимное положение такого перпендикуляра и прямой обозначается специальным знаком.
Для перпендикуляра, проведенного из выбранной точки к прямой, можно определить длину. Она равна расстоянию от этой точки до точки пересечения с прямой плоскостью.
Как построить перпендикуляр к прямой
Построить перпендикуляр к прямой можно несколькими способами:
1. С помощью циркуля.
Из выбранной точки P проводим полуокружность, которая пересекается с прямой в точках A и B.
Затем тем же радиусом строим две окружности, центры которых совпадают с точками A и B. При этом окружности проходят через точку P.
Следующим шагом будет соединение точек P и Q.
На данном рисунке перпендикуляр к прямой AB — отрезок PQ.
2. Вторым способом построения перпендикуляра является использование транспортира. Чтобы провести перпендикуляр, внимательно откладываем 90° от выбранной точки на прямой, используя при этом линейку транспортира. Отрезок, соединяющий эту точку и деление 90°, является перпендикуляром к прямой в заданной точке.
3. Третий способ был описан выше. Он основан на применении чертежного треугольника и линейки. С помощью линейки проводим прямую. Прикладываем к ней прямым углом треугольник и очерчиваем этот угол с двух сторон. Один отрезок совпадает с имеющейся прямой, а второй является перпендикуляром к ней.
Пояснение на примерах
В конспектах по геометрии присутствует понятие высоты, представляющей собой перпендикуляр к одной из сторон геометрической фигуры (например, треугольника).
Высотой треугольника называется перпендикуляр, который выходит из вершины треугольника и следует к противоположной стороне (либо к продолжению этой стороны, если треугольник тупоугольный).
В данном определении содержится отличие от основной характеристики биссектрисы, которая, опускаясь на противолежащую углу сторону, не является перпендикуляром к ней.
Аналогичная ситуация с определением медианы — линии, исходящей из угла треугольника и делящей противоположную сторону на две равные части.
Высоту треугольника можно провести из любого его угла, поэтому у каждого треугольника имеется три высоты.
Существует теорема, что все три высоты треугольника пересекаются в одной точке, которая называется ортоцентром.
Используя свойство высоты треугольника о пересечении одной из его сторон под прямым углом, можно через высоту выразить формулу площади треугольника:
Уравнение для расчета высоты через площадь:
Найти через длины сторон:
h a = 2 p p — a p — b p — c a
где p — это полупериметр треугольника, который рассчитывается так:
p = a + b + c 2
Можно дать краткую характеристику еще двум способам выразить высоту треугольника:
4. Через длину прилежащей стороны и синус угла
h a = b sin y = c sin β
5. Через стороны и радиус описанной окружности
Треугольник и его виды. Элементы треугольника
Треугольник – это геометрическая фигура, состоящая из трех точек, попарно соединенных между собой отрезками. Точки называются вершинами треугольника, отрезки – сторонами треугольника. Треугольник имеет три вершины и три стороны. Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.
Внутренние углы треугольника – это углы, образованные его сторонами. Угол А – это угол, образованный сторонами АВ и АС.
Виды треугольников по углам:
- Остроугольный треугольник – это треугольник, все углы которого острые (то есть градусная мера каждого угла меньше 90º).
- Прямоугольный треугольник – это треугольник, у которого один угол прямой (то есть имеет градусную меру 90º).
- Тупоугольный треугольник – это треугольник, у которого один угол тупой (то есть имеет градусную меру больше 90º).
Виды треугольников по сторонам:
- Равносторонний треугольник (или правильный треугольник) – это треугольник, у которого все три стороны равны.
- Равнобедренный треугольник – это треугольник, у которого две стороны равны.
- Разносторонний треугольник – треугольник, все стороны которого имеют разную длину.
Элементы треугольника
Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Любой треугольник имеет три медианы, которые пересекаются в одной точке. Эта точка пересечения называется центроидом или центром тяжести треугольника. Центроид делит каждую медиану в отношении 1:2, считая от основания медианы.
Биссектриса – это отрезок, делящий угол треугольника на две равные части. Любой треугольник имеет три биссектрисы, которые пересекаются в одной точке.
Высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону. Любой треугольник имеет три высоты, которые пересекаются в одной точке, называемой ортоцентром треугольника.
Средняя линия треугольника – это отрезок, соединяющий середины двух его сторон.
Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине: (MN=frac12AC; MNparallel AC) .
Серединный перпендикуляр к отрезку – прямая, перпендикулярная к этому отрезку и проходящая через его середину. Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.
Основные свойства треугольников
- Против большей стороны лежит больший угол, и наоборот.
- Против равных сторон лежат равные углы, и наоборот. В частности, все углы в равностороннем треугольнике равны.
- Сумма углов треугольника равна 180º. Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60º.
- Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.
- Любая сторона треугольника меньше суммы двух других сторон и больше их разности (a b – c; b a – c; c a – b).
Один из внешних углов треугольника равен 65 (^circ) . Углы, не смежные с данным внешним углом, относятся как 6:7. Найдите наибольший из них.
Внутренние углы треугольника относятся как 3:7:8. Найдите отношение внешних углов треугольника.
