Определение
3. Тело
вращения – это тело, полученное вращением
плоской фигуры вокруг оси, не
пересекающей фигуру и лежащей с ней в
одной плоскости.
Ось вращения может
и пересекать фигуру, если это ось
симметрии фигуры.
Теорема
2. Пусть
криволинейная трапеция, ограниченная
графиком непрерывной неотрицательной
функции
,
осьюи отрезками прямых
и
вращается вокруг оси
.
Тогда объём получающегося тела вращения
можно вычислить по формуле
(2)
Доказательство.
Для такого тела сечение с абсциссой
– это круг радиуса
,
значити формула (1) даёт требуемый результат.
Если фигура
ограничена графиками двух непрерывных
функций
и
,
и отрезками прямыхи
,
причёми
,
то при вращении вокруг оси абсцисс
получим тело, объём которого
Пример
3. Вычислить
объём тора, полученного вращением круга,
ограниченного окружностью вокруг оси абсцисс.
Р
Указанный круг снизу ограничен графиком
функции
,
а сверху –.
Разность квадратов этих функций:
Искомый объём
(графиком
подынтегральной функции является
верхняя полуокружность, поэтому
написанный выше интеграл – это площадь
полукруга).
Пример 4.
Параболический сегмент с основанием
,
и высотой,
вращается вокруг основания. Вычислить
объём получающегося тела («лимон»
Кавальери).
Р
Параболу расположим как показано на
рисунке. Тогда её уравнение
,
причем.
Найдём значение параметра:
.
Итак, искомый объём:
Теорема
3. Пусть
криволинейная трапеция, ограниченная
графиком непрерывной неотрицательной
функции
,
осьюи отрезками прямых
и
,
причём,
вращается вокруг оси.
Тогда объём получающегося тела вращения
может быть найден по формуле
(3)

доказательства.
Разбиваем отрезок
точками
,
на части и проводим прямые.
Вся трапеция разложится на полоски,
которые можно считать приближенно
прямоугольниками с основаниеми высотой
.
Получающийся при
вращении такого прямоугольника цилиндр
разрежем по образующей и развернём.
Получим «почти» параллелепипед с
размерами:
,
и
.
Его объём.
Итак, для объёма тела вращения будем
иметь приближенноё равенство
Для получения
точного равенства надо перейти к пределу
при .
Написанная выше сумма есть интегральная
сумма для функции ,
следовательно, в пределе получим интеграл
из формулы (3). Теорема доказана.
Замечание
1. В теоремах
2 и 3 условие
можно опустить: формула (2) вообще
нечувствительна к знаку,
а в формуле (3) достаточнозаменить на
.
Пример
5.
Параболический сегмент (основание
,
высота)
вращается вокруг высоты. Найти объём
получающегося тела.

Расположим
параболу как показано на рисунке. И хотя
ось вращения пересекает фигуру, она –
ось – является осью симметрии. Поэтому
надо рассматривать лишь правую половину
сегмента. Уравнение параболы
,
причем,
значит.
Имеем для объёма:
Замечание
2. Если
криволинейная граница криволинейной
трапеции задана параметрическими
уравнениями
,
,
и
,
то можно использовать формулы (2) и (3) с
заменойна
и
на
при измененииt
от
до
.
Пример
6. Фигура
ограничена первой аркой циклоиды
,
,
,
и осью абсцисс. Найти объём тела,
полученного вращением этой фигуры
вокруг: 1) оси;
2) оси.
Решение.
1) Общая формула
В нашем случае:
2) Общая формула
Для нашей фигуры:
Предлагаем
студентам самостоятельно провести все
вычисления.
Замечание
3. Пусть
криволинейный сектор, ограниченный
непре-рывной линией
и лучами
,
,
вращается вокруг полярной оси. Объём
получающегося тела можно вычислить по
формуле.
Пример
7. Часть
фигуры, ограниченной кардиоидой
,
лежащая вне окружности,
вращается вокруг полярной оси. Найти
объём тела, которое при этом получается.

