5.5.3. Как найти прямую, содержащую общий перпендикуляр?
в) Эта задачка посложнее будет. «Чайникам» рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к
аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить – дело в том, что по сложности эту задачу
надо бы поставить последней в параграфе, но по логике изложения она должна располагаться здесь. …Впрочем, танцуйте читайте все! 
Итак, требуется найти уравнения прямой , которая содержит общий
перпендикуляр скрещивающихся прямых.
Общий перпендикуляр скрещивающихся прямых – это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:

Вот наш красавец: – общий перпендикуляр прямых
. Он
единственный. Другого такого нет. Нам же требуется составить уравнения прямой ,
которая содержит данный отрезок.
Что известно о прямой «эм»? Известен её направляющий вектор , найденный
в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в
Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу….
Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.
Решение оформим по пунктам:
1) Перепишем уравнения первой прямой в параметрической форме:
Рассмотрим точку . Координат мы не знаем. НО. Если точка
принадлежит данной прямой, то её координатам соответствует вполне
конкретное значение параметра, обозначим его через . Тогда координаты
точки запишутся в виде:

Жизнь налаживается, одна неизвестная – это всё-таки не три неизвестных.
2) Аналогичные действия проведём со второй прямой. Перепишем её уравнения в параметрическом
виде:
Если точка принадлежит данной прямой, то при вполне конкретном
значении её координаты должны удовлетворять
параметрическим уравнениям:

3) Запишем вектор . Ну и что, что нам не известны координаты точек – это же не
мешает из координат конца вектора вычесть соответствующие координаты начала
:
4) Вектор , как и ранее найденный вектор
, является направляющим вектором прямой
. Таким образом, они коллинеарны, и один вектор можно линейно
выразить через другой с некоторым коэффициентом пропорциональности «лямбда»:
или покоординатно:
Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера. Но так извращаться мы, конечно, не будем. Выразим из
3-го уравнения и подставим эту «лямбду» в первые два уравнения:
Из 2-го уравнения выразим и подставим в 1-е уравнение:
, а «лямбда» нам не потребуется.
То, что значения параметров получились одинаковыми – чистая случайность.
5) Небо полностью проясняется, подставим найденные значения в наши
точки:

Сам вектор нам не нужен, так как уже найден его коллега
.
И после длинного пути всегда интересно выполнить проверку. Подставим координаты точки в уравнения
:
– получены верные равенства.
Подставим координаты в уравнения
:
– получены верные равенства.
Вывод: найденные точки действительно принадлежат соответствующим прямым.
6) Заключительный аккорд: составим уравнения прямой по точке
(можно взять
) и направляющему вектору
:
В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.


| Оглавление |
Автор: Aлeксaндр Eмeлин
Содержание:
Аналитическая геометрия
В этой главе все геометрические объекты мы будем определять и изучать с помощью соответствующих уравнений этих объектов и, следовательно, в принципе геометрия может быть изложена без единого чертежа. И, действительно, все чертежи, которые мы будем использовать, будут служить лишь для визуальной иллюстрации наших рассуждений.
Уравнение поверхности в выбранной декартовой системе координат
т. е. в виде связи или зависимости между координатами х, у, z произвольной точки поверхно-аналогично, уравнение
определяет некоторую линию (кривую) в системе координат 
Кривая в пространстве может быть задана как пересечение двух поверхностей и, следовательно, она определяется системой из уравнений этих поверхностей:
Кроме того, кривую на плоскости или в пространстве можно также задать с помощью зависимостей координат произвольной то’жи этой кривой от некоторого параметра, т. е. с помощью параметрических уравнений:
где t — действительный параметр.
Плоскость в пространстве. Различные виды уравнения плоскости
Найдем уравнение плоскости в пространстве с выбранной в нем декартовой системой координат 



Пусть 


или, учитывая, что 
Преобразовав полученное уравнение к виду
мы получим тем самым общее уравнение плоскости.
Рассмотрим теперь некоторые частные случаи общего уравнения плоскости. Если в общем уравнении плоскости отсутствует, одна из координат, то нормальный вектор 
Аналогично, если в общем уравнении плоскости отсутствуют две координаты, то нормальный вектор данной плоскости перпендикулярен соответствующей координатной плоскости и, значит, плоскость расположена параллельно этой координатной плоскости.
Научимся теперь находить уравнение плоскости по трем элементам.
1) Плоскость, проходящая через точку, параллельно двум векторам.
Пусть плоскость 


Обозначим через 


Раскрыв определитель (проще всего, разлагая его по первой строке), получим общее уравнение плоскости
2)Плоскость, проходящая через две точки, параллельно вектору.
Найдем уравнение плоскости 



— искомое уравнение плоскости
3)Плоскость, проходящая через три точки.
Если плоскость 



Замечание. Во всех трех случаях уравнение плоскости можно найти, вычислив предварительно ее нормальный вектор. Например, в первом случае в качестве нормального вектора можно взять векторное произведение 

Пример №1
Найти уравнение плоскости 11 ^ — перпендикулярной плоскости
параллельной вектору 

Решение. Из уравнения плоскости 








Таким образом, общее уравнение плоскости 
Пусть плоскость 
Разделив обе части уравнения плоскости на число D. мы можем записать его в виде:
Числа а, b, с представляют собой величины отрезков, которые плоскость П отсекает на координатных осях. Полученное уравнение называется уравнением плоскости в отрезках.
Найдем теперь формулу для вычисления расстояния от точки 
Обозначим искомое расстояние через




С другой,
так как 


В заключение этого параграфа выясним характер взаимного расположения двух плоскостей. Пусть плоскости заданы своими общими уравнениями:
Очевидно, что угол 

В частности,
Пример №2
Убедиться в том, что плоскость

параллельны и найти расстояние между ними.
Решение. Запишем уравнение плоскости II| в отрезках:
Преобразовав его к общему виду, получим:
Так как нормальные векторы 



Уравнения прямой в пространстве
Пусть прямая L в пространстве с декартовой системой координат 


Обозначим через 


Эта двойная пропорция представляет собой канонические уравнения прямой в пространстве.
Заметим, что в канонических уравнениях прямой формально допускается запись нулей в знаменателях, это означает лишь то, что прямая перпендикулярна соответствующей координатной оси или координатной плоскости.
Если прямая проходит через две точки 

Коллинеарные векторы 
Если точка М перемещается вдоль прямой, параметр t изменяется в пределах от 



Это уравнение называется векторным уравнением прямой.
Переходя в полученном векторном уравнении к координатам, запишем параметрические уравнения прямой:
Прямую в пространстве можно задать также как пересечение двух плоскостей.
Система
составленная из уравнений этих плоскостей, дает нам общие уравнения прямой в пространстве. Для перехода от общих к каноническим уравнениям прямой, достаточно найти какую-нибудь точку на ней, решив при фиксированном значении одной из координат систему уравнений плоскостей, а также определить направляющий вектор прямой, которым может служить векторное произведение нормальных векторов 
Пример №3
Найти канонические уравнения прямой
Решение. Полагая в данной системе z = 0, получим
Решив эту систему, найдем х = 1, у = —2. Таким образом, мы получили точку 
Осталось записать канонические уравнения данной прямой:
Научимся теперь вычислять расстояние от точки до прямой в пространстве. Пусть задана точка 
Искомое расстояние 

Пусть нам известны канонические уравнения двух прямых в пространстве:
Очевидно,
Один из углов между этими прямыми равен углу между их направляющими векторами 

Изучим взаимное расположение прямых 

В случае, когда 
Прямые пересекаются, очевидно, тогда и только тогда, когда векторы 

Расстояние 

Пример №4
Убедиться в том, что прямые
являются скрещивающимися. Найти расстояние между ними и уравнение общего перпендикуляра к ним.
Решение. Первая прямая проходит через точку 



следовательно, прямые 
Осталось найти уравнение общего перпендикуляра к данным прямым. Заметим, прежде всего, что его направляющим вектором является уже вычисленный нами вектор 




Таким образом, плоскость 




и, стало быть, 



В заключение этого параграфа вычислим угол между прямой L, заданной каноническими уравнениями
и плоскостью П, для которой известно ее общее уравнение
Очевидно, искомый угол 





В частности, если
Прямая на плоскости
Для прямой на плоскости наблюдается большее разнообразие ее уравнений, так как на плоскости прямая фиксируется точкой, через которую она проходит и, либо вектором ей перпендикулярным (нормальным вектором), либо вектором ей параллельным (направляющим вектором) и, следовательно, для прямой на плоскости можно записывать как уравнения, характерные для плоскости в пространстве (§1), так и аналоги уравнений прямой в пространстве (§2). Перечислим, не повторяя деталей, изложенных в предыдущих двух параграфах, основные уравнения прямой на плоскости и связанные с ними формулы.
Пусть прямая L на плоскости с выбранной в ней системой координат 


Уравнение такой прямой имеет вид:
откуда после очевидных преобразований получим уравнение
которое представляет собой общее уравнение прямой на плоскости.
Пусть прямая L отсекает на координатных осях 
Тогда, как и для плоскости, мы можем записать уравнение прямой в отрезках:
Если прямая L содержит точку 
то ее каноническое уравнение имеет вид:
По аналогии с прямой в пространстве, прямая на плоскости может быть задана также векторным уравнением
и параметрическими уравнениями
Расстояние от точки 

Найдем еще одно уравнение прямой на плоскости, характерное для этого геометрического объекта. Пусть прямая L, заданная своим каноническим уравнением 
Тогда
где 

представляет собой уравнение прямой с угловым коэффициентом, которая проходит через точку
Если две прямые на плоскости заданы общими или каноническими уравнениями, то их взаимное расположение исследуется по аналогии с плоскостями или прямыми, заданными такими же уравнениями (§1 или §2). Изучим поэтому взаимное расположение двух прямых, которые заданы уравнениями с угловым коэффициентом. Итак, рассмотрим две прямые
Предположим сначала, что прямые не являются перпендикулярными, обозначим через

Если же

Таким образом, для перпендикулярности прямых 
Очевидно. прямые 

Пример №5
Даны прямая 

Решение. Прямые


Так как 


Из уравнения прямой L находим 


откуда, 
Кривые второго порядка на плоскости
В предыдущих трех параграфах нами были изучены линейные геометрические объекты -плоскость и прямая в пространстве и на плоскости. Мы показали, что в декартовой системе координат они определяются алгебраическими уравнениями первой степени, т. е. линейными уравнениями. Предметом нашего исследования в этом параграфе будут являться кривые второго порядка, т. е. линии на плоскости, уравнения которых в декартовой системе координат Оху имеют вид:
где А, В, С, D, Е, F — действительные числа. Мы убедимся в том, что, за исключением случаев вырождения данное уравнение определяет одну из трех замечательных линий — эллипс, гиперболу или параболу. Приведем сначала геометрическое определение каждой из этих линий и найдем их канонические уравнения.
Эллипс
Определение: Эллипсом называется множество точек на плоскости, для каждой из которых сумма расстояний до двух фиксированных точек (фокусов эллипса) есть величина постоянная.
Найдем каноническое уравнение эллипса. Обозначим через 2с фокусное расстояние, т. е. расстояние между фокусами, а через 2а — постоянную сумму расстояний от точек эллипса до фокусов. Из неравенства треугольника следует, что 
Пусть М(х, у) — произвольная точка эллипса. По определению этой линии,
Упростим последнее уравнение:
откуда, использовав обозначение 
Построим эту линию. Для этого прежде всего заметим, что она симметрична относительно координатных осей и начала координат, так как переменные x и у входят в каноническое уравнение в квадратах. Отсюда следует, что эллипс достаточно построить в первой координатной четверти и затем отразить его относительно координатных осей. Из канонического уравнения эллипса находим:
Очевидно, эта функция определена и убывает при 

Числа а и b называются соответственно большой и малой полуосями эллипса. Точка O(0,0) -центр эллипса, точки 


Форму эллипса характеризует величина 

то при 



Замечание. В уравнении эллипса может оказаться, что 



Гипербола
Определение: Гипербола представляет собой линию на плоскости, для каждой точки которой абсолютная величина разности расстояний до двух фиксированных точек (фокусов гиперболы) есть величина постоянная.
Обозначим и здесь фокусное расстояние через 2с. а через 2а — постоянную абсолютную величину разности расстояний от точек гиперболы до фокусов. Для гиперболы а < с, что следует из неравенства треугольника. Выберем декартову систему координат на плоскости точно также, как и при выводе канонического уравнения эллипса.
По определению гиперболы для произвольной точки М(х, у) этой линии
Избавляясь от корней в этом уравнении, получим:
Обозначая здесь 
Как видно из ее уравнения, гипербола симметрична относительно координатных осей и начала координат. Из канонического уравнения гиперболы следует, что в первой четверти
Эта функция возрастает, 

а а а а
Это означает, что в первой четверти гипербола, выходя из точки (а, 0) на оси Ох, приближается
затем при больших значениях х к прямой 
Прямые 

Как и для эллипса, определим эксцентриситет гиперболы как отношение половины фокусного расстояния к действительной полуоси:
Так как
то эксцентриситет гиперболы характеризует величину угла, в котором она располагается. При
Замечание. В каноническом уравнении гиперболы знаки перед квадратами могут располагаться и в обратном порядке:
В этом случае фокусы и вершины находятся на оси
Парабола
Определение: Параболой называется множество точек плоскости, равноудаленных от. фиксированной точки (фокуса параболы) и фиксированной прямой (директрисы параболы).
Обозначим расстояние от фокуса до директрисы через р. Число р > 0 называется параметром параболы. Выберем удобную систему координат на плоскости: ось Ох направим через фокус F перпендикулярно директрисе D, а начало координат возьмем посередине между директрисой и фокусом.
Если М(х,у) — произвольная точка параболы, то по определению этой кривой
После возведения в квадрат и очевидных преобразований, получим каноническое уравнение параболы:
Очевидно, парабола проходит через начало координат и симметрична относительно оси Ох. Точка O(0,0) называется вершиной параболы, ось Ох — осью параболы.
Замечание. Если бы при выборе системы координат мы направили ее оси в противоположные стороны, то каноническое уравнение параболы приняло бы вид:
Аналогично, уравнения
также определяют параболы, фокусы которых расположены на оси Оу. а директрисы параллельны оси Ох.
Приведение уравнения кривой второго порядка к каноническому виду
Покажем, что общее уравнение кривой второго порядка на плоскости, кроме случаев вырождения, определяет одну из линий — эллипс, гиперболу или параболу.
Выясним сначала, как преобразуются координаты точки на плоскости при параллельном переносе системы координат. Предположим, что осуществлен параллельный перенос системы координат Оху в точку 



Так как 
Рассмотрим теперь уравнение второго порядка на плоскости в частном случае, когда оно не содержит произведения координат ху :
причем коэффициенты А и С не равны одновременно нулю. Здесь возможны три случая.
а) АС > 0. Очевидно, всегда можно считать, тгго А > 0, С > 0. Выделяя в уравнении второго порядка полные квадраты по переменным х и у, получим:
где 




и, следовательно, в смещенной с помощью параллельного переноса в точку 
b) АС < 0. Будем считать для определенности, что А > 0. С < 0.
В этом случае исходное уравнение второго порядка также приводится к виду (1). При F = 0 оно определяет пару прямых, проходящих, через точку 
Если же 
и, стало быть, после параллельного переноса системы координат в точку 
c) АС = 0. Предположим, например, что
Выделяя в данном уравнении второго порядка полный квадрат по переменной у, получим:
С {у ~ Уо)2 + Dx + F1=0.
Если в этом уравнении D = 0, то при 

Если же 
т.е. после параллельного переноса системы координат в точку 
Аналогично. если в исходном уравнении второго порядка 
Пример №6
Привести уравнение второго порядка к каноническому виду, назвать и построить кривую:
Решение. Выделяя полные квадраты по обеим переменным, получим:
что представляет собой каноническое уравнение эллипса в смещенной в точку 


Пример №7
Найти каноническое уравнение параболы с вершиной в точке 
Решение. Фокус параболы находится в точке F(0 , 2), следовательно, уравнение параболы с учетом смещения имеет вид:
Здесь
каноническое уравнение параболы.
Замечание. Для приведения к каноническому виду уравнения второго порядка, содержащего произведение координат ху, необходимо кроме параллельного переноса выполнить еще и поворот системы координат на определенный угол. Например, для равносторонней гиперболы ху = 1 следует повернуть систему координат Оху вокруг ее начала на угол 45° против часовой стрелки. Поскольку вершины гиперболы находятся на расстоянии 