Чему равна градусная мера одного из углов прямоугольного треугольника?
Если в треугольнике один угол больше суммы двух других углов, то он
Если в треугольнике один внешний угол острый, то этот треугольник
Периметр равнобедренного треугольника равен 11 см, а основание равно 3 см. Найдите боковую сторону треугольника.
Перпендикулярные прямые
Перпендикулярные прямые — это две пересекающиеся прямые,
образующие четыре прямых угла.
По другому можно сказать так: перпендикулярные
прямые — это две прямые, которые пересекаются под прямым углом.
Эти два утверждения истинны.
Перпендикулярность прямых обозначается символом ⊥ . Например,
перпендикулярность прямых, изображенных на рисунке 1 обозначается
так: AC ⊥ BD. А читается так: прямая AC перпендикулярна к прямой BD.
Для того, чтобы начертить перпендикулярные прямые используют
чертежный угольник и линейку.
Две прямые, перпендикулярные к третьей не пересекаются,
но параллельны между собой.
- Перпендикуляр — это прямая опущенная под прямым углом
к другой прямой. - Перпендикуляр к данной прямой — это отрезок прямой,
перпендикулярный данной прямой, имеющий одним из
своих концов их точку пересечения. - Основание перпендикуляра — это конец отрезка прямой,
которая перпендикулярна данной прямой.
Условие перпендикулярности двух прямых — две прямые
пересекаются под прямым углом.
Из точки, не лежащей на прямой, можно провести
перпендикуляр к этой прямой, и притом только один.
Прямая перпендикулярна плоскости, если она
перпендикулярна любой прямой, лежащей
в этой плоскости.
http://nauka.club/matematika/geometriya/seredinnyi-perpendikulyar.html
http://b4.cooksy.ru/articles/kak-oboznachaetsya-perpendikulyar-treugolnika
§ 14. Пирамида
14.1. Определение пирамиды и её элементов
Определение. Пирамидой называется многогранник, у которого одна грань — многоугольник, а остальные грани — треугольники с общей вершиной (рис. 95, 96).
Рис. 95
Рис. 96
Многоугольник называется основанием пирамиды, остальные грани — боковыми гранями пирамиды, их общая вершина — вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами её основания, называются боковыми рёбрами пирамиды.
Пирамиду с основанием АВСDЕ и вершиной Р обозначают PABCDE.
Перпендикуляр, опущенный из вершины пирамиды на плоскость её основания, называется высотой пирамиды. Длину этого перпендикуляра также называют высотой пирамиды.
Пирамида называется n-угольной, если её основанием является n-угольник.
На рисунке 96 изображена четырёхугольная пирамида PABCD, у которой: четырёхугольник ABCD — основание пирамиды; точка Р — вершина пирамиды; отрезки РA, РВ, PC, PD — боковые рёбра пирамиды; отрезки АВ, ВС, CD, DA — стороны (рёбра) основания пирамиды; отрезок РО — высота пирамиды; треугольники РАВ, РВС, PCD, PDA — боковые грани пирамиды.
Рис. 97
У n-угольной пирамиды имеется (n + 1) вершин, 2n рёбер и (n + 1) граней. Диагоналей пирамида не имеет. В пирамиде различают плоские углы при её вершине и двугранные углы при её рёбрах. Двугранным углом при ребре пирамиды называют содержащий пирамиду двугранный угол, образованный плоскостями граней, проходящими через данное ребро.
Треугольную пирамиду (рис. 97) называют также тетраэдром («тетраэдр» по-гречески означает «четырёхгранник»). Тетраэдр — это многогранник с наименьшим числом граней. Любая грань тетраэдра может быть принята за его основание; это отличает тетраэдр от всех остальных пирамид.
Любую пирамиду можно разбить на некоторое число тетраэдров, а любой выпуклый многогранник — на некоторое число пирамид. Для этого достаточно, например, взять любую точку внутри данного многогранника и соединить её отрезками со всеми его вершинами. Такое разбиение часто используется при нахождении объёмов многогранников.
14.2. Некоторые виды пирамид
Если все боковые рёбра пирамиды составляют с плоскостью основания равные углы, то: а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды; б) все боковые рёбра пирамиды равны между собой.
Рис. 98
Доказательство. а) Пусть отрезок РО — высота пирамиды PABCDEF, все рёбра которой составляют с плоскостью основания угол ϕ (рис. 98). Тогда прямоугольные треугольники РОА, POB, POC, POD, РОЕ и POF, имея общий катет РО, равны между собой (по катету и острому углу ϕ). Из равенства этих треугольников следует: ОА = OВ = ОС = OD = OE = OF, т. е. вершины основания пирамиды равноудалены от основания О её высоты РО. Это означает, что точка О — центр окружности, описанной около основания ABCDEF данной пирамиды.
б) Из ОА = OВ = ОС = OD = ОЕ = OF следует, что боковые рёбра РА, РВ, PC, PD, РЕ, PF пирамиды равны, как наклонные, имеющие равные проекции, т. е. РА = РВ = PC = PD = РЕ = PF. Что и требовалось доказать. ▼
Вы самостоятельно можете доказать обратные утверждения.
1. Если основание высоты пирамиды совпадает с центром окружности, описанной около её основания, то: а) все боковые рёбра пирамиды образуют с плоскостью основания равные углы; б) все боковые рёбра пирамиды равны между собой.
2. Если все боковые рёбра пирамиды равны, то: а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды; б) все боковые рёбра пирамиды составляют с плоскостью её основания равные между собой углы.
Также имеет место следующее утверждение.
Если высота пирамиды пересекает её основание и все боковые грани пирамиды образуют с плоскостью основания равные двугранные углы, то основание высоты пирамиды совпадает с центром окружности, вписанной в её основание.
Доказательство. Пусть РО — высота пирамиды PABCDE, боковые грани которой образуют с плоскостью основания пирамиды двугранные углы, равные ϕ (рис. 99).
Рис. 99
Проведём высоты РН1, РH2, РН3, PH4, РH5 боковых граней.
