Функция распределения случайной величины
- Краткая теория
- Примеры решения задач
- Задачи контрольных и самостоятельных работ
Краткая теория
Пусть
– действительное число. Вероятность события,
состоящего в том, что
примет значение, меньшее
, то есть вероятность
события
обозначим через
. Разумеется, если
изменяется, то, вообще говоря, изменяется и
, то есть
– функция от
.
Функцией распределения называют функцию
, определяющую вероятность
того, что случайная величина
в результате испытания примет значение,
меньшее
, то есть:
Геометрически
это равенство можно истолковать так:
есть вероятность того, что случайная величина примет
значение, которое изображается на числовой оси точкой, лежащей левее точки
.
Иногда
вместо термина «функция распределения» используют термин «интегральная
функция».
Функцию
распределения дискретной случайной величины
можно представить следующим соотношением:
Это
соотношение можно переписать в развернутом виде:
Функция
распределения дискретной случайной величины есть разрывная ступенчатая функция,
скачки которой происходят в точках, соответствующих возможным значениям
случайной величины и равны вероятностям этих значений. Сумма всех скачков
функции
равна 1.
Свойства функции распределения
Свойство 1.
Значения
функции распределения принадлежат отрезку
:
Свойство 2.
– неубывающая функция, то есть:
,
если
Свойство 3.
Если возможные значения случайной величины
принадлежат интервалу
,
то:
1)
при
;
2)
при
Свойство 4.
Справедливо равенство:
Свойство 5.
Вероятность того, что непрерывная случайная
величина
примет одно определенное значение, равна нулю.
Таким образом, не представляет интереса говорить о
вероятности того, что непрерывная случайная величина примет одно определенное
значение, но имеет смысл рассматривать вероятность попадания ее в интервал,
пусть даже сколь угодно малый.
Заметим, что было бы неправильным думать, что
равенство нулю вероятности
означает, что событие
невозможно (если, конечно, не ограничиваться
классическим определением вероятности). Действительно, в результате испытания
случайная величина обязательно примет одно из возможных значений; в частности,
это значение может оказаться равным
.
Свойство 6.
Если возможные значения непрерывной случайной величины
расположены на всей оси
,
то справедливы следующие предельные соотношения:
Свойство 7.
Функция распределения непрерывная слева, то есть:
Смежные темы решебника:
- Дискретная случайная величина
- Непрерывная случайная величина
- Математическое ожидание
- Дисперсия и среднее квадратическое отклонение
Примеры решения задач
Пример 1
Дан ряд
распределения случайной величины
:
|
|
1 | 2 | 6 | 8 |
|
|
0,2 | 0,3 | 0,1 | 0,4 |
Найти и изобразить ее функцию распределения.
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Будем задавать различные значения
и находить для них
1. Если
,
то, очевидно,
в том числе и при
2. Пусть
(например
)
Очевидно, что и
3. Пусть
(например
);
Очевидно, что и
4. Пусть
Очевидно, что и
5. Пусть
Итак:
График функции распределения
Пример 2
Случайная
величина
задана функцией распределения:
Найти
вероятность того, что в результате испытания
примет значение:
а) меньше
0,2;
б) меньше
трех;
в) не
меньше трех;
г) не
меньше пяти.
Решение
а) Так
как при
функция
, то
то есть
при
б)
в)
События
и
противоположны, поэтому
Отсюда:
г) сумма
вероятностей противоположных событий равна единице, поэтому
Отсюда, в
силу того что при
функция
, получим:
Пример 3
Задана
непрерывная случайная величина X своей плотностью
распределения вероятностей f(x). Требуется:
1)
определить коэффициент A;
2) найти
функцию распределения F(x);
3)
схематично построить графики функций f(x) и F(x);
4)
вычислить математическое ожидание и дисперсию X;
5)
определить вероятность того, что X примет значение из
интервала (a,b).
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
1)
Постоянный параметр
найдем из
свойства плотности вероятности:
В
нашем случае эта формула имеет вид:
Получаем:
2)
Функцию распределения
найдем из
формулы:
Учитывая
свойства
, сразу можем отметить,
что:
и
Остается
найти выражение для
, когда х принадлежит интервалу
:
Получаем:
3) Построим графики функций:
График плотности распределения
График функции распределения
4) Вычислим
математическое ожидание:
В нашем случае:
Вычислим дисперсию:
Искомая дисперсия:
5) Вероятность того, что
примет значение из интервала
:
Задачи контрольных и самостоятельных работ
Задача 1
Закон
распределения случайной величины X задан таблицей.
Найти ее
математическое ожидание, дисперсию и значение функции распределения в заданной
точке.
F(1)=
M[X]=
D[X]=
Задача 2
Случайная
величины X задана функцией распределения
Найти
плотность распределения вероятностей, математическое ожидание и дисперсию
случайной величины. Построить графики дифференциальной и интегральной функций.
Найти вероятность попадания случайной величины X в интервалы (1,2; 1,8),
(1,8; 2,3)
Задача 3
Дискретная
случайная величина X задана рядом распределения. Найти:
1)
функцию распределения F(x) и ее график;
2)
математическое ожидание M(X);
3)
дисперсию D(X).
|
|
-5 | 5 | 25 | 45 | 65 |
|
|
0.2 | 0.15 | 0.3 | 0.25 | 0.1 |
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 4
В задаче
дискретная случайная величина задана рядом распределения.
Найти
; M(X), D(X), P(0≤X≤2); F(x).
Начертить график F(x)
Задача 5
В задаче
непрерывная случайная величина X задана функцией
распределения F(x).
Найти a; f(x); M(X); D(X); P(X<0.2)
Начертить
графики функций f(x);F(x).
Задача 6
Функция
распределения непрерывной случайной величины X (времени безотказной работы
некоторого устройства) равна
(
). Найти вероятность безотказной
работы устройства за время x больше либо равно T.
Задача 7
Функция
распределения непрерывной случайной величины задана выражением:
Найдите:
1)
параметр a;
2)
плотность вероятностей;
4) P(0<x<1)
Постройте
графики интегральной и дифференциальной функции распределения.
Задача 8
Дана
интегральная функция распределения. Найти: дифференциальную функцию f(x),M(X),σ(X),D(X).
Задача 9
Дана
функция распределения F(х) случайной величины Х.
Найти плотность
распределения вероятностей f(x), математическое ожидание M(X),
дисперсию D(X) и вероятность попадания X на
отрезок [a,b]. Построить графики
функций F(x) и f(x).
Задача 10
НСВ X имеет
плотность вероятности (закон Коши)
Найти:
а)
постоянную C=const;
б)
функцию распределения F(x);
в)
вероятность попадания в интервал -1<x<1
г)
построить графики f(x), F(x).
- Краткая теория
- Примеры решения задач
- Задачи контрольных и самостоятельных работ
Непрерывная случайная величина
Ранее мы представили примеры решений задач о дискретной случайной величине, теперь переходим к непрерывной. Формально в задачах требуется найти тоже самое: вычислить числовые характеристики, начертить графики, определить неизвестные параметры, найти вероятности событий.
Но формулы-то совсем другие (в силу непрерывности СВ), поэтому стоит разобраться в них хорошенько. Надеемся, наши примеры вам помогут (а если нет времени, закажите решение).
Ниже вы найдете примеры решений на самые разные законы распределений непрерывных случайных величин: законы $arcsin$ и $arctan$, тригонометрические и логарифмические функции, показательный, равномерный закон распределения, законы Коши, Симпсона, Лапласа и т.д.
Примеры для других НСВ: Нормальный закон, Равномерный закон, Показательный закон.
Спасибо за ваши закладки и рекомендации
Примеры решений
Задача 1. Случайная величина X задана дифференциальной функцией распределения
1) Определить вероятность попадания случайной величины X в интервал $[pi, 5/4 pi]$.
2) Найти математическое ожидание и дисперсию случайной величины X.
Задача 2. Случайная величина X задана плотностью вероятности:
Требуется:
а) найти коэффициент C;
б) найти функцию распределения F(x);
в) найти M(X), D(X), σ(X)
г) найти вероятность P(α < X < β);
д) построить графики f(x) и F(x).
Задача 3. Случайная величина Х задана функцией распределения F(x).
А) является ли случайная величина Х непрерывной?
Б) имеет ли случайная величина Х плотность вероятности f(X)? Если имеет, найти ее.
В) постройте схематично графики f(X) и F(X).
Задача 4. Дана функция распределения F(x) непрерывной случайной величины X.
1. Найти значения параметров a,b
2. Построить график функции распределения F(x)
3. Найти вероятность P(α < X < β)
4. Найти плотность распределения p(x) и построить ее график.
Задача 5. Время в годах безотказной работы прибора подчинено показательному закону, т.е. плотность распределения этой случайной величины такова: f(t)=2e-2t при t ≥ 0 и f(t)=0 при t<0.
1) Найти формулу функции распределения этой случайной величины.
2) Определить вероятность того, что прибор проработает не более года.
3) Определить вероятность того, что прибор безотказно проработает 3 года.
4) Определить среднее ожидаемое время безотказной работы прибора.
Задача 6. Функция распределения вероятностей случайной величины $X$ имеет вид:
А) найти $a$ и $b$;
Б) найти плотность $f(x)$;
В) нарисовать график $F(x)$;
Г) нарисовать график $f(x)$;
Д) найти $M[X]$;
Е) найти $D[X]$.
Задача 7. Функция распределения вероятностей случайной величины $X$ имеет вид:
$$F(x)=A+B arctan (x/2), -infty lt x lt infty $$ (закон Коши).
А) определить постоянные $A$ и $B$;
Б) найти плотность распределения вероятностей
В) найти $P(-1 lt X lt 1)$;
Г) нарисовать график $F(x)$;
Д) нарисовать график $f(x)$.
Задача 8. Случайная величина $X$ имеет распределение Парето с плотностью вероятности $f(x)=4/23(23/x)^5$
при $23 le x$ и $f(x)=0$ при $x lt 23$.
Найдите $M(X)$ и $P(23lt X lt 27)$.
Задача 9. Непрерывная случайная величина задана интегральной функцией (функцией распределения) $F(x)$. Найти:
А) вероятность попадания случайной величины $X$ в интервал $(a;b)$.
Б) дифференциальную функцию (функцию плотности вероятностей) $f(x)$.
В) математическое ожидание, дисперсию и среднее квадратическое отклонение величины $X$.
Г) построить графики функций $F(x)$ и $f(x)$.

