Как найти отношение объема шара к площади

Вася Иванов

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Статья будет полезна школьникам и будущим абитуриентам, которые готовятся к сдаче ЕГЭ.

Содержание

  • Формула объема шара через радиус: значение
  • Формула объема шара через диаметр: значение
  • Примеры вычисления объема шара, через радиус и диаметр шара: описание
  • Формула полной поверхности шара, сферы через радиус: значение
  • Формула полной поверхности шара, сферы через диаметр: значение
  • Примеры вычисления площади поверхности, сферы шара, через радиус и диаметр шара: описание
  • Как найти объем шара через площадь поверхности шара, сферы: пример решения задачи
  • Видео: ЕГЭ математика. Объем и площадь поверхности тел вращения.

Формула объема шара через радиус: значение

Объем шара V вычисляется по формуле (см. ниже), где R — радиус шара, число «пи» — π — математическая константа, ≈ 3,14.

Данная формула является базовой!

Формула для вычисления объема шара, если известен радиус r шара

Формула для вычисления объема шара, если известен радиус R шара

Формула объема шара через диаметр: значение

  1. Воспользуйтесь базовой формулой: V=4/3*π*R³.
  2. Радиус R — это ½ диаметра D или R=D/2.
  3. Отсюда: V=4/3*π*R³ → V=(4π/3)*(D/2)³ → V=(4π/3)*(D³/8)→ V= πD³/6.

Или

Формула вычисления объема шара, если известен диаметр d шара

Формула вычисления объема шара, если известен диаметр D шара

Примеры вычисления объема шара, через радиус и диаметр шара: описание

Задача 1.

Радиус шара равен 10 см. Найди его объем.

Пример вычисления объема шара, если радиус шара задан в условии задачи

Пример вычисления объема шара, если радиус шара задан в условии задачи

Задача 2.

Диаметр шара равен 10 см. Найди его объем.

Пример вычисления объема шара, если диаметр шара задан в условии задачи

Пример вычисления объема шара, если диаметр шара задан в условии задачи

Задача 3.

Соотношение диаметра Луны и диаметра Земли 1:4. Во сколько раз объем Земли больше объема Луны?

Решение:

Пример решения задачи

Пример решения задачи

Ответ: в 64 раза.

Важно: существует множество онлайн калькуляторов, позволяющих быстро найти заданную величину. Например, сервис Webmath.

Формула полной поверхности шара, сферы через радиус: значение

Площадь поверхности сферы/шара S вычисляется по формуле (см. ниже), где R — радиус шара, число «пи» — π — математическая константа, ≈ 3,14.

Данная формула является базовой!

Формула для вычисления площади полной поверхности шара, если известен радиус r шара

Формула для вычисления площади полной поверхности шара, если известен радиус R шара

Формула полной поверхности шара, сферы через диаметр: значение

  1. Воспользуйтесь базовой формулой: S = 4*π*R².
  2. Радиус R — это ½ диаметра D или R=D/2.
  3. Отсюда: S=4*π*R² → S=4*π*(D/2)² → S=(4π)*(D²/4)→ S = (4πD²)/4 → S = πD².

Или

Формула вычисления площади полной поверхности шара, если известен диаметр d шара

Формула вычисления площади полной поверхности шара, если известен диаметр D шара

Примеры вычисления площади поверхности, сферы шара, через радиус и диаметр шара: описание

Задача 4.

Пример решения задачи

Пример решения задачи

Задача 5.

Пример решения задачи

Пример решения задачи

Задача 6.

Пример решения задачи

Пример решения задачи

Как найти объем шара через площадь поверхности шара, сферы: пример решения задачи

Задача 7.

Пример решения задачи.

Пример решения задачи.

Задача 8.

Пример решения задачи.

Пример решения задачи.

Видео: ЕГЭ математика. Объем и площадь поверхности тел вращения.

From Wikipedia, the free encyclopedia

Graphs of surface area, A against volume, V of the Platonic solids and a sphere, showing that the surface area decreases for rounder shapes, and the surface-area-to-volume ratio decreases with increasing volume. Their intercepts with the dashed lines show that when the volume increases 8 (2³) times, the surface area increases 4 (2²) times.

The surface-area-to-volume ratio (surface-to-volume ratio, denoted as sa/vol, SA/V or SA:V, is the amount of surface area per unit volume of an object or collection of objects.

SA:V is an important concept in science and engineering. It is used to explain the relation between structure and function in processes occurring through the surface and the volume. Good examples for such processes are processes governed by the heat equation,[1] that is, diffusion and heat transfer by thermal conduction.[2] SA:V is used to explain the diffusion of small molecules, like oxygen and carbon dioxide between air, blood and cells,[3] water loss by animals,[4] bacterial morphogenesis,[5] organism’s thermoregulation,[6] design of artificial bone tissue,[7] artificial lungs [8] and many more biological and biotechnological structures. For more examples see Glazier.[9]

The relation between SA:V and diffusion or heat conduction rate is explained from flux and surface perspective, focusing on the surface of a body as the place where diffusion, or heat conduction, takes place, i.e., the larger the SA:V there is more surface area per unit volume through which material can diffuse, therefore, the diffusion or heat conduction, will be faster. Similar explanation appears in the literature: «Small size implies a large ratio of surface area to volume, thereby helping to maximize the uptake of nutrients across the plasma membrane»,[10] and elsewhere.[9][11][12]

For a given volume, the object with the smallest surface area (and therefore with the smallest SA:V) is a ball, a consequence of the isoperimetric inequality in 3 dimensions. By contrast, objects with acute-angled spikes will have very large surface area for a given volume.