Тогда по теореме о трёх перпендикулярах получаем OH1 ⟂ AB, OH2 ⟂ BC, OH3 ⟂ CD, OH4 ⟂ DE, OH5 ⟂ EA, следовательно, ∠ OH1P = ∠ OH2P = ∠ OH3P = ∠ OH4P = ∠ OH5P = ϕ. Поэтому △ OH1P = △ OH2P = △ OH3P = △ OH4P = △ OH5P (как прямоугольные с общим катетом OP и острым углом ϕ). Из равенства этих треугольников следует ОН1 = OH2 = OH3 = ОН4 = ОН5, т. е. точка О — основание высоты РО пирамиды — равноудалена от всех сторон многоугольника ABCDE. Это означает, что точка O является центром окружности, вписанной в основание ABCDE данной пирамиды. Теорема доказана. ▼
Самостоятельно докажите обратное утверждение.
Если вершина пирамиды проектируется в центр окружности, вписанной в основание пирамиды, то боковые грани пирамиды образуют с плоскостью основания равные двугранные углы.
Перечислим ещё несколько часто встречающихся в задачах видов пирамид.
Рис. 100
Рис. 101
Рис. 102
• Пирамида, ровно одна боковая грань которой перпендикулярна плоскости основания. Высота такой пирамиды лежит в этой, перпендикулярной основанию, грани (рис. 100).
• Пирамида, две соседние боковые грани которой перпендикулярны плоскости основания. Высотой такой пирамиды служит боковое ребро, общее для этих граней (рис. 101).
• Пирамида, две не соседние боковые грани которой перпендикулярны плоскости основания. Высота такой пирамиды лежит на прямой пересечения плоскостей этих граней (рис. 102).
14.3. Правильная пирамида
Определение. Пирамида называется правильной, если её основание — правильный многоугольник и вершина пирамиды проектируется в центр этого основания.
Рис. 103
Из определения следует алгоритм построения изображения правильных пирамид, что, в свою очередь, доказывает существование таких пирамид.
Для построения изображения правильной пирамиды достаточно построить изображение соответствующего правильного многоугольника (основания пирамиды) и его центра. Затем из построенного центра провести перпендикуляр к плоскости многоугольника и выбрать на этом перпендикуляре (в качестве вершины пирамиды) любую точку, отличную от центра многоугольника. Соединив отрезками прямых эту точку со всеми вершинами многоугольника, получим изображение правильной пирамиды.
На рисунке 103, а, б, в построены изображения правильных пирамид: а) треугольной; б) четырёхугольной; в) шестиугольной.
Правильные пирамиды обладают замечательным свойством.
В правильной пирамиде все боковые рёбра равны, а все боковые грани — равные равнобедренные треугольники.
Рис. 104
Доказательство. Рассмотрим правильную n-угольную пирамиду РА1А2…An. Пусть точка O — центр n-угольника A1A2A3…An; отрезок РО — перпендикуляр к плоскости основания пирамиды (рис. 104).
Так как центр правильного многоугольника является центром окружности, описанной около этого многоугольника, то ОА1 = OA2 = OA3 = … = OAn (как радиусы описанной окружности). Тогда равны боковые рёбра пирамиды, как наклонные к плоскости её основания, имеющие равные проекции, т. е. PA1 = PA2 = PA3 = … = PAn.
Таким образом, имеем:
РА1 = РA2 = … = PAn (как боковые рёбра);
A1A2 = A2A3 = … = AnA1 (как стороны правильного n-угольника).
Следовательно, треугольники PA1A2, РA2A3, …, PAnA1 являются равнобедренными и по третьему признаку равенства треугольников равны между собой.
Это свойство правильной пирамиды можно доказать при помощи поворота пирамиды вокруг оси, содержащей её высоту.
Так как точка О — центр правильного n-угольника A1A2A3…An, лежащего в основании правильной пирамиды PA1A2…An, РО — перпендикуляр к плоскости её основания, то при вращении данной пирамиды вокруг оси ОР на угол, равный 
Следствием доказанного выше является утверждение.
Все боковые рёбра правильной пирамиды образуют с плоскостью основания равные углы, а все боковые грани — равные двугранные углы.
Докажите это предложение самостоятельно.
Высота боковой грани правильной пирамиды, проведённая к ребру её основания, называется апофемой пирамиды. На рисунке 104 отрезок РН — одна из апофем пирамиды.
Все апофемы правильной пирамиды равны вследствие равенства всех её боковых граней.
Имеют место признаки правильной пирамиды:
Пирамида, в основании которой лежит правильный многоугольник, является правильной, если: а) все её боковые рёбра равны; б) все её боковые рёбра образуют с плоскостью основания равные углы; в) все её боковые грани — равные равнобедренные треугольники.
Докажите это самостоятельно.
ЗАДАЧА (2.245). Высота правильной четырёхугольной пирамиды равна h и образует с боковой гранью угол α. Через сторону основания пирамиды проведена плоскость, перпендикулярная противоположной грани и пересекающая её. Найти площадь сечения.
Дано: PABCD — правильная пирамида (рис. 105); РО — высота пирамиды, РО = h; ∠ OPF = α.
Найти: SADKM.
Решение. Первый способ. Пусть отрезок EF — средняя линия основания пирамиды. Тогда AD ⟂ EF, AD ⟂ PF ⇒ АD ⟂ (РEF) ⇒ (PEF) ⟂ (ADP) (по признаку перпендикулярности двух плоскостей). Поэтому прямая PF является ортогональной проекцией прямой РO на плоскость ADP. Значит, ∠ OPF — угол между высотой PO и боковой гранью ADP пирамиды: ∠ OPF = α.
Рис. 105
Далее имеем: AD ⟂ (PEF), ВС || AD ⇒ ВC ⟂ (PEF) ⇒ прямая ВС перпендикулярна любой прямой плоскости PEF. Поэтому если FL ⟂ РЕ (в плоскости PEF), то BС ⟂ FL. Тогда FL ⟂ ВС, FL ⟂ PE ⇒ FL ⟂ (BCP) ⇒ (ADL) ⟂ (ВCР) (по признаку перпендикулярности двух плоскостей); при этом (ADL) ∩ (ВСР) = МK, МK || AD, так как плоскости ВСР и АDL проходят через параллельные прямые ВС и AD. Значит, сечение ADKM — трапеция, у которой FL — высота (почему?), откуда
Sсеч = 
Найдём AD, МK и FL.
В △ OPF (∠ POF = 90°):
OF = OP•tg α = h•tg α; PF = 