Задача 10. Случайная величина $X$ подчинена закону Лапласа $p(x)=acdot e^{-lambda |x|}$, $lambda gt 0.$ Найти $a$, $M(x)$, $D(x)$ и $F(x)$. Построить графики $p(x)$ и $F(x)$.
Задача 11. Случайная величина $X$ задана функцией распределения $F(x)$. Найти:
5) дифференциальную функцию $f(x)$ (плотность распределения),
6) математическое ожидание $M(X)$, дисперсию $D(X)$, среднее квадратическое отклонение $sigma(X)$.
7) Моду $Mo$ и медиану $Me$,

Построить графики функции и плотности распределения.

Задача 12. Случайная величина $Х$ подчинена закону Симпсона (закону равнобедренного треугольника) на участке от $-a$ до $+a$.
а) Написать выражение для плотности распределения.
б) Построить график функции распределения.
в) Определить числовые характеристики случайной величины Х.
Мы отлично умеем решать задачи по теории вероятностей
Решебник по теории вероятности онлайн
Больше 11000 решенных и оформленных задач по теории вероятности:
Здравствуйте, на этой странице я собрала краткий курс лекций по предмету «Теория вероятностей и математическая статистика» — ТВИМС.
Лекции подготовлены для студентов любых специальностей и охватывает курс предмета «Теория вероятностей и математическая статистика».
В лекциях вы найдёте основные законы, теоремы, формулы и примеры с решением.
Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!
Тео́рия вероя́тностей — раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними. wikipedia.org/wiki/Теория_вероятностей
Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов. wikipedia.org/wiki/Математическая_статистика
Предмет теория вероятностей
Задачи любой науки состоят в выявлении и исследовании закономерностей, которым подчиняются реальные процессы.
Теория вероятностей — математическая наука, изучающая закономерности случайных явлений. Знание закономерностей, которым подчиняются массовые случайные события, позволяет предвидеть, как эти события будут протекать.
Методы теории вероятностей широко применяются в различных отраслях науки и техники: в теории надёжности, теории массового обслуживания, теоретической физике, геодезии, астрономии, теории ошибок, теории управления, теории связи и во многих других теоретических и прикладных науках. Теория вероятностей служит для обоснования математической статистики.
Математическая статистика — раздел математики, изучающий методы сбора, систематизации и обработки результатов наблюдений с целью выявления статистических закономерностей. Методы математической статистики используются при планировании организации производства, анализе технологических процессов, для контроля качества продукции и многих других целей.
Первые работы, в которых зарождались основные понятия теории вероятностей, появились в XVI-XVII веках. Они принадлежали Д.Кардано, Б.Паскалю, П.Ферма, Х.Гюйгенс и др. и представляли попытки создания теории азартных игр с целью дать рекомендации игрокам. Следующий этап развития теории вероятностей связан с именем Я.Бернулли, который доказал теорему, теоретически обосновавшую накопленные ранее факты и названную в дальнейшем «законом больших чисел».
Дальнейшее развитие теории вероятностей приходится на XVII-XIX века благодаря работам А.Муавра, П.Лапласа, К.Гаусса, С.Пуассона и др. Весьма плодотворный период развития «математики случайного» связан с именами русских математиков П.Л.Чебышсва, А.М.Ляпунова и А.А.Маркова.
Большой вклад в последующее развитие теории вероятностей и математической статистики внесли российские математики С.Н.Бсрнштейн, В.И.Романовский, А.Н.Колмогоров, А.Я.Хинчин, Б.В.Гнеденко и др., а также учёные англо-американской школы Стьюдент (псевдоним В.Госсета), Р.Фишер, Э.Пирсон, Е.Нейман и др. Особо следует отметить неоценимый вклад академика А.Н.Колмогорова в становление теории вероятностей как математической науки.
Широкому внедрению статистических методов исследования способствовало появление во второй половине XX века электронных вычислительных машин и, в частности, персональных компьютеров. Статистические программные пакеты сделали эти методы более доступными и наглядными, так как трудоёмкую работу по расчёту статистик, параметров, характеристик, построению таблиц и графиков в основном стал выполнять компьютер, а исследователю осталась главным образом творческая работа: постановка задачи, выбор методов решения и интерпретация результатов.
Основные понятия теории вероятностей
Наблюдаемые события можно разделить на три вида: достоверные, невозможные и случайные.
Событие называется достоверным, если оно обязательно произойдет при выполнении данного ряда условий.
Событие называется невозможным, если оно заведомо не произойдет при выполнении данного ряда условий.
Событие называется случайным, если при осуществлении ряда условий оно может либо произойти, либо не произойти. Испытанием называется осуществление ряда условий. События называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. События называются единственно возможными, если появление в результате испытания одного и только одного из них является достоверным событием.
Очевидно, единственно возможные события являются попарно несовместимыми.
События называются равновозможными. если можно считать, что ни одно из них не является более возможным, чем другие.
Элементарным исходом называется каждый из возможных результатов испытания.
Полной группой называется совокупность единственно возможных событий испытания.
Противоположными называются два единственно возможных события, образующих полную группу. Если одно из двух противоположных событий обозначено через 

Суммой 




Произведением двух событий 


Произведением нескольких событий называется событие, состоящее в совместном появлении всех этих событий.
Вероятностью события 

где 

Из определения вероятности вытекают следующие свойства:
а) вероятность достоверного события равна единице;
б) вероятность невозможного события равна нулю;
в) вероятность случайного события есть положительное число, заключенное между нулем и единицей;
г) вероятность суммы двух несовместных событий равна сумме вероятностей этих событий:

Пример № 1
В ящике 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превышает 10?
Решение:
Так как номер любого шара, находящегося в ящике, не превышает 10, то число случаев, благоприятствующих событию 

В этом случае событие 
Пример № 2
В урне 15 шаров: 5 белых и 10 чёрных. Какова вероятность вынуть из урны синий шар?
Решение:
Синих шаров в урне нет, т.е.

Следовательно,

В данном случае событие 
Пример № 3
В урне 12 шаров: 3 белых, 4 чёрных и 5 красных. Какова вероятность вынуть из урны чёрный шар?
Решение:
Здесь

Пример № 4
В урне 10 шаров: 6 белых и 4 чёрных. Вынули 2 шара. Какова вероятность того, что оба шара — белые?
Решение:
Здесь число всех случаев

Число же случаев, благоприятствующих событию 

Итак,

Пример № 5
В корзине 100 фруктов: 10 груш и 90 яблок. Наугад взяты четыре фрукта. Найти вероятность того, что
а) взято четыре яблока;
б) взято четыре груши.
Решение:
Общее число элементарных исходов испытания равно числу сочетаний из 100 элементов по четыре, т.е. 
а) Число исходов, благоприятствующих рассматриваемому событию (все взятые наугад четыре фрукта являются яблоками), равно числу сочетаний из 90 элементов по четыре, т.е. 
Искомая вероятность равна отношению числа исходов, благоприятствующих рассматриваемому событию, к общему числу возможных элементарных исходов:

б) Число исходов, благоприятствующих рассматриваемому событию (все взятые наугад четыре фрукта — груши), равно числу способов, которыми можно извлечь четыре груши из десяти имеющихся, т.е. 