SA:V for balls and n-balls[edit]

A ball is a three-dimensional object, being the solid version of a sphere. (In geometry, the term sphere properly refers only to the surface, so a sphere thus lacks volume in this context.) Balls exist in any dimension and are generically called n-balls, where n is the number of dimensions.

Plot of the surface-area:volume ratio (SA:V) for a 3-dimensional ball, showing the ratio decline inversely as the radius of the ball increases.

For an ordinary three-dimensional ball, the SA:V can be calculated using the standard equations for the surface and volume, which are, respectively, {displaystyle 4pi {r^{2}}} and {displaystyle (4/3)pi {r^{3}}}. For the unit case in which r = 1 the SA:V is thus 3. The SA:V has an inverse relationship with the radius — if the radius is doubled the SA:V halves (see figure).

The same reasoning can be generalized to n-balls using the general equations for volume and surface area, which are:

volume = {displaystyle r^{n}pi ^{n/2} over Gamma (1+n/2)}; surface area = {displaystyle nr^{n-1}pi ^{n/2} over Gamma (1+{n/2})}

Plot of surface-area:volume ratio (SA:V) for n-balls as a function of the number of dimensions and of radius size. Note the linear scaling as a function of dimensionality and the inverse scaling as a function of radius.

So the ratio reduces to {displaystyle nr^{-1}}. Thus, the same linear relationship between area and volume holds for any number of dimensions (see figure): doubling the radius always halves the ratio.

Dimension[edit]

The surface-area-to-volume ratio has physical dimension L−1 (inverse length) and is therefore expressed in units of inverse distance. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm2 and a volume of 1 cm3. The surface to volume ratio for this cube is thus

{mbox{SA:V}}={frac  {6~{mbox{cm}}^{2}}{1~{mbox{cm}}^{3}}}=6~{mbox{cm}}^{{-1}}.

For a given shape, SA:V is inversely proportional to size. A cube 2 cm on a side has a ratio of 3 cm−1, half that of a cube 1 cm on a side. Conversely, preserving SA:V as size increases requires changing to a less compact shape.

Physical chemistry[edit]

Materials with high surface area to volume ratio (e.g. very small diameter, very porous, or otherwise not compact) react at much faster rates than monolithic materials, because more surface is available to react. An example is grain dust: while grain is not typically flammable, grain dust is explosive. Finely ground salt dissolves much more quickly than coarse salt.

A high surface area to volume ratio provides a strong «driving force» to speed up thermodynamic processes that minimize free energy.

Biology[edit]

The ratio between the surface area and volume of cells and organisms has an enormous impact on their biology, including their physiology and behavior. For example, many aquatic microorganisms have increased surface area to increase their drag in the water. This reduces their rate of sink and allows them to remain near the surface with less energy expenditure.[citation needed]

An increased surface area to volume ratio also means increased exposure to the environment. The finely-branched appendages of filter feeders such as krill provide a large surface area to sift the water for food.[13]

Individual organs like the lung have numerous internal branchings that increase the surface area; in the case of the lung, the large surface supports gas exchange, bringing oxygen into the blood and releasing carbon dioxide from the blood.[14][15] Similarly, the small intestine has a finely wrinkled internal surface, allowing the body to absorb nutrients efficiently.[16]

Cells can achieve a high surface area to volume ratio with an elaborately convoluted surface, like the microvilli lining the small intestine.[17]

Increased surface area can also lead to biological problems. More contact with the environment through the surface of a cell or an organ (relative to its volume) increases loss of water and dissolved substances. High surface area to volume ratios also present problems of temperature control in unfavorable environments.[citation needed]

The surface to volume ratios of organisms of different sizes also leads to some biological rules such as Allen’s rule, Bergmann’s rule[18][19][20] and gigantothermy.[21]

Fire spread[edit]

In the context of wildfires, the ratio of the surface area of a solid fuel to its volume is an important measurement. Fire spread behavior is frequently correlated to the surface-area-to-volume ratio of the fuel (e.g. leaves and branches). The higher its value, the faster a particle responds to changes in environmental conditions, such as temperature or moisture. Higher values are also correlated to shorter fuel ignition times, and hence faster fire spread rates.