Поэтому
EF = 2FO = 2h•tg α = ВС.
В плоскости PEF получаем:
FL ⟂ РЕ, РО ⟂ EF ⇒ ∠ EFL = ∠ OPE = α.
Тогда в △ ЕFL: FL = ЕF•cos α = 2h•tg α•cos α = 2hsin α;
в △ PLF (∠ PLF = 90°, ∠ PFL = 90° – 2α):
PL = PF•sin (90° – 2α) = PF•cos 2α = 
Так как MK | | BC, то △ МKР ∾ △ ВСР, откуда




= 2htg α•cos 2α.
Таким образом,
AD = EF = 2h•tg α, FL = 2h•sin α, MK = 2h•tg α•cos 2α.
Тогда
Sсеч = 

= 
Замечание. Отрезок MK можно найти следующим образом. Сечением данной пирамиды плоскостью, проходящей через прямую MK параллельно основанию пирамиды, является квадрат MKD1A1 (см. рис. 105). F1 = A1D1 ∩ PF. У этого квадрата LF1 = MK. Найдём F1L.
В треугольнике LFF1 имеем ∠ FLF1 = α (LF1 || EF),
∠ F1FL = ∠ OFP – ∠ OFL = (90° – α) – α = 90° – 2α;
∠ FF1L = 180° – ∠ OFF1 = 90° + α. Тогда по теореме синусов
Рис. 106
Значит, MK = LF1 = 2h•tg α•cos 2α.
Второй способ. Пусть точки M1, K1, L1 — ортогональные проекции на плоскость основания соответственно точек М, K, L (рис. 105, 106). Так как плоскости АСР, BDP и EFP перпендикулярны плоскости основания пирамиды, то ортогональными проекциями прямых PC, РВ и РЕ на эту плоскость являются соответственно прямые АС, BD и EF. Следовательно, M1 ∈ BD, K1 ∈ AC, L1 ∈ EF, причём четырёхугольник ADK1M1 — равнобедренная трапеция.
Таким образом, трапеция ADK1M1 — ортогональная проекция сечения ADKM. Это означает, что SADKM = 