Пример № 6
Из 10 ответов к задачам, помещённым на данной странице, 2 имеют опечатки. Студент решает 5 задач. Какова вероятность того, что в одной из них ответ дан с опечаткой.
Решение:



Примечание. Такие задачи описываются общей схемой. Имеется совокупность из 







Относительная частота события
Относительной частотой события называется отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. Таким образом,

где 


В тех случаях, когда классическое определение вероятности неприменимо (например, когда число исходов бесконечно), используется статистическое определение. В этом случае за вероятность события принимается относительная частота события.
Геометрическое определение вероятности
При классическом определении вероятности не всегда можно определить числа 


Пусть, например, на плоскости имеется некоторая область 








(геометрическое определение вероятности).
Пример № 7
На отрезке 






Решение:
Разобьём отрезок 





Следовательно,

Пример № 8
Внутри эллипса 

Решение:

Пусть событие 

где

Так как

то

Примечание. В случае классического определения вероятность невозможного события равна нулю. Справедливо и обратное утверждение, т.е. если вероятность события равна нулю, то событие невозможно. При геометрическом же определении вероятности обратное утверждение не имеет места. Вероятность попадания брошенной точки в одну определённую точку области 
Пример № 9 (Задача о встрече)
Два студента 

Решение:
Обозначим момент прихода студента 








Аксиоматическое построение теории вероятностей
Пусть 







Само пространство элементарных событий 



Суммой нескольких событий 

Произведением нескольких событий 

Событием 




Несколько событий 

Таким образом, под операциями над событиями понимаются операции над соответствующими множествами.
В начале 30-х годов XX века академик А.Н.Колмогоров разработал подход, связывающий теорию вероятностей с современной метрической теорией функций и теорией множеств, который в настоящее время является общепринятым.
Сформулируем аксиомы теории вероятностей. Каждому событию 


Вероятность события должна удовлетворять следующим аксиомам: Р.1. Вероятность любого события неотрицательна: 
Р.2. Вероятность достоверного события равна 1: 
Р.З. Вероятность суммы несовместных событий равна сумме вероятностей этих событий, т.е. если 

Из аксиом P.1, Р.2, Р.З можно вывести основные свойства вероятностей:
Произведение событий
Условной вероятностью 



Следствие. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились:

Два события 


Пример № 10
В первом ящике 2 белых и 10 чёрных шаров; во втором ящике 8 белых и 4 чёрных шара. Из каждого ящика вынули по шару. Какова вероятность, что оба шара белые?
Решение:
В данном случае речь идёт о совмещении событий 






Применив теорему умножения вероятностей, находим

Пример № 11
В ящике 6 белых и 8 чёрных шаров. Из ящика вынули два шара (не возвращая вынутый шар в ящик). Найти вероятность того, что оба шара белые.
Решение:
Пусть событие 


Но

(вероятность появления первого белого шара);

(вероятность появления второго белого шара в предположении, что первый белый шар уже вынут). Поэтому

Пример № 12
Три стрелка независимо друг от друга стреляют по цели. Вероятность попадания в цель для первого стрелка равна 0,75, для второго — 0,8, для третьего — 0,9. Определить вероятность того, что все три стрелка одновременно попадут в цель.
Решение:


Пример № 13
Из колоды в 52 листа наугад вытягиваются три карты. Какова вероятность, что все три карты — тузы?
Решение:
Интересующее нас событие (все три карты — тузы) является произведением трех событий: 




(число благоприятствующих исходов — число тузов в колоде, общее число элементарных исходов равно числу карт).

(число благоприятствующих исходов — число тузов, оставшихся после совершения события 

Следовательно,

Пример № 14
Вероятность выхода станка из строя в течении одного рабочего дня равна 


Решение:
Так как (1 — 

Воспользовавшись биномиальным разложением и пренебрегая членами, содержащими 



Сумма событий
Теорема. Вероятность суммы нескольких попарно несовместных событий равна сумме вероятностей этих событий:

Теорема. Сумма вероятностей событий 

Теорема. Сумма вероятностей противоположных событий равна единице:

Теорема. Вероятность суммы совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

Пример № 15
В урне 10 белых, 15 чёрных, 20 синих и 25 красных шаров. Вынули один шар. Найти вероятность того, что вынутый шар: белый; чёрный; синий; красный; белый или чёрный; синий или красный; белый, чёрный или синий.
Решение:
Имеем


Применив теорему сложения вероятностей, получим

Пример № 16
Два стрелка стреляют по мишени. Вероятность попадания в цель первым стрелком равна 0,6, вторым — 0,8. Найти вероятность того, что при одном залпе:
а) попадут в цель оба стрелка;
б) попадет хотя бы один.
Решение:
Обозначим события: 

а) Интересующее нас событие (попадут в цель оба стрелка) является произведением событий 




Следовательно,

б) 1-й способ. Интересующее нас событие является суммой событий 


2-й способ. Событие 



Событие 



Пример № 17
В первом ящике 2 белых и 10 чёрных шаров; во втором ящике 8 белых и 4 чёрных шара. Из каждого ящика вынули по шару. Какова вероятность того, что один из вынутых шаров белый, а другой — чёрный.
Решение:
Пусть: событие 







Определим вероятность того, что шар, вынутый из первого ящика, белый, а из второго ящика — чёрный:

Определим вероятность того, что шар, вынутый из первого ящика, чёрный, а из второго ящика — белый:

Определим теперь вероятность того, что шар, вынутый из одного ящика (безразлично — из первого или второго), окажется белым, а шар, вынутый из другого ящика, — чёрным. Применяем теорему сложения вероятностей:

Пример № 18
Три стрелка независимо друг от друга стреляют по цели. Вероятность попадания в цель для первого стрелка равна 0,75, для второго — 0,8, для третьего — 0,9. Определить вероятность того, что в цель попадёт хотя бы один стрелок.
Решение:
Здесь 




Но событие, противоположное событию 

Формула полной вероятности
Теорема. Вероятность события 



Пример № 19
Студент знает только 10 из 25 экзаменационных билетов. В каком случае вероятность сдать экзамен больше: когда студент подходит тянуть билет первым или вторым по счету?
Решение:
Обозначим события: 


(число благоприятствующих исходов равно числу выученных билетов; число всех элементарных исходов равно числу билетов). Событие 



Так как

то вероятность одинакова.
Пример № 20
Имеются 4 урны. В первой урне 1 белый и 1 чёрный шар, во второй -2 белых и 3 чёрных шара, в третьей — 3 белых и 5 чёрных шаров, в четвёртой -4 белых и 7 чёрных шаров. Событие 






Решение:
Из условия следует, что 


Пример № 21
В первой урне 5 белых и 10 чёрных шаров, во второй — 3 белых и 7 чёрных шаров. Из второй урны в первую переложили один шар, а затем из первой урны вынули наугад один шар. Определить вероятность того, что вынутый шар — белый.
Решение:
Обозначим события: 



Если из второй урны в первую переложили белый шар, то в первой урне стало 16 шаров, из них 6 белых, поэтому

Если переложили чёрный шар, то в первой урне стало 16 шаров, из них 5 белых, поэтому

По формуле полной вероятности

Формула Байеса
Пусть событие 




Пример № 22
В первой урне 4 белых и 6 чёрных шаров, во второй — 5 белых и 4 чёрных. Из первой урны во вторую перекладывают, не глядя, один шар, после чего из второй урны извлекают один шар. Найти вероятность, что этот шар белый. Какова вероятность, что из первой во вторую урну был переложен чёрный шар, если извлечённый из второй урны шар оказался белым?
Решение:
Пусть 





Найдем

Если переложили белый шар, то во второй урне стало 10 шаров, из них 6 белых 6

если чёрный, то шаров так же 10, но белых 5, тогда

По формуле полной вероятности

По формуле Байеса:

Схема Бернулли
Испытания называются независимыми относительно события 

Говорят, что испытания проводятся по схеме Бернулли, если для них выполняются следующие условия:
1) испытания независимы;
2) количество испытаний известно заранее;
3) в результате испытания может произойти только два исхода: «успех» или «неуспех»;
4) вероятность «успеха» в каждом испытании одна и та же. Вероятность того, что при 



где 




Данная формула называется формулой Бернулли.
Пример № 23
В урне 20 белых и 10 чёрных шаров. Вынули подряд 4 шара, причём каждый вынутый шар возвращают в урну перед извлечением следующего, и шары в урне перемешивают. Какова вероятность того, что из четырёх вынутых шаров окажется два белых?
Решение:
Вероятность извлечения белого шара 