Planetary cooling[edit]

A body of icy or rocky material in outer space may, if it can build and retain sufficient heat, develop a differentiated interior and alter its surface through volcanic or tectonic activity. The length of time through which a planetary body can maintain surface-altering activity depends on how well it retains heat, and this is governed by its surface area-to-volume ratio. For Vesta (r=263 km), the ratio is so high that astronomers were surprised to find that it did differentiate and have brief volcanic activity. The moon, Mercury and Mars have radii in the low thousands of kilometers; all three retained heat well enough to be thoroughly differentiated although after a billion years or so they became too cool to show anything more than very localized and infrequent volcanic activity. As of April 2019, however, NASA has announced the detection of a «marsquake» measured on April 6, 2019, by NASA’s InSight lander.[22] Venus and Earth (r>6,000 km) have sufficiently low surface area-to-volume ratios (roughly half that of Mars and much lower than all other known rocky bodies) so that their heat loss is minimal.[23]

Mathematical examples[edit]

Shape Characteristic
length a
Surface area Volume SA/V ratio SA/V ratio for
unit volume
Tetrahedron Tetrahedron.png edge {sqrt  {3}}a^{2} {frac  {{sqrt  {2}}a^{3}}{12}} {frac  {6{sqrt  {6}}}{a}}approx {frac  {14.697}{a}} 7.21
Cube Hexahedron.png edge 6a^{2} a^{3} {frac  {6}{a}} 6
Octahedron Octahedron.png edge 2{sqrt  {3}}a^{2} {frac  {1}{3}}{sqrt  {2}}a^{3} {frac  {3{sqrt  {6}}}{a}}approx {frac  {7.348}{a}} 5.72
Dodecahedron Dodecahedron.png edge 3{sqrt  {25+10{sqrt  {5}}}}a^{2} {frac  {1}{4}}(15+7{sqrt  {5}})a^{3} {frac  {12{sqrt  {25+10{sqrt  {5}}}}}{(15+7{sqrt  {5}})a}}approx {frac  {2.694}{a}} 5.31
Capsule SA to V shape.png radius (R) {displaystyle 4pi a^{2}+2pi acdot 2a=8pi a^{2}} {displaystyle {frac {4pi a^{3}}{3}}+pi a^{2}cdot 2a={frac {10pi a^{3}}{3}}} {displaystyle {frac {12}{5a}}} 5.251
Icosahedron Icosahedron.png edge 5{sqrt  {3}}a^{2} {frac  {5}{12}}(3+{sqrt  5})a^{3} {frac  {12{sqrt  {3}}}{(3+{sqrt  {5}})a}}approx {frac  {3.970}{a}} 5.148
Sphere Bump-map-demo-smooth.png radius 4pi a^{2} {frac  {4pi a^{3}}{3}} {frac  {3}{a}} 4.83598
Examples of cubes of different sizes

Side of
cube
Side2 Area of a
single face
6 × side2 Area of
entire cube
(6 faces)
Side3 Volume Ratio of
surface area
to volume
2 2×2 4 6×2×2 24 2×2×2 8 3:1
4 4×4 16 6×4×4 96 4×4×4 64 3:2
6 6×6 36 6×6×6 216 6×6×6 216 3:3
8 8×8 64 6×8×8 384 8×8×8 512 3:4
12 12×12 144 6×12×12 864 12×12×12 1,728 3:6
20 20×20 400 6×20×20 2,400 20×20×20 8,000 3:10
50 50×50 2,500 6×50×50 15,000 50×50×50 125,000 3:25
1,000 1,000×1,000 1,000,000 6×1,000×1,000 6,000,000 1,000×1,000×1,000 1,000,000,000 3:500

See also[edit]

  • Compactness measure of a shape
  • Dust explosion
  • Square–cube law
  • Specific surface area

References[edit]