Тогда
SADKM = 

Ответ: 4h2•sin2 α•cos α.
14.4.Площади боковой и полной поверхностей пирамиды
Поверхность пирамиды состоит из основания и боковых граней. В этой связи различают боковую и полную поверхности пирамиды, а также их площади.
Площадью боковой поверхности пирамиды (обозначают Sбок) называется сумма площадей всех её боковых граней: Sбок = S1 + S2 + … + Sn, где S1, S2, …, Sn — площади боковых граней пирамиды.
Площадью полной поверхности пирамиды (обозначают Sполн) называется сумма площадей всех её граней, т. е. сумма площади основания пирамиды и площади её боковой поверхности.
Из определения следует: Sполн = Sбок + Sосн.
О площади боковой поверхности правильной пирамиды имеет место следующая теорема.
Теорема 18. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.
Рис. 107
Доказательство. PA1A2…An — правильная пирамида, a — длина её апофемы (рис. 107).
Боковые грани правильной пирамиды — равные равнобедренные треугольники, у которых основаниями являются стороны правильного n-угольника A1A2…An, а высоты равны апофеме пирамиды, т. е.
РE1 = РE2 = PE3 = … = PEn = a.
Тогда
Sбок = S△PA1A2 + S△PA2A3 + … + S△PAnA1 =
= 