Пример № 24
Вероятность появления события 
Решение:
Здесь

Имеем:
Вероятность того, что событие 

Полагая

получим

Пример № 25
В семье пять детей. Найти вероятность того, что среди этих детей два мальчика. Вероятность рождения мальчика принять равной 0,51.
Решение:
Вероятность рождения мальчика равна 


Локальная и интегральная теоремы Лапласа
В тех случаях, когда использование формулы Бернулли затруднено из-за большого значения п, можно использовать асимптотическую формулу из следующей теоремы.
Локальная теорема Лапласа. Вероятность того, что в 





Здесь

Имеются таблицы, в которых помещены значения функции

соответствующие положительным значениям аргумента 



Интегральная теорема Лапласа. Вероятность того, что в п независимых испытаниях, в каждом из которых вероятность появления события равна 



Здесь

функция Лапласа,

Имеются таблицы функции Лапласа (приложение, табл. 2) для положительных значений 



Пример № 26
Вероятность рождения мальчика равна 0,51. Найти вероятность того, что среди 100 новорожденных окажется 50 мальчиков.
Решение:
По условию задачи

Так как 

Найдем значение 

По справочным таблицам (см. приложение, табл.1) найдем

(т.к. функция 
Искомая вероятность

Пример № 27
Вероятность поражения мишени стрелком при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена не менее 75 раз и не более 90 раз.
Решение:
По условию задачи

Воспользуемся интегральной теоремой Лапласа:

где 

Вычислим 


Так как функция Лапласа нечетна, т.е.

получим

По справочным таблицам (см. приложение, табл.2) найдём:

Искомая вероятность

Наивероятнейшее число появлений события в независимых испытаниях
Число 


Наивероятнейшее число 

причем:
а) если число 

б) если число 


в) если число 

Пример № 28
В урне 10 белых и 40 чёрных шаров. Вынимают подряд 14 шаров, причём цвет вынутого шара регистрируют, а затем шар возвращают в урну. Определить наивероятнейшее число появлений белого шара.
Решение:

Используя двойное неравенство

при указанных значениях 


Таким образом, задача имеет два решения:

Пример № 29
Вероятность попадания стрелком в цель равна 0,7. Сделано 25 выстрелов. Определить наивероятнейшее число попаданий в цель.
Решение:
Здесь

Следовательно,

Так как 

Пример № 30
В результате многолетних наблюдений установлено, что вероятность выпадения дождя 1 октября в данном городе равна 1/7. Определить наивероятнейшее число дождливых дней 1 октября в данном городе за 40 лет.
Решение:
Имеем

Таким образом,

Пример № 31
В урне 100 белых и 80 чёрных шаров. Из урны извлекают 

Решение:
Из двойного неравенства

следует, что

Здесь

следовательно,

Итак, задача имеет два решения:

Пример № 32
Найти наиболее вероятное число правильно набранных секретарём страниц среди 19 страниц текста, если вероятность того, что страница набрана с ошибками, равна 0,1.
Решение:
По условию задачи

Найдем наиболее вероятное число правильно набранных страниц из двойного неравенства

Подставляя данные задачи, получим

или

Так как 

Формула Пуассона
При достаточно больших 

В этих случаях (


Здесь 



Пример № 33
Прядильщица обслуживает 1000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,004. Найти вероятность того, что в течение 1 минуты обрыв произойдет на пяти веретенах.
Решение:
Так как вероятность 



где
По условию задачи

Тогда

Подставляя данные задачи, получим

Замечание. Формулы Бернулли, Пуассона и формула, следующая из локальной теоремы Лапласа, служат для нахождения вероятности, что в 


Случайная величина
Случайной величиной называется переменная величина, значения которой зависят от случая. Примеры случайных величин: число попаданий в мишень при данном числе выстрелов; число очков, выпадающее при бросании игральной кости.
Случайная величина, возможные значения которой можно перенумеровать, называется дискретной. При этом число значений может быть конечным или бесконечным.
Непрерывной называется случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Очевидно, число возможных значений непрерывной случайной величины — бесконечно.
Закон распределения дискретной случайной величины
Для характеристики случайной величины нужно знать совокупность возможных значений этой величины, а также вероятности, с которыми эти значения могут появиться. Эти данные образуют закон распределения случайной величины. Закон распределения дискретной случайной величины 



где

Если множество возможных значений 

Закон распределения дискретной случайной величины 

или с помощью функции распределения (см. §20).
Закон распределения дискретной случайной величины можно изобразить графически, для чего в прямоугольной системе координат строят точки 

Числовые характеристики дискретных случайных величин
Математическим ожиданием дискретной случайной величины называется сумма произведений всех ее возможных значений на их вероятности:

Если дискретная случайная величина принимает бесконечное множество возможных значений, то

причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.
Дисперсией случайной величины 

Дисперсию удобно вычислять по формуле

Средним квадратическим отклонением случайной величины называется квадратный корень из дисперсии:

Свойства математического ожидания
Свойство 1. Математическое ожидание постоянной величины равно самой постоянной:

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Свойство 3. Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий сомножителей:

Свойство 4. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:

Свойства дисперсии
Свойство 1. Дисперсия постоянной равна нулю:

Свойство 2. Постоянный множитель можно выносить за знак дисперсии, предварительно возведя в квадрат:

Свойство 3. Дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых:

Примеры дискретных распределений
Биномиальным называют закон распределения дискретной случайной величины 






Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

Дисперсия биномиального распределения равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании:

Если число испытаний велико, а вероятность 

где 


Пример № 34
Производится 













Решение:
1)
Возможные значения случайной величины 



Таким образом, ряд распределения имеет следующий вид:

По определению функция распределения находится по формуле
Найдем
2)

По формуле Пуассона

Таким образом, имеем:

(значения 
3)
По условию задачи

Воспользуемся интегральной теоремой Лапласа:

где 

Вычислим 


Так как функция Лапласа нечетна, т.е. 

По табл.2 приложения найдем:

Искомая вероятность

Функция распределения вероятностей случайной величины
Функцией распределения называется функция 




Свойства функции распределения:
Свойство 1. Значения функции распределения принадлежат отрезку 
Свойство 2. Функция распределения есть неубывающая функция:

Следствие 1. Вероятность того, что случайная величина 


Следствие 2. Вероятность того, что непрерывная случайная величина 


Свойство 3. Если все возможные значения случайной величины 





Свойство 4. Функция распределения непрерывна слева:

Пример № 35
В тёмной комнате 7 красных кубиков и 8 синих, не отличаемых друг от друга на ощупь. Мальчик вынес три кубика. 



Решение:
Возможные значения случайной величины 

Проверка

Таким образом, закон распределения имеет вид:

Найдем

Дисперсию будем искать по формуле

Составим закон распределения для 


По определению функция распределения находится по формуле

Построим график функции распределения:

IIo функции распределения

Плотность распределения вероятностей непрерывной случайной величины
Плотностью распределения вероятностей непрерывной случайной величины называется первая производная от функции распределения:

Вероятность того, что непрерывная случайная величина 


Зная плотность распределения, можно найти функцию распределения
Свойства плотности распределения:
Свойство 1. Плотность распределения неотрицательна, т.е. 
Свойство 2. Несобственный интеграл от плотности распределения по всей числовой оси равен единице:

Числовые характеристики непрерывных случайных величин
Математическое ожидание непрерывной случайной величины 




Предполагается, что интеграл сходится абсолютно.
Дисперсия непрерывной случайной величины 


или равносильным равенством

Среднее квадратическое отклонение непрерывной случайной величины определяется так же, как и для дискретной величины:

Все свойства числовых характеристик, указанные для дискретных случайных величин, сохраняются и для непрерывных величин.
Пример № 36
Дана функция плотности распределения

Найти: 1) параметр 




Решение:
Так как

получаем

так как

тогда

Итак,

Найдём 


Итак,

Построим оба графика

Найдем

Так как


Найдём 

Дисперсия вычисляется по формуле

Среднее квадратическое отклонение


Найдем

Так как

следует

в нашей задаче

или

то необходимо найти

Примеры непрерывных распределений
Равномерным называется распределение вероятностей непрерывной случайной величины 



Математическое ожидание случайной величины, равномерно распределенной в интервале 

Дисперсия случайной величины, равномерно распределенной в интервале 

Нормальным называется распределение вероятностей непрерывной случайной величины 

где 






Функция распределения случайной величины 

а вероятность отклонения нормально распределённой случайной величины от её математического ожидания менее чем на 8 равна:

Правило трёх сигм. Если случайная величина распределена нормально, то абсолютная величина её отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения с вероятностью 0,9973.
Пример № 37
Масса вагона — случайная величина, распределённая по нормальному закону с математическим ожиданием 65 т и средним квадратичным отклонением 0,9 т. Найти вероятность того, что вагон имеет массу не более 67 т и не менее 64 т. По правилу трёх сигм найти наибольшую и наименьшую границы предполагаемой массы.
Решение:
Для нормального распределённой случайной величины

По правилу трёх сигм наименьшая граница 


Наименьшая граница 62,3 т, наибольшая 67,7 т.
Закон больших чисел
Неравенство Чебышева. Вероятность того, что отклонение случайной величины 



Теорема Чебышева. Если последовательность попарно независимых случайных величин 



Теорема Бернулли (Закон больших чисел). Если в каждом из 




где 
Центральная предельная теорема
Теорема Ляпунова. Если случайные величины в последовательности 



где

функция распределения случайной величины

Системы случайных величин
Часто результат опыта описывается не одной случайной величиной 


Систему двух случайных величин 
Событие, состоящее в попадании случайной точки 


Закон распределения системы двух дискретных случайных величин может быть задан с помощью таблицы

где 

При этом

Таблица может содержать бесконечное множество строк и столбцов.
Функцией распределения 





Примечание. Функцию 

В двумерном случае для случайной величины 





В случае дискретной двумерной случайной величины её функция распределения определяется по формуле:

где суммирование вероятностей распространяется на все 



Отметим свойства функции распределения двумерной случайной величины, аналогичные свойствам функции распределения одномерной случайной величины.