Поверхности второго порядка в пространстве
В заключение этой главы мы изучим поверхности в пространстве, которые в декартовой системе координат задаются алгебраическими уравнениями второй степени. Существуют пять видов таких поверхностей: эллипсоид, гиперболоиды, параболоиды, цилиндры второго порядка и конус второго порядка.
Поверхность вращения
Найдем уравнение поверхности, которая получается вращением некоторой линии вокруг одной из координатных осей. Пусть линия L, которая в координатной плоскости Oyz задается уравнением F(y, z) = 0. вращается вокруг оси Oz.
Пусть M(x,y,z) — произвольная точка на поверхности вращения. Перегоним ее по окружности, расположенной в сечении поверхности плоскостью, проходящей через данную точку перпендикулярно оси Oz, в точку N на линии L. Поскольку расстояние от точки М до оси Oz равно 

Найдем теперь уравнения поверхностей, которые получаются вращением кривых второго порядка с последующей линейной деформацией этих поверхностей.
Эллипсоид
Возьмем в плоскости Oyz эллипс
и будем вращать его вокруг оси Oz. В результате, как следует из предыдущего пункта, мы получим поверхность с уравнением
которая называется эллипсоидом вращения. Заменив в найденном уравнении координату х на —

Положительные числа а, b, с называются полуосями эллипсоида.
Очевидно, сечениями эллипсоида плоскостями параллельными координатным, являются эллипсы.
Замечание. В частном случае, когда а = b = с = R эллипсоид превращается в сферу
радиуса R с центром в начале координат.
Гиперболоиды
а) Однополостный гиперболоид.
Вращая гиперболу
вокруг оси Oz, получим однополостный гиперболоид вращения с уравнением
После линейной деформации вдоль оси Ох эта поверхность превращается в однополостный гиперболоид общего вида с осью Oz :
Аналогично, уравнения однополостных гиперболоидов с осями Ох и Оу имеют, соответственно, вид:
Сечениями однополостного гиперболоида плоскостями, перпендикулярными его оси, являются эллипсы, а в сечениях плоскостями, перпендикулярными другим координатным осям, располагаются гиперболы.
Двухполостный гиперболоид
Поверхность, полученная вращением вокруг оси Оz гиперболы
вершины которой расположены на оси вращения, называется двухполостным гиперболоидом вращения. Запишем уравнение двухполостного гиперболоида:
Линейная деформация двухполостного гиперболоида вращения вдоль оси Ох прообразует его в двухполостный гиперболоид общего вида с осью Oz. Уравнение этой поверхности имеет вид:
Двухполостные гиперболоиды с осями Ох и Оу имеют, соответственно, уравнения:
Как и в случае однополостного гиперболоида, сечениями двухполостного гиперболоида плоскостями, параллельными координатным, являются эллипсы и гиперболы.
Параболоиды
а) Эллиптический параболоид
Вращение параболы вокруг ее оси приводит к поверхности, которая называется параболоидом вращения. В частности, если параболу с каноническим уравнением 
Линейная деформация параболоида вращения вдоль оси Оу превращает его в эллиптический параболоид с уравнением:
Положительные числа p, q называются параметрами параболоида, точка O(0,0) — вершина, ось Oz — ось эллиптического параболоида.
Уравнения эллиптических параболоидов с осями Ох и Оу имеют, соответственно, вид:
Как следует из уравнения эллиптического параболоида, плоскости, перпендикулярные его оси, пересекают эту поверхность по эллипсам, а в сечениях плоскостями, параллельными другим координатным, находятся параболы.
Замечание. Изменение знака в правой части уравнения эллиптического параболоида приводит к отражению этой поверхности относительно координатной плоскости, перпендикулярной оси параболоида.
b) Гиперболический параболоид.
Будем поступательно перемещать образующую параболу
расположенную в плоскости Oyz, параллельно самой себе вдоль направляющей параболы
находящейся в плоскости Oxz. Полученная таким образом поверхность называется гиперболическим параболоидом или седловидной поверхностью.
Найдем уравнение этой поверхности. Пусть М(х. у, z) — произвольная точка гиперболического параболоида. По его построению точка М принадлежит параболе с вершиной в точке 


то, подставив в него координаты точки М, мы и получим после несложных преобразований уравнение гиперболического параболоида:
Здесь, как и для эллиптического параболоида, числа р, q — параметры гиперболического параболоида, точка O(0,0) и ось Oz — соответственно вершина и ось гиперболического параболоида.
Замечание 1. Седловидная поверхность может быть также получена перемещением параболы 
Судя по уравнению гиперболического параболоида, в сечениях этой поверхности плоскостями z = h > 0 находятся гиперболы, действительные оси которых параллельны координатной оси Ох. Аналогично, плоскости z = h < 0 пересекают данную поверхность по гиперболам с действительными осями, параллельными оси Оу. Наконец, плоскость Оху пересекает гиперболический параболоид по двум прямым
Гиперболические параболоиды, осями которых служат координатные оси Ох и Оу, имеют, соответственно, уравнения:
Замечание 2. Отразив седловидную поверхность относительно координатной плоскости, перпендикулярной ее оси, получим гиперболический параболоид, уравнение которого отличается знаком правой части от уравнения исходной поверхности.
Цилиндры второго порядка
Цилиндром второго порядка называется поверхность, полученная перемещением некоторой прямой (образующей) вдоль кривой второго порядка (направляющей), расположенной в плоскости, не содержащей образующую, параллельно фиксированному ненулевому вектору в пространстве.
Ограничимся случаем, когда направляющая расположена в одной из координатных плоскостей, а образующая перпендикулярна этой плоскости. Возьмем для определенности в плоскости Оху кривую второго порядка и будем перемещать прямую, параллельную оси Oz, вдоль этой кривой. Так как проекцией любой точки M(x,y,z) полученного таким образом цилиндра на плоскость Оху является точка N(x,y), принадлежащая кривой второго порядка, то координаты точки М удовлетворяют уравнению этой кривой. Следовательно, уравнением построенного цилиндра является уравнение его направляющей.
Перечислим теперь цилиндры второго порядка.
1) 
В частности, при а = b мы получим круговой цилиндр.
2 2 X у
2) 
3) 
Аналогичные уравнения имеют цилиндры второго порядка, образующие которых параллельны осям Ох и Оу, а направляющие расположены в координатных плоскостях Oyz и Oxz, соответственно.
Конус второго порядка
Конус второго порядка представляет собой поверхность, которая может быть получена перемещением прямой (образующей), имеющей неподвижную точку, которая называется вершиной конуса, вдоль кривой второго порядка (направляющей), расположенной в плоскости, не содержащей вершину.
Найдем уравнение конуса, вершина которого совпадает с началом координат, а направляющей служит эллипс с уравнением
расположенный в плоскости z = с, с > 0.
Пусть M(x,y,z) — произвольная точка конуса. Обозначим через 

а точки M — уравнениям
Из последних уравнений мы находим:
Подставив найденные выражения для
Координатная ось Oz называется осью конуса. Если а = b, то конус является круговым.
Конусы второго порядка с осями Ох и Оу имеют, соответственно, уравнения:
Покажем, что вид конуса второго порядка не зависит от выбора направляющей. Действительно, если в качестве направляющей взять гиперболу
находящегося в плоскости 2 = с, то после рассуждений, аналогичных предыдущим, получим поверхность с уравнением
т. е. конус с осью Ох. Если же за направляющую мы выберем в плоскости z = с параболу с уравнением
то построенный таким образом конус имеет уравнение
Наблюдая со стороны положительной полуоси Оу, повернем систему координат Oxz вокруг оси Оу на угол 45° против часовой стрелки. Тогда произведение xz в системе координат
запишется как 
и, стало быть, эта поверхность является конусом с осью
Как следует из уравнения конуса и его построения, плоскости, перпендикулярные его оси, пересекают эту поверхность по эллипсам, сечениями конуса плоскостями, параллельными его оси, являются гиперболы, и, наконец, в сечениях конуса плоскостями, параллельными образующей, располагаются параболы.
Приведение уравнения поверхности второго порядка к каноническому виду
По аналогии с уравнением кривой второго порядка (§4, пункт 4), уравнение поверхности второго порядка, не содержащее произведений координат, мы можем за счет выделения полных квадратов привести к уравнению одной из рассмотренных в пунктах 1—5 поверхностей. Следовательно, мы получим одну из поверхностей второго порядка в смещенной с помощью параллельного переноса системе координат. Исключение, правда, составляет случай, когда уравнение поверхности содержит полный квадрат и два линейных слагаемых относительно других координат. Такая поверхность представляет собой параболический цилиндр в смещенной с помощью параллельного переноса и повернутой затем вокруг одной из координатных осей системе координат.
Пример №8
Привести уравнение второго порядка
к каноническому виду, назвать и построить поверхность.
Решение. После выделения полных квадратов по переменным у, z получим:
Переписав это уравнение в виде
мы замечаем, что в смещенной с помощью параллельного переноса в точку 
Прямая на плоскости. Общее уравнение прямой на плоскости
Докажем, что всякая прямая на плоскости задается в любой пдск уравнением первой степени относительно двух переменных.
Если A – некоторая точка на прямой 




Чтобы вывести уравнение прямой, зададим на плоскости пдск XOY .
В этой системе координат
Пусть M (x, y) – произвольная точка
на 





Координаты точек, лежащих на прямой


Определение: Любой ненулевой вектор 



(3.2) – общее уравнение прямой на плоскости,
Уравнение прямой с направляющим вектором
Определение: Любой ненулевой вектор 
Если A – некоторая точка на прямой 




Чтобы вывести уравнение прямой, зададим на плоскости пдск XOY . В этой системе координат
Пусть M (x, y) – произвольная точка на . Тогда 

(3.3) – уравнение прямой на плоскости с направляющим вектором.
Если 
Уравнение прямой с угловым коэффициентом
Пусть 

Определение: Угловым коэффициентом прямой 
Очевидно, что если 

Рассмотрим уравнение (3.3) прямой с направляющим вектором

Отсюда следует (3.5) – уравнение прямой с заданным угловым коэффициентом, проходящей через заданную точку
Из (3.5) получим 

(3.6) – уравнение прямой с угловым коэффициентом.
Угол между прямыми на плоскости
Определение: Углом между двумя прямыми на плоскости называется любой из двух смежных углов, образованных ими при пересечении. Если прямые параллельны, то угол между ними равен 0 или
Пусть прямые заданы общими уравнениями.
Условие параллельности прямых:
Условие перпендикулярности прямых:
Рассмотрим случай, когда прямые заданы уравнениями с угловым коэффициентом.

Так как 
Условие параллельности прямых:
Условие перпендикулярности:

не существует, то
Пример №9
Даны вершины треугольника:
Написать:
а) уравнение медианы AM , б) высоты AH , в) найти угол между AM и AH
(рис. 25).

Перепишем уравнение медианы в общем виде:

б)

в)
Расстояние от точки до прямой на плоскости
Пусть в некоторой пдск XOY задана прямая 

Пусть 


Нормаль
где d – искомое расстояние, 
Следовательно,
Так как 
Отсюда
(3.8) – формула для вычисления расстояния от точки до прямой на плоскости.
Пример №10
Найти длину высоты
Уравнение 
искомая длина высоты АН.
Кривые второго порядка
Окружность
Определение: Кривые второго порядка – плоские линии, которые в пдск XOY задаются уравнениями второй степени относительно двух переменных x,y.
Определение: Окружностью называется совокупность точек плоскости, равноудаленных от фиксированной точки, называемой ее центром.
Выведем уравнение окружности. Зададим пдск XOY . Пусть 


Если точка M (x, y) не лежит на окружности, то 

Если 
(3.10) – каноническое уравнение окружности.
Пример №11
Показать, что уравнение 
Приведем данное уравнение к виду (3.9), выделив полный квадрат по переменной x :
Пример №12
Написать уравнение линии центров окружностей
Найдем центр второй окружности:
Уравнение прямой (3.4), проходящей через две точки:
Эллипс
Определение: Эллипс – совокупность точек плоскости, сумма расстояний от которых до двух фиксированных точек этой плоскости, называемых фокусами, есть величина постоянная и большая, чем расстояние между фокусами.
Чтобы вывести уравнение эллипса, выберем пдск следующим образом: ось абсцисс проведем через фокусы 





2a>2c определению эллипса.

Запишем в виде уравнения свойство точек, принадлежащих эллипсу, сформулированное в определении:
(3.11) – уравнение эллипса в выбранной системе координат. Преобразуем его к
более простому (каноническому) виду. Для этого умножим (3.11) на сопряженное выражение:
Сложим (3.11) и (3.12) и результат возведем в квадрат:
Так как по определению a>c, то есть 

Тогда из (3.13) получим:
(3.14) – каноническое уравнение эллипса.
Исследуем форму эллипса по его каноническому уравнению. Найдем точки пересечения с осями координат:

Из (3.14) следует, что
Значит, эллипс расположен в прямоугольнике со сторонами 
Кроме того, из уравнения следует, что он симметричен относительно OX и OY . O(0,0) – точка пересечения осей симметрии – центр симметрии эллипса.
Ось, на которой лежат фокусы, называется фокальной осью эллипса. Точки пересечения эллипса с осями симметрии называются его вершинами.




Отношение полуфокусного расстояния к длине большой полуоси 
Так как 


ЗАМЕЧАНИЕ 1. Уравнение эллипса, центр которого 
ЗАМЕЧАНИЕ 2. К кривым второго порядка эллиптического типа относятся также мнимый эллипс

Пример №13
Найти эксцентриситет эллипса 
Так как 
Гипербола
Определение: Гипербола – совокупность точек плоскости, модуль разности расстояний от которых до двух фиксированных точек этой плоскости, называемых фокусами, есть величина постоянная, не равная нулю и меньшая, чем расстояние между фокусами.
Чтобы вывести уравнение гиперболы, выберем пдск следующим образом:
ось абсцисс проведем через фокусы 
ка 



Запишем свойство точек, принадлежащих гиперболе, сформулированное в определении:
(3.16) – уравнение гиперболы в выбранной системе координат ( «+» – если разность расстояний положительна, и «–» – если отрицательна). Чтобы привести это уравнение к более простому виду, умножим (3.16) на сопряженное выражение и выполним такие же действия, как при упрощении уравнения эллипса, после чего получим:
По определению 

(3.18) – каноническое уравнение гиперболы.
Исследуем форму гиперболы по ее каноническому уравнению.
Из (3.18) следует, что гипербола симметрична относительно осей координат. Если x=0, 


c – полуфокусное расстояние, a – действительная полуось, b – мнимая полуось. Отношение полуфокусного расстояния к длине действительной полуоси называется эксцентриситетом гиперболы: 
Считая, что 




причем ординаты точек на ней меньше соответствующих ординат точек на этой
прямой:

Из симметрии гиперболы следует, что то же самое происходит во второй, третьей и четвертой четвертях. Поэтому 
Итак, прямые
Если фокусы гиперболы лежат на OY , то ее уравнение имеет вид:
Гиперболы (3.18) и (3.19) называются сопряженными (рис. 31). Уравнения асимптот (3.19) такие же, как и для (3.18), но действительной является ось OY .
Если a = b, то гипербола называется равносторонней: 
Очевидно, в этом случае асимптоты перпендикулярны. После поворота осей координат на 
ЗАМЕЧАНИЕ 1. Если центр гиперболы в точке 
ЗАМЕЧАНИЕ 2. К кривым второго порядка гиперболического типа относится также пара пересекающихся прямых:
Пример №14
Найти координаты центра и написать уравнения асимптот гиперболы
Приведем данное уравнение к виду (3.20):
Таким образом, 

Парабола
Определение: Парабола – совокупность точек плоскости, равноудаленных от фиксированной точки этой плоскости, называемой фокусом, и фиксированной прямой, не проходящей через эту точку, называемой директрисой. Чтобы вывести уравнение параболы, выберем пдск следующим образом: ось абсцисс проведем через фокус перпендикулярно директрисе, а ось ординат посередине между фокусом и директрисой (рис. 33).
Пусть расстояние между фокусом F и директрисой DK равно p . Тогда 
(3.21) – уравнение параболы в выбранной системе координат.
Упростим его:
(3.22) – каноническое уравнение параболы; p называется ее параметром.
Из уравнения следует, что парабола симметрична относительно OX и проходит через начало координат. Кроме того, если 

Если фокус параболы на оси ОУ (рис. 35), то ее каноническое уравнение имеет вид
ЗАМЕЧАНИЕ 1. Если вершина параболы в точке 
ЗАМЕЧАНИЕ 2. К кривым второго порядка параболического типа относятся также 


Пример №15
Написать уравнение геометрического места точек, равноудаленных от прямой x + y — 1 = 0 и точки F(-3,2).
По определению множество точек, равноудаленных от данных точки и прямой, является параболой. Пусть M (x, y) – произвольная точка искомой параболы, тогда 


Если оси координат системы XOY повернуть на угол 



ЗАМЕЧАНИЕ. Можно показать, что, кроме окружности, эллипса, гиперболы, параболы и вырожденных случаев, указанных в замечаниях, других кривых второго порядка не существует.
Преобразования координат на плоскости
Преобразование координат — замена системы координат на плоскости, в пространстве или, в самом общем случае, на заданном n-мерном многообразии.
Параллельный перенос координатных осей
Пусть на плоскости задана пдск ХОУ. Будем называть ее “старой”. “Новая” система координат 


Пусть 

Тогда
так как 
Так как 
или
(3.23) – формулы параллельного переноса осей пдск.
Поворот координатных осей на угол α
Поворот координатных осей на угол 
Пусть “новая” пдск 

Из рис. 38 очевидно, что
Так как 
(3.24) – формулы поворота координатных осей на угол , выражающие старые координаты точки через новые.
Если обозначить 



(3.25) – формулы поворота координатных осей на угол 
Пример №16
Каким будет уравнение прямой x + y — 1 = 0 после поворота координатных осей на угол
новое уравнение прямой (рис. 39).
Линейные преобразования на плоскости
Рассмотрим систему линейных уравнений:
Каждой точке плоскости M(x, y) по формулам (3.26) можно поставить в соответствие единственную точку 
Преобразование (3.26) определяется матрицей 
(3.26) можно переписать в виде 



Пример №17

оси OX в 2 раза.