= 

где Р — периметр основания пирамиды. Теорема доказана. ▼
Теорема 19. Если все боковые грани пирамиды наклонены к плоскости основания под углом ϕ и высота пересекает основание, то Sбок = 
Рис. 108
Доказательство. Пусть отрезок PO — высота пирамиды РA1A2A3…An, все боковые грани которой образуют с плоскостью основания углы, равные ϕ (рис. 108); отрезки PH1, PH2, …, PHn — высоты боковых граней. Тогда (по теореме о трёх перпендикулярах) OH1 ⟂ A1A2, OH2 ⟂ A2A3, …, OHn ⟂ AnA1. Значит,
∠ OH1P = ∠ OH2P = ∠ OH3P = …
… = ∠ OHnP = ϕ.
Так как точка О является центром круга, вписанного в основание пирамиды (почему?), то эта точка лежит внутри n-угольника A1A2A3…An. Поэтому n-угольник A1A2…An является объединением непересекающихся треугольников A1OA2, A2OA3, …, AnOA1. Эти треугольники являются ортогональными проекциями на плоскость основания пирамиды её соответствующих боковых граней. По теореме о площади ортогональной проекции многоугольника имеем:
S△ A1OA2 = S△ A1PA2•cos ϕ,
S△ A2OA3 = S△ A2PA3•cos ϕ,
…………………………….
S△ AnOA1 = S△ AnPA1•cos ϕ.
Сложив почленно эти равенства, получим Sосн = Sбок•cos ϕ, откуда Sбок = 
Так как все боковые грани правильной пирамиды образуют с плоскостью основания равные двугранные углы (пусть величина этих углов равна ϕ, см. рис. 107), то для площади боковой поверхности и площади основания правильной пирамиды также справедлива формула
Sбок = 
14.5. Свойства параллельных сечений пирамиды
Если плоскость α параллельна основанию пирамиды и пересекает её, то в сечении пирамиды получается некоторый многоугольник (рис. 109).
Теорема 20. Если пирамида пересечена плоскостью, параллельной основанию, то: 1) боковые рёбра и высота делятся этой плоскостью на пропорциональные части; 2) в сечении получается многоугольник, подобный основанию; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.
Доказательство. 1) Пусть сечением пирамиды PABCD плоскостью α, параллельной плоскости β её основания, является четырёхугольник A1B1C1D1 (см. рис. 109).
Рис. 109
Проведём высоту РО данной пирамиды и обозначим O1 = РО ∩ α.
Рассмотрим гомотетию 
Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия 
Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:





где k — коэффициент гомотетии 
Вследствие того, что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии, а k = РO1 : РО, где РO1 и РО — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то
SA1B1C1D1 : SABCD = k2 = 
Теорема доказана. ▼
Следствие. Плоскость, параллельная основанию пирамиды и пересекающая её, отсекает пирамиду, подобную данной.
14.6. Усечённая пирамида
Плоскость α, параллельная основанию пирамиды PABCD и пересекающая её, делит эту пирамиду на два многогранника: пирамиду РA1B1C1D1 и многогранник ABCDA1B1C1D1 (см. рис. 109).
Рис. 110
Многогранник ABCDA1B1C1D1 (рис. 110) называют усечённой пирамидой. Грани ABCD и A1B1C1D1, лежащие в параллельных плоскостях, называются соответственно нижним и верхним основаниями усечённой пирамиды, остальные грани — её боковыми гранями. Так как нижнее и верхнее основания усечённой пирамиды гомотетичны (т. 20), то все её боковые грани — трапеции.
Таким образом, усечённой пирамидой называется часть полной пирамиды, заключённая между её основанием и параллельным ему сечением.
У n-угольной усечённой пирамиды 2n вершин, 3n рёбер, (n + 2) грани и n(n – 3) диагоналей.
Высотой усечённой пирамиды называется перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого. Длину этого перпендикуляра также называют высотой усечённой пирамиды. На рисунке 110 отрезки О1О, B1K — высоты усечённой пирамиды.
Рис. 111
Усечённая пирамида называется правильной, если она получена из правильной пирамиды (рис. 111).
Из теоремы 20 следует, что основания правильной усечённой пирамиды — подобные правильные многоугольники, а боковые грани — равные равнобедренные трапеции.
Высоты этих трапеций, соединяющие середины их оснований, называются апофемами усечённой пирамиды. Все её апофемы равны между собой.
Отрезок OO1, соединяющий центры оснований правильной усечённой пирамиды, является её высотой.
Площадью боковой поверхности усечённой пирамиды называется сумма площадей всех её боковых граней.
Для правильной усечённой пирамиды имеет место
Теорема 21. Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров её оснований на апофему.
Для доказательства теоремы достаточно площадь одной из боковых граней пирамиды умножить на их число. В результате получим формулу Sбок = 
Проведите доказательство теоремы самостоятельно.
Полная поверхность усечённой пирамиды — это объединение её оснований и боковой поверхности, поэтому для усечённой пирамиды
Sполн = Sбок + S1 + S2,
где S1 и S2 — площади большего и меньшего оснований этой пирамиды.
Для усечённой пирамиды, у которой все двугранные углы при рёбрах большего основания равны ϕ, справедливо: Sбок = 