где 




Закон распределения системы непрерывных случайных величин 



Вероятность попадания случайной точки 


Функция плотности вероятности обладает следующими свойствами:
Если все случайные точки 


Математические ожидания дискретных случайных величии 


а математические ожидания непрерывных случайных величин — по формулам

Точка 

Математические ожидания 





Дисперсии дискретных случайных величин 


Дисперсии же непрерывных случайных величии 


Средние квадратические отклонения случайных величин 


Для вычисления дисперсий могут быть применены формулы

Важную роль в теории систем случайных величин играет так называемый корреляционный момент (коваркация)

Для дискретных случайных величин корреляционный момент находится по формуле

а для непрерывных — по формуле

Случайные величины 


Ковариация двух случайных величин характеризует как степень зависимости случайных величин, так и их рассеяние вокруг точки 
Свойства ковариации случайных величин:

Здесь

для дискретных случайных величин 


для непрерывных величин.
- Ковариация двух независимых случайных величин равна нулю, т.е.

- Ковариация двух случайных величин по абсолютной величине не превосходит произведения их средних квадратических отклонений, т.е.

Для характеристики связи между величинами 


являющийся безразмерной величиной. Свойства коэффициента корреляции:
Пример № 38
В двух ящиках находятся по шесть шаров; в первом ящике: 1 шар с №1,2 шара с №2, 3 шара с №3; во втором ящике: 2 шара с №1, 3 шара с №2, 1 шар с №3. Пусть 




Решение:
Случайная точка (1,1) имеет кратность 1 х 2 = 2;

Всего случайных точек 6×6 = 36 (



Сумма всех вероятностей, указанных в таблице, равна единице. Найдём математические ожидания случайных величин 

Точка (7/3; 11/6) является центром рассеивания для заданной системы 
Так как случайные величины 




Отсюда находим

От системы величин 


Составим таблицу

Имеем

Отсюда

Заметим, что 


Для нахождения коэффициента корреляции воспользуемся таблицей распределения системы 

Так как 

Этот же результат мы могли получить и не определяя ковариации 







Если 






Наконец, если 






Итак, при различных значениях 





Пример № 40
Система случайных величин 

Область 









Решение:
1. Коэффициент 
Находим математические ожидания 


Следовательно, и

Находим средние квадратические отклонения 


Итак,

Предмет математическая статистика
Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении статистических данных — результатах наблюдений.
Первая задача математической статистики — указать способы сбора и группировки (если данных очень много) статистических сведений.
Вторая задача математической статистики — разработать методы анализа статистических данных в зависимости от целей исследования.
Основные понятия математической статистики
Генеральная совокупность — совокупность всех изучаемых объектов, 
Выборочная совокупность — совокупность объектов, отобранных для изучения, 
Объемом совокупности (выборочной или генеральной) называют число объектов этой совокупности.
Таким образом, вместо большой совокупности объектов изучается совокупность объёма, значительно меньшего по количеству объектов 
Виды отбора:
- простой случайный: повторный; бесповторный;
- сложный случайный: типический; механический; серийный.
Простой случайный отбор — производится без деления генеральной совокупности на части.
Повторный отбор — отобранный объект возвращается в генеральную совокупность.
Бссповторный отбор — отобранный объект не возвращается в генеральную
Сложный случайный отбор — производится после предварительного деления генеральной совокупности на части.
Типический отбор — генеральная совокупность делится на типы, из каждого типа случайно отбираются объекты пропорционально объёму типов. Механический отбор — генеральная совокупность делится на части механически, из каждой части случайно отбираются объекты.
Серийный отбор — генеральная совокупность делится на серии, и случайным образом отбираются целые серии объектов.
Статистическое распределение выборки и его характеристики
Пусть из генеральной совокупности извлечена выборка, причем 





Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот.
Результаты выборки представляются в виде статистического распределения:

где





Распределение относительных частот:

Основные характеристики выборки:





Эмпирической функцией распределения (функцией распределения выборки) называют функцию 



где 

Полигон и гистограмма
Полигон абсолютных частот — это ломаная, отрезки которой соединяют точки 
Пример:


Полигон относительных частот — это ломаная, отрезки которой соединяют точки
Пример:

Статистическое распределение может носить интервальный (непрерывный) характер.
Пример:



Гистограмма частот — ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиною 


Пример № 41
В результате испытания случайная величина 

Требуется: 1) составить таблицу, устанавливающую зависимость между значениями случайной величины и её частотами; 2) построить статистическое распределение; 3) изобразить полигон распределения.
Решение:
1. Найдём объём выборки: 

Статистическое распределение имеет вид

Контроль

Последнюю таблицу можно переписать в виде

Возьмём на плоскости 


Пример № 42
В результате испытания случайная величина 
Требуется: составить таблицу статистического распределения, разбив промежуток (0, 25) на пять участков, имеющих одинаковые длины; построить гистограмму одинаковых частот.
Решение:
Предварительно составим таблицу

Статистическое распределение имеет вид

Гистограмма относительных частот изображена на рисунке

Точечные оценки параметров генеральной совокупности
Точечной называют оценку, которая определяется одним числом. Оценка 


Оценка 


В случае использования состоятельных оценок оправдывается увеличение объёма выборки, так как при этом становятся маловероятными значительные ошибки при оценивании. Поэтому практический смысл имеют только состоятельные оценки. Если оценка состоятельна, то практически достоверно, что при достаточно большом
Несмещённая оценка 






Пример № 43

Объем выборки:


или

Таким образом, точечные оценки характеристик генеральной совокупности

Для интервального распределения сначала находят середины интервалов 
Пример № 44

Переходим к дискретному распределению

Дальнейшие вычисления проводим, как в предыдущем примере. Получаем:

Таким образом:

Интервальная оценка (доверительный интервал) для генеральной средней
Интервальной называют оценку, которая определяется двумя числами -концами интервала.
Доверительным интервалом для параметра 



Число 

Интервальной оценкой (с надежностью 




где 











Для нормального распределения признака

где 




Чем больше 

Чем выше 

Если 





Интервальной оценкой (с надежностью 




где 



Пример № 45
Найти доверительный интервал для оценки неизвестного математического ожидания «а» нормально распределённого признака, если известны:

Решение:

Из таблицы

Доверительный интервал

Пример № 46
Найти минимальный объём выборки, при котором с надёжностью 0,95 точность оценки математического ожидания нормально распределённого признака по выборочной средней будет равна 0,2, если среднее квадратическое отклонение равно 2.
Решение:
Дано:

найти 
Из формулы

находим

Из условия

находим

Тогда

Пример № 47
По заданным значениям характеристик нормально распределённого признака найти доверительный интервал для оценки неизвестного математического ожидания:

Решение:





Доверительный интервал (16,8 — 0,95; 16,8 + 0,95) = (15,85; 17,75).
Понятие о критериях согласия
Статистической называется гипотеза о неизвестном законе распределения случайной величины или о параметрах закона распределения, вид которого известен.
Нулевой (основной) гипотезой называется выдвинутая гипотеза 
Конкурирующей (альтернативной) гипотезой называется гипотеза 

Пусть имеется статистическое распределение выборки для случайной величины 

По виду полигона или гистограммы, сравнивая их с графиками дифференциальных функций распределения, делаем предположение о виде закона распределения случайной величины.
Сделанное предположение (гипотеза) подтверждается расчётами критерия согласия.
Имеются различные критерии согласия: Хинчина, Колмогорова, Пирсона. Например, критерий Пирсона (хи-квадрат)

позволяет сравнивать близость частот 



где 

Если вычисленное значение критерия 











При проверке гипотезы 



Виды зависимостей между случайными величинами X и Y


Функциональная зависимость — каждому значению признака 




Корреляционная зависимость — каждому значению признака 



Аналогично:







Примеры: площадь квадрата 


Товарооборот магазина 

- Определить форму корреляционной связи, то есть определить вид уравнения регрессии.
- Оценить тесноту (силу) корреляционной связи.
Корреляционная таблица
Все наблюдения числовых признаков 

Пример № 48

Числа 1; 3; 5 (левый столбец таблицы) показывают наблюдаемые значения признака 

Числа внутри таблицы показывают частоту появления соответствующей пары значений 
По данным наблюдений вычислены частоты 






Так, значение 



В общем виде корреляционная таблица выглядит так:

Условные средние по 

Условные средние по 

Виды уравнений регрессии
В случаях 1-5 параметры линейной зависимости находятся по формулам, указанным в следующем параграфе. Для случая 6 применяется непосредственно метод наименьших квадратов.
Пример № 49
Дана таблица
Определить коэффициент корреляции 
Решение:
Составим расчётную таблицу:


Из таблицы получаем:


Теперь находим

Вычисляем значение произведения

так как

то связь достаточно обоснована. Уравнения линий регрессии:

Построив точки, определяемые таблицей, и линии регрессии, видим, что обе линии регрессии проходят через точку 


Метод наименьших квадратов
Служит для нахождения параметров уравнения регрессии. Пусть даны соответствующие значения рассматриваемых признаков 



Подберём функцию 


Подставляя 






Суть метода наименьших квадратов: параметры выбранной функции 

Нахождение параметров уравнения линейной регрессии:

Из системы нормальных уравнений:


Показатели тесноты корреляционной связи



Формулы для вычислении:
















Кстати дополнительная теория из учебников по теории вероятности тут.
Пример составления уравнения линейной регрессии и оценки тесноты корреляционной связи
Пусть 

В результате опроса составлена следующая корреляционная таблица:
Оценить тесноту корреляционной связи между 




Решение:
Для вычисления 

Общие средние:


- Это уравнение выражает зависимость средней оценки по математике в первом семестре от оценки в школе.
Аналогично, 


Тогда,

Построим прямые регрессии 




Чем теснее связь между признаками 



Основы комбинаторики
Факториалом целого положительного числа 

Основное свойство факториала: 
Размещениями из 




Перестановками из 



Если среди 







Сочетаниями из 





Основное свойство сочетаний:

Основной закон комбинаторики. Пусть нужно провести к действий, причём первое действие можно провести 




Возможно эти страницы вам будут полезны:
- Решение задач по теории вероятностей
- Помощь по теории вероятности
- Заказать работу по теории вероятности
- Контрольная работа по теории вероятности
- Курсовая работа по теории вероятности
- Решение задач по математической статистике
- Помощь по математической статистике
- Заказать работу по математической статистике
- Контрольная работа по математической статистике
- Курсовая работа по математической статистике
- Теория вероятностей краткий курс для школьников и студентов (заочников)
Содержание:
В статистике наиболее часто применяются такие распределения:
- Нормальное (Гауссовское) распределение.
- Распределение Пирсона, распределение
- Распределение Стьюдента (t — распределение).
- Распределение Фишера (F — распределение).
Нормальный закон распределения мы подробно рассмотрели при изучении раздела 6.5 теории вероятностей и здесь рассматриваться не будет.
Отметим, что в законы распределений математической статистики входит гамма-функция, поэтому необходимо познакомиться с этой функцией и рассмотреть ее свойства.
Гамма-функция и ее свойства
Гамма-функцией или интегралом Эйлера второго рода называется функция следующего вида:
где 
Свойства гамма-функции:
1. Г(1) = Г(2) = 1.
Доказательство:
Подставим
2.
Доказательство:
Вычислим интеграл в (9.1), используя интегрирование по частям:
Доказательство:
Значит, если значение 


Для целых 
Например,
Г(3) = 2! = 2, Г(4) = 3! = 6, Г(5) = 4! = 24.
Отметим, что смысл гамма-функции — распространение понятия факториал на нецелые значения. На рис. 9.1 приведен график гамма-функции.
Распределение (хи-квадрат )
Распределение 
Случайная величина имеет закон распределения 

где 

Распределение случайной величины, определенной по формуле (9.2), называется распределением Пирсона.
Покажем, что плотность распределения случайной величины 

Здесь для краткости записи

Для доказательства используем аппарат характеристических функций. Найдем характеристическую функцию случайной величины которая входит в формулу (9.2), учитывая, что 
Используем подстановку 
Согласно 5-му свойству характеристической функции (для суммы независимых случайных величин) найдем характеристическую функцию 
Найдем характеристическую функцию 

При сравнении правых частей характеристических функций 

Найдем математическое ожидание и дисперсию случайной величины
Продифференцируем 2 раза
Значения производных при t = 0:
Таким образом, математическое ожидание 


С ростом 


При 

Квантилем 




т. е. это то значение 



Распределение Стьюдента
Распределение Стьюдента 
Случайная величина t имеет распределение Стьюдента, если она определяется так.

где X — нормированная нормальная случайная величина,
Y — величина 
X и Y — независимые случайные величины.
Случайная величина t является функцией нормально распределенных нормированных случайных величин и называется безразмерной дробью Стьюдента. Плотность распределения случайной величины t определяется равенством

где
Числовые характеристики случайной величины t :
На рис. 9.3 приведены кривые распределения Стьюдента. Кривые на рис. 9.3 качественно напоминают кривые нормального закона распределения с математическим ожиданием, равным нулю, и при 
Квантили распределения Стьюдента 



Рис. 9.4 иллюстрирует процесе определения квантилей, т. е. необходимо так выбрать 
Распределение Фишера (F-распределение)
Случайная величина F имеет распределение Фишера, если она определяется так:

где 




Безразмерная случайная величина F (9.8) имеет плотность распределения, определяемую следующей формулой:

Распределение случайной величины F зависит от двух параметров 
Квантили распределения Фишера 


На рис. 9.6 показано, что надо так выбрать 
Как правило, квантили 

Биноминальный закон распределения
Определение: Дискретная случайная величина Х имеет биноминальный закон распределения, если она принимает значения 0, 1, 2, …, m, …, n с вероятностями 
Как видим, вероятности Р(Х = m) находятся по формуле Бернулли.
Следовательно, биноминальный закон распределения представляет собой закон распределения числа X = m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.
Ряд распределения биноминального закона имеет вид:
Теорема. Математическое ожидание случайной величины, распределенной по биноминальному закону 
Следствие. Математическое ожидание частости события в n независимых испытаниях, в каждом из которых оно может наступить с одной и той же вероятностью, равно 
Биноминальный закон распределения широко используется в теории и практике статистического контроля качества продукции, при описании функционирования систем массового обслуживания, в теории стрельбы и в других областях.
Закон распределения Пуассона
Определение: Дискретная случайная величина Х имеет закон распределения Пуассона, если она принимает значения 0, 1, 2, …, m с вероятностями 
Теорема. Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона, т.е.
При достаточно больших n (вообще при n → ∞) и малых значениях р (р → 0) при условии, что произведение np – постоянная величина (nр → λ = const), закон распределения Пуассона является хорошим приближением биноминального закона. Т.е. при n → ∞, р → 0, nр → λ = const закон распределения Пуассона является предельным случаем биноминального закона. Так как при этом вероятность р события А в каждом испытании мала, то закон распределения Пуассона часто называют законом редких явлений.
По закону Пуассона распределены, например, число сбоев на автоматической линии, число отказов сложной системы в нормальном режиме, число требований на обслуживание в единицу времени в системах массового обслуживания, и т.п.
Отметим еще, что если случайная величина представляет собой сумму двух независимых случайных величин, каждая из которых распределена по закону Пуассона, то она также распределена по закону Пуассона с параметром
Равномерный закон распределения
Определение: Непрерывная случайная величина Х имеет равномерный закон распределения на отрезке [a; b], если ее плотность вероятности f(x) постоянна на этом отрезке и равна нулю вне его, т.е.
Кривая распределения f(x) и график функции распределения F(x) случайной величины Х приведены соответственно на рис. 7.1 и рис. 7.2.
Теорема. Функция распределения случайной величины Х, распределенной по равномерному закону, есть
Равномерный закон распределения используется при анализе ошибок округления при проведении числовых расчетов, в ряде задач теории массового обслуживания, при статистическом моделировании наблюдений, подчиненных заданному распределению, и т.д.
Показательный (экспоненциальный) закон распределения
Определение: Непрерывная случайная величина Х имеет показательный (экспоненциальный) закон распределения с параметром λ, если ее плотность вероятности f(x) имеет вид:
Кривая распределения f(x) и график функции распределения F(x) случайной величины Х приведены соответственно на рис. 7.3 и рис. 7.4.
Теорема. Функция распределения случайной величины Х, распределенной по показательному (экспоненциальному) закону, есть 