Пример №18
при этом направление обхода 

Определение: Линейное преобразование (3.26) называется невырожденным, если
В этом случае существует обратная матрица 


Можно показать, что невырожденное линейное преобразование переводит прямую в прямую, а кривую второго порядка – в кривую второго порядка.
Пример №19
Пусть 
Какими будут образы точек, лежащих, например, на прямой x + y — 1 = 0
(рис. 42)?
Очевидно, что если 
Пример №20
Рассмотрим формулы (3.25):
Очевидно, что поворот осей пдск на угол 
Так как это линейное преобразование невырожденное, то существует
Заметим, что в этом случае
Определение: Матрица A называется ортогональной, если 
Линейное преобразование, матрица которого ортогональна, называется ортогональным.
Таким образом, поворот координатных осей – ортогональное линейное преобразование.
Можно показать, что если A – ортогональная матрица, то 
Произведение линейных преобразований
Рассмотрим матрицы 

В свою очередь точка N под действием линейного преобразования 
Такое последовательное выполнение линейных преобразований называется их произведением:
Покажем, что произведение линейных преобразований также линейное преобразование, и найдем его матрицу. Подставим (3.27) в (3.28):

То есть
(3.29) – система линейных уравнений, а потому произведение линейных преобразований линейно. Матрица (3.29) имеет вид:
Таким образом, матрица произведения линейных преобразований равна произведению их матриц. Само же правило умножения матриц, сформулированное в гл.1, находит объяснение в этом выводе.
Приведение квадратичной формы к каноническому виду
Определение: Квадратичной формой относительно двух переменных x и y называется однородный многочлен второй степени:
Уравнение 

начала координат, то есть является центральной кривой (эллиптического или гиперболического типа).
Предположим, что уравнение 

угол 


Матрица 
Пусть
Вычислим
Таким образом, квадратичная форма может быть записана в матричном виде:
Пусть x, y – координаты точек плоскости в системе XOY , а 

(3.32) – ортогональное линейное преобразование с матрицей
По определению ортогональной матрицы
(В результате ортогонального преобразования не происходит изменение площадей фигур, то есть фигуры не деформируются.)
Чтобы узнать, как изменится матрица квадратичной формы в результате линейного преобразования (3.32), подставим (3.32) в (3.31): 
(свойство 2 умножения матриц и равенство (3.33)) – матрица новой квадратичной формы.
Так как в “новой” системе координат кривая должна задаваться каноническим уравнением, то есть в нем должно отсутствовать произведение координат xy, то 
, где 


По определению равных матриц имеем:
Системы уравнений (3.34), (3.35) – линейные и однородные. Они имеют нетривиальное решение, если их определители равны 0.
Это означает, что 
Уравнение (3.36) называется характеристическим уравнением матрицы A (характеристическим уравнением квадратичной формы). Его решения 
Покажем, что дискриминант квадратного уравнения (3.36) положителен, то есть любая квадратичная форма двух переменных имеет 2 различных собственных значения.
Вычислим определитель (3.36):
Дискриминант
так как 
Таким образом, коэффициентами при 
Решим (3.36) и подставим 



Векторы 

Аналогично подставим 


Можно показать, что 


вектор, поэтому ортами “новой” системы координат 

ВЫВОД.
Чтобы привести квадратичную форму к каноническому виду, надо:
- Составить и решить характеристическое уравнение (3.36); его решения – собственные значения – являются коэффициентами при
в каноническом виде квадратичной формы.
- Найти единичные собственные векторы, решив (3.34) и (3.35); они будут ортами новой системы координат
.При этом если ось
сонаправлена с
– канонический вид, который квадратичная форма имеет в системе
.
Приведение общего уравнения кривой второго порядка к каноническому виду
Общее уравнение кривой второго порядка имеет вид:
В результате невырожденного линейного преобразования с матрицей T квадратичная форма перейдет в квадратичную форму, линейная – в линейную, а свободный член 
После поворота осей подберем параллельный перенос новой системы 
Пример №21
Привести к каноническому виду ранее полученное уравнение параболы (стр. 58) и построить ее:
1) Составим матрицу квадратичной формы:
2) Составим и решим характеристическое уравнение (3.36):

3) Найдем первый единичный собственный вектор, то есть решим систему (3.34):



4) Найдем второй единичный собственный вектор, то есть решим (3.35):



Заметим, что 
В полученной таким образом системе координат 

Сравните эскиз (рис. 36) и данный рисунок, являющийся результатом точных расчетов.
Плоскость
Покажем, что плоскость в пространстве задается в любой пдск линейным уравнением относительно трех переменных x, y, z.
Если A – некоторая точка на плоскости 




Чтобы вывести уравнение плоскости, зададим в пространстве пдск OXYZ . В этой системе координат
Пусть M(x,y,z) – произвольная точка на плоскости 
Тогда 

Вычислив скалярное произведение, получим:
Координаты точек, лежащих в плоскости 


Раскрыв скобки в (3.38), получим 
Обозначим 
(3.39) – общее уравнение плоскости в пространстве,
Определение: Любой ненулевой вектор 

Особые случаи расположения плоскости
Выясним, какие особенности в расположении плоскости влечет за собой равенство нулю одного или нескольких коэффициентов в уравнении (3.39).
координаты точки O(0,0,0) удовлетворяют уравнению, значит, плоскость проходит через начало координат.
, так как
, значит, плоскость
.
, так как
.Значит, плоскость
.
так как
. Значит, плоскость
.
проходит через OX .
проходит через OY .
проходит через OZ .
-
или
.
или
.
-
или
.
– плоскость YOZ .
– плоскость XOZ .
– плоскость XOY .
Уравнение плоскости в отрезках
Пусть плоскость 

Рассмотрим 


Аналогично 
Подставив А, В, С в общее уравнение, получим
(3.40) – уравнение плоскости в отрезках.
Пример №22
Вычислить объем тетраэдра, образованного плоскостями
Перепишем уравнение плоскости в виде (3.40):
уравнение данной плоскости в отрезках. Поэтому (рис. 47)
Уравнение плоскости, проходящей через три точки
Пусть в некоторой пдск заданы три точки, не лежащие на одной прямой:


Чтобы вывести ее уравнение, рассмотрим произвольную точку этой плоскости M(x,y,z) . Тогда 

(3.41) – уравнение плоскости, проходящей через три точки.
ЗАМЕЧАНИЕ. Если точки лежат на одной прямой, то векторы 
Пример №23
Написать уравнение плоскости, проходящей через точки
Угол между плоскостями
Определение: Углом между плоскостями называется любой из двух смежных двугранных углов, образованных плоскостями при их пересечении.
Если плоскости параллельны, то угол между ними равен 0 или 
Рассмотрим плоскости 

Очевидно,
или
Если 
Если 
Пример №24
Найти угол между плоскостями

Прямая линия в пространстве
Всякая линия в пространстве есть результат пересечения двух поверхностей. В частности прямую линию можно рассматривать как результат пересечения двух плоскостей
и
Если 



определяет прямую линию в пространстве.

Уравнения (3.42) называются общими уравнениями прямой в пространстве.
Очевидно, одна и та же прямая может быть результатом пересечения разных пар плоскостей (рис. 48), поэтому прямую в пространстве можно задать различными способами.
Уравнения (3.42) неудобны в использовании, так как не дают представления о расположении прямой относительно выбранной системы координат.
Поэтому выведем более удобные уравнения, эквивалентные (3.42), то есть из бесконечного множества плоскостей, проходящих через данную прямую, выберем в некотором смысле более заметную пару.
Канонические уравнения прямой в пространстве
Пусть в некоторой пдск задана прямая 



Для произвольной точки 



(рис. 49).
Отсюда 
(3.43) – векторное уравнение прямой в пространстве. Из (3.43) получаем:
(3.44) – параметрические уравнения прямой в пространстве, 
Выразим из каждого уравнения (3.44) параметр:
Тогда
(3.45) – канонические уравнения прямой в пространстве, то есть уравнения прямой, проходящей через точку 

Заметим, что уравнения (3.45) задают прямую как результат пересечения плоскостей
одна из которых параллельна OZ , а вторая – OY или как
где первая плоскость параллельна OZ , а вторая – OX .
Если прямая 


(3.46) – уравнения пространственной прямой, проходящей через две заданные точки.
Угол между прямыми в пространстве
Рассмотрим прямые, заданные в некоторой пдск каноническими уравнениями:
и
Определение: Углом между прямыми в пространстве называется угол между двумя пересекающимися прямыми, проходящими через произвольную точку пространства параллельно данным.
Из определения следует, что 


1)
2)
Пример №25
Найти угол между прямой 


Заметим, что уравнение прямой 

Приведение общих уравнений прямой в пространстве к каноническому виду
Рассмотрим прямую 
Привести эти уравнения к каноническому виду можно двумя способами:
- найти координаты какой-либо точки
, лежащей на
, ее направляющий вектор s и написать уравнения (3.45);
- найти координаты двух точек, лежащих на
, и воспользоваться уравнениями (3.46).
1 способ.
Координаты точки A – любое частное решение системы линейных уравнений (3.42). Эта система имеет бесконечное множество решений, так как ранги основной и расширенной матриц 










Пример №26
Привести уравнения прямой 
Найдем какое-нибудь частное решение этой системы: пусть, например,

Таким образом, 
2 способ.
Найдем два произвольных частных решения системы уравнений, задающей прямую.
В рассмотренном примере 
тогда 

Угол между прямой и плоскостью
Определение: Углом между прямой и плоскостью называется угол между прямой и ее проекцией на эту плоскость.
Пусть в некоторой пдск заданы плоскость
и прямая
Определение общих точек прямой и плоскости
Чтобы найти общие точки прямой : 

Решение этой системы будет наименее трудоемким, если перейти к параметрическим уравнениям прямой (3.44):
1) Пусть 

и по формулам (3.44) M(x,y,z) – их точку пересечения.
2) Пусть 


3) Пусть 


Пример №27
Найти проекцию точки 

Пусть прямая 



Напишем канонические уравнения прямой (3.45):


Цилиндрические поверхности
Уравнение F(x, y, z)=0 задает в пространстве некоторую поверхность.
Пусть уравнение содержит только две переменные, например, F(x,y)=0.Рассмотренное в плоскости XOY , оно задает некоторую кривую. Но ему будут удовлетворять и все точки пространства, которые проецируются в точки этой кривой, так как в уравнении отсутствует z , то есть все точки M(x,y,z) у которых х и у связаны соотношением 
Пример №28
Построить поверхность 
На плоскости это уравнение задает окружность с центром О(0, 0) и R=1.
В пространстве ему удовлетворяют координаты всех точек, проекция которых на плоскость ХОУ лежит на этой окружности. Очевидно, что эта поверхность – круговой цилиндр
(рис. 54).
Цилиндрические поверхности бывают не только круговыми.
Определение: Цилиндрической называется поверхность, полученная движением прямой, параллельной некоторому вектору, и пересекающей при движении некоторую кривую. При этом движущаяся прямая называется образующей, а кривая, которую она пересекает, называется направляющей цилиндрической поверхности.
Для поверхности 
ВЫВОД. Если уравнение поверхности содержит только две переменные, то оно задает цилиндрическую поверхность. У поверхности F(y,z) ,образующая параллельна OX , а направляющая лежит в плоскости YOZ . Для поверхности F(x,z) ,образующая параллельна OY , направляющая в плоскости XOZ .
Пример №29
Построить и назвать поверхности 
Поверхности вращения
Определение: Поверхностью вращения называется поверхность, полученная в результате вращения плоской кривой вокруг оси, лежащей в ее
плоскости.
Из определения следует, что сечением такой поверхности любой плоскостью, перпендикулярной оси вращения, является окружность.
Пусть в плоскости YOZ задана кривая 
Пусть M(x,y,z) – произвольная точка на поверхности, 

Тогда 
Но
Таким образом, уравнение поверхности вращения получим, если в уравнении кривой 


Очевидно, что если кривая F(y,z)=0 вращается вокруг OY , то уравнение
поверхности вращения имеет вид:
Некоторые поверхности второго порядка
1. Пусть эллипс 

Полученная поверхность является поверхностью второго порядка, так ее уравнение 
Поверхность, задаваемая уравнением 
2. Если гипербола 
поверхности вращения имеет вид
или
Такая поверхность называется однополостным гиперболоидом вращения (рис. 59).
3. Если гипербола 