14.7. Объём пирамиды
Лемма. Две треугольные пирамиды с равновеликими основаниями и равными высотами равновелики.
Доказательство. Пусть пирамиды РАВС и P1A1B1C1 имеют высоты, равные H, и равновеликие основания с площадью S; их объёмы — соответственно V1 и V2. Докажем, что V1 = V2.
Расположим пирамиды РАВС и P1A1B1C1 так, чтобы их основания лежали в одной плоскости, а сами пирамиды были расположены по одну сторону от этой плоскости (рис. 112). Тогда любая плоскость, параллельная плоскости оснований и пересекающая первую пирамиду, пересекает и вторую, причём по теореме о параллельных сечениях пирамиды площади этих сечений равны. Следовательно, на основании принципа Кавальери равны и объёмы этих пирамид. Лемма доказана. ▼
Рис. 112
Теорема 22. Объём любой треугольной пирамиды равен одной трети произведения площади основания на высоту.
Рис. 113
Доказательство. Пусть А1AВC — данная треугольная пирамида с вершиной A1 и основанием ABC (рис. 113). Дополним эту пирамиду до треугольной призмы ABCA1B1C1 с тем же основанием, одним из боковых рёбер которой является боковое ребро АA1 данной пирамиды. Это означает, что высота призмы равна высоте данной пирамиды.
Призма АВCA1B1C1 является объединением трёх треугольных пирамид с общей вершиной A1: A1ABC, A1BB1C1 и A1BCC1. Основания BB1C1 и BCC1 пирамид A1BB1C1 и A1BCC1 равны, а высота у них общая. Значит, по лемме эти пирамиды имеют равные объёмы.
Будем считать точку В вершиной пирамиды A1BB1C1, a △ A1B1C1 — её основанием. Тогда эта пирамида равновелика пирамиде А1AВС, так как у них общая высота, а основания АВС и A1B1C1 равновелики (как основания призмы). Таким образом, призма ABCA1B1C1 является объединением трёх равновеликих пирамид, одной из которых является данная пирамида A1ABC. Это означает, что объём V пирамиды A1АВС составляет одну треть объёма призмы ABCA1B1C1, т. е. V = 
V = 
где Н — длина высоты данной пирамиды. Теорема доказана. ▼
Рис. 114
На рисунке 114 изображены треугольная призма ABCDEF и составляющие её три равновеликие треугольные пирамиды ABDF, ABCF и BDEF.
Рис. 115
Для вычисления объёма n-угольной пирамиды PA1A2…An (рис. 115) разобьём её основание A1A2…An диагоналями A1A3, A1A4, …, A1An – 1 на треугольники с общей вершиной A1. Тогда данная пирамида разбивается в объединение пирамид PA1A2A3, PA1A3A4, …, PA1An – 1An с общей вершиной Р и общей высотой, которая равна высоте данной пирамиды. Основаниями этих пирамид являются треугольники разбиения основания данной пирамиды. Это означает (свойство 2 объёмов), что объём V пирамиды PA1A2…An равен сумме объёмов V1, V2, …, Vn – 2 треугольных пирамид соответственно PA1A2A3, PA1A3A4, …, PA1An – 1An.
Пусть длина высоты пирамиды равна Н, площадь её основания — S, а площади треугольников разбиения этого основания равны S1, S2, …, Sn – 2. Это означает, что S1 + S2 + … + Sn – 2 = S. Тогда получаем:
V = V1 + V2 + … + Vn – 2 = 

Таким образом, объём любой пирамиды вычисляется по формуле
V = 
где Sосн — площадь основания, Н — длина высоты пирамиды.
Итак, доказана теорема.
Теорема 23. Объём любой пирамиды равен одной трети произведения площади основания на высоту. ▼
14.8. Об объёме тетраэдра
У тетраэдра за основание можно принять любую его грань, на каждую из которых можно провести высоту тетраэдра из вершины, противоположной этой грани. Поэтому для объёма V одного и того же тетраэдра имеют место соотношения
V = 