Обе линии, а значит и фигура, которую
они ограничивают, симметричны относительно
полярной оси. Поэтому необходимо
рассматривать лишь ту часть, для которой
.
Кривые пересекаются прии
при
.
Далее, фигуру можно рассматривать как
разность двух секторов, а значит и объём
вычислять как разность двух интегралов.
Имеем:
Задачи
для самостоятельного решения.
1. Круговой сегмент,
основание которого ,
высота
,
вращается вокруг основания. Найти объём
тела вращения.
2. Найти объём
параболоида вращения, основание которого
,
а высота равна.
3. Фигура, ограниченная
астроидой
,
вращает-ся вокруг оси абсцисс. Найти
объём тела, которое получается при этом.
4. Фигура, ограниченная
линиями
и
вращается вокруг оси абсцисс. Найти
объём тела вращения.
Соседние файлы в папке Лекции по мат.анализу
- #
- #
- #
- #
- #
- #
- #
Объемы тел вращения
Краткая теория
Объемы тел, образованных вращением
криволинейной трапеции, ограниченной кривой
, осью
и двумя
вертикалями
и
, вокруг осей
и
, выражаются соответственно формулами:
Объем тела, образованного вращением
около оси
фигуры,
ограниченной кривой
, осью
и двумя
параллелями
и
, можно определять по формуле:
Если кривая задана в иной форме
(параметрически, в полярных координатах и т.д.), то в приведенных формулах
нужно сделать соответствующую замену переменной интегрирования.
В более общем случае объемы тел,
образованных вращением фигуры, ограниченной кривыми
и
(причем
) и прямыми
,
, вокруг координатных осей
и
, соответственно равны:
Объем тела, полученного при вращении
сектора, ограниченного дугой кривой
и двумя
полярными радиусами
,
, вокруг полярной оси, может быть вычислен по формуле:
Этой же формулой удобно пользоваться
при отыскании объема тела, полученного вращением вокруг полярной оси фигуры,
ограниченной некоторой замкнутой кривой, заданной в полярных координатах.
Если
– площадь
сечения тела плоскостью, перпендикулярной к некоторой прямой (которую принимаем
за ось
), в точке с абсциссой
, то объем этого тела равен:
где
и
– абсциссы
крайних сечений тела.
Примеры решения задач
Задача 1
С помощью
определенного интеграла вычислить объем тела, полученного вращением фигуры
вокруг указанной оси координат.
вокруг
оси
Решение
Сделаем
чертеж:
Объем
тела, образованного вращением вокруг оси
фигуры можно найти по формуле:
В нашем
случае получаем
Ответ:
Задача 2
Найдите
объем тела, полученного вращением вокруг оси абсцисс криволинейной трапеции,
ограниченной линиями:
и
.
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Сделаем
чертеж:
Объем
тела можно найти по формуле:
Ответ:
Задача 3
Определить
объем, образованный вращением кривой
вокруг
полярной оси.
Решение
Ответ:
Задача 4
Вычислить
объем тела, ограниченного однополосным гиперболоидом
и
плоскостями
.
Решение
Здесь
удобнее рассмотреть сечения данного тела плоскостями, перпендикулярными к оси
. Тогда объем выразится
формулой:
где
– площадь получаемого сечения, зависящая от
точки с аппликатой
, через которую проходит
секущая плоскость. При пересечении однополосного гиперболоида плоскостью
получается эллипс, который можно определить
уравнениями:
откуда
следует, что полуоси эллипса:
Учитывая, что площадь эллипса с
полуосями
и
равна
, воспользовавшись параметрическим заданием эллипса:
мы можем записать аналитическое
выражение функции
:
Тогда искомый объем:
Ответ:
Дополнения
1.О применении определённого интеграла для нахождения объёмов тел вращения
1.1.Формула объёма тела вращения
В п.16.2 дано определение тела вращения.
Получим формулу для вычисления объёма тела вращения, применяя интеграл, о котором вам рассказали в курсе «Алгебры и начал математического анализа».
Пусть f(x) — непрерывная на отрезке [a; b] функция, не принимающая отрицательных значений; А, В — точки графика этой функции (рис. 225).
Рис. 225
Рассмотрим криволинейную трапецию aABb, ограниченную кривой графика функции y = f(x), отрезками aA, bB и отрезком [a; b] координатной оси Ох (см. рис. 225). При вращении этой трапеции вокруг оси Ох образуется тело вращения (рис. 226), которое обозначим Ф и поставим себе задачу: найти объём этого тела.
Рис. 226
Через произвольную точку х = с (a ⩽ с ⩽ b) отрезка [a; b] проведём плоскость, перпендикулярную оси Ox. Сечением тела Ф этой плоскостью является круг, радиус которого равен f(с), а площадь — πf2(с) (или точка (c; 0)).
Объём части тела Ф, заключённой между этой плоскостью и плоскостью х = a, изменяется при изменении x. Обозначим этот переменный объём V(х). Заметим, что V(x) = V(a) = 0 при х = a; при х = b имеем V(x) = V(b) = V — искомый объём тела вращения Ф.
Покажем, что функция V(x) имеет производную V′(х) и V′(х) = πf2(х).
Придадим абсциссе х приращение ∆х > 0, тогда объём V(х) получает приращение ∆V(х) = V(x + ∆x) – V(x). Пусть m и М — соответственно наименьшее и наибольшее значения функции f(х) на промежутке [х; х + ∆х]. Цилиндр, радиус основания которого равен m, содержится в теле вращения объёма ∆V(x), а цилиндр, радиус основания которого равен M, содержит тело объёма ∆V(х); образующие цилиндров параллельны оси Ох и имеют длину, равную ∆х. Объёмы этих цилиндров равны соответственно πm2•∆x и πM2•∆х. На основании свойства 2 объёмов (п. 10.1) получаем
πm2•∆x ⩽ ∆V(x) ⩽ πM2•∆x,
откуда
πm2 ⩽ 
Рассуждения для случая ∆х < 0 проводятся аналогично и дают тот же результат.
Пусть теперь ∆х 