  • Schmidt-Nielsen, Knut (1984). Scaling: Why is Animal Size so Important?. New York, NY: Cambridge University Press. ISBN 978-0-521-26657-4. OCLC 10697247.
  • Vogel, Steven (1988). Life’s Devices: The Physical World of Animals and Plants. Princeton, NJ: Princeton University Press. ISBN 978-0-691-08504-3. OCLC 18070616.
Specific
  1. ^ Planinšič, Gorazd; Vollmer, Michael (February 20, 2008). «The surface-to-volume ratio in thermal physics: from cheese cube physics to animal metabolism». European Journal of Physics. 29 (2): 369–384. Bibcode:2008EJPh…29..369P. doi:10.1088/0143-0807/29/2/017. S2CID 55488270. Retrieved 9 July 2021.
  2. ^ Planinšič, Gorazd (2008). «The surface-to-volume ratio in thermal physics: from cheese cube physics to animal metabolism». European Journal of Physics European Physical Society, Find Out More. 29 (2): 369–384. Bibcode:2008EJPh…29..369P. doi:10.1088/0143-0807/29/2/017. S2CID 55488270.
  3. ^ Williams, Peter; Warwick, Roger; Dyson, Mary; Bannister, Lawrence H. (2005). Gray’s Anatomy (39 ed.). Churchill Livingstone. pp. 1278–1282.
  4. ^ Jeremy M., Howard; Hannah-Beth, Griffis; Westendorf, Rachel; Williams, Jason B. (2019). «The influence of size and abiotic factors on cutaneous water loss». Advances in Physiology Education. 44 (3): 387–393. doi:10.1152/advan.00152.2019. PMID 32628526.
  5. ^ Harris, Leigh K.; Theriot, Julie A. (2018). «Surface Area to Volume Ratio: A Natural Variable for Bacterial Morphogenesis». Trends in Microbiology. 26 (10): 815–832. doi:10.1016/j.tim.2018.04.008. PMC 6150810. PMID 29843923.
  6. ^ Louw, Gideon N. (1993). Physiological Animal Ecology. Longman Pub Group.
  7. ^ Nguyen, Thanh Danh; Olufemi E., Kadri; Vassilios I., Sikavitsas; Voronov, Roman S. (2019). «Scaffolds with a High Surface Area-to-Volume Ratio and Cultured Under Fast Flow Perfusion Result in Optimal O2 Delivery to the Cells in Artificial Bone Tissues». Applied Sciences. 9 (11): 2381. doi:10.3390/app9112381.
  8. ^ J. K, Lee; H. H., Kung; L. F., Mockros (2008). «Microchannel Technologies for Artificial Lungs: (1) Theory». ASAIO Journal. 54 (4): 372–382. doi:10.1097/MAT.0b013e31817ed9e1. PMID 18645354. S2CID 19505655.
  9. ^ a b Glazier, Douglas S. (2010). «A unifying explanation for diverse metabolic scaling in animals and plants». Biological Reviews. 85 (1): 111–138. doi:10.1111/j.1469-185X.2009.00095.x. PMID 19895606. S2CID 28572410.
  10. ^ Alberts, Bruce (2002). «The Diversity of Genomes and the Tree of Life». Molecular Biology of the Cell, 4th edition. New York: Garland Science. ISBN 0-8153-3218-1. ISBN 0-8153-4072-9.
  11. ^ Adam, John (2020-01-01). «What’s Your Sphericity Index? Rationalizing Surface Area and Volume». Virginia Mathematics Teacher. 46 (2).
  12. ^ Okie, Jordan G. (March 2013). «General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization». The American Naturalist. 181 (3): 421–439. doi:10.1086/669150. ISSN 1537-5323. PMID 23448890. S2CID 23434720.
  13. ^ Kils, U.: Swimming and feeding of Antarctic Krill, Euphausia superba — some outstanding energetics and dynamics — some unique morphological details. In Berichte zur Polarforschung, Alfred Wegener Institute for Polar and Marine Research, Special Issue 4 (1983): «On the biology of Krill Euphausia superba«, Proceedings of the Seminar and Report of Krill Ecology Group, Editor S. B. Schnack, 130-155 and title page image.
  14. ^ Tortora, Gerard J.; Anagnostakos, Nicholas P. (1987). Principles of anatomy and physiology (Fifth ed.). New York: Harper & Row, Publishers. pp. 556–582. ISBN 978-0-06-350729-6.
  15. ^ Williams, Peter L; Warwick, Roger; Dyson, Mary; Bannister, Lawrence H. (1989). Gray’s Anatomy (Thirty-seventh ed.). Edinburgh: Churchill Livingstone. pp. 1278–1282. ISBN 0443-041776.
  16. ^ Romer, Alfred Sherwood; Parsons, Thomas S. (1977). The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. pp. 349–353. ISBN 978-0-03-910284-5.
  17. ^ Krause J. William (July 2005). Krause’s Essential Human Histology for Medical Students. Universal-Publishers. pp. 37–. ISBN 978-1-58112-468-2. Retrieved 25 November 2010.
  18. ^ Meiri, S.; Dayan, T. (2003-03-20). «On the validity of Bergmann’s rule». Journal of Biogeography. 30 (3): 331–351. doi:10.1046/j.1365-2699.2003.00837.x. S2CID 11954818.
  19. ^ Ashton, Kyle G.; Tracy, Mark C.; Queiroz, Alan de (October 2000). «Is Bergmann’s Rule Valid for Mammals?». The American Naturalist. 156 (4): 390–415. doi:10.1086/303400. JSTOR 10.1086/303400. PMID 29592141. S2CID 205983729.
  20. ^ Millien, Virginie; Lyons, S. Kathleen; Olson, Link; et al. (May 23, 2006). «Ecotypic variation in the context of global climate change: Revisiting the rules». Ecology Letters. 9 (7): 853–869. doi:10.1111/j.1461-0248.2006.00928.x. PMID 16796576.
  21. ^ Fitzpatrick, Katie (2005). «Gigantothermy». Davidson College. Archived from the original on 2012-06-30. Retrieved 2011-12-21.
  22. ^ «Marsquake! NASA’s InSight Lander Feels Its 1st Red Planet Tremor». Space.com. 23 April 2019.
  23. ^ «Archived copy» (PDF). Archived from the original (PDF) on 2018-06-13. Retrieved 2018-08-22.{{cite web}}: CS1 maint: archived copy as title (link)

External links[edit]

  • Sizes of Organisms: The Surface Area:Volume Ratio Archived 2017-08-14 at the Wayback Machine
  • National Wildfire Coordinating Group: Surface Area to Volume Ratio
  • Previous link not working, references are in this document, PDF

Further reading[edit]

  • On Being the Right Size, J.B.S. Haldane Archived 2011-08-22 at the Wayback Machine

Получи верный ответ на вопрос 🏆 «Площадь поверхности первого шара относится к площади поверхности второго шара как 5:3. Найдите отношение объема первого шара к объему …» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!

Найти готовые ответы

Главная » Математика » Площадь поверхности первого шара относится к площади поверхности второго шара как 5:3. Найдите отношение объема первого шара к объему второго шара.