где Sk и hk (k = 1, 2, 3, 4) — площадь грани и длина опущенной на неё высоты. Эти соотношения часто используют при решении задач.
Заметим, что не в любом тетраэдре все четыре высоты пересекаются в одной точке (для сравнения — все три высоты любого треугольника пересекаются в одной точке). Тетраэдр, все высоты которого пересекаются в одной точке, называется ортоцентрическим.
Интересен также тетраэдр (рис. 116, а), все грани которого равны. Такой тетраэдр называется равногранным. Его развёрткой является остроугольный треугольник (рис. 116, б).
Докажите самостоятельно, что в равногранном тетраэдре:
—скрещивающиеся рёбра попарно равны;
—все высоты равны;
—сумма плоских углов трёхгранного угла при каждой вершине тетраэдра равна 180°;
—двугранные углы при скрещивающихся рёбрах тетраэдра равны.
Рис. 116
Рис. 117
Не менее интересен следующий факт. Пусть дан тетраэдр A1C1BD. Проведём через каждое его ребро плоскость, параллельную скрещивающемуся с ним ребру. Проведённые шесть плоскостей при пересечении образуют некоторый параллелепипед АВСDA1В1C1D1 (рис. 117), параллельные грани ABCD и A1B1C1D1 которого содержат скрещивающиеся рёбра А1C1 и BD данного тетраэдра. Тогда расстояние между основаниями АВСD и А1В1С1D1 полученного параллелепипеда равно длине его высоты и равно расстоянию между скрещивающимися рёбрами А1C1 и BD данного тетраэдра.
Этот параллелепипед можно разбить на пять тетраэдров — данный тетраэдр A1С1ВD и ещё четыре тетраэдра: A1ABD; ВВ1A1C1; C1CBD; DD1A1C1. Объём каждого из четырёх последних тетраэдров равен одной трети высоты h параллелепипеда, умноженной на половину площади его основания ABCD, т. е. шестой части объёма V полученного параллелепипеда.
Таким образом,
где ϕ — угол между диагоналями АС и BD параллелограмма ABCD. А так как AC || A1C1, то величина угла между скрещивающимися диагоналями A1С1 и BD тетраэдра А1С1BD также равна ϕ.
Мы получили: объём тетраэдра равен одной шестой произведения длин любых двух его скрещивающихся рёбер, расстояния между ними и синуса угла между скрещивающимися прямыми, содержащими эти рёбра.
Отметим ещё несколько очевидных и менее очевидных свойств тетраэдров, связанных с их объёмами.
1. Объёмы тетраэдров с равными основаниями относятся как их высоты, опущенные на эти основания.
Рис. 118
2. Объёмы тетраэдров с равными высотами относятся как площади их оснований.
3. Объёмы тетраэдров, имеющих равные трёхгранные углы, относятся, как произведения длин рёбер, образующих эти углы.
Используя рисунок 118, вы сможете легко доказать третье утверждение.
14.9. Объём усечённой пирамиды
Теорема 24. Объём усечённой пирамиды, у которой площади оснований равны S1 и S2, а высота — Н, вычисляется по формуле
V = 

Рис. 119
Доказательство. Пусть дана усечённая пирамида (рис. 119), у которой S1 > S2, а высота OO1 = H. Дополним эту пирамиду до полной пирамиды с вершиной Р. Объём V данной усечённой пирамиды равен разности объёмов полной и дополнительной пирамид.
Если длина высоты PO1 дополнительной пирамиды равна x, то высота PO полной пирамиды равна H + x.
Выразим х через S1, S2 и Н. По теореме 20 (o площадях параллельных сечений пирамиды) имеем
S1 : S2 = (H + x)2 : x2 ⇒ 

⇒
x = 
Поэтому для объёма V усечённой пирамиды находим
что и требовалось доказать. ▼




















: известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом.
— сторона
.
: один катет известен по условию, второй — найден из
; неизвестной является третья сторона — гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка
.


от точки
равные отрезки
и
;
некоторую точку
, а на прямой
— точку
; соединим точки:
с
,
с
,
с
,
и
произвольную прямую
, которая пересечет
в точке
— медиана и высота;
по построению;
— общая сторона треугольников
и
; 
. Итак,
по двум сторонам и углу между ними. Отсюда
.
. Равенство отрезков
и
доказывается аналогично, как и равенство отрезков
и
.
, поскольку
и
-общая сторона. Отсюда вытекает равенство соответствующих углов:
.
по двум сторонам и углу между ними:
— общая сторона;
по доказательству выше. Итак,
, т.е.
— равнобедренный:
— основание треугольника,
— середина
, поэтому
— медиана
. В равнобедренном треугольнике медиана является высотой, т.е.
, а это означает, что
. Поскольку прямая
— произвольная прямая плоскости
, проходит через точку пересечения прямой
и плоскости
, перпендикулярна прямой
, то
.



лежит по одну сторону от плоскости
и не пересекает ее (рис. 5.21, а);
пересекает плоскость
(концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
лежит по одну сторону от плоскости
и точка
— конец отрезка — принадлежит плоскости
(рис. 5.21, в).
































































































































































































































