или
πf2(х) ⩽ 
Значит, 

Таким образом, переменный объём V(x) телa вращения представляет собой одну из первообразных для функции πf 2(х) на отрезке [a; b]. Эта первообразная обладает тем свойством, что при х = a она обращается в нуль (V(a) = 0), а при х = b значение функции V(x) равно объёму тела вращения Ф (V(b) = V).
Если F(х) — также некоторая первообразная для функции πf 2(x), то V(x) = F(x) + С, где С — произвольная постоянная. Так как V (a) = 0, то из равенства V(a) = F (a) + C = 0 находим С = –F(a). Значит, V(x) = F(x) – F(a). Toгдa V(b) = F(b) – F(a). Ho V(b) = V — искомый объём тела вращения Ф. Таким образом, V = F(b) – F(a), где F(b) и F(a) — значения первообразной для функции πf 2(х) соответственно при х = b и х = a. Это означает, что
V = 

Вот почему объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = f(x), х = a, х = b, у = 0, вычисляется по формуле
Рис. 227
V = 
ЗАДАЧА. Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = 
Решение. Воспользуемся формулой V = π

V = π


Ответ: 4π.
1.2. Объёмы конуса, шара и его частей
Используя формулу V = 
а) Объём конуса и усечённого конуса
Теорема 1 (об объёме полного конуса). Объём V конуса с высотой Н и радиусом основания R равен одной трети произведения площади основания на высоту:
V = 
Рис. 228
Доказательство. Конус с высотой Н и радиусом основания R можно рассматривать как тело, образованное вращением вокруг оси Ox прямоугольного треугольника с вершинами О(0; 0), А(Н; 0) и B(Н; R) (рис. 228). Треугольник АОВ является частным случаем криволинейной трапеции, которая ограничена графиком функции у = 
V = 



где πR2 — площадь основания конуса. Теорема доказана. ▼
Теорема 2 (об объёме усечённого конуса). Объём усечённого конуса с высотой Н и радиусами оснований r и R равен сумме объёмов трёх конусов с высотой Н, радиусы оснований которых соответственно равны r, R и 
V = 
Доказательство. Усечённый конус с высотой H и радиусами оснований r и R можно получить, вращая вокруг оси Oх прямоугольную трапецию OABC, где O(0; 0), A(0; r), В(Н; R), С(H; 0) (рис. 229).

Прямая AВ проходит через точки (0; r) и (Н; R), поэтому её уравнение имеет вид у = 

V = 
Для вычисления интеграла сделаем замену переменных

Тогда 

что и требовалось доказать. ▼
б) Объём шарового слоя
В прямоугольной декартовой системе координат Оху рассмотрим криволинейную трапецию aABb, ограниченную дугой окружности х2 + у2 = R2, –R ⩽ a ⩽ х ⩽ b ⩽ R, отрезком [a; b] оси Ох и отрезками aА и bВ прямых соответственно x = a и х = b (рис. 230, а).