Содержание:

Говоря об объеме, имеют ввиду вместимость пространственной фигуры. Как вы думаете, емкость какого из цилиндров на рисунке больше?

Объем фигур вращения - определение и вычисление с примерами решения

Призмой, вписанной (описанной) в цилиндр, называется призма, основания которой вписаны (описаны) в основания цилиндра.

Объем цилиндра

Пусть в цилиндр с радиусом Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

При бесконечном возрастании Объем фигур вращения - определение и вычисление с примерами решения площадь оснований данных призм приближаются к площади основания Объем фигур вращения - определение и вычисление с примерами решения цилиндра, а их объемы к объему цилиндра:

Объем фигур вращения - определение и вычисление с примерами решения

Объем цилиндра равен произведению площади основания на высоту.

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Практическая работа. Какая связь существует между объемами призмы и пирамиды, если они имеют одинаковые высоты и основания? Можно ли эту связь применить для объемов цилиндра и конуса?

Объем фигур вращения - определение и вычисление с примерами решения

Сделайте из картона модели сосудов в виде конуса и цилиндра, радиусы оснований и высоты которых одинаковы. Заполните цилиндрический сосуд при помощи сосуда в виде конуса (песком, рисом, и т. п.).

Объем фигур вращения - определение и вычисление с примерами решения

Сколько таких сосудов понадобится, чтобы заполнить цилиндрический сосуд? Верно ли утверждение, что цилиндрический сосуд можно заполнить тремя полными сосудами в виде конуса?

Объем фигур вращения - определение и вычисление с примерами решения

Обобщите соответствующую информацию о вычислении объема призмы, цилиндра, пирамиды и конуса, записав ответ в закрашенные ячейки.

Объем призмы и цилиндра:

Объем = площадь основания Объем фигур вращения - определение и вычисление с примерами решения

Объем пирамиды и конуса:

Объем = Объем фигур вращения - определение и вычисление с примерами решения объем призмы или цилиндра, имеющих одинаковые

основание и высоту.

Объем конуса

Объем фигур вращения - определение и вычисление с примерами решения

Объем конуса равен произведению одной третьей площади основания на высоту.

Объем фигур вращения - определение и вычисление с примерами решения

Пример №1

Образующая конуса 9 см, высота 6 см. Найдите объем конуса.

Решение:

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Объем шара и его частей

Практическая работа.

1. Возьмите мяч. Определите его диаметр.

2. Изобразите на бумаге развертку цилиндра, диаметр и высота которого равны диаметру шару.

3. Вырежьте и сверните полученную развертку в цилиндр без верхней крышки. Скрепите развертку при помощи клейкой ленты. Разделите высоту цилиндра на 3 равные части и сделайте соответствующие разметки.

Объем фигур вращения - определение и вычисление с примерами решения

4. Обверните мяч фольгой или плотным материалом и сделайте мешок сферической формы. Наполните его песком.

Объем фигур вращения - определение и вычисление с примерами решения

5. Пересыпьте песок в цилиндр. Какая часть цилиндра заполнится?

Если разделить поверхность шара сеткой из вертикальных и горизонтальных линий и маленький «прямоугольный» кусочек сферы соединить с центром шара, то можно представить, что шар состоит из множества «маленьких пирамид».

Объем фигур вращения - определение и вычисление с примерами решения

Объем шара можно выразить через сумму объемов «маленьких пирамид» Объем фигур вращения - определение и вычисление с примерами решения высота которых равна радиусу шара. Бесконечно уменьшая размеры оснований, количество пирамид будет бесконечно расти.

Объем фигур вращения - определение и вычисление с примерами решения

Сумма площадей оснований «маленьких пирамид» будет равна площади поверхности шара. Учитывая, что площадь поверхности шара равна Объем фигур вращения - определение и вычисление с примерами решения получим формулу для нахождения объема шара:

Объем фигур вращения - определение и вычисление с примерами решения

Объем шара:

Объем фигур вращения - определение и вычисление с примерами решения

Объем шара равен произведению Объем фигур вращения - определение и вычисление с примерами решения и куба радиуса.

Объем фигур вращения - определение и вычисление с примерами решения

Пример №2

Найдите: а) объем шара радиуса 3 см

b) радиус шара объемом 288 Объем фигур вращения - определение и вычисление с примерами решения

Решение:

а) Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

b) Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Сектор шара и сегмент шара

Шаровой сектор — это часть шара, ограниченная конической поверхностью с вершиной в центре шара. Шаровой сектор-объеденение конуса и шарового сегмента.

Объем фигур вращения - определение и вычисление с примерами решения

Так как шаровой сектор можно рассмотреть как предел суммы объемов маленьких пирамид, вершины которых находятся в центре шара, а основания касаются его поверхности, то

Объем фигур вращения - определение и вычисление с примерами решения

Здесь Объем фигур вращения - определение и вычисление с примерами решениярадиус шара, Объем фигур вращения - определение и вычисление с примерами решениявысота соответствующего сегмента

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

С другой стороны,

Объем фигур вращения - определение и вычисление с примерами решения

Проектная работа.

Отношение между объемами цилиндра, конуса и шара, которое получил Архимед.