4. Если пара пересекающихся прямых 


5. При вращении параболы 

Лекции по предметам:
- Математика
- Алгебра
- Линейная алгебра
- Векторная алгебра
- Геометрия
- Высшая математика
- Дискретная математика
- Математический анализ
- Теория вероятностей
- Математическая статистика
- Математическая логика
Пусть $L_1: frac{x-x_1}{m_1}=frac{y-y_1}{l_1}=frac{z-z_1}{k_1}$ и $L_2: frac{x-x_2}{m_2}=frac{y-y_2}{l_2}=frac{z-z_2}{k_2}$ — две скрещивающиеся прямые. Расстояние $rho(L_1, L_2)$ между прямыми $L_1$ и $L_2$ можно найти по следующей схеме:
1) Находим уравнение плоскости $P,$ проходящей через прямую $L_1,$ параллельно прямой $L_2:$
Плоскость $P$ проходит через точку $M_1(x_1, y_1, z_1),$ перпендикулярно вектору $overline n=[overline s_1, overline s_2]=(n_x, n_y, n_z),$ где $overline s_1=(m_1, l_1, k_1)$ и $overline s_2=(m_2, l_2, k_2)$ — направляющие вектора прямых $L_1$ и $L_2.$ Следовательно, уравнение плоскости $P: n_x(x-x_1)+n_y(y-y_1)+n_z(z-z_1)=0.$
2) Расстояние между прямыми $L_1$ и $L_2$ равно расстоянию от любой точки прямой $L_2$ до плоскости $P:$
$$rho(L_1, L_2)=rho (M_2, P)=left|frac{n_x x_2+n_y y_2+n_z z_2}{sqrt{n_x^2+n_y^2+n_z^2}}right|.$$
Нахождение общего перпендикуляра скрещивающихся прямых.
Для нахождения общего перпендикуляра прямых $L_1$ и $L_2,$ необходимо найти уравнения
плоскостей $P_1$ и $P_2,$ проходящих, соответственно, через прямые $L_1$ и $L_2,$ перпендикулярно плоскости $P.$
Пусть $P_1: A_1x+B_1y+C_1z+D_1=0;$
$P_2: A_2x+B_2y+C_2z+D_2=0.$
Тогда уравнение общего перпендикуляра имеет вид
$left{begin{array}{lcl}A_1x+B_1y+C_1z+D_1=0;\ A_2x+B_2y+C_2z+D_2=0.end{array}right. $
Пример.
2.214.
Для заданных прямых $L_1: frac{x+7}{3}=frac{y+4}{4}=frac{z+3}{-2}$ и $L_2:frac{x-21}{6}=frac{y+5}{-4}=frac{z-2}{-1}$ требуется:
а) доказать, что прямые не лежат в одной плоскости, то есть являются скрещивающимися;
б) написать уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1;$
в) вычислить расстояние между прямыми;
г) написать уравнения общего перпендикуляра к прямым $L_1$ и $L_2.$
Решение.
а) Если прямые $L_1$ и $L_2$ лежат в одной плоскости, то их направляющие вектора $overline{s_1}(3, 4, -2),$ $overline{s_2}(6, -4, -1),$ и вектор $overline l,$ соединяющий произвольную точку прямой $L_1$ и произвольную точку прямой $L_2$ компланарны. В качестве такого вектора $overline{l}$ можно выбрать $overline{l}(x_2-x_1, y_2-y_1, z_2-z_1).$ Проверим будут ли эти вектора компланарны.
$$begin{vmatrix}21-(-7)&-5-(-4)&2-(-3)\3&4&-2\6&-4&-1end{vmatrix}= begin{vmatrix}28&-1&5\3&4&-2\6&-4&-1end{vmatrix}=$$ $$=28cdot 4cdot(-1)+3cdot(-4)cdot 5+(-1)cdot (-2)cdot 6-$$ $$-6cdot 4cdot 5-(-4)cdot(-2)cdot 28-3cdot(-1)cdot (-1)=$$
$$-112-60+12-120-224+3=501neq 0.$$
Следовательно, вектора не компланарны и прямые не лежат в одной плоскости.
{jumi[*3]}
б) Запишем уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1.$ Эта плоскость проходит через точку $M_2(21, -5, 2)$ перпендикулярно вектору $overline n=[overline s_1, overline s_2].$
$$[s_1, s_2]=begin{vmatrix}i&j&k\3&4&-2\6&-4&-1end{vmatrix}=ibegin{vmatrix}4&-2\-4&-1end{vmatrix}-jbegin{vmatrix}3&-2\6&-1end{vmatrix}+kbegin{vmatrix}3&4\6&-4end{vmatrix}=$$ $$=i(-4-8)-j(-3+12)+k(-12-24)=-12i-9j-36k.$$
Таким образом, вектор $overline n$ имеет координаты $overline n(-12, -9, -36).$
Находим уравнение плоскости$$P:,, -12(x-21)-9(y+5)-36(z-2)=0Rightarrow$$ $$Rightarrow-12x-9y-36z+252-45+72=0Rightarrow -12x-9y-36z+279=0Rightarrow$$ $$Rightarrow 4x+3y+12z-93=0.$$
Ответ: $4x+3y+12z-93=0.$
в) Расстояние между прямыми $L_1$ и $L_2$ равно расстоянию от любой точки прямой $L_1$ до плоскости $P:$
$$rho(L_1, L_2)=rho(M_1, P)=left|frac{n_xx_1+n_yy_1+n_zz_1}{sqrt{n_x^2+n_y^2+n_z^2}}right|$$ $$rho(M_1, P)= left|frac{4(-7)+3(-4)+12(-3)}{sqrt{4^2+ 3^2+12^2}}right|= left|frac{-28-12-36}{sqrt{16+9+144}}right|=$$ $$=left|frac{-76}{sqrt{169}}right|=frac{76}{13}.$$
Ответ: $frac{76}{13}.$
г) Найдем уравнения плоскостей $P_1$ и $P_2,$ проходящих, соответственно, через прямые $L_1$ и $L_2,$ перпендикулярно плоскости $P.$
Имеем, $M_1=(-7, -4, -3)in P_1,$
$$overline n_1=[overline{s}_1, overline{n}] =begin{vmatrix}i&j&k\3&4&-2\4&3&12end{vmatrix}=ibegin{vmatrix}4&-2\3&12end{vmatrix}-jbegin{vmatrix}3&-2\4&12end{vmatrix}+kbegin{vmatrix}3&4\4&3end{vmatrix}=$$ $$=i(48+6)-j(36+8)+k(9-16)=54i-44j-7k.$$
Таким образом, $$P_1: 54(x+7)-44(y+4)-7(z+3)=54x-44y-7z+378-176-21=$$ $$=54x-44y-7z+181=0.$$
Аналогично находим $P_2:$
Имеем, $M_2=(21, -5, 2)in P_2,$
$$overline n_2=[overline{s}_2, overline{n}] =begin{vmatrix}i&j&k\6&-4&-1\4&3&12end{vmatrix}=ibegin{vmatrix}-4&-1\3&12end{vmatrix}-jbegin{vmatrix}6&-1\4&12end{vmatrix}+kbegin{vmatrix}6&-4\4&3end{vmatrix}=$$ $$=i(-48+3)-j(72+4)+k(18+16)=-45i-76j+34k.$$
Таким образом, $$P_1: -45(x-21)-76(y+5)+34(z-2)=-45x-76y+34z+945-380-68=$$ $$=-45x-76y+34z+497=0.$$
Ответ: $left{begin{array}{lcl}54x-44y-7z+181=0;\ -45x-76y+34z+497=0.end{array}right. $
Домашнее задание.
2.215.
Для заданных прямых $L_1: frac{x-6}{3}=frac{y-3}{-2}=frac{z+3}{4}$ и $L_2:frac{x+1}{3}=frac{y+7}{-3}=frac{z-4}{8}$ требуется:
а) доказать, что прямые не лежат в одной плоскости, то есть являются скрещивающимися;
б) написать уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1;$
в) вычислить расстояние между прямыми;
г) написать уравнения общего перпендикуляра к прямым $L_1$ и $L_2.$
Ответ: б) $4x+12y+12z+76=0;$
в) $frac{127}{13};$
г) $left{begin{array}{lcl}53x-7y-44z-429=0;\ 105x-23y-48z+136=0.end{array}right. $
{jumi[*4]}
Аналитическая геометрия — область математики, изучающая геометрические образы алгебраическими методами. Еще в XVII в. французским математиком Декартом был разработан метод координат, являющийся аппаратом аналитической геометрии.
В основе метода координат лежит понятие системы координат. Мы познакомимся с прямоугольной (или декартовой) и полярной системами координат.
Прямоугольная система координат
Две взаимно перпендикулярные оси Ох и Оу, имеющие общее начало О и одинаковую масштабную единицу (рис. 8), образуют прямоугольную систему координат на плоскости.
Ось Ох называется осью абсцисс, ось Оу — осью ординат, а обе оси вместе — осями координат. Точка О пересечения осей называется началом координат. Плоскость, в которой расположены оси Ох и Оу, называется координатной плоскостью и обозначается Оху.
Пусть М — произвольная точка плоскости. Опустим из нее перпендикуляры МА и MB на оси Ох и Оу.
Прямоугольными координатами х и у точки М будем называть соответственно величины OA и ОВ направленных отрезков 

Координаты хи у точки М называются соответственно ее абсцис-ой и ординатой. Тот факт, что точка М имеет координаты х и у, символически обозначают так: М (х; у). При этом первой в скобках указывают абсциссу, а второй — ординату. Начало координат имеет координаты (0; 0).
Таким образом, при выбранной системе координат каждой точке М плоскости соответствует единственная пара чисел (х;у) — ее прямоугольные координаты, и, обратно, на каждой паре чисел (х; у) соответствует, и притом одна, точка М плоскости Оху такая, что ее абсцисса равна х, а ордината у.
Итак, введение прямоугольной системы координат на плоскости позволяет установить взаимно однозначное соответствие между множеством всех точек плоскости и множеством пар чисел, что дает возможность при решении геометрических задач применять алгебраические методы.
Оси координат разбивают плоскость на четыре части, их называют четвертями, квадрантами или координатными углами и нумеруют римскими цифрами I, II, III, IV так, как показано на рис. 9. На рис. 9 указаны также знаки координат точек в зависимости от их расположения в той или иной четверти.
Простейшие задачи аналитической геометрии на плоскости
Расстояние между двумя точками.
Теорема:
Для любых двух точек 
Доказательство:
Опустим из точек 



Так как треугольник 
2. Площадь треугольника.
Теорема:
Для любых точек 
Доказательство:
Площадь треугольника ABC, изображенного на рис. 11, можно найти так:
где 
подставив выражения для этих площадей в равенство (3), получим формулу
из которой следует формула (2). Для любого другого расположения треугольника ABC формула (2) доказывается аналогично.

Пример:
Даны точки А (1; 1), В (6; 4), С (8; 2). Найти площадь треугольника ABC. По формуле (2):
3. Деление отрезка в данном отношении. Пусть на плоскости дан произвольный отрезок 

Число 
называется отношением, в котором точка М делит отрезок 
Задача о делении отрезка в данном отношении состоит в том, чтобы по данному отношению к и данным координатам точек 

Решить эту задачу позволяет следующая теорема.
Теорема:
Если точка М (х; у) делит отрезок 
где 


Доказательство:
Пусть прямая 




но 
Так как числа 







Следствие. Если 



Таким образом, каждая координата середины отрезка равна полусумме соответствующих координат.
Пример:
Даны точки 


Решение:
Искомая точка М делит отрезок 

Полярные координаты
Наиболее важной после прямоугольной системы координат является полярная система координат. Она состоит из некоторой точки О, называемой полюсом, и исходящего из нее луча ОЕ — полярной оси. Кроме того, задается единица масштаба для измерения длин отрезков.
Пусть задана полярная система координат и пусть М — произвольная точка плоскости. Пусть р — расстояние точки М от точки О; ф — угол, на который нужно повернуть полярную ось для совмещения с лучом ОМ (рис. 13).
Полярными координатами точки М называются числа р и «р. При этом число р считается первой координатой и называется полярным радиусом, число ф — второй координатой и называется полярным углом.
Точка М с полярными координатами р и ф обозначается так: М (р; ф). Очевидно, полярный радиус может иметь любое неотрицательное значение: 

Установим связь между полярными координатами точки и ее прямоугольными координатами. При этом будем предполагать, что начало прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью. Пусть точка М имеет прямоугольные координаты х и у и полярные координаты р и ф (рис. 14). Очевидно,
Формулы (1) выражают прямоугольные координаты через полярные. Выражения полярных координат через прямоугольные следуют из формул (I):
Заметим, что формула tg ф = у/x определяет два значения полярного угла ф, так как ф изменяется от 0 до 2
Пример:
Даны прямоугольные координаты точки: (2; 2). Найти ее полярные координаты, считая, что полюс совмещен с началом прямоугольной системы координат, а полярная ось совпадает с положительной полуосью абсцисс.
Решение:
По формулам (2) имеем
Согласно второму из этих равенств 


Преобразование прямоугольных координат
При решении многих задач аналитической геометрии наряду с данной прямоугольной системой координат приходится вводить и другие прямоугольные системы координат. При этом, естественно, изменяются как координаты точек, так и уравнения кривых. Возникает задача: как, зная координаты точки в одной системе координат, найти координаты этой же точки в другой системе координат. Решить эту задачу позволяют формулы преобразования координат.
Рассмотрим два вида преобразований прямоугольных координат:
1) параллельный сдвиг осей, когда изменяется положение начала координат, а направления осей остаются прежними;
2) поворот осей координат, когда обе оси поворачиваются в одну сторону на один и тот же угол, а начало координат не изменяется.
1.Параллельный сдвиг осей. Пусть точка М плоскости имеет координаты (х; у) в прямоугольной системе координат Оху. Перенесем начало координат в точку О’ (а; b), где а и b — координаты нового начала в старой системе координат Оху. Новые оси координат О’х’ и О’у’ выберем сонаправленными со старыми осями Ох и Оу. Обозначим координаты точки М в системе О’х’у’ (новые координаты) через (х’; у’). Выведем формулы, выражающие связь между новыми и старыми координатами точки М. Для этого проведем перпендикуляры 

Итак,
Это и есть искомые формулы.
2.Поворот осей координат. Повернем систему координат Оху вокруг начала координат О на угол а в положение Ох’у’ (рис. 16).
Пусть точка М имеет координаты (х; у) в старой системе координат Оху и координаты (х’; у’) в новой системе координат Ох’у’. Выведем формулы, устанавливающие связь между старыми и новыми координатами точки М. Для этого обозначим через (р; в) полярные координаты точки М, считая полярной осью положительную полуось Ох, а через (р; 0′) — полярные координаты той же точки М, считая полярной осью положительную полуось Ох’.
Очевидно, в каждом случае 
и аналогично
Таким образом,
Итак,
Выражая из этих равенств х’ и у’ через х и у, получим
Пример:
Определить координаты точки М (3; 5) в новой системе координат О’х’у’, начало О’ которой находится в точке ( — 2; 1), а оси параллельны осям старой системы координат Оху.
Решение:
По формуле (2) имеем
т. е. в новой системе координат точка М имеет координаты (5; 4).
Уравнение линии на плоскости
Рассмотрим соотношение вида
связывающее переменные величины х и у. Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у.
Примеры уравнений:
Если равенство (1) справедливо для всех пар чисел х и у, то оно называется тождеством.
Примеры тождеств:
Важнейшим понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия L (рис. 17).
Определение. Уравнение (1) называется уравнением линии L (в заданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты никакой точки, не лежащей на этой линии.
Из определения следует, что линия L представляет собой множество всех тех точек плоскости, координаты которых удовлетворяют уравнению (1). Будем говорить, что уравнение (1) определяет (или задает) линию L.
Понятие уравнения линии дает возможность решать геометрические задачи алгебраическими методами. Например, задача нахождения точки пересечения двух линий, определяемых уравнениями х + у = 0 и 
Линия L может определяться уравнением вида
Где 
Рассмотрим примеры уравнений линий.
1) х—у=0. Записав это уравнение в виде у—х, заключаем, что множество точек, координаты которых удовлетворяют данному уравнению, представляет собой биссектрисы I и III координатных углов. Это и есть линия, определенная уравнением х-у=0 (рис. 18).
2) 

3) 
4) 


5) p = acosф, где a — положительное число, переменные р и ф— полярные координаты. Обозначим через М точку с полярными координатами (р; ф), через А — точку с полярными координатами (а; 0) (рис. 20). Если p = acosф, где 
6) p=aф, где а — положительное число; р и ф — полярные координаты. Обозначим через М точку с полярными координатами (р; ф). Если ф=0, то и р = 0. Если ф возрастает, начиная от нуля, то р возрастает пропорционально ф. Точка М (р; ф), таким образом, исходя из полюсу, движется вокруг него с ростом ф, одновременно удаляясь от него. Множество точек, полярные координаты которых удовлетворяют уравнению р = аф,- называется спиралью Архимеда (рис. 21). При этом предполагается, что ф может принимать любые неотрицательные значения.
Если точка М совершает один полный оборот вокруг полюса, то ф возрастает на 


В приведенных примерах по заданному уравнению линии исследованы ее свойства и тем самым установлено, что представляет собой эта линия.
Рассмотрим теперь обратную задачу: для заданного какими-то свойствами множества точек, т. е. для заданной линии L, найти ее уравнение.
Пример:
Вывести уравнение (в заданной прямоугольной системе координат) множества точек, каждая из которых отстоит от точки 

Решение:
Расстояние от произвольной точки М (х; у) до точки С вычисляется по формуле
Если точка М лежит на окружности, то 

Если же точка М (х; у) не лежит на данной окружности, то 
Таким образом, искомое уравнение окружности имеет вид (2). Полагая в (2) 
Линии первого порядка
Уравнение прямой с угловым коэффициентом. Пусть дана которая прямая. Назовем углом наклона данной прямой к оси Ох угол а на который нужно повернуть ось Ох, чтобы ее положительное направление совпало с одним из направлений прямой. Угол а может иметь различные значения, которые отличаются друг от друга на величину 
Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом этой прямой и обозначается буквой k:
Из формулы (1), в частности, следует, что если а=0, т. е. прямая параллельна оси Ох, то k = 0. Если 
Выведем уравнение данной прямой, если известны ее угловой коэффициент k и величина b отрезка ОВ, который она отсекает на оси Оу (рис. 23) (т. е. данная прямая не перпендикулярна оси Ох).
Обозначим через М произвольную точку плоскости с координатами х и у. Если провести прямые BN и NM, параллельные осям, то в случае к
но 
Уравнение (2) после преобразования принимает вид
Уравнение (3) называют уравнением прямой с угловым коэффициентом. Если к = 0, то прямая параллельна оси Ох, и ее уравнение имеет вид у= Ь.
Итак, любая прямая, не перпендикулярная оси Ох, имеет уравнение вида (3). Очевидно, верно и обратное: любое уравнение вида (3) определяет прямую, которая имеет угловой коэффициент k и отсекает на оси Оу отрезок величины b.
Пример:
Построить прямую, заданную уравнением
Решение:
Отложим на оси Оу отрезок ОВ, величина которого равна 2 (рис. 24); проведем через точку В параллельно оси Ох отрезок, величина которого BN = 4, и через точку N параллельно оси Оу отрезок, величина которого NM = 3. Затем проведем прямую ВМ, которая и является искомой. Она имеет угловой коэффициент k=3/4 и отсекает на оси Оу отрезок величины b=2.
равнение прямой, проходящей через данную точку, с данным угловым коэффициентом. В ряде случаев возникает необходимость составить уравнение прямой, зная одну ее точку 