При вращении криволинейной трапеции aАВb вокруг оси Ох образуется шаровой слой (рис. 230, б). Найдём его объём, применяя формулу (*) п. 1.1.
Из уравнения х2 + у2 = R2 имеем у2 = R2 – x2. Поэтому для вычисления объёма V шарового слоя получаем:
Таким образом, объём шарового слоя, отсекаемого от шара x2 + y2 + z2 ⩽ R2 радиуса R плоскостями x = a и x = b, вычисляется пo формуле
V = 
Пусть радиусы оснований шарового слоя равны r1 и r2 (r1 > r2), а высота — H (см. рис. 230, a).
Тогда Н = b – a, 

Формулу (**) преобразуем к виду:
V = 
= 
Из системы равенств (b – a)2 = H2, R2 – a2 = 

R2 – ab = 
Тогда:
V = 
= 
Таким образом, объём шарового слоя с радиусами оснований r1 и r2 и высотой Н вычисляется по формуле
V = 
в) Объём шара
Рис. 231
При вращении полукруга х2 + у2 = R2 (расположенного в плоскости Оху, рис. 231, а) вокруг оси Ох образуется шар радиуса R (рис. 231, б). Из уравнения окружности х2 + y2 = R2 данного полукруга имеем у2 = R2 – х2. Тогда, полагая a = –R, b = R в формуле (*) п. 1.1, находим объём V шара радиуса R:
Vш = 
= 
Таким образом, имеет место следующая теорема.
Теорема 3 (об объёме шара). Объём шара радиуса R вычисляется по формуле
Vш = 
г) Объём шарового сегмента
Если b = R (см. п. 1.2, б), то получаем криволинейную трапецию aAB (рис. 232, а), при вращении которой вокруг оси Ох образуется шаровой сегмент (рис. 232, б).
Рис. 232
Пусть высота шарового сегмента равна Н, тогда a = R – Н. Так как дуга AВ криволинейной трапеции aАВ является частью окружности x2 + y2 = R2 (в плоскости Оxу), то формулу объёма шарового сегмента получим по аналогии с выводом формулы для вычисления объёма шара, учитывая при этом, что пределы a и b интегрирования равны: a = R – H, b = R, т. е.
Vш. сегм = 
=
Таким образом, имеет место следующая теорема.
Теорема 4 (об объёме шарового сегмента). Объём шарового сегмента, отсекаемого от шара радиуса R и имеющего высоту Н, вычисляется по формуле
Vш. сегм =
Если в формуле (***) п. 1.2, б положить r2 = 0, r1 = r, то получим формулу для вычисления объёма шарового сегмента с радиусом основания r и высотой Н:
Vш. сегм = 
д) Объём шарового сектора
Рис. 233
Шаровой сектор состоит из конуса с вершиной в центре шара и шарового сегмента, имеющего с конусом общее основание (риc. 233). Пусть R = ОА — радиус шара; АС = r — радиус основания шарового сегмента, NC = H — его высота; N — точка сферы (рис. 233).
Найдём объёмы конуса и шарового сегмента, учитывая, что высота h конуса равна OC = ON – CN = R – Н.
Объём Vк конуса равен


Выразим r2 через R и H.
B прямоугольном треугольнике AOC находим r2 = AC2 = ОА2 – OC2 = R2 – (R – H)2 = H(2R – H).
Значит,
Vк = 

Для объёма шарового сегмента имеем:
Vш. сегм = 

= 
Тогда для объёма шарового сектора получаем
Vш. сект = Vк + Vш. сегм =
= 


Таким образом, доказана следующая теорема.
Теорема 5 (об объёме шарового сектора). Объём шарового сектора шара радиуса R вычисляется по формуле
Vш. сект = 
где Н — длина высоты шарового сегмента, соответствующего данному шаровому сектору.
В курсе математического анализа, который вам предстоит изучать в высшей школе, будет дано строгое обоснование применения определённого интеграла не только для нахождения объёмов тел, но и для нахождения площадей поверхностей и длин дуг линий. Решите самостоятельно следующие задачи.
1)Найдите объём тела, которое получается при вращении вокруг оси Ох криволинейной трапеции, ограниченной гиперболой у = 
2)Найдите объём тела, образованного вращением вокруг оси Oх фигуры, ограниченной одной полуволной синусоиды у = sin x и отрезком 0 ⩽ х ⩽ π оси абсцисс. (Ответ: 0,5π2.)
3)Найдите объём тела, полученного при вращении кривой у = 0,25х2 вокруг оси Оу в пределах от у = 1 до у = 5. (Ответ: 48π.)
4)Найдите объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной кривыми у = 2х2 и у = x3.
Объем тела V, образованного вращением вокруг оси Ox фигуры 


Объем тела V, образованного вращением вокруг оси Oy фигуры 

Примеры выбраны из учебной программы для студентов механико-математического факультета Львовского национального университета имени Ивана Франко.
Первый номер в примерах отвечает номеру основного задания из сборника М. В. Заболоцький, Фединяк С.И., Филевич П.В. «Практикум из математического анализа» (рядом стоит номер из сборника Б. П. Демидовича).
Для изучения основных моментов схема интегрирования и формулы вычисления объема тела вращения будут повторяться из примера в пример.
ІV. Найти объемы тел, ограниченными поверхностями, полученными при вращении отрезков следующих линий
Пример 2.139 (2472) Найти объем тела, образованного вращением кривой 
Решение: Складываем подинтегральную функцию:
Пределы интегрирования известны за условием: [0;a].
Найдем объем тела интегрированием:
Всегда помните, что объем измеряется в кубических единицах.
Пример 2.140 (2473) Найти объем тела, образованного вращением кривой y=2x-x^2, y=0
а) вокруг оси Ox; б) вокруг оси Oy.
Решение: Запишем подинтегральные функции:
а)
б)
Из приведенных формул Вы можете видеть разницу, в каких случаях применять каждую из формул объема.
Найдем пределы интегрирования:
И заключительным шагом вычисляем объемы интегрированием.
а) Найдем объем тела вращения вокруг оси Ox:
б) Вычислим объем тела вращения вокруг оси Oy:

В этом примере интегралы легко берутся и нет потребности объяснять детали операций.
Пример 2.141 (2474) Вычислить объем тела, образованного вращением кривой y=sin(x)

а) вокруг оси Ox; б) вокруг оси Oy.
Решение: Выпишем подинтегральные функции:
а)
б)
Пределы интегрирования берем из начального условия:
Осталось вычислить определенные интегралы:
а) Найдем объем тела вращения вокруг оси Ox:
б) Выполняем вычисление объема тела при вращении вокруг оси Oy:
Замена переменных помогает найти последний интеграл.
Пример 2.143 (2476) Найти объем тела, образованного вращением кривой y=e— x, y=0, 
а) вокруг оси Ox; б) вокруг оси Oy.
Решение: Уравнение подинтегральных функций :
а) y2=e-2x;
б) x*y (x) =xe-x.
Запишем пределы интегрирования (известно за условием):
а) Находим объем тела вращения вокруг оси Ox:
б) Найдем объем тела вращения вокруг оси Oy:
Здесь, чтобы вычислить интегралы придется находить границу при переменной направляющейся к безграничности.
Во втором интеграле выполняем интегрирование частями.
Пример 2.144 (2477) Вычислить объем тела, образованного вращением кривой x2+(y-b)2=a2, 
Решение: Фигурой вращения является круг с центром в точке (0;b) и радиусом a.
При выражении самой функции получим две ветки корневых функций:
При поднесении к квадрату разница слагаемых сложит такое выражение подинтегральной функции:
Запишем пределы интегрирования: для круга они равны xє[-a;a] или два полукруга из на промежутке xє[0;a].
Через интеграл находим объем тела вращения вокруг оси Ox:
Внимательно разберите приведенный пример.
Пример 2.145 (2478) Найти объем тела, образованного вращением кривой x2-xy+y2=a2, вокруг оси Ox.
Решение: Сведем кривую к каноническому виду (методами из аналитической геометрии) устанавливаем, что заданная линия является эллипсом

В приведенной системе координат уравнения эллипса имеет вид:
Прямая y=x/2 является осью симметрии этой фигуры.
Запишем подинтегральную функцию:
Найдем пределы интегрирования из условия равности функций y2(x)=y1(x):
или двукратный объем на интервале
Но тогда еще нужно отнять объем тела в пределах

(которая не принадлежит эллипсу) и ограничена первой кривой
и результат умножить на 2 (симметрия).
Последним шагом вычисляем объем тела вращения вокруг оси Ox:
Формула интеграла вышла достаточно длинным, однако его удобно читать пользователям, которые заходят на сайт из мобильных устройств.
Пример 2.146 (2479) Найти объем тела, образованного вращением кривой 
Решение: Запишем подинтегральную функцию:
y2(x)=e-2x*sin (x).
Установим пределы интегрирования: 

Таким образом имеем бесконечный ряд промежутков интегрирования.
При нахождении объема тела вращения вокруг оси Ox получим бесконечный ряд интегралов, который совпадает:

Здесь вычислили интеграл дважды выполнив замену переменных:

тому 

В данном случае бесконечно нисходящая геометрическая прогрессия, у которой b1=1, b2=e-4Pi, поэтому q=e— 4Pi, а сумма прогрессии равна
Объем тела, образованного вращением вокруг полярной оси плоской фигуры
Чтобы найти объем тела V, образованного в результате вращением вокруг полярной оси плоской фигуры r(phi)

Пример 2483 Найти объем тела, образованного вращением кривой r=a (1+cos (phi)), 
а) вокруг полярной оси;
б) вокруг прямой
Решение: Чтобы достать подинтегральную функцию подносим к кубу заданную функцию: 
Пределы интегрирования записываем из начального условия:
а) Сначала найдем объем тела вращения вокруг полярной оси:

Для упрощения вычислений переходим к новой переменной под интегралом.
б) Перейдем к новым координатам с помощью формул: x1=y, y1=-x-a/4.
Определяем пределы интегрирования:
при росте угла 




Запишем подинтегральную функцию:
Уравнения перехода между системами координат имеют вид
Подстановкой в уравнение получим:

Найдем объем тела вращения вокруг прямой 

откроем скобки, возведем подобные слагаемые и, приняв во внимание, что интеграл равен нулю 

Здесь последние интегралы 
(смотри пример 2.59, часть І).
Парные факториалы вычисляем по правилу
Пример 2484.1 Найти объем тела, образованного вращением кривой r=a*phi 
Решение: Запишем подинтегральную функцию:

С пределами интегрирования проблем нет:
Чтобы найти объем тела вращения вокруг полярной оси выполняем ряд манипуляций с интегралами:
Внимательно проанализируйте, как находится этот «тригонометрический» интеграл.
Пример 2484.2 Найти объем тела, образованного вращением кривой phi=Pi*r3, phi=Pi, вокруг полярной оси.
Решение: Запишем подинтегральную функцию:

Пределы интегрирования:

Вычисляем объем тела вращения вокруг полярной оси:
Здесь синус вносим под дифференциал и выполняем интегрирование частями.
На данное время это все примеры, которые мы смогли подготовить для Вас по данной теме.
Рассмотрим ещё одно распространённое приложение определённого интеграла.
Представьте некоторую плоскую фигуру на координатной плоскости. Представили? … интересно, кто что представил… 
или вокруг оси
.
В рамках данного курса я остановлюсь на стандартном варианте:
Пример 17
Вычислить объем тела, полученного вращением фигуры, ограниченной линиями ,
вокруг оси
.
Решение: как и в задаче на нахождение площади, решение начинается с чертежа плоской фигуры. Да, с точно такого же чертежа:
Искомая плоская фигура заштрихована серым цветом, именно она и вращается вокруг оси . В результате получается такое… загадочное яйцо.
Объем тела вращения можно вычислить по формуле:

– неотрицательная или неположительная функция, график которой ограничивает плоскую фигуру на отрезке
. Заметьте, что здесь не нужно думать, над осью расположена криволинейная трапеция или под осью, т.к. возведение в квадрат стирает разницу между функциями
и
.
В нашей задаче:
Интеграл почти всегда получается простой, главное, быть ВНИМАТЕЛЬНЫМ.
Ответ: (кубических единиц — «кубиков» единичного объема)
Напоминаю, что , обычно принимают
либо
.
Пример 18
Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями
,
,
Тренируемся и переходим к более содержательному случаю:
Пример 19
Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями ,
,
и
.
Решение: изобразим на чертеже плоскую фигуру, ограниченную линиями ,
,
,
, не забывая, что уравнение
задаёт ось
:
Искомая фигура заштрихована синим цветом. При её вращении вокруг оси получается такой сюрреалистический бублик с четырьмя углами. Объем этого бублика вычислим как разность объёмов с помощью стандартной формулы

1) Фигура, обведённая красным цветом ограничена сверху прямой , поэтому:
2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:
3) Объем искомого тела вращения:
Ответ:
Решение можно оформить и короче, примерно в таком духе:

И ещё хочу вас предостеречь от оценки результата «на глазок». При вычислении объёмов этого делать НЕ НАДО. Дело в том, что человек склонен неверно оценивать объёмы. Посмотрите на плоскую фигуру в прорешанной задаче – она вроде бы невелика по площади, а объем тела вращения составил чуть более 50 «кубиков», что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.
И после лирического отступления уместно решить изящную и, конечно же, важную;) задачу:
Пример 20
Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями ,
,
Дополнительные примеры можно найти в соответствующей статье сайта, в том числе вращение вокруг оси , ну а сейчас есть более срочный материал:


| Оглавление |
Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин




























