Архимед нашел формулу для нахождения объема шара, исследовав связь между объемом цилиндра, описанного вокруг шара радиуса и объемом конуса, вписанного в данный цилиндр. Попробуйте и вы выполнить это исследование.

Объем фигур вращения - определение и вычисление с примерами решения

Если Объем фигур вращения - определение и вычисление с примерами решения — расстояние от центра шара до плоскости сечения, то для шара радиуса Объем фигур вращения - определение и вычисление с примерами решения представьте зависимость площади сечения от Объем фигур вращения - определение и вычисление с примерами решения выполнив следующие шаги.

Объем фигур вращения - определение и вычисление с примерами решения

a) Вычислите следующие значения функции Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Для примера найдено значение Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

b) Представьте свои суждения о значениях Объем фигур вращения - определение и вычисление с примерами решения и Объем фигур вращения - определение и вычисление с примерами решения сечений.

c) Запишите общую формулу для определения площади сечения, расположенного на расстоянии Объем фигур вращения - определение и вычисление с примерами решения от центра шара радиуса Объем фигур вращения - определение и вычисление с примерами решения

d) Свяжите формулу, полученную в пункте Объем фигур вращения - определение и вычисление с примерами решения и следующий рисунок.

Объем фигур вращения - определение и вычисление с примерами решения

e) Чтобы понять умозаключения Архимеда, вернемся к начальному рисунку.

Объем фигур вращения - определение и вычисление с примерами решения

При «извлечении» конуса из цилиндра в поперечном сечении получаем кольца, параллельные основанию.

Объем фигур вращения - определение и вычисление с примерами решения

На одном и том же уровне поперечное сечение шара является кругом. Из подобия треугольников можно доказать, что площадь кольца каждого слоя равна Объем фигур вращения - определение и вычисление с примерами решения Поскольку площади этих плоских сечений равны, по принципу Кавальери равны и объемы этих тел.

Объем фигур вращения - определение и вычисление с примерами решения

Объемы подобных фигур

Отношения соответствующих линейных размеров подобных пространствнных фигур должны быть равны.

По заданным соответствующим размерам подобных пространственных фигур можно найти неизвестные размеры.

Пример №3

Конусы Объем фигур вращения - определение и вычисление с примерами решения и Объем фигур вращения - определение и вычисление с примерами решения подобны. По данным рисунка найдите образующую конуса Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Решение: Запишем отношение линейных размеров: Радиус А Образующая А

Объем фигур вращения - определение и вычисление с примерами решения

Известно, что отношение площадей поверхностей двух подобных пространственных фигур равно квадрату отношения соответствующих линейных размеров или квадрату коэффициента подобия:

Объем фигур вращения - определение и вычисление с примерами решения

Объемы подобных пространственных фигур

Объем фигур вращения - определение и вычисление с примерами решения

Отношение объемов подобных пространственных фигур Объем фигур вращения - определение и вычисление с примерами решения и Объем фигур вращения - определение и вычисление с примерами решения равно кубу отношения соответствующих линейных размеров или кубу коэффициента подобия:

Объем фигур вращения - определение и вычисление с примерами решения

Пример №4

Отношение боковых поверхностей двух подобных цилиндров равно 4:9. Зная, что разность объемов равна Объем фигур вращения - определение и вычисление с примерами решения куб.ед., найдите объемы цилиндров.

Решение: по условию Объем фигур вращения - определение и вычисление с примерами решения тогда Объем фигур вращения - определение и вычисление с примерами решения Значит Объем фигур вращения - определение и вычисление с примерами решения С другой стороны, принимая во внимание, что Объем фигур вращения - определение и вычисление с примерами решения получим:

Объем фигур вращения - определение и вычисление с примерами решения

Объемы тел в высшей математике

Под телом Т будем подразумевать ограниченное множество в пространстве.
Будем рассматривать тела, имеющие внутренние точки и границу, которая также принадлежит телу (замкнутые тела), причем такие, что любые две внутренние
точки можно соединить непрерывной линией, проходящей внутри тела.
 

Определение 1. Рассмотрим тело Объем фигур вращения - определение и вычисление с примерами решения составленное из конечного числа многогранников, содержащихся в Т, и тело Объем фигур вращения - определение и вычисление с примерами решения, составленное из многогранников и покрывающее тело Т: Объем фигур вращения - определение и вычисление с примерами решения
Пусть Объем фигур вращения - определение и вычисление с примерами решенияТело называется кубируемым, если Объем фигур вращения - определение и вычисление с примерами решения. При этом числоОбъем фигур вращения - определение и вычисление с примерами решения (1) называется объемом тела Т (по Жордану).
 