Замечание:
Если прямая проходит через точку 

Уравнение прямой, проходящей через две данные точки
Пусть даны две точки 




Определяя k из этого равенства (при условии 
Это уравнение, если 
Если 



Пример:
Составить уравнение прямой, проходящей через точки A
Решение:
Подставляя координаты точек 
Угол между двумя прямыми
Рассмотрим две прямые 






Из геометрических соображений устанавливаем зависимость между углами 
Формула (6) определяет один из углов между прямыми. Второй угол равен
Пример:
Две прямые заданы уравнениями 
Решение:
Очевидно, 
Таким образом, один из углов между данными прямыми равен 
Условия параллельности и перпендикулярности двух прямых
Если прямые 


Таким образом, условием параллельности двух прямых является равенство их угловых коэффициентов.
Если прямые 
Таким образом, условие перпендикулярности двух прямых состоит в том, что их угловые коэффициенты обратны по величине и противоположны по знаку. Это условие можно формально получить из формулы (6), если приравнять нулю знаменатель в правой части (6), что соответствует обращению 
Общее уравнение прямой
Теорема:
В прямоугольной системе координат любая прямая задается уравнением первой степени
и обратно, уравнение (7) при произвольных коэффициентах А, В, С (А и В не равны нулю одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.
Доказательство:
Сначала докажем первое утверждение. Если прямая не перпендикулярна оси Ох, то, как было показано в п. 1, она имеет уравнение y=kx + b, т. е. уравнение вида (7), где A=k, В=-1 и С=b. Если прямая перпендикулярна оси Ох, то все ее точки имеют одинаковые абсциссы, равные величине а отрезка, отсекаемого прямой на оси Ох (рис. 27). Уравнение этой прямой имеет вид х=а, т. е. также является уравнением первой степени вида (7), где А = 1, В = 0, С=—а. Тем самым первое утверждение доказано. Докажем обратное утверждение. Пусть дано уравнение (7), причем хотя бы один из коэффициентов A и В не равен нулю.
Если 
Полагая 
Если В=0, то 

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка. Таим образом каждая прямая есть линия первого порядка и, обратно, каждая линия первого порядка есть прямая.
Уравнение вида Ах + By + С=0 называется общим уравнением прямой. Оно содержит уравнение любой прямой при соответствующим выборе коэффициентов А, В, С.
Неполное уравнение первой степени. Уравнение прямой «в отрезках»
Рассмотрим три частных случая, когда уравнение Ах + By + С = 0 является неполным, т. е. какой-то из коэффциентов равен нулю.
1) С = 0; уравнение имеет вид Ах+Ву = 0 и определяет прямую, проходящую через начало координат.
2) 

3) 


Пусть теперь дано уравнение Ах+By+C=0 при условии, что ни один из коэффициентов А, В, С не равен нулю. Преобразуем его к виду
Вводя обозначения 
Уравнение (8) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения прямой удобна для геометрического построения прямой.
Пример:
Прямая задана уравнением 
Решение:
Для данной прямой уравнение «в отрезках» имеет
вид
Чтобы построить эту прямую, отложим на осях координат Ох и Оу отрезки, величины которых соответственно равны а=-5, b=3, и проведем прямую через точки 
Нормальное уравнение прямой. Расстояние от точки до прямой
Пусть дана некоторая прямая L. Проведем через начало координат прямую п, перпендикулярную данной, и назовем ее нормалью к прямой L. Буквой N отметим точку, в которой нормаль пересекает прямую L (рис. 30, а). На нормали введем направление от точки О к точке N. Таким образом, нормаль станет осью. Если точки N и О совпадают, то в качестве направления нормали возьмем любое из двух возможных.
Обозначим через 
Тем самым, 

Это равенство можно переписать в виде
Так как точки, не лежащие на данной прямой L, не удовлетворению (9), то (9) —уравнение прямой L в полярных координатах. По формулам, связывающим прямоугольные координаты с полярными, имеем: 
Если точки О и N совпадают, то прямая L проходит через начало координат (рис. 30, б) и р = 0. В этом случае, очевидно, для любой точки М прямой L выполняется равенство 

Таким образом, и в этом случае уравнение прямой можно представить в виде (10).
Уравнение (10) называется нормальным уравнением прямой L.
С помощью нормального уравнения прямой можно определить расстояние от данной точки плоскости до прямой.
Пусть L — прямая, заданная нормальным уравнением: 


Через точку 





Если же точки 




Таким образом, в каждом из рассмотренных случаев получаем формулу
Отметим, что формула (11) пригодна и в том случае, когда точка 



Теперь покажем, как привести общее уравнение прямой к нормальному виду. Пусть
— общее уравнение некоторой прямой, а
— ее нормальное уравнение.
Так как уравнения (12) и (13) определяют одну и ту же прямую, то их коэффициенты пропорциональны. Умножая все члены уравнения (12) на произвольный множитель 
При соответствущем выборе р полученное уравнение обращается в уравнение (13), т. е. выполняются равенства
Чтобы найти множитель р., возведем первые два из этих равенств в квадрат и сложим, тогда получаем
Отсюда
Число р называется нормирующим множителем. Знак нормирующего множителя определяется с помощью третьего из равенств (14). Согласно этому равенству 

Итак, для приведения общего уравнения прямой к нормальному виДу надо найти значение нормирующего множителя р, а затем все члены уравнения умножить на р.
Пример. Даны прямая 3х-4у+10=0 и точка М (4; 3). Найти расстояние d от точки М до данной прямой.
Решение. Приведем данное уравнение к нормальному виду. Для этого найдем по формуле (15) нормирующий множитель:
Умножая данное уравнение на р, получаем нормальное уравнение
По формуле (11) находим искомое расстояние:
Линии второго порядка
Рассмотрим три вида линий: эллипс, гиперболу и параболу, уравнения которых в прямоугольной системе координат являются уравнениями второй степени. Такие линии называются линиями второго порядка.
Эллипс
Определение:
Эллипсом называется множество всех точек плоскости, для которых сумма расстояний от двух данных точек, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.
Обозначим фокусы эллипса через 


Для вывода уравнения эллипса введем на плоскости прямоугольную систему координат так, чтобы фокусы эллипса лежали на оси абсцисс, а начало координат делило отрезок 

Пусть М (х; у) — произвольная точка плоскости. Обозначим через 


По формуле (1) из § 2 находим
Подставляя эти выражения в равенство (1), получаем
Уравнение (3) и есть искомое уравнение эллипса. Однако для практического использования оно неудобно, поэтому уравнение эллипса обычно приводят к более простому виду. Перенесем второй радикал в правую часть уравнения, а затем возведем обе части в квадрат:
С нова возведем обе части уравнения в квадрат
Отсюда
Введем в рассмотрение новую величину
геометрический смысл которой раскрыт далее. Так как по условию а>с, то 
Поэтому уравнение (5) можно переписать в виде
Разделив обе части на 
Так как уравнение (7) получено из уравнения (3), то координаты любой точки эллипса, удовлетворяющие уравнению (3), будут удовлетворять и уравнению (7). Однако при упрощении уравнения (3) обе его части дважды были возведены в квадрат и могли появиться «лишние» корни, вследствие чего уравнение (7) могло оказаться неравносильным уравнению (3). Убедимся в том, что если координаты точки удовлетворяют уравнению (7), то они удовлетворяют и уравнению (3), т. е. уравнения (3) и (7) равносильны. Для этого, очевидно, достаточно показать, что величины г, и г2 для любой точки, координаты которой удовлетворяют уравнению (7), удовлетворяют соотношению (1). Действительно, пусть координаты х и у некоторой точки удовлетворяют уравнению (7). Тогда, подставляя в выражение (2) значение 


Аналогично найдем, что 
Исследуем теперь форму эллипса по его каноническому уравнению (7). Заметим, что уравнение (7) содержит только члены с четными степенями координат х и у, поэтому эллипс симметричен относительно осей Ох и Оу а также относительно начала координат. Таким образом, можно знать форму всего эллипса, если установить вид той его части, которая лежит в I координатном угле. Для этой части 
Из равенства (8) вытекают следующие утверждения.
1)Если x=0, то у=b. Следовательно, точка (0; b) лежит на эллипсе. Обозначим ее через В.
2)При возрастании х от 0 до а у уменьшается.
3)Если х=а, то у=0. Следовательно, точка (а; 0) лежит на эллипсе. Обозначим ее через А.
4)При х>а получаем мнимые значения у. Следовательно, точек эллипса, у которых х>а, не существует.
Итак, частью эллипса, расположенной в I координатном угле, является дуга ВА (рис. 33).
Произведя симметрию относительно координатных осей, получим весь эллипс.
Замечание. Если а=b, то уравнение (7) принимает вид 


Оси симметрии эллипса называются его осями, а центр симметрии (точка пересечения осей) — центром эллипса. Точки, в которых эллипс пересекает оси, называются его вершинами. Вершины ограничивают на осях отрезки, равные 2а и 2b. Из равенства (6) следует, что 
Введем еще одну величину, характеризующую форму эллипса.
Определение:
Эксцентриситетом эллипса называется отношение 
Эксцентриситет обычно обозначают буквой 


откуда
Из последнего равенства легко получается геометрическое истолкование эксцентриситета эллипса. При очень малом е числа а и b почти равны, т. е. эллипс близок к окружности. Если же е близко к единице, то число b весьма мало по сравнению с числом а и эллипс сильно вытянут вдоль большой оси. Таким образом, эксцентриситет эллипса характеризует меру вытянутости эллипса.
Как известно, планеты и некоторые кометы движутся по эллиптическим траекториям. Оказывается, что эксцентриситеты планетных орбит весьма малы, а кометных — велики, т. е. близки к единице. Таким образом, планеты движутся почти по окружностям, а кометы то приближаются к Солнцу (Солнце находится в одном из фокусов), то значительно удаляются от него.
Гипербола
Определение:
Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.
Обозначим фокусы гиперболы через 


Для вывода уравнения гиперболы введем на плоскости прямоугольную систему координат так, чтобы фокусы гиперболы лежали на оси абсцисс, а начало координат делило отрезок 
Тогда фокусы гиперболы имеют координаты 




По формуле (1) из § 2 находим
Подставляя эти выражения в равенство (9), получаем
Уравнение (11) и является искомым уравнением гиперболы. Упростим это уравнение аналогично тому, как было упрощено уравнение (3) для эллипса. Перенесем второй радикал в правую часть уравнения, после чего возведем обе части в квадрат. Получаем
Снова возведем обе части уравнения в квадрат:
Отсюда
Введем в рассмотрение новую величину
геометрический смысл которой раскрыт далее. Так как с>а, то 
Уравнение (13) принимает вид
Как и для эллипса, можно доказать равносильность уравнений (15) и (11). Уравнение (15) называется каноническим уравнением гиперболы.
Исследуем форму гиперболы по ее каноническому уравнению. Так как уравнение (15) содержит члены только с четными степенями координат х и у, то гипербола симметрична относительно осей Ох и Оу, а также относительно начала координат. Поэтому достаточно рассмотреть только часть гиперболы, лежащую в 1 координатном угле. Для этой части у
Из равенства (16) вытекают следующие утверждения.
1)Если 

2)Если х=а, то у= 0, т. е. точка (а; 0) принадлежит гиперболе. Обозначим ее через А.
3)Если х>а, то у>0, причем у возрастает при возрастании х и 

Для этого кроме уравнения (16) рассмотрим уравнение
которое определяет прямую с угловым коэффициентом k=b/a, проходящую через начало координат. Часть этой прямой, расположенная в I координатном угле, изображена на рис. 35. Для ее построения можно использовать прямоугольный треугольник OAВ с катетами ОА = а и АВ = b.
Покажем, что точка М, уходя по гиперболе в бесконечность, неограниченно приближается к прямой (17), которая является асимптотой гиперболы.
Возьмем произвольное значение х(х
Точка М лежит на гиперболе, точка N — на прямой (17). Поскольку обе точки имеют одну и ту же абсциссу х, прямая MN перпендикулярна оси Ох (рис. 36). Найдем длину отрезка MN. Прежде всего заметим, что при х
Это означает, что при одной и той же абсциссе точка гиперболы лежит под соответствующей точкой асимптоты. Таким образом,
Из полученного выражения следует, что 


Обозначим через Р основание перпендикуляра, опущенного из точки М на прямую (17). Тогда 




Вид всей гиперболы теперь можно легко установить, используя симметрию относительно координатных осей (рис. 37). Гипербола состоит из двух ветвей (правой и левой) и имеет две асимптоты: 
Оси симметрии называются осями гиперболы, а центр симметрии (точка пересечения осей) — центром гиперболы. Одна из осей пересекается с гиперболой в двух точках, которые называются ее вершинами (они на рис. 37 обозначены буквами А’ и А). Эта ось называется действительной осью гиперболы. Другая ось не имеет общих точек с гиперболой и называется мнимой осью гиперболы. Прямоугольник ВВ’С’С со сторонами 2а и 2b (рис. 37) называется основным прямоугольником гиперболы. Величины а и Ь называются соответственно действительной и мнимой полуосями гиперболы.
Уравнение
также определяет гиперболу. Она изображена на рис. 37 пунктирными линиями; вершины ее лежат на оси Оу. Эта гипербола называется сопряженной по отношению к гиперболе (15). Обе эти гиперболы имеют одни и те же асимптоты.
Гипербола с равными полуосями (а = b) называется равносто-нней и ее каноническое уравнение имеет вид
Так как основной прямоугольник равносторонней гиперболы является квадратом, то асимптоты равносторонней гиперболы перпендикулярны друг другу.
Определение. Эксцентриситетом гиперболы называется отношение 
Эксцентриситет гиперболы (как и эллипса) обозначим буквой е. Так как с>а, то е>1, т. е. эксцентриситет гиперболы больше единицы. Заметив, что 
откуда
Из последнго равенства легко получается геометрическое истолкование эксцентриситета гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше отношение b/а, а это означает, что основной прямоугольник более вытянут в направлении действительной оси. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы.
В случае равносторонней гиперболы
Директрисы эллипса и гиперболы
Определение:
Две прямые, перпендикулярные большой оси эллипса и расположенные симметрично относительно центра на расстоянии а/е от него, называются директрисами эллипса (здесь а — большая полуось, е — эксцентриситет эллипса).
Уравнения директрис эллипса, заданного каноническим уравнением (7), имеют вид
Так как для эллипса е<1, то а/е>а. Отсюда следует, что правая директриса расположена правее правой вершины эллипса, а левая — левее его левой вершины (рис. 38).
Определение:
Две прямые, перпендикулярные действительной Си гиперболы и расположенные симметрично относительно центра на расстоянии а/е от него, называются директрисами гиперболами (здесь а—действительная полуось, е—эксцентриситет гиперболы).
Уравнения директрис гиперболы, заданной каноническим уравнением (15), имеют вид
Так как для гиперболы е>1, то а/е<а. Отсюда следует что правая директриса расположена между центром и правой вершиной гиперболы, а левая — между центром и левой вершиной (рис. 39).
С помощью понятий директрисы и эксцентриситета можно сфор. мулировать общее свойство, присущее эллипсу и гиперболе. Имеют место следующие две теоремы.
Теорема:
Если r — расстояние от произвольной точки М эллипса до какого-нибудь фокуса, d — расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение 
Доказательство:
Предположим для определенности, что речь идет о правом фокусе 
которое легко устанавливается из рисунка. Из равенств (2) и (4) имеем
Полагая с/а=е, получаем формулу расстояния от точки М до правого фокуса:
Из соотношений (18) и (19) имеем
Теорема:
Если r — расстояние от произвольной точки М гиперболы до какого-нибудь фокуса, d — расстояние от той точки до соответствующей этому фокусу директрисы, то отношение есть величина постоянная, равная эксцентриситету гиперболы.
Доказательство:
Предположим для определенности, что идет о правом фокусе Fi и правой директрисе. Пусть М(х; у) — произвольная точка гиперболы (рис. 39). Рассмотрим два случая.
1) Точка М находится на правой ветви гиперболы. Тогда расстояние от точки М до правой директрисы выражается равенством
которое легко устанавливается из рисунка. Из равенств (10) и (12) имеем
Полагая с/а = е, получаем формулу расстояния от точки М до правого фокуса:
Из соотношений (20) и (21) имеем
2) Точка М находится на левой ветви гиперболы. Тогда расстояние от точки М до правой директрисы выражается равенством (рис. 39)
Аналогично (21), можно получить формулу расстояния от точки М До правого фокуса:
Из соотношений (22) и (23) имеем
Установленное свойство эллипса и гиперболы можно положить основу общего определения этих линий: множество точек, для которых отношение расстояний до фокуса и до соответствующей директрисы является величиной постоянной, равной е, есть эллипс, если е<1, и гипербола, если е>1. Соответственно, возникает вопрос, что представляет собой множество точек, определенное аналогичным образом при условии е = 1. Оказывается это новая линия второго порядка, называемая параболой.
Парабола
Определение:
Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.
Для вывода уравнения параболы введем на плоскости прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус перпендикулярно директрисе, и будем считать ее положительным направлением направление от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой. Выведем уравнение параболы в выбранной системе координат.
Пусть М (х; у) — произвольная точка плоскости. Обозначим через r расстояние от точки М до фокуса 
Фокус F имеет координаты (р/2; 0); поэтому по формуле (1) из § 2 находим
Расстояние d, очевидно, выражается равенством (рис. 40)
Отметим, что эта формула верна только для х
Это и есть искомое уравнение параболы. Приведем его к более удобному виду, для чего возведем обе части равенства (27) в квадрат. Получаем
Проверим, что уравнение (28), полученное после возведения в квадрат обеих частей уравнения (27), не приобрело «лишних» корней. Для этого достаточно показать, что для любой точки М (х; у), координаты которой удовлетворяют уравнению (28). выполнено соотношение (24). Действительно, из уравнения (28) вытекает, что х