Отсюда следует, что для случайной величины, распределенной по показательному закону, математическое ожидание равно среднему квадратическому отклонению, т.е.
Вероятность попадания в интервал [a; b] непрерывной случайной величины Х, распределенной по показательному закону, находится как
Пример:
Установлено, что время ремонта железнодорожных вагонов есть случайная величина Х, распределенная по показательному закону. Определить вероятность того, что на ремонт вагона потребуется менее 7 дней, если среднее время ремонта вагонов составляет 10 дней.
Решение:
По условию математическое ожидание М(Х) = 1/λ = 10, откуда параметр λ = 0,1. По формуле (6.17) находим вероятность попадания случайной величины Х в интервал [0, 7]:
Показательный закон распределения играет большую роль в теории массового обслуживания. Так например, интервал времени между двумя соседними событиями в простейшем потоке имеет показательное распределение с параметром λ – интенсивностью потока. Кроме того, показательное распределение широко применяется в теории надежности, одним из основных понятий которой является функция надежности.
Функция надежности
Будем называть элементом некоторое устройство. Пусть элемент начинает работать в момент времени 
Таким образом, интегральная функция 
Функцией надежности R(τ), называют функцию, определяющую вероятность безотказной работы элемента за время длительностью τ: 
Широкое использование показательного закона распределения обусловлено тем, что только он обладает следующим важным свойством: Если промежуток времени Т, распределенный по показательному закону, уже длился некоторое время τ, то это никак не влияет на закон распределения оставшейся части 

Пример:
Время безотказной работы устройства распределено по показательному закону
Решение:
По условию постоянная интенсивность отказов λ = 0,02. Используя формулу (6.18), получаем:
Нормальный закон распределения
Нормальный закон распределения наиболее часто встречается на практике. Главная особенность, выделяющая его среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях.
Определение: Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса) с параметрами а и 
Кривую нормального закона распределения называют нормальной или гауссовой кривой. На рис. 6.5 а), б) показана нормальная кривая с параметрами а и 
Обратим внимание на то, что нормальная кривая симметрична относительно прямой х = а, имеет максимум в точке х = а, равный 

Можно заметить, что в выражении плотности нормального закона параметры распределения обозначены буквами а и 
Теорема. Математическое ожидание случайной величины Х, распределенной по нормальному закону, равно параметру a этого распределения, т.е. 

Выясним, как будет меняться нормальная кривая при изменении параметров а и σ. Если σ = const, и меняется параметр a (а1 < а2 < а3), т.е. центр симметрии распределения, то нормальная кривая будет смещаться вдоль оси абсцисс, не меняя формы (рис. 6.6).
Если а = const и меняется параметр σ, то меняется ордината максимума кривой
Таким образом, параметр a характеризует положение , а параметр σ – форму нормальной кривой.
Нормальный закон распределения случайной величины с параметрами a = 0 и σ = 1 называется стандартным или нормированным, а соответствующая нормальная кривая – стандартной или нормированной. Сложность непосредственного нахождения функции распределения случайной величины, распределенной по нормальному закону, связана с тем, что интеграл от функции нормального распределения не выражается через элементарные функции. Однако его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения
Такую функцию называют функцией Лапласа, для нее составлены таблицы. Существует много разновидностей такой функции, например:
Мы будем использовать функцию:
Для такой функции табличные значения приведены в Приложении 2.
Теорема. Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф(х) по формуле
Рассмотрим свойства случайной величины, распределенной по нормальному закону.
1. Вероятность попадания случайной величины Х, распределенной по нормальному закону, в интервал [α, β] равна
2. Вероятность того, что отклонение случайной величины Х, распределенной по нормальному закону, от математического ожидания a не превысит величину δ > 0 (по абсолютной величине), равна
Вычислим по этой формуле вероятности 

Пример:
Полагая, что рост мужчин определенной возрастной группы есть нормально распределенная случайная величина Х с параметрами а = 173 и 
Решение:
1. Находим плотность вероятности 

По таблице значений функции Лапласа (Приложение 2) находим:
Окончательно получаем
Долю костюмов 3-го роста (170 – 176 см) можно найти аналогично. Однако проще это сделать, если учесть, что данный интервал симметричен относительно математического ожидания а = 173, т.е. неравенство 170 ≤ Х ≤ 176 равносильно неравенству │Х – 173│≤ 3. Тогда
3. Сформулируем «правило трех сигм» для случайной величины Х: Практически достоверно, что рост мужчин данной возрастной группы заключен в границах от
- Асимптотика схемы независимых испытаний
- Функции случайных величин
- Центральная предельная теорема
- Ковариация в теории вероятности
- Простейший (пуассоновский) поток событий
- Случайные величины
- Числовые характеристики случайных величин
- Нормальный закон распределения
В примерах в данной статье данные генерятся при каждой загрузке страницы. Если Вы хотите посмотреть пример с другими значениями —
обновите страницу .

Параметры дискретного закона распределения
В статье описано как найти среднее значение и стандартное отклонение. Вы узнаете, что такое квантиль и каких он бывает видов, а также,
как построить доверительный интервал.
Математическое описание
Смотря на закон распределения, мы можем понять, какова вероятность того или иного события,
можем сказать, какова вероятность, что произойдёт группа событий, а в этой статье мы рассмотрим, как наши выводы «на глаз» перевести
в математически обоснованное утверждение.
Крайне важное определение: математическое ожидание — это площадь под графиком распределения. Если мы говорим о дискретном распределении —
это сумма событий умноженных на соответсвующие вероятности, также известно как момент:
(2) E(X) = Σ(pi•Xi) E — от английского слова Expected (ожидание)
Для математического ожидания справедливы равенства:(3) E(X + Y) = E(X) + E(Y)
(4) E(X•Y) = E(X) • E(Y)
Момент степени k:
(5) νk = E(Xk)
Центральный момент степени k:
(6) μk = E[X — E(X)]k
Среднее значение
Среднее значение (μ) закона распределения — это математическое ожидание случайной величины
(случайная величина — это событие), например, сколько в среднем посетителей заходит в магазин в час:
| Кол-во посетителей | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| Количество наблюдений | 50 | 24 | 78 | 85 | 36 | 46 | 81 |
| Таблица 1. Количество посетителей в час |
График 1. Количество посетителей в час
Чтобы найти среднее значение всех результатов необходимо сложить всё вместе и разделить на количество результатов:
μ = (50 • 0 + 24 • 1 + 78 • 2 + 85 • 3 + 36 • 4 + 46 • 5 + 81 • 6) / 400 = 1295/400 = 3.24
То же самое мы можем проделать используя формулу 2:
μ = M(X) = Σ(Xi•pi) = 0 • 0.13 + 1 • 0.06 + 2 • 0.2 + 3 • 0.21 + 4 • 0.09 + 5 • 0.12 + 6 • 0.2 = 3.24 Момент первой степени, формула (5)
Собственно, формула 2 представляет собой среднее арифметическое всех значений
Итог: в среднем, 3.24 посетителя в час
| Количество посетителей | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| Вероятность (%) | 12.5 | 6 | 19.5 | 21.3 | 9 | 11.5 | 20.3 |
| Таблица 2. Закон распределения количества посетителей |
Отклонение от среднего
Посмотрите на это распределение, можно предположить, что в среднем случайная величина равна 100±5, поскольку
кажется, что таких значений несравнимо больше чем тех, что меньше 95 или больше 105:
График 2. График функции вероятности. Распределение ≈ 100±5
Среднее значение по формуле (2): μ = 99.95, но как посчитать, насколько далеко все значения находятся от среднего? Вам должна быть
знакома запись 100±5. Что бы получить это значение ±, нам необходимо определить диапазон значений вокруг среднего. И мы могли бы
использовать в качестве меры удалённости «разность» между средним и случайными величинами:
(7) xi — μ
но сумма таких расстояний, а следовательно и любое производное от этого числа, будет равно нулю, поэтому в качестве меры выбрали квадрат разниц
между величинами и средним значением:
(8) (xi — μ)2
Соответственно, среднее значение удалённости — это математическое ожидание квадратов удалённости:
(9) σ2 = E[(X — E(X))2]
Поскольку вероятности любой удалённости равносильны — вероятность каждого из них — 1/n, откуда:
(10) σ2 = E[(X — E(X))2] = ∑[(Xi — μ)2]/n
Она же формула центрального момента (6) второй степени
σ возведена в квадрат, поскольку вместо расстояний мы взяли квадрат расстояний. σ2 называется дисперсией. Корень из дисперсии
называется средним квадратическим отклонением, или среднеквадратическим отклоненим, и его используют в качестве меры разброса:
(11) μ±σ
(12) σ = √(σ2) = √[∑[(Xi — μ)2]/n]
Возвращаясь к примеру, посчитаем среднеквадратическое отклонение для графика 2:
σ = √(∑(x-μ)2/n) = √{[(90 — 99.95)2 + (91 — 99.95)2 + (92 — 99.95)2 + (93 — 99.95)2 + (94 — 99.95)2 + (95 — 99.95)2 + (96 — 99.95)2 + (97 — 99.95)2 + (98 — 99.95)2 + (99 — 99.95)2 + (100 — 99.95)2 + (101 — 99.95)2 + (102 — 99.95)2 + (103 — 99.95)2 + (104 — 99.95)2 + (105 — 99.95)2 + (106 — 99.95)2 + (107 — 99.95)2 + (108 — 99.95)2 + (109 — 99.95)2 + (110 — 99.95)2]/21} = 6.06
Итак, для графика 2 мы получили:
X = 99.95±6.06 ≈ 100±6 , что немного отличается от полученного «на глаз»
Квантиль
График 3. Функция распределения. Медиана
График 4. Функция распределения. 4-квантиль или квартиль
График 5. Функция распределения. 0.34-квантиль
Для анализа функции распределения ввели понятие квантиль. Квантиль — это случайная величина при заданном уровне вероятности, т.е.:
квантиль для уровня вероятности 50% — это случайная величина на графике плотности вероятности, которая имеет вероятность 50%.
На примере с графиком 3, квантиль уровня 0.5 = 99 (ближайшее значение, поскольку распределение дискретно и события со значением 99.3 просто не существует)
- 2-квантиль — медиана
- 4-квантиль — квартиль
- 10-квантиль — дециль
- 100-квантиль — перцентиль
То есть, если мы говорим о дециле (10-квантиле), то это означает, что мы разбили график на 10 частей, что соответствует девяти линяям,
и для каждого дециля нашли значение случайной величины.
Также, используется обозначение x-квантиль, где х — дробное число, например, 0.34-квантиль, такая запись означает значение случайной величины при
p = 0.34.
Для дискретного распределения квантиль необходимо выбирать следующим образом: квантиль гарантирует вероятность, поэтому, если рассчитанный
квантиль не совпадает с одним и значений, необходимо выбирать меньшее значение.
Построение интервалов
Квантили используют для построения доверительных интервалов, которые необходимы для исследования статистики не одного конкретного события (например,
интерес — случайное число = 98), а для группы событий (например, интерес — случайное число между 96 и 99). Доверительный интервал бывает двух видов:
односторонний и двусторонний. Параметр доверительного интервала — уровень доверия. Уровень доверия означает процент событий, которые можно считать успешными.
Двусторонний доверительный интервал
Двусторонний доверительный интервал строится следующим образом: мы задаёмся уровнем значимости, например, 10%, и выделяем область на графике так, что 90% всех
событий попадут в эту область. Поскольку интервал двусторонний, то мы отсекаем по 5% с каждой стороны, т.е. мы ищем 5й перцентиль, 95й перцентиль и значения
случайной величины между ними будут являться доверительной областью, значения за пределами доверительной области называются «критическая область»
График 6. Плотность вероятности
График 7. Функция распределения с 5 и 95 перцентилями. Цветом выделен доверительный интервал с уровнем доверия 0.9
График 8. Функция вероятности и двусторонний доверительный интервал с уровнем доверия 90%
Доверительный интервал
Левосторонний и правосторонний доверительные интервалы строятся аналогично двустороннему: для левостороннего интервала мы находим перцентиль уровня
[‘один’ минус ‘уровень значимости’]. Таким образом, для построения доверительного левостороннего интервала уровня значимости 4% нам необходимо найти четвёртый перцентиль
и всё, что справа — доверительный интервал, всё что слева — критическая область.
График 9. Левосторонний доверительный интервал с уровнем значимости 4%. Заливкой выделен доверительный интервал
График 10. Правосторонний доверительный интервал с уровнем значимости 4%. Заливкой выделен доверительный интервал
Итого
Среднее значение — математическое ожидание случайной величины, находится по формуле:
μ = E(X) = Σ(pi•Xi)
Среднеквадратичное отклонение — математическое ожидание удалённости значений от среднего, находится по формуле:
σ = √(σ2) = √[∑[(Xi — μ)2]/n]
n-квантиль — разделение функции распределения на n равных отрезков, основные типы квантилей:
- 2-квантиль — медиана
- 4-квантиль — квартили
- 10-квантиль — децили
- 100-квантиль — перцентили
Доверительный интервал уровня α — участок функции вероятности, содержащий α всех возможных значений. Двусторонний доверительный
интервал строится отсечением (1-α)/2 справа и слева. Левосторонний и правосторонний доверительные интервалы строятся отсечением
области (1-α) слева и справа соответственно.
Построить ряд распределения
Предположим, мы имеем 100 значений и все разные, например: масса тела Сомалийских пиратов.
Такой набор данных обрабатывать неудобно, мы даже не можем представить их на обычном графике.
Поэтому нам необходимо категоризировать имеющиеся данные и для этого мы делаем следующее:
Запишем наши данные в таблицу:
| 67 | 95 | 59 | 108 | 105 | 128 | 86 | 108 | 128 | 77 |
| 125 | 139 | 114 | 55 | 58 | 55 | 84 | 125 | 79 | 103 |
| 131 | 98 | 84 | 91 | 94 | 113 | 91 | 54 | 53 | 62 |
| 53 | 115 | 88 | 86 | 95 | 66 | 136 | 59 | 126 | 125 |
| 79 | 56 | 87 | 120 | 60 | 137 | 66 | 106 | 123 | 120 |
| 108 | 57 | 62 | 76 | 97 | 101 | 119 | 116 | 64 | 120 |
| 71 | 59 | 87 | 88 | 121 | 85 | 115 | 63 | 87 | 61 |
| 116 | 123 | 82 | 141 | 114 | 65 | 117 | 56 | 84 | 53 |
| 95 | 106 | 137 | 71 | 73 | 106 | 98 | 80 | 107 | 57 |
| 79 | 65 | 108 | 141 | 95 | 127 | 125 | 91 | 137 | 60 |
| Таблица 3. Вес сомалийских пиратов |
Данные разобьём на группы, для начала предлагаю разбить на девять интервалов:
Узнаём максимальное и минимальное значения, вычитаем их друг из друга и делим на количество
интервалов — получили отрезки:
Максимальное значение: 141
Минимальное значение: 53
Разница: 141 — 53 = 88
Длина интервала: 88 / 9 = 9.78
Теперь посчитаем количество пиратов (весов, я имею ввиду) в каждом интервале:
| # | Интервал | Количество элементов |
|---|---|---|
| 1. | 53 — 62.78 | 19 |
| 2. | 62.78 — 72.56 | 9 |
| 3. | 72.56 — 82.34 | 8 |
| 4. | 82.34 — 92.12 | 14 |
| 5. | 92.12 — 101.9 | 9 |
| 6. | 101.9 — 111.68 | 10 |
| 7. | 111.68 — 121.46 | 13 |
| 8. | 121.46 — 131.24 | 11 |
| 9. | 131.24 — 141.02 | 7 |
| Таблица 4. Количество элементов в интервалах |
Вуа-ля, наше распределение на графике:
График 11. Ряд распределения массы тела сомалийских пиратов
Бонус
Интервалы лучше брать целыми числами, поэтому, если с выбранным количеством интервалов
размер выходит нецелым, то можно раздвинуть диапазон значений, пример:
Значение интервала равно 9.78, число не является целым, поэтому
отодвигаем верхнюю границу:
Остаток от деления: [(141 — 53) / 9] = 7
Подвинуть на: 2
Новый диапазон: [53;143]
Диапазон можно двигать как вверх, так и вниз, но лучше в обе стороны.
Совет
Принято делить распределение на 7-8 интервалов, но в каждой конкретной ситуации
Вы можете выбрать отличное количество интервалов, впрочем, как и сделать их
различной длины.
Список параметров
Итак, вот список основных параметров дискретного закона распределения:
| Название | Символ | Формула |
|---|---|---|
| Математическое ожидание (среднее) | E(X) | Σ(pi•Xi) |
| Центральный момент (среднеквадратичное отклонение) |
σx | σ = √(σ2) = √[∑[(Xi — μ)2]/n] |
| Длина интервала | R | max(x) — min(x) |
| Мода | mo | max P(x = mo) |
| 1й квантиль | — | F(x) = 0.25 |
| Медиана | me | F(x) = 0.5 |
| Дециль | — | F(x) = 0.1 |
| Таблица 5. Основные параметры дискретного закона распределения |
Шаблон гистограммы в OpenOffice Calc
Файл histogram_mock.ods содержит шаблон
построения гистограммы.
Вам понравилась статья?
/
Просмотров: 16 126


























































































