Замечание. Для кубируемости тела Т необходимо и достаточно, чтобы Объем фигур вращения - определение и вычисление с примерами решения такие, что Объем фигур вращения - определение и вычисление с примерами решения (2)

Пусть для кубируемого тела Т известны площади s=s(x) его сечения плоскостями перпендикулярными оси Ох, проходящими через точки (х, 0, 0),Объем фигур вращения - определение и вычисление с примерами решения – непрерывна

Объем фигур вращения - определение и вычисление с примерами решения

Разобьем отрезок [ a b ] на n частичных отрезков точками Объем фигур вращения - определение и вычисление с примерами решенияОбъем фигур вращения - определение и вычисление с примерами решенияи обозначим это разбиение Объем фигур вращения - определение и вычисление с примерами решения. Пусть Объем фигур вращения - определение и вычисление с примерами решения
Объем фигур вращения - определение и вычисление с примерами решения – диаметр разбиения, тогда Объем фигур вращения - определение и вычисление с примерами решения(3)
Где Объем фигур вращения - определение и вычисление с примерами решения это – объем цилиндрического тела высотой Объем фигур вращения - определение и вычисление с примерами решения и площадью основания
Объем фигур вращения - определение и вычисление с примерами решения Пусть Объем фигур вращения - определение и вычисление с примерами решения k − -ый слой тела Т между плоскостями, проходящими через точки Объем фигур вращения - определение и вычисление с примерами решенияи перпендикулярными оси Ох.

Так как Т – кубируемо, то Объем фигур вращения - определение и вычисление с примерами решения – также кубируемо и Объем фигур вращения - определение и вычисление с примерами решениягде
Объем фигур вращения - определение и вычисление с примерами решения
Тогда Объем фигур вращения - определение и вычисление с примерами решения
∀n ∈ N, или Объем фигур вращения - определение и вычисление с примерами решения

ГдеОбъем фигур вращения - определение и вычисление с примерами решенияэто – нижняя и верхняя суммы Дарбу функции s(x) для разбиения
Объем фигур вращения - определение и вычисление с примерами решения ПоэтомуОбъем фигур вращения - определение и вычисление с примерами решенияТаким образом Объем фигур вращения - определение и вычисление с примерами решения  (6)
 

Замечание. Нужно заметить, что неравенство (4), которое использовалось для вывода формулы (6), выполняется, когда любые два рассматриваемые сечения
тела Т при проекции на плоскость yOz полностью содержатся одно в другом.
Однако формула (6) верна и в общем случае. Для этого достаточно потребовать,
чтобы тело Т было кубируемым и функция s (x) – непрерывной.

Пример №5

Найти объем тела ограниченного поверхностями Объем фигур вращения - определение и вычисление с примерами решения (ниже параболоида).
 

Решение.

Из системы уравнений Объем фигур вращения - определение и вычисление с примерами решения  следует, что z=h.

Объем фигур вращения - определение и вычисление с примерами решения

В сечении тела плоскостью проходящей через точку (0, 0, z) перпендикулярно оси Оz получается кольцо

Объем фигур вращения - определение и вычисление с примерами решения

Радиус внешней окружности равен R, радиус внутренней равен Объем фигур вращения - определение и вычисление с примерами решения
Поэтому по формуле (6):
Объем фигур вращения - определение и вычисление с примерами решения
Формулу (6) удобно применять к телам вращения. Пусть y=f(x) – непрерывна на отрезке Объем фигур вращения - определение и вычисление с примерами решения Будем вращать криволинейную трапецию
Объем фигур вращения - определение и вычисление с примерами решения 

Объем фигур вращения - определение и вычисление с примерами решения

вокруг оси Ох. Получим тело:

Объем фигур вращения - определение и вычисление с примерами решения
Тогда сечением полученного тела плоскостью проходящей через точку (х,0,0) и перпендикулярной оси Ох будет круг радиуса Объем фигур вращения - определение и вычисление с примерами решения и по формуле (6): Объем фигур вращения - определение и вычисление с примерами решения
Где y=f(x).
Аналогично, если Объем фигур вращения - определение и вычисление с примерами решения то при вращении вокруг оси Ох фигуры Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения
Получим тело, объем которого Объем фигур вращения - определение и вычисление с примерами решения
 

Пример №6

Рассмотрим фигуру Φ ограниченную эллипсом Объем фигур вращения - определение и вычисление с примерами решения Объем фигур вращения - определение и вычисление с примерами решения
Найдем объем эллипсоида полученного при вращении вокруг оси Ох фигуры Φ .
 

Решение.

Объем фигур вращения - определение и вычисление с примерами решения

По формуле (7): Объем фигур вращения - определение и вычисление с примерами решения
Пусть функция x=x(y) – непрерывна при Объем фигур вращения - определение и вычисление с примерами решения Тогда, аналогично, при вращении вокруг оси Оу фигуры Объем фигур вращения - определение и вычисление с примерами решения
Объем фигур вращения - определение и вычисление с примерами решения

Получим тело, объем которого Объем фигур вращения - определение и вычисление с примерами решения(9)
Если же вращать вокруг оси Оу трапецию Объем фигур вращения - определение и вычисление с примерами решения 

Объем фигур вращения - определение и вычисление с примерами решения

то Объем фигур вращения - определение и вычисление с примерами решения(10)
 

Пример №7

Рассмотрим тело Т из примера 1. Оно получается, если вращать вокруг оси Oz фигуру, ограниченную линиями:
Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения
Из первого уравнения найдем Объем фигур вращения - определение и вычисление с примерами решения поэтому по формуле (9):
Объем фигур вращения - определение и вычисление с примерами решения
 

Пример №8

Объем Объем фигур вращения - определение и вычисление с примерами решенияпри вращении фигуры Объем фигур вращения - определение и вычисление с примерами решения из примера 3 вокруг оси Oz можно также найти и по формуле (10): Объем фигур вращения - определение и вычисление с примерами решения

Пример №9

Фигура Ф ограничена линиями Объем фигур вращения - определение и вычисление с примерами решения НайтиОбъем фигур вращения - определение и вычисление с примерами решения
 

Решение.