Уравнение (28) называется каноническим уравнением параболы. о уравнение второй степени. Таким образом, парабола есть ли-я второго порядка.
Исследуем теперь форму параболы по ее уравнению (28). Так к уравнение (28) содержит у только в четной степени, то пара-ла симметрична относительно оси Ох. Следовательно, достаточно смотреть только ее часть, лежащую в верхней полуплоскости. Для этой части у
Из равенства (29) вытекают следующие утверждения.
1)Если х<0, то уравнение (29) дает мнимые значения у, следовательно, левее оси Оу ни одной точки параболы нет, что уже отмечалось ранее.
2)Если х= 0, то у = 0. Таким образом, начало координат жит на параболе и является самой «левой» ее точкой.
3)При возрастании х возрастает и у, причем если 

Таким образом, переменная точка М (х; у), перемещающаяся параболе с ростом х, исходит из начала координат и движется право» и «вверх», причем при 
Точка О называется вершиной параболы, ось симметрии—осью параболы. Число р, т. е. параметр параболы, выражает расстояние от фокуса до директрисы. Выясним, как влияет параметр параболы на ее форму. Для этого возьмем какое-нибудь определенное значение абсциссы, например х=1, и найдем из уравнения (28) соответствующие значения ординаты:


Парабола, уравнение которой 
Уравнение 

Общее уравнение линии второго порядка
Важной задачей аналитической геометрии является исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам.
Общее уравнение линии второго порядка имеет следующий вид:
где коэффициенты А, 2В, С, 2D, 2Е и F — любые числа и, кроме того, числа А, В и С не равны нулю одновременно, т. е.
1.Приведение общего уравнения линии второго порядка к простейшему виду.
Лемма:
Пусть в прямоугольной системе координат Оху задано уравнение (1) и пусть 
где А’, С’, F’— некоторые числа; (х»; у») — координаты точки в новой системе координат.
Доказательство:
Пусть прямоугольная система координат О’х’у’ получена параллельным сдвигом осей Ох и Оу, причем начало координат перенесено в точку 
(см. формулы (1), § 4). В новых координатах уравнение (1) принимает вид
где
В уравнении (3) коэффициенты D’ и Е’ обращаются в нуль, если подобрать координаты точки 
Так как 
Если пара чисел 
Пусть теперь прямоугольная система координат О’х»у» получена поворотом системы О’х’у’ на угол а. Тогда координаты х’, у’ будут связаны с координатами х», у» формулами
(см. формулы (3), § 4). В системе координат О’х»у» уравнение (5) принимает вид
где
Выберем угол а так, чтобы коэффициент В’ в уравнении (6) обратился в нуль. Это требование приводит к уравнению 2В cos 2а=(А — С) sin 2а относительно а. Если А = С, то cos2a=0, и можно положить 


т. е. получили уравнение (2).
Замечание. Уравнения (4) называются уравнениями центра линии второго порядка, а точка 


2.Инвариантность выражения 

Раскрыв скобки и приведя подобные члены, получим
что и требовалось показать.
Величина 
В зависимости от знака величины 
1)эллиптический, если 
2)гиперболический, если 
3)параболический, если 
Рассмотрим линии различных типов.
1) Эллиптический тип. Поскольку 
Возможны следующие случаи:
а) А>0, С>0 (случай А<0, С<0 сводится к случаю А>0, С>0 умножением уравнения на —1) и F<0. Перенесем F в правую часть уравнения и разделим на него. Уравнение принимает вид
где 
б)А>0, С>0 и F>0. Тогда, аналогично предыдущему, уравнение можно привести к виду
Этому уравнению не удовлетворяют координаты никакой точки плоскости. Оно называется уравнением мнимого эллипса.
в)А>О, С>О, F = 0. Уравнение имеет вид
Ему удовлетворяют координаты только одной точки х = 0, у = 0. Такое уравнение назовем уравнением пары мнимых пересекающихся прямых.
2)Гиперболический тип. Поскольку 
Возможны следующие случая:
а)а>0, С<0 (случай а<0, С>О сводится к случаю а>0, С<0 умножением уравнения на — 1) и F
где 
б)А>0, С<0 и F = 0. Уравнение принимает вид
Последнему уравнению удовлетворяют только координаты точек плоскости, расположенных на прямых (ах-су)=0 и (ах-су)=0 пересекающихся в начале координат, и, таким образом, имеем пару пересекающихся прямых.
3)Параболический тип. Если 
Здесь AC=0 и, следовательно, один из коэффициентов А или С равен нулю.
Пусть А=0, С
или
где 
Возможны следующие случаи:
а)D
Перенесем теперь начало координат параллельно оси Ох’ в точку (-F/(2D); 0), т. е. перейдем к новым координатам по формулам х»=+F/(2D), у» = у’. Получаем уравнение
где р=-D/C. Сравнивая последнее уравнение с уравнением параболы [см. формулу (28), § 7], заключаем, что оно является каноническим уравнением параболы.
б)D=0. Уравнение имеет вид
Если С и F имеют разные знаки, то, полагая 
Если С и F имеют одинаковые знаки, то уравнение принимает вид 
Наконец, если F=0, то уравнение принимает вид 

Заканчивая исследование общего уравнения линии второго порядка, сформулируем полученные результаты в виде теоремы.
Теорема:
Пусть в прямоугольной системе координат задано общее уравнение линии второго порядка
Тогда существует такая прямоугольная система координат, в которой это уравнение принимает один из следующих девяти канонических видов: 1)









Аналитическая геометрия на плоскости — решение заданий и задач по всем темам с вычислением
Декартовы системы координат. Простейшие задачи
1°. Введение координат позволяет решать многие задачи алгебраическими методами и, обратно, алгебраическим объектам (выражениям, уравнениям, неравенствам) придавать геометрическую интерпретацию, наглядность. Наиболее привычна для нас прямоугольная система координат Оху: две взаимно перпендикулярные оси координат — ось абсцисс Ох и ось ординат Оу — с единой единицей масштаба.
2°. Расстояние между данными точками 
3°. Будем говорить, что точка 




При 

Примеры с решениями
Пример:
Отрезок АВ делится точкой С(-3,0) в отношении 
Решение:
1) Для нахождения искомой длины по формуле п. 2° необходимо знать координаты точки 
2) Имеем:
откуда 
3)
Ответ.
Полярные координаты
1°. Если прямоугольная система координат задается двумя взаимно перпендикулярными осями координат Ох и Оу , то полярная система задается одним лучом (например, Ох), который обозначается Or и называется полярной осью, а точка О — началом полярной оси, или полюсом. В полярной системе координат положение точки М на плоскости определяется двумя числами: углом у (в градусах или радианах), который образует луч ОМ с полярной осью, и расстоянием r = ОМ точки М от начала полярной оси. Записываем 

Если поворот от оси Or к ОМ совершается против часовой стрелки, то 
Переменный луч ОМ описывает всю плоскость, если 
Иногда есть смысл считать, что 
2°. Можно совместить ось Or с лучом Ох прямоугольной системы Оху, для того чтобы получить связь полярных координат точки М с прямоугольными (рис. 2.3,6). Имеем очевидные формулы:
Формулы (1) выражают прямоугольные координаты через полярные.
Полярные координаты выражаются через прямоугольные по формулам
Формула 

3°. Если в системе Оху привычно иметь дело с функцией у = у(х) (хотя можно и х = х(у)), то в полярной системе 
4°. Построение кривой 

Примеры с решениями
Пример:
Построить кривую
Решения:
Ясно, что 








Таким образом, график линейной функции представляет собой спираль с началом в точке О. Эта спираль — след точки 
Пример:
Построить кривую
Решение:
Проведем анализ данной функции.
1) Эта функция нечетна, поэтому можно ограничиться значениями 
2) Поскольку
то


3) Функция 

плоскости обозначен на рис. 2.5 знаком «+». Если же 



4) Далее рассмотрим промежуток 





5) На девяти различных лучах в промежутке 
построить точки на обозначенных в таблице расстояниях. Правда, на первом и последнем лучах соответствующие точки кривой совпадают с началом координат. Конечно, мы делаем это весьма приблизительно, но именно тут точность глазомера даст наиболее эффективный чертеж. Хорошо при этом иметь под рукой транспортир и циркуль.
6) Мы получили «лепесток» (рис. 2.6) — это треть графика. Другие два лепестка расположены внутри углов со знаками «+». Периодичность сводится к повороту нашего рисунка на угол 
7) Полученная трехлепестковая фигура — результат периодичности. В этом состоит отличие от периодичности функции 


Пример:
Построить кривую 
Решение:
1) Для того, чтобы построить график рассматриваемой функции, ограничимся плоскостью Оху, на которой
2) Если 



3) Остается взять табличные значения для — и построить соответствующую таблицу:
4) Соединяя соответствующие точки, получаем линию (рис. 2.8).
5) Если бы мы изменяли 

6) Для того чтобы получить полную замкнутую линию — график функции 
Нам надо иметь для 

в) От 

г) Этот промежуток делим на две половины 


Остается изобразить эту линию на чертеже — это OABCDEO (рис. 2.9). Угловые координаты этих точек таковы:
Реализована эта линия при полутора полных оборотах текущего радиуса около начала координат, или как бы на двух л истах-плоскостях.
Линии первого порядка
1°. Прямая линия на плоскости отождествляется с множеством всех точек, координаты которых удовлетворяют некоторому линейному уравнению. Различают следующие виды уравнения прямой:
1) Ах + By + С = 0, где А и В не равны одновременно нулю, — общее уравнение прямой;
2) у = kx + b — уравнение прямой с угловым коэффициентом k , при этом 

3) 
4) 

Примечание:
Заметим, что одна прямая (один геометрический объект) может быть задана формально разными уравнениями. Это означает, что соответствующие уравнения для одной прямой должны быть равносильными, а тогда каждое из них можно привести (преобразовать) к любому другому (кроме некоторых исключительных случаев). В связи с этим отметим соотношения между параметрами различных уравнений:
2°. Уравнения конкретных прямых l.
1) 




2) 

3) 




3°. Угол в между прямыми
определяется через тангенс: 



Отсюда, в частности, следуют признаки параллельности и перпендикулярности прямых:
4°. Точка пересечения двух прямых
5°. Расстояние от данной точки 

В частности,
6°. Пересекающиеся прямые 
Эти биссектрисы взаимно перпендикулярны (предлагаем доказать это).
7°. Множество всех прямых, проходящих через точку 




8°. Неравенство 

Примеры с решениями
Пример:
По данному уравнению прямой
найти ее
- общее уравнение;
- уравнение с угловым коэффициентом;
- уравнение в отрезках;
- нормальное уравнение.
Решение:
1) Приведя к общему знаменателю, получим общее уравнение прямой (п. 1°) Зх — 4у — 4 = 0.
2) Отсюда легко получить уравнение прямой с угловым коэффициентом
3) Уравнение в отрезках получим из общего уравнения Зх — 4у = 4 почленным делением на свободный член:
4) Для получения нормального уравнения найдем
и 

Пример:
Составить уравнение прямой, проходящей через точку пересечения прямых х + у — 2 = 0 и Зх + 2у — 5 = 0 перпендикулярно к прямой Зх + 4у — 12 = 0.
Решение:
1) Координаты точки 
2) Угловые коэффициенты перпендикулярных прямых связаны (п. 3°) так: 

3) Искомое уравнение прямой, проходящей через точку 


Пример:
Дан треугольник с вершинами А(1,-1), B(—2,1), С(3, —5). Написать уравнение перпендикуляр
Решение:
1) Сделаем схематический чертеж (рис. 2.15). 2) Медиана ВМ точкой М делит отрезок АС пополам, значит (п. 3°),
т.е. М(2, -3).
3) Уравнение ВМ запишем (п. 2°) в виде
4) Из условия 

5) Искомое уравнение имеет вид: 
Ответ, х — у — 2 = 0.
Пример:
Дан треугольник с вершинами А(7,0), В(3,4), С(2, —3). Найти уравнения стороны АВ, высоты CD, биссектрисы BE, их длины и угол А. Определить вид треугольника по углам. Описать треугольник системой неравенств. Сделать чертеж.
Решение:
Чертеж построен (рис. 2.16).
5) Для составления уравнения биссектрисы BE (п. 6°) нужно знать уравнения ВС и АВ. Найдем уравнение (ВС):
Теперь
6) Для нахождения высоты CD используем формулу п. 5°:
7) Длину биссектрисы BE найдем так. Точка Е есть точка пересечения двух прямых BE и АС. Найдем уравнение АС:
Координаты точки Е найдем как решение системы
Итак,




9) Пусть a, b, c — стороны треугольника, с — большая из них. Если 




10) Уравнение (АВ): х + у — 7 = 0. Треугольник AВС находится по отношению к этой прямой в полуплоскости, содержащей точку С(2,-3). В этой точке левая часть уравнения равна 2-3-7 = -8 <0. Все внутренние точки треугольника лежат в полуплоскости х + у — 7 < 0.
Уравнение (АС): Зх — 5у — 21 =0. Подставим в левую часть координаты точки В(3,4): 9-20 — 21 <0. Внутренние точки треугольника ABC лежат в полуплоскости Зх — 5у — 21 <0.
Составим уравнение (ВС): 7х — у — 17 = 0. Внутренние точки треугольника принадлежат полуплоскости 7х — у — 17 > 0 (ибо в точке А(7,0) имеем неравенство 7 • 7 — 0 — 17 > 0).
Под треугольником подразумевается множество точек, лежащих внутри треугольника и на его сторонах, поэтому мы записываем нестрогие неравенства:
Пример:
Полярное уравнение 
Решение:
Перепишем сначала данное уравнение в виде 

Линии второго порядка
К кривым второго порядка относятся следующие четыре линии: окружность, эллипс, гипербола, парабола. Координаты х, у точек каждой из этих линий удовлетворяют соответствующему уравнению второй степени относительно переменных х и у.
Ниже под геометрическим местом точек (сокращенно ГМТ) подразумевается некоторое множество точек плоскости, координаты которых удовлетворяют определенному условию. Определения кривых второго порядка дадим через ГМТ, указывая свойства этих точек.
Окружность
Окружностью радиуса R с центром в точке 

Каноническое уравнение окружности имеет вид
Примеры с решениями
Пример:
Составить уравнение окружности, диаметром которой является отрезок, отсекаемый координатными осями от прямой Зх -2у + 12 = 0.
Решение:
На рис. 2.17 изображена прямая Зх — 2у + 12 = 0. Она пересекает координатные оси в точках A(-4,0), В(0,6).
1) Центром окружности является точка 
:
2) Радиус R окружности, равный 
3) Каноническое уравнение искомой окружности имеет вид
Примечание. Если в последнем уравнении выполнить обозначенные действия, то получаем уравнение 
Эллипс
Эллипсом называется ГМТ, для которых сумма расстояний до двух фиксированных точек, называемых фокусами, есть величина постоянная. (Данная величина больше расстояния между фокусами.)
Если предположить, что фокусы эллипса расположены в точках 
При этом а > 0 — большая полуось, b > 0 — малая полуось, с — фокусное расстояние и 
Сам эллипс изображен на рис. 2.18. Важными характеристиками эллипса являются:
— эксцентриситет 


— директрисы эллипса — прямые с уравнениями 
— расстояния точки М(х,у) эллипса до его фокусов (

Примеры с решениями
Пример:
Составить уравнение эллипса, симметричного относительно координатных осей и проходящего через точки 

Решение:
1) Параметры а и b эллипса 
После умножения первого уравнения на 16, а второго на -9 и сложения полученных результатов имеем
Отсюда с учетом b > 0 находим b = 4, а тогда а = 5.
Каноническое уравнение эллипса найдено:
2) Фокусное расстояние
3) Эксцентриситет равен
4) Расстояние от А до фокусов:
5) Уравнения директрис: 

Чертеж построен (рис. 2.19).
Пример:
Составить уравнение эллипса, симметричного относительно координатных осей, проходящего через точку А(—3, 1,75) и имеющего эксцентриситет
Решение:
Имеем систему уравнений относительно параметров а, b, с =

(эллипс проходит через точку А),
или 
Из второго уравнения находим:
Подставляя это в первое уравнение, получим 
Уравнение эллипса
Пример:
Составить уравнение эллипса с центром в начале координат и фокусами на оси Ох, если его эксцентриситет равен 


Решение:
1) Сделаем чертеж (рис. 2.20).
2) Каноническое уравнение искомого эллипса есть 
задача сводится к нахождению параметров а и b.
3) Вспомним, что
Как видно, достаточно найти с. Составим уравнение прямой
С другой стороны, по определению, угловой коэффициент прямой есть тангенс угла наклона прямой к оси Ox,
По найденному значению с определим
Пример:
Записать в прямоугольных координатах полярное
Решение:
Сначала перепишем данное уравнение в виде 


Получили каноническое уравнение эллипса с центром в точке
Гипербола
1°. Гиперболой называется ГМТ, для которых модуль разности расстояний до двух фиксированных точек, называемых фокусами, есть величина постоянная. (Данная величина меньше расстояния между фокусами.)
2°. Если фокусы гиперболы расположены в точках 
где
При этом а — действительная полуось, b — мнимая полуось 

3°. Прямые с уравнениями , 



Расстояния от точки М(х, у) гиперболы до ее фокусов (

Прямые с уравнениями 
Примеры с решениями
Пример:
На гиперболе с уравнением 
точку М, такую, что 
Решение:
1) Имеем а = 4, b = 3, 




Ветви гиперболы проходят через точки (4,0), (-4,0), приближаясь к асимптотам, создавая впечатление почти параллельных линий. Фокусы 
2) Имеем 

Находим
Поскольку М{х, у) лежит на гиперболе 


a если 
(это число не существует в нужном нам смысле)
Получили две точки, удовлетворяющие данным условиям,
3) Уравнения директрис данной гиперболы:
Пример:
На гиперболе 
Решение:
1) Сделаем символический чертеж гиперболы (рис. 2.22) и ее асимптот. На нем изображены две различные возможные ситуации, удовлетворяющие условиям задачи: расстояние от точки М до асимптоты 


2) Уравнения асимптот:
3) Для точки 

4) Так как 
системы
Из первой находим 
Вторая система решений не имеет.
5) Что касается координат точки М, то предлагаем убедиться самостоятельно в том, что
Пример:
Определить координаты точки пересечения двух взаимно перпендикулярных прямых, проходящих через фокусы гиперболы 
Решение:
1) Сделаем чертеж (рис. 2.24) и выпишем параметры гиперболы. Имеем а = 4, b = 3, с = 5, 
2) Составим уравнение 
3) Составим уравнение прямой 




4) Координаты точки М получаются как решение системы
Парабола
Параболой называется ГМТ, для которых расстояние до фиксированной точки, называемой фокусом, равно расстоянию до фиксированной прямой, называемой директрисой. Если фокус параболы расположен в точке 



Примеры с решениями
Пример:
Составить уравнение параболы, симметричной относительно оси Оу, если она проходит через точки пересечения прямой х — у = 0 и окружности
Решение:
Уравнение искомой параболы должно иметь вид 
Получили 


Пример:
Составить уравнение параболы, симметричной относительно оси Ох, с вершиной в начале координат, если известно, что парабола проходит через точку А(2,2).
Найти длину хорды, проходящей через точку М(8,0) и наклоненной к оси Ох под углом 60°.
Решение:
1) Сделаем чертеж (рис. 2.27).
2) Каноническое уравнение такой параболы имеет вид 
Итак, уравнение параболы
3) Найдем координаты точек 





решив которые, найдем 
Ответ.
Пример:
Уравнение параболы 
Решение:
Подставляем в данное уравнение
При 

Приведение общего уравнения кривой второго порядка к каноническому виду
1°. Даны две прямоугольные системы координат 





Тогда координаты (х,у) и 
Формулы (3) называются формулами преобразования координат при параллельном переносе осей координат.
2°. Предположим, что прямоугольные системы координат 




координаты (х, у) и 
Формулы (4) называются формулами преобразования координат при повороте осей координат.
3°. Общее уравнение второго порядка относительно переменных х и у имеет вид
Существует угол 



При этом
Соответствующий угол 
4°. Уравнение (6) приводится к каноническому виду при помощи формул параллельного переноса.
Заметим, что окончательное уравнение может и не иметь геометрического изображения, что подтверждает, например, уравнение х2 + у2 + 1 = 0.
Примеры с решениями
Пример:
Привести к каноническому виду следующие уравнения второго порядка:
Построить геометрическое изображение каждого уравнения. Решение. 1) Этот пример решим достаточно подробно, не прибегая к формулам (7) и (8).
а) Выполним поворот осей координат на угол 
б) Выделим отдельно слагаемые, содержащие произведение 
Ставим условие, чтобы это выражение было тождественно равно нулю. Это возможно при условии
находим 





в) Подставим полученные выражения в последнее уравнение из п. а). Получаем последовательно (слагаемые, содержащие

г) В круглые скобки добавим надлежащие числа для получения полных квадратов. После вычитания соответствующих слагаемых приходим к равносильному уравнению
д) Для приведения этого уравнения к каноническому виду воспользуемся формулами параллельного сдвига, полагая
и последующего почленного деления уравнения на 36. Получаем каноническое уравнение эллипса 

2) Этот пример решим, используя формулы (7) и уравнение (8). Имеем: А = 3, В = 5, С = 3, D = -2, Е = -14, F = -13. Уравнение (8)принимает вид 
По формулам (7) последовательно находим:
В системе координат 
После выделения полных квадратов получаем
Положим
и почленно разделим на 4. Получаем каноническое уравнение гиперболы
3) Уравнение (8) в данном случае приводится к виду 





4) Для приведения этого уравнения к каноническому виду достаточно составить полные квадраты:
Получили уравнение окружности радиуса 

5) Соответствующее уравнение (8) имеет вид 
Коэффициенты нового уравнения равны: 

Система координат на плоскости
Под системой координат на плоскости понимают способ, позволяющий численно описать положение точки плоскости. Одной из таких систем является прямоугольная (декартова) система координат.
Прямоугольная система координат задается двумя взаимно перпендикулярными прямыми — осями, на каждой из которых выбрано положительное направление и задан единичный (масштабный) отрезок. Единицу масштаба обычно берут одинаковой для обеих осей. Эти оси называют осями координат, точку их пересечения О — началом координат. Одну из осей называют осью абсцисс (осью Ох), другую — осью ординат (осью Оу) (рис. 23).
На рисунках ось абсцисс обычно располагают горизонтально и направленной слева направо, а ось ординат — вертикально и направленной снизу вверх. Оси координат делят плоскость на четыре области — четверти (или квадранты).
Единичные векторы осей обозначают
Систему координат обозначают 
Рассмотрим произвольную точку М плоскости Оху. Вектор
Координатами точки М в системе координат 


Эти два числа х к у полностью определяют положение точки на плоскости, а именно: каждой паре чисел x и у соответствует единственная точка М плоскости, и наоборот.
Способ определения положения точек с помощью чисел (координат) называется методом координат. Сущность метода координат на плоскости состоит в том, что всякой линии на ней, как правило, сопоставляется ее уравнение. Свойства этой линии изучаются путем исследования уравнения линии.
Другой практически важной системой координат является полярная система координат. Полярная система координат задается точкой О, называемой полюсом, лучом Ор, называемым полярной осью, и единичным вектором 
Возьмем на плоскости точку М, не совпадающую с О. Положение точки М определяется двумя числами: ее расстоянием r от полюса О и углом 
Числа r и


Для получения всех точек плоскости достаточно полярный угол 



Установим связь между прямоугольными и полярными координатами. Для этого совместим полюс О с началом координат системы Оху, а полярную ось — с положительной полуосью Ох. Пусть х и у — прямоугольные координаты точки М, а r и 
Из рисунка 25 видно, что прямоугольные и полярные координаты точки М выражаются следующим образом:
Определяя величину 
Пример:
Дана точка 
Решение:
Находим 
Отсюда 

Основные приложения метода координат на плоскости
Расстояние между двумя точками
Требуется найти расстояние d между точками 
Решение:
Искомое расстояние d равно длине вектора 
Деление отрезка в данном отношении
Требуется разделить отрезок АВ, соединяющий точки 


Решение:
Введем в рассмотрение векторы 

Уравнение (9.1) принимает вид
Учитывая, что равные векторы имеют равные координаты, получаем
и
Формулы (9.2) и (9.3) называются формулами деления отрезка в данном отношении. В частности, при 

Замечание:
Если 



Площадь треугольника
Требуется найти площадь треугольника ABC с вершинами
Решение:
Опустим из вершин А, В, С перпендикуляры 
Поэтому
Замечание: Если при вычислении площади треугольника получим S = 0, то это означает, что точки А, В, С лежат на одной прямой, если же получим отрицательное число, то следует взять его модуль.
Преобразование системы координат
Переход от одной системы координат в какую-либо другую называется преобразованием системы координат.
Рассмотрим два случая преобразования одной прямоугольной системы координат в другую. Полученные формулы устанавливают зависимость между координатами произвольной точки плоскости в разных системах координат.
Параллельный перенос осей координат
Пусть на плоскости задана прямоугольная система координат Оху. Под параллельным переносом осей координат понимают переход от системы координат Оху к новой системе 
Пусть начало новой системы координат точка 




Рассмотрим векторы
Так как 
Следовательно,
Полученные формулы позволяют находить старые координаты х и у по известным новым х’ и у‘ и наоборот.
Поворот осей координат
Под поворотом осей координат понимают такое преобразование координат, при котором обе оси поворачиваются на один и тот же угол, а начало координат и масштаб остаются неизменными.
Пусть новая система 

Пусть М — произвольная точка плоскости, (х; у) — ее координаты в старой системе и (х’; у’) — в новой системе.
Введем две полярные системы координат с общим полюсом О и полярными осями 


По формулам перехода от полярных координат к прямоугольным имеем
Но 
Полученные формулы называются формулами поворота осей. Они позволяют определять старые координаты (x; у) произвольной точки М через новые координаты (х’;у’) этой же точки М, и наоборот.
Если новая система координат 


выражающие старые координаты х и у произвольной точки через ее новые координаты х’ и у’.
Линии на плоскости
Линия на плоскости часто задается как множество точек, обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние R от некоторой фиксированной точки О (центра окружности).
Введение на плоскости системы координат позволяет определять положение точки плоскости заданием двух чисел — ее координат, а положение линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).
Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(x; у) = 0 с двумя переменными, которому удовлетворяют координаты х и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. Переменные х и у в уравнении линии называются текущими координатами точек линии.
Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.
Так, для того чтобы установить лежит ли точка 
Пример:
Лежат ли точки К(-2;1) и L(1; 1) на линии 2х + у + 3 = 0?
Решение:
Подставив в уравнение вместо х и у координаты точки К, получим 2 • (-2) + 1 + 3 = 0. Следовательно, точка К лежит на данной линии. Точка L не лежит на данной линии, т. к.
Задача о нахождении точек пересечения двух линий, заданных уравнениями 
Если эта система не имеет действительных решений, то линии не пересекаются.
Аналогичным образом вводится понятие уравнения линии в полярной системе координат.
Уравнение 
Линию на плоскости можно задать при помощи двух уравнений:
где х и у — координаты произвольной точки М(х; у), лежащей на данной линии, a t — переменная, называемая параметром; параметр t определяет положение точки (х; у) на плоскости.
Например, если 
Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим, а уравнения (10.1) — параметрическими уравнениями линии.
Чтобы перейти от параметрических уравнений линии к уравнению вида F(x; у) = 0, надо каким-либо способом из двух уравнений исключить параметр t. Например, от уравнений 


Линию на плоскости можно задать векторным уравнением 



Векторному уравнению линии 
Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемешается на плоскости, то указанные уравнения называются уравнениями движения, а линия — траекторией точки, параметр t при этом есть время.
Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(x; у) = 0.
Всякому уравнению вида F(x; у) = 0 соответствует, вообще говоря, некоторая линия, свойства которой определяются данным уравнением (выражение «вообще говоря» означает, что сказанное допускает исключения. Так, уравнению 

В аналитической геометрии на плоскости возникают две основные задачи. Первая: зная геометрические свойства кривой, найти ее уравнение; вторая: зная уравнение кривой, изучить ее форму и свойства.
На рисунках 32-40 приведены примеры некоторых кривых и указаны их уравнения.
Параметрические уравнения циклоиды имеют вид 
Уравнения прямой на плоскости
Простейшей из линий является прямая. Разным способам задания прямой соответствуют в прямоугольной системе координат разные виды ее уравнений.
Уравнение прямой с угловым коэффициентом
Пусть на плоскости Оху задана произвольная прямая, не параллельная оси Оу. Ее положение вполне определяется ординатой b точки 
Под углом 
Возьмем на прямой произвольную точку М(х;у) (см. рис. 41). Проведем через точку N ось Nx’, параллельную оси Ох и одинаково с ней направленную. Угол между осью Nx’ и прямой равен а. В системе Nx’y точка М имеет координаты х и у — b. Из определения тангенса угла следует равенство 

которому удовлетворяют координаты любой точки М(х ; у) прямой. Можно убедиться, что координаты любой точки Р{х; у), лежащей вне данной прямой, уравнению (10.2) не удовлетворяют.
Число 
Если прямая проходит через начало координат, то b=0 и, следовательно, уравнение этой прямой будет иметь вид у =kх.
Если прямая параллельна оси Ох, то 

Если прямая параллельна оси Оу, то 

где а — абсцисса точки пересечения прямой с осью Ох. Отметим, что уравнения (10.2) и (10.3) есть уравнения первой степени.
Общее уравнение прямой
Рассмотрим уравнение первой степени относительно х и у в общем виде
где А, В, С — произвольные числа, причем А и В не равны нулю одновременно.
Покажем, что уравнение (10.4) есть уравнение прямой линии. Возможны два случая.
Если В = 0, то уравнение (10.4) имеет вид Ах + С = 0, причем 

Если 

Итак, уравнение (10.4) есть уравнение прямой линии, оно называется общим уравнением прямой.
Некоторые частные случаи общего уравнения прямой:
1) если А = 0, то уравнение приводится к виду 
2) если В = 0, то прямая параллельна оси Оу;
3) если С = 0, то получаем Ах+By = 0. Уравнению удовлетворяют координаты точки O(0; 0), прямая проходит через начало координат.
Уравнение прямой, проходящей через данную точку в данном направлении
Пусть прямая проходит через точку 



Подставляя значение b в уравнение у = kх + b, получим искомое уравнение прямой 
Уравнение (10.5) с различными значениями к называют также уравнениями пучка прямых с центром в точке 
Уравнение прямой, проходящей через две точки
Пусть прямая проходит через точки 

где k — пока неизвестный коэффициент.
Так как прямая проходит через точку 
Отсюда находим 
Предполагается, что в этом уравнении 



Если 


Уравнение прямой в отрезках
Пусть прямая пересекает ось Ох в точке 

Это уравнение называется уравнением прямой в отрезках, так как числа а и b указывают, какие отрезки отсекает прямая на осях координат.
Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
Найдем уравнение прямой, проходящей через заданную точку 

Возьмем на прямой произвольную точку М(х ;у) и рассмотрим вектор 



Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору.
Вектор 
Уравнение (10.8) можно переписать в виде
где А и В — координаты нормального вектора, 
Полярное уравнение прямой
Найдем уравнение прямой в полярных координатах. Ее положение можно определить, указав расстояние р от полюса О до данной прямой и угол 
Для любой точки 
С другой стороны,
Следовательно,
Полученное уравнение (10.10) и есть уравнение прямой в полярных координатах.
Нормальное уравнение прямой
Пусть прямая определяется заданием р к 
Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: 
Уравнение (10.11) называется нормальным уравнением прямой.
Покажем, как привести уравнение (10.4) прямой к виду (10.11).
Умножим все члены уравнения (10.4) на некоторый множитель 

Из первых двух равенств находим
Множитель 

Пример:
Привести уравнение -За; + 4у + 15 = 0 к нормальному виду.
Решение:
Находим нормирующий множитель 


Прямая линия на плоскости. Основные задачи
Угол между двумя прямыми и условия параллельности и перпендикулярности двух прямых
Пусть прямые 

Требуется найти угол 


Решение: Имеем 


Ho 
откуда легко получим величину искомого угла.
Если требуется вычислить острый угол между прямыми, не учитывая, какая прямая является первой, какая — второй, то правая часть формулы (10.12) берется по модулю, т. е.
Если прямые 




Если прямые 





Расстояние от точки до прямой
Пусть заданы прямая L уравнением Ах + By + С = 0 и точка 

Решение:
Расстояние d от точки 



Так как точка 


что и требовалось получить.
Пример:
Найти расстояние от точки 
Решение:
По формуле (10.13) получаем
Линии второго порядка на плоскости
Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат
Коэффициенты уравнения — действительные числа, но по крайней мере одно из чисел А, В или С отлично от нуля. Такие линии называются линиями (кривыми) второго порядка. Ниже будет установлено, что уравнение (11.1) определяет на плоскости окружность, эллипс, гиперболу или параболу. Прежде, чем переходить к этому утверждению, изучим свойства перечисленных кривых.
Окружность
Простейшей кривой второго порядка является окружность. Напомним, что окружностью радиуса R с центром в точке 



Тогда из условия 
то есть
Уравнению (11.2) удовлетворяют координаты любой точки
М(х;у) данной окружности и не удовлетворяют координаты никакой точки, не лежащей на окружности.
Уравнение (11.2) называется каноническим уравнением окружности. В частности, полагая 

Уравнение окружности (11.2) после несложных преобразований примет вид 
- коэффициенты при
равны между собой;
- отсутствует член, содержащий произведение ху текущих координат.
Рассмотрим обратную задачу. Положив в уравнении (11.1) значения 
Преобразуем это уравнение:
т.е.
т.е.
Отсюда следует, что уравнение (11.3) определяет окружность при условии 

Если же 
Ему удовлетворяют координаты единственной точки 
Если 
Эллипс
Каноническое уравнение эллипса
Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.
Обозначим фокусы через 
Для вывода уравнения эллипса выберем систему координат Оху так, чтобы фокусы 


Пусть М(х ;у) — произвольная точка эллипса. Тогда, согласно определению эллипса, 
Это, по сути, и есть уравнение эллипса.
Преобразуем уравнение (11.5) к более простому виду следующим образом:
Так как а > с, то 
Тогда последнее уравнение примет вид 
Можно доказать, что уравнение (11.7) равносильно исходному уравнению. Оно называется каноническим уравнением эллипса.
Эллипс — кривая второго порядка.
Исследование формы эллипса по его уравнению
Установим форму эллипса, пользуясь его каноническим уравнением. 1. Уравнение (11.7) содержит х и у только в четных степенях, поэтому если точка (х; у) принадлежит эллипсу, то ему также принадлежат точки 
2.Найдем точки пересечения эллипса с осями координат. Положив у = 0, находим две точки 




3. Из уравнения (11.7) следует, что каждое слагаемое в левой части не превосходит единицы, т. е. имеют место неравенства 

4. В уравнении (11.7) сумма неотрицательных слагаемых 
Из сказанного следует, что эллипс имеет форму, изображенную на рис. 50 (овальная замкнутая кривая).
Дополнительные сведения об эллипсе
Форма эллипса зависит от отношения 


Отношение 

причем 
т. е.
Отсюда видно, что чем меньше эксцентриситет эллипса, тем эллипс будет менее сплющенным; если положить 
Пусть М(х , у) — произвольная точка эллипса с фокусами 

Имеют место формулы
Прямые 
Теорема:
Если r — расстояние от произвольной точки эллипса до какого-нибудь фокуса, d — расстояние от этой же точки до соответствующей этому фокусу директрисы, то отношение 

Из равенства (11.6) следует, что а > b. Если же а < b, то уравнение (11.7) определяет эллипс, большая ось которого 2b лежит на оси Оу, а малая ось 2а — на оси Ох (см. рис. 52). Фокусы такого эллипса находятся в точках 

Гипербола
Каноническое уравнение гиперболы
Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.
Обозначим фокусы через 
Для вывода уравнения гиперболы выберем систему координат Оху так, чтобы фокусы 

Пусть М(х; у) — произвольная точка гиперболы. Тогда согласно определению гиперболы 


где
Гипербола есть линия второго порядка.
Исследование формы гиперболы по ее уравнению
Установим форму гиперболы, пользуясь ее каконическим уравнением. 1. Уравнение (11.9) содержит х и у только в четных степенях. Следовательно, гипербола симметрична относительно осей Ох и Оу, а также относительно точки 0(0;0), которую называют центром гиперболы.
2.Найдем точки пересечения гиперболы с осями координат. Положив у = 0 в уравнении (11.9), находим две точки пересечения гиперболы с осью Ox:

Точки 


Отрезок 

3.Из уравнения (11.9) следует, что уменьшаемое 

4. Из уравнения (11.9) гиперболы видно, что когда |x| возрастает, то и |y| возрастает. Это следует из того, что разность 
Из сказанного следует, что гипербола имеет форму, изображенную на рисунке 54 (кривая, состоящая из двух неограниченных ветвей).
Асимптоты гиперболы
Прямая L называется асимптотой неограниченной кривой К, если расстояние d от точки М кривой К до этой прямой стремится к нулю при неограниченном удалении точки М вдоль кривой К от начала координат. На рисунке 55 приведена иллюстрация понятия асимптоты: прямая L является асимптотой для кривой К.
Покажем, что гипербола 
Так как прямые (11.11) и гипербола (11.9) симметричны относительно координатных осей, то достаточно рассмотреть только те точки указанных линий, которые расположены в первой четверти.
Возьмем на прямой 

Как видно, по мере возрастания х знаменатель дроби увеличивается; числитель — есть постоянная величина. Стало быть, длина отрезка MN стремится к нулю. Так как МN больше расстояния d от точки М до прямой, то d и подавно стремится к нулю. Итак, прямые 
При построении гиперболы (11.9) целесообразно сначала построить основной прямоугольник гиперболы (см. рис. 57), провести прямые, проходящие через противоположные вершины этого прямоугольника, — асимптоты гиперболы и отметить вершины
Уравнение равносторонней гиперболы, асимптотами которой служат оси координат
Гипербола (11.9) называется равносторонней, если ее полуоси равны (а = b ). Ее каноническое уравнение
Асимптоты равносторонней гиперболы имеют уравнения у = х и у = -х и, следовательно, являются биссектрисами координатных углов. Рассмотрим уравнение этой гиперболы в новой системе координат 
на угол 
Подставляем значения х и у в уравнение (11.12):
где
Уравнение равносторонней гиперболы, для которой оси Ох и Оу являются асимптотами, будет иметь вид 
Дополнительные сведения о гиперболе
Эксцентриситетом гиперболы (119) называется отношение расстояния между фокусами к величине действительной оси гиперболы, обозначается
Так как для гиперболы с > а, то эксцентриситет гиперболы больше единицы: 

Отсюда видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение 
Эксцентриситет равносторонней гиперболы равен 
Фокальные радиусы 


Прямые 

Директрисы гиперболы имеют то же свойство 
Кривая, определяемая уравнением 
Очевидно, что гиперболы От 
Парабола
Каноническое уравнение параболы
Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой. Расстояние от фокуса F до директрисы называется параметром параболы и обозначается через р (p > 0).
Для вывода уравнения параболы выберем систему координат Оху так, чтобы ось Ох проходила через фокус F перпендикулярно директрисе в направлении от директрисы к F, а начало координат О расположим посередине между фокусом и директрисой (см. рис. 60). В выбранной системе фокус F имеет координаты 


Пусть М(х;у) — произвольная точка параболы. Соединим точку М с F. Проведем отрезок MN перпендикулярно директрисе. Согласно определению параболы MF = MN. По формуле расстояния между двумя точками находим:
Следовательно,
Возведя обе части уравнения в квадрат, получим
т. е.

Уравнение (11.13) называется каноническим уравнением параболы. Парабола есть линия второго порядка.
Исследование форм параболы по ее уравнению
- В уравнении (11.13) переменная у входит в четной степени, значит, парабола симметрична относительно оси Ох; ось Ох является осью симметрии параболы.
- Так как р > 0, то из (11.13) следует, что
. Следовательно, парабола расположена справа от оси Оу.
- При х = 0 имеем у = 0. Следовательно, парабола проходит через начало координат.
- При неограниченном возрастании х модуль у также неограниченно возрастает. Парабола
имеет вид (форму), изображенный на рисунке 61. Точка 0(0; 0) называется вершиной параболы, отрезок FM = r называется фокальным радиусом точки М.
Уравнения 
Нетрудно показать, что график квадратного трехчлена 

Общее уравнение линий второго порядка
Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям
Найдем сначала уравнение эллипса с центром в точке 


В этой системе координат уравнение эллипса имеет вид
Так как 
Аналогично рассуждая, получим уравнение гиперболы с центром в точке 
И, наконец, параболы, изображенные на рисунке 65, имеют соответствующие уравнения.
Уравнение
Уравнения эллипса, гиперболы, параболы и уравнение окружности 
где коэффициенты А и С не равны нулю одновременно.
Возникает вопрос: всякое ли уравнение вида (11.14) определяет одну из кривых (окружность, эллипс, гипербола, парабола) второго порядка? Ответ дает следующая теорема.
Теорема:
Уравнение (11.14) всегда определяет: либо окружность (при А = С), либо эллипс (при 


Пример:
Установить вид кривой второго порядка, заданной уравнением
Решение:
Предложенное уравнение определяет эллипс 
Получилось каноническое уравнение эллипса с центром в 

Пример:
Установить вид кривой второго порядка, заданной уравнением
Решение:
Указанное уравнение определяет параболу (С = 0). Действительно,
Получилось каноническое уравнение параболы с вершиной в точке
Пример:
Установить вид кривой второго порядка, заданной уравнением
Решение:
Преобразуем уравнение:
Это уравнение определяет две пересекающиеся прямые 2х + у + 6 = 0 и 2х-у-2 = 0.
Общее уравнение второго порядка
Рассмотрим теперь общее уравнение второй степени с двумя неизвестными:
Оно отличается от уравнения (11.14) наличием члена с произведением координат 
Используя формулы поворота осей (с. 63)
выразим старые координаты через новые:
Выберем угол а так, чтобы коэффициент при 
т. e.
т. e.
Отсюда
Таким образом, при повороте осей на угол а, удовлетворяющий условию (11.17), уравнение (11.15) сводится к уравнению (11.14).
Вывод: общее уравнение второго порядка (11.15) определяет на плоскости (если не считать случаев вырождения и распадения) следующие кривые: окружность, эллипс, гиперболу, параболу.
Замечание:
Если А = С, то уравнение (11.17) теряет смысл. В этом случае 


Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат
Уравнение
перпендикуляра, опущенного из точки
на
прямую, заданную каноническими уравнениями
относительно
декартовой прямоугольной системы
координат, можно записать в виде
пересечения двух плоскостей:

,
т
ак
как первое из этих уравнений выражает
плоскость, проходящую через точку
перпендикулярно данной прямой, а второе
– плоскость, проходящую через данную
точку
и данную прямую. Эти две плоскости
пересекаются по прямой, проходящей
через точку
и пересекающей данную прямую под углом
(рис. 133).
§ 92. Уравнение общего перпендикуляра к двум неколлинеарным прямым
Пусть
две прямые p
и
q
заданы своими каноническими уравнениями:
,

относительно
декартовой прямоугольной системы
координат. Предположим, что направляющие
векторы этих прямых
и
неколлинеарны,
т.е. что данные прямые или скрещиваются,
или пересекаются. Пусть l
– прямая, которая пересекает обе прямые
под углом
.
Тогда
за направляющий вектор прямой l
можно взять векторное произведение
направляющих векторов данных прямых:
.
Общий перпендикуляр l
к двум данным прямым можно определить
как прямую, по которой пересекается
плоскость
,
проходящая через прямую р
компланарно вектору
,
с плоскостью
,
проходящей через прямую q
компланарно
,
(рис.134). Уравнение плоскости
,
имеет вид:
Так как
эта плоскость проходит через точку
прямой р,
и коллинеарна векторам
и
.
Аналогично составляется уравнение
плоскости
:
.
(2)
Общий
перпендикуляр l
к данным прямым выражается уравнениями
(1) и (2).
§ 93. Расстояние от точки до прямой в пространстве
Пусть
в пространстве заданы точка
и прямая l
каноническими уравнениями
.
относительно
декартовой прямоугольной системы
координат.
Расстояние
d
от точки
до прямой l
можно определить как высоту параллелограмма,
сторонами которого служит вектор
и направляющий вектор
прямой l
отложенный от точки
этой прямой. Поэтому для определения
расстояния d
рассмотрим модуль векторного произведения:
.
Но
,
следовательно (рис. 135),

откуда
.
Так как
,
то
Потому

§ 94. Кротчайшее расстояние между двумя прямыми
Если две прямые скрещиваются, т.е. не
лежат в одной плоскости, то кротчайшее
расстояние между ними (как доказывается
в элементарной геометрии) есть длина
отрезка общего перпендикуляра к этим
двум прямым, концы которого лежат на
этих прямых. Отсюда следует, что кротчайшее
расстояние между двумя скрещивающимися
прямыми равно величине ортогональной
проекции любого отрезка
концы которого лежат на этих прямых
(рис. 136) на любую прямую, перпендикулярную
к данным; это очевидно при проектировании
точек
и
на общий перпендикуляр к данным прямым;
величина проекции не изменится, если
спроектировать отрезок на любую прямую,
параллельную этому перпендикуляру.
Пусть две скрещивающиеся прямые заданы
каноническими уравнениями
,

относительно
декартовой прямоугольной системы
координат. Кратчайшее расстояние между
ними равно абсолютной величине проекции
вектора
,
начало
конец которого
лежат соответственно на первой и второй
прямых, на прямую, параллельную вектору
,
перпендикулярному
направляющим векторам:
;
данных прямых.
Так как
пр.
,
то
кротчайшее расстояние d
между двумя скрещивающимися вычисляется
по формуле
,
или в координатах
.
Отметим, что эта формула верна и для
двух пересекающихся прямых: числитель
обратится в нуль, а знаменатель отличен
от нуля, и мы получим d
= 0 в соответствии с определением
кротчайшего расстояния между двумя
пересекающимися прямыми.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #





































































































































































































































































































































в каноническом виде квадратичной формы.
.При этом если ось
сонаправлена с
– канонический вид, который квадратичная форма имеет в системе
.








координаты точки O(0,0,0) удовлетворяют уравнению, значит, плоскость проходит через начало координат.
, так как
, значит, плоскость
.
, так как
.Значит, плоскость
.
так как
. Значит, плоскость
.
проходит через OX .
проходит через OY .
проходит через OZ .
или
.
или
.
или
.
– плоскость YOZ .
– плоскость XOZ .
– плоскость XOY . 


























, лежащей на 






















































































































































































































































































































































































































































равны между собой;






































. Следовательно, парабола расположена справа от оси Оу.
имеет вид (форму), изображенный на рисунке 61. Точка 0(0; 0) называется вершиной параболы, отрезок FM = r называется фокальным радиусом точки М.













