Объем фигур вращения - определение и вычисление с примерами решения

Абсциссы точек пересечения: Объем фигур вращения - определение и вычисление с примерами решения (см. пример 1 § 30). По формуле (8):
Объем фигур вращения - определение и вычисление с примерами решения

Замечание. Для непрерывной функции Объем фигур вращения - определение и вычисление с примерами решения рассмотрим криволинейную трапецию Объем фигур вращения - определение и вычисление с примерами решения 

Объем фигур вращения - определение и вычисление с примерами решения
Пусть Объем фигур вращения - определение и вычисление с примерами решения – непрерывно-дифференцируема на промежуткеОбъем фигур вращения - определение и вычисление с примерами решенияТогда по формуле (7): Объем фигур вращения - определение и вычисление с примерами решенияпо формуле (1) § 26
Объем фигур вращения - определение и вычисление с примерами решения

Где Объем фигур вращения - определение и вычисление с примерами решения– параметрическое задание линии Объем фигур вращения - определение и вычисление с примерами решения Таким образом Объем фигур вращения - определение и вычисление с примерами решения илиОбъем фигур вращения - определение и вычисление с примерами решения (12)
(кривая обходится так, чтобы область Ф оставалась слева).

Аналогично, для непрерывной функции Объем фигур вращения - определение и вычисление с примерами решениярассмотрим криволинейную трапецию Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Пусть Объем фигур вращения - определение и вычисление с примерами решения – непрерывно-дифференцируема на промежутке Объем фигур вращения - определение и вычисление с примерами решенияТогда по формуле (9): Объем фигур вращения - определение и вычисление с примерами решенияпо формуле (1) § 26
Объем фигур вращения - определение и вычисление с примерами решения
ГдеОбъем фигур вращения - определение и вычисление с примерами решения – параметрическое задание линии Объем фигур вращения - определение и вычисление с примерами решения

Таким образом Объем фигур вращения - определение и вычисление с примерами решения(13)   (кривая обходится так, чтобы область Ф оставалась слева).

Рассмотрим область ,ограниченную простой замкнутой кривой
Объем фигур вращения - определение и вычисление с примерами решения (кривая лежит по одну сторону от оси Ox ). Тогда объем Объем фигур вращения - определение и вычисление с примерами решения можно находить по формуле (12): Объем фигур вращения - определение и вычисление с примерами решения
(кривая обходится так, чтобы область оставалась слева).

Аналогично ,для области ограниченной простой замкнутой кривой
Объем фигур вращения - определение и вычисление с примерами решения (кривая лежит по одну сторону от оси Oy )объем Объем фигур вращения - определение и вычисление с примерами решения можно находить по формуле (13): Объем фигур вращения - определение и вычисление с примерами решения(кривая обходится так, чтобы область оставалась слева).

Пример №10

Дана астроида Объем фигур вращения - определение и вычисление с примерами решения
Объем фигур вращения - определение и вычисление с примерами решения
Найдем Объем фигур вращения - определение и вычисление с примерами решения.
 

Решение.

Объем фигур вращения - определение и вычисление с примерами решения по формуле (12):
Объем фигур вращения - определение и вычисление с примерами решения
 

Пример №11

Петля кривой Объем фигур вращения - определение и вычисление с примерами решениявращается вокруг оси Ox .Найти Объем фигур вращения - определение и вычисление с примерами решения.
 

Решение.

Объем фигур вращения - определение и вычисление с примерами решения
Объем фигур вращения - определение и вычисление с примерами решения петля обходится против часовой стрелки. По формуле (12):
Объем фигур вращения - определение и вычисление с примерами решения

Пусть Объем фигур вращения - определение и вычисление с примерами решения – кривая в полярной системе координат, r (ϕ) – непрерывна при Объем фигур вращения - определение и вычисление с примерами решения Рассмотрим на плоскости хОу криволинейный сектор
Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения
Тогда объем тела при вращении фигуры ϕ вокруг полярной оси равен
Объем фигур вращения - определение и вычисление с примерами решения (14)

Пример №12

Объем фигур вращения - определение и вычисление с примерами решения(см. пример 4 § 31).

Объем фигур вращения - определение и вычисление с примерами решения
Найдем Объем фигур вращения - определение и вычисление с примерами решения.
 

Решение.

По формуле (14):
Объем фигур вращения - определение и вычисление с примерами решения

  • Длина дуги кривой
  • Геометрические фигуры и их свойства
  • Основные фигуры геометрии и их расположение в пространстве
  • Пространственные фигуры — виды, изображения, свойства
  • Площадь прямоугольника
  • Объем пространственных фигур
  • Объёмы поверхностей геометрических тел
  • Фигуры вращения: цилиндр, конус, шар

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти талон на вмп по фамилии
  • Как найти единицу величины
  • Как мне найти номера телефонов паспортного стола
  • Как найти беспроводной дисплей на самсунг
  • Как найти коэффициент экономической активности

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии