При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы.
Напомним свойства числовых неравенств.
1. Если а > b , то b < а; наоборот, если а < b, то b > а.
2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
3. Если а > b, то а + c > b+ c (и а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.
Замечание.
Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
6. Если а > b и m – положительное число, то m а > m b и 
Если же а > b и n – отрицательное число, то n а < n b и 
7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.
8. Если а > b, где а, b > 0, то 

Виды неравенств и способы их решения
1. Линейные неравенства и системы неравенств
Пример 1. Решить неравенство 
Решение:

Ответ: х < – 2.
Пример 2. Решить систему неравенств 
Решение:

Ответ: (– 2; 0].
Пример 3. Найти наименьшее целое решение системы неравенств
Решение:
Ответ:
2. Квадратные неравенства
Пример 4. Решить неравенство х2 > 4.
Решение:
х2 > 4 (х – 2)∙(х + 2) > 0.
Решаем методом интервалов.
Ответ:
3. Неравенства высших степеней
Пример 5. Решить неравенство (х + 3)∙(х2 – 2х + 1) > 0.
Решение:

Ответ: 
Пример 6. Найти середину отрезка, который является решением неравенства 4х2 – 24х + 24 < 4у2, где 
Решение:
Область определения неравенства: 
С учётом области определения 4х2 – 24х + 24 < 4у2 будет равносильно неравенству
Решаем методом интервалов.
Решение неравенства: 
Середина отрезка: 
Ответ: 
4. Рациональные неравенства
Пример 7. Найти все целые решения, удовлетворяющие неравенству 
Решение:

Методом интервалов:
Решение неравенства: 
Целые числа, принадлежащие полученным полуинтервалам: – 6; – 5; – 4; 1.
Ответ: – 6; – 5; – 4; 1.
5. Иррациональные неравенства
Помните! Начинать решение иррациональных неравенств нужно с нахождения области определения.
Пример 8. Решить неравенство 
Решение:
Область определения: 
Так как арифметический корень не может быть отрицательным числом, то 
Ответ: 
Пример 9. Найти все целые решения неравенства 
Решение:
Область определения 



Целыми числами из этого отрезка будут 2; 3; 4.
Ответ: 2; 3; 4.
Пример 10. Решить неравенство 
Решение:
Область определения: 
Преобразуем неравенство: 


Ответ: 
Пример 11. Решить неравенство 
Решение:
Раскрываем знак модуля.
Объединим решения систем 1) и 2): 
Ответ: 
6. Показательные, логарифмические неравенства и системы неравенств
Пример 12. Решите неравенство 
Решение:

Ответ: 
Пример 13. Решите неравенство 
Решение:

Ответ: 
Пример 14. Решите неравенство 
Решение:
Ответ: 
Пример 15. Решите неравенство 
Решение:
Ответ: 
Задания для самостоятельного решения
Базовый уровень
Целые неравенства и системы неравенств
1) Решите неравенство 2х – 5 ≤ 3 + х.
2) Решите неравенство – 5х > 0,25.
3) Решите неравенство 
4) Решите неравенство 2 – 5х ≥ – 3х.
5) Решите неравенство х + 2 < 5x – 2(x – 3).
6) Решите неравенство
.
7) Решите неравенство (х – 3) (х + 2) > 0.


9) Найдите целочисленные решения системы неравенств 
10) Решить систему неравенств 
11) Решить систему неравенств 
12) Найти наименьшее целое решение неравенства 
13) Решите неравенство 
14) Решите неравенство 
15) Решите неравенство 
16) Решите неравенство 
17) Найдите решение неравенства 

18) Решить систему неравенств 
19) Найти все целые решения системы 
Рациональные неравенства и системы неравенств
20) Решите неравенство 
21) Решите неравенство 
22) Определите число целых решений неравенства 
23) Определите число целых решений неравенства 
24) Решите неравенство 
25) Решите неравенство 2x<16 .
26) Решите неравенство 
27) Решите неравенство 
28) Решите неравенство 
29) Найдите сумму целых решений неравенства 
30) Решите неравенство 
31) Решите неравенство 
Иррациональные неравенства
32) Решите неравенство 
33) Решите неравенство
34) Решите неравенство 
Показательные, логарифмические неравенства и системы неравенств
35) Решите неравенство 
36) Решите неравенство 
37) Решите неравенство 
38) Решите неравенство 
39) Решите неравенство 
40) Решите неравенство 49∙7х < 73х + 3.
41) Найдите все целые решения неравенства 
42) Решите неравенство 
43) Решите неравенство 
44) Решите неравенство 7x+1-7x<42 .
45) Решите неравенство log3(2x2+x-1)>log32 .
46) Решите неравенство log0,5(2x+3)>0 .
47) Решите неравенство 
48) Решите неравенство 
49) Решите неравенство 
50) Решите неравенство logx+112>logx+12 .
51) Решите неравенство logx9<2.
52) Решите неравенство 
Повышенный уровень
53) Решите неравенство |x-3|>2x.
54) Решите неравенство 2│х + 1| > х + 4.
55) Найдите наибольшее целое решение неравенства 
56) Решить систему неравенств 
57) Решить систему неравенств 
58) Решите неравенство 
59) Решите неравенство 25•2x-10x+5x>25 .
60) Решите неравенство 
Ответы
1) х ≤ 8; 2) х < – 0,05; 3) х ≥ 5; 4) х ≤ 1; 5) х > –2; 6) х < 11; 7) 





20) (0; 2); 21) (0; 1,5); 22) 3; 23) 6; 24) (–1; 1,5); 25) х < 4; 26)
; 29) – 10; 30) (0; + ∞); 31)









.
Прежде чем перейти к определению и решению неравенств давайте вспомним, какие знаки используют в математике для
сравнения величин.
| Символ | Название | Тип знака |
|---|---|---|
| > | больше |
строгий знак (число на границе не включается) |
| < | меньше |
строгий знак (число на границе не включается) |
| ≥ | больше или равно |
нестрогий знак (число на границе включается) |
| ≤ | меньше или равно |
нестрогий знак (число на границе включается) |
Теперь мы можем разобраться, что называют линейным неравенством и чем неравенство
отличается от уравнения.
В отличии от уравнения в неравенстве вместо знака равно «=» используют любой
знак сравнения: «>», «<»,
«≤» или «≥».
Запомните!
Линейным
неравенством называют неравенство, в котором неизвестное стоит только в первой степени.
Рассмотрим пример линейного неравенства.
x − 6 < 8
Так как в неравенстве «x − 6 < 8»
неизвестное «x» стоит в первой степени, такое неравенство называют линейным.
Как решить линейное неравенство
Важно!
Чтобы решить неравенство, нужно чтобы в левой части осталось только неизвестное
в первой степени с
коэффициентом «1».
При решении линейных неравенств используют правило переноса и правило деления неравенства на число.
Правило переноса в неравенствах
Также как и в уравнениях,
в неравенствах можно переносить
любой член неравенства из левой части в правую и наоборот.
Запомните!
При переносе из левой части в правую (и наоборот) член неравенства меняет свой знак на
противоположный.
Вернемся к нашему неравенству и используем правило переноса.
x − 6 < 8
x < 8 + 6
x < 14
Итак, мы получили ответ к неравенству «x < 14». Но что означает такой
ответ?
Для того, чтобы понять, что получается при решении неравенства, нам нужно вспомнить,
понятие числовой оси.
Нарисуем числовую ось для неизвестного «x» и отметим на ней число «14».

Запомните!
При нанесении числа на числовую ось соблюдаются следующие правила:
Заштрихуем на числовой оси по полученному ответу «x < 14» все решения неравенства, то есть область
слева от числа «14».
Рисунок выше говорит о том, что любое число из заштрихованной области при подстановке в исходное неравенство
«x − 6 < 8»
даст верный результат.
Возьмем, например число «12» из заштрихованной области и подставим его
вместо «x» в исходное неравенство «x − 6 < 8».
Другими словами, можно утверждать, что любое число из заштрихованной области будет являться решением неравенства.
Важно!
Решить неравенство — это значит найти множество чисел, которые при подстановке в исходное неравенство
дают верный результат.
Решением неравенства
называют множество чисел из заштрихованной области на числовой оси.
В нашем примере ответ «x < 14» можно понимать так: любое число из
заштрихованной области (то есть любое число меньшее
«14») будет являться решением неравенства
«x − 6 < 8».
Правило умножения или деления неравенства на число
Рассмотрим другое неравенство.
2x − 16 > 0
Используем правило переноса и перенесём все числа без неизвестного, в правую часть.
2x − 16 > 0
2x > 16
Теперь нам нужно сделать так, чтобы при неизвестном «x»
стоял коэффициент «1». Для этого достаточно разделить и левую,
и правую часть на число «2».
Запомните!
При умножении или делении неравенства на число, на это число умножается (делится) и левая, и правая часть.
- Если неравенство умножается (делится) на положительное число,
то
знак самого неравенства остаётся прежним. - Если неравенство умножается (делится) на отрицательное число,
то
знак самого неравенства меняется на противоположный.
Разделим «2x > 16» на «2».
Так как «2» —
положительное число, знак неравенства останется прежним.
2x > 16 | (:2)
2x (:2) > 16 (:2)
x > 8
Ответ: x > 8
Рассмотрим другое неравенство.
9 − 3x ≥ 0
Используем правило переноса.
9 − 3x ≥ 0
−3x ≥ −9
Разделим неравенство на «−3».
Так как мы делим неравенство на отрицательное число, знак неравенства поменяется на противоположный.
−3x ≥ −9
−3x ≥ −9 | :(−3)
−3x : (−3) ≤ −9 :(−3)
x ≤ 3
Ответ: x ≤ 3
Примеры решения линейных неравенств
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».

Оставить комментарий:
16 ноября 2021 в 16:44
Алина Кирщина
Профиль
Благодарили: 0
Сообщений: 1
Алина Кирщина
Профиль
Благодарили: 0
Сообщений: 1
Как правильно написать «больше 15» символом? <15 или >15?
0
Спасибо
Ответить
24 ноября 2021 в 12:56
Ответ для Алина Кирщина
Борис Гуров
Профиль
Благодарили: 1
Сообщений: 28
Борис Гуров
Профиль
Благодарили: 1
Сообщений: 28
> 15 Острый конец символа «птичка» > смотрит в сторону меньшего числа
Еще можно запомнить, как что где больше вершин у символа «птички», там большее число находится. У символа > слева две вершины, а справа одна, значит слева находится большее число.
0
Спасибо
Ответить
29 ноября 2021 в 7:32
Ответ для Алина Кирщина
Фархад Асланов
Профиль
Благодарили: 0
Сообщений: 1
Фархад Асланов
Профиль
Благодарили: 0
Сообщений: 1
>15
0
Спасибо
Ответить
5 марта 2020 в 23:01
Лина Недзвецкая
Профиль
Благодарили: 0
Сообщений: 1
Лина Недзвецкая
Профиль
Благодарили: 0
Сообщений: 1
Решите неравенство:
log3
≤1
0
Спасибо
Ответить
20 августа 2020 в 1:16
Ответ для Лина Недзвецкая
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
0 < (3x − 5)/(x+1) ≤ 3.
(3x − 5)/(x+1) > 0 ⇔ x < − 1 ∪ x > 5/3;
(3x − 5)/(x+1) ≤ 3 ⇔ 8/(x+1) ≥ 0 ⇔ x > − 1.
{(−∞; −1) ∪ (5/3; +∞)} ∩ (−1; +∞) = (5/3; +∞).
0
Спасибо
Ответить
17 июля 2016 в 15:37
Sergey Gurzhiy
Профиль
Благодарили: 0
Сообщений: 1
Sergey Gurzhiy
Профиль
Благодарили: 0
Сообщений: 1
Решите неравенство
2^3-6x<1
0
Спасибо
Ответить
21 сентября 2016 в 13:44
Ответ для Sergey Gurzhiy
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Странно, что для 11класса, но всё же:
23 ? 6x<1
8 ? 6x<1
? 6x< ? 7
x>
1
Спасибо
Ответить
6 июня 2016 в 17:05
Катя Петрова
Профиль
Благодарили: 0
Сообщений: 1
Катя Петрова
Профиль
Благодарили: 0
Сообщений: 1
0
Спасибо
Ответить
7 июня 2016 в 2:49
Ответ для Катя Петрова
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Пусть 2x = y > 0.
Неравенство можно записать в виде
? 0.
Откуда y = 2 или 8 ? y < 9.
Стало быть, x = 1 или 3 ? x < log29.
0
Спасибо
Ответить
7 июня 2016 в 13:11
Ответ для Катя Петрова
Хачик Казанджян
Профиль
Благодарили: 0
Сообщений: 1
Хачик Казанджян
Профиль
Благодарили: 0
Сообщений: 1



-Tак как y>0, то сокращаем на y и преобразуем к виду
Учитывая, что y=2x получим x=1 или (3?x<log29) Ответ: (x=1)?(3?x<log2). или так {1?[3;log29)}
0
Спасибо
Ответить
8 июня 2016 в 12:10
Ответ для Катя Петрова
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Списывать нехорошо.
0
Спасибо
Ответить
5 мая 2016 в 10:09
Влада Навдушевич
Профиль
Благодарили: 0
Сообщений: 1
Влада Навдушевич
Профиль
Благодарили: 0
Сообщений: 1
Как решить неравенство (х^2-4х+3)/(х^4-х^6) < или = 0
0
Спасибо
Ответить
8 июня 2016 в 12:28
Ответ для Влада Навдушевич
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
| (x — 1)(x — 3) |
| x4(1 — x)(1 + x) |
? 0.
и метод интервалов.
Ответ: (-oo; -1) U [3; +oo).
0
Спасибо
Ответить
3 августа 2015 в 16:54
Надие Рахимова
Профиль
Благодарили: 0
Сообщений: 1
Надие Рахимова
Профиль
Благодарили: 0
Сообщений: 1
область решения неравенства (х-4)>3х равна? решить
0
Спасибо
Ответить
31 августа 2016 в 10:31
Ответ для Надие Рахимова
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
(x-4)>3x
x-4-3x>0
-4-2x>0
2x+4<0
2x<-4
x<-2
Проверка: Возьмём число меньшее -2, например -3
-3-4>-3 · 3
12>-9 Верно.
Ответ: x<-2
0
Спасибо
Ответить
Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Неравенства
Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:
> больше,
≥ больше или равно,
< меньше,
≤ меньше или равно,
то получится неравенство.
Линейные неравенства
Линейные неравенства – это неравенства вида:
a x < b a x ≤ b a x > b a x ≥ b
где a и b – любые числа, причем a ≠ 0, x – переменная.
Примеры линейных неравенств:
3 x < 5 x − 2 ≥ 0 7 − 5 x < 1 x ≤ 0
Решить линейное неравенство – получить выражение вида:
x < c x ≤ c x > c x ≥ c
где c – некоторое число.
Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.
- Если знак неравенства строгий > , < , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой.
Смысл выколотой точки в том, что сама точка в ответ не входит.
- Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной.
Смысл жирной точки в том, что сама точка входит в ответ.
- Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.
Таблица числовых промежутков
| Неравенство | Графическое решение | Форма записи ответа |
|---|---|---|
| x < c |
|
x ∈ ( − ∞ ; c ) |
| x ≤ c |
|
x ∈ ( − ∞ ; c ] |
| x > c |
|
x ∈ ( c ; + ∞ ) |
| x ≥ c |
|
x ∈ [ c ; + ∞ ) |
Алгоритм решения линейного неравенства
- Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:
a x < b a x ≤ b a x > b a x ≥ b
- Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
- Если a > 0 то неравенство приобретает вид x ≤ b a .
- Если a < 0 , то знак неравенства меняется на противоположный, неравенство приобретает вид x ≥ b a .
- Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.
Примеры решения линейных неравенств:
№1. Решить неравенство 3 ( 2 − x ) > 18.
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
6 − 3 x > 18
− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )
Делим обе части неравенства на (-3) – коэффициент, который стоит перед x. Так как − 3 < 0 , знак неравенства поменяется на противоположный. x < 12 − 3 ⇒ x < − 4 Остается записать ответ (см. таблицу числовых промежутков).
Ответ: x ∈ ( − ∞ ; − 4 )
№2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
6 x + 4 ≥ 3 x + 3 − 14
6 x − 3 x ≥ 3 − 14 − 4
3 x ≥ − 15 | ÷ 3 Делим обе части неравенства на (3) – коэффициент, который стоит перед x. Так как 3 > 0, знак неравенства после деления меняться не будет.
x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).
Ответ: x ∈ [ − 5 ; + ∞ )
Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).
Примеры:
№1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
6 x − 1 ≤ 6 x − 1
6 x − 6 x ≤ − 1 + 1
0 ≤ 0
Получили верное неравенство, которое не зависит от переменной x. Возникает вопрос, какие значения может принимать переменная x, чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.
Ответ:
- x – любое число
- x ∈ ( − ∞ ; + ∞ )
- x ∈ ℝ
№2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
x + 6 − 9 x > − 8 x + 48
− 8 x + 8 x > 48 − 6
0 > 42
Получили неверное равенство, которое не зависит от переменной x. Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.
Ответ: x ∈ ∅
Квадратные неравенства
Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c < 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем a ≠ 0, x — переменная.
Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.
Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).
Алгоритм решения квадратного неравенства методом интервалов
- Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
- Отметить на числовой прямой корни трехчлена.
Если знак неравенства строгий > , < , точки будут выколотые.
Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).
- Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A) и подставить её значение в выражение a x 2 + b x + c вместо x.
Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.
Точки выколотые, если знак неравенства строгий.
Точки жирные, если знак неравенства нестрогий.
Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.
Точки выколотые, если знак неравенства строгий.
Точки жирные, если знак неравенства нестрогий.
- Выбрать подходящие интервалы (или интервал).
Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.
Если знак неравенства < или ≤ в ответ выбираем интервалы со знаком -.
- Записать ответ.
Примеры решения квадратных неравенств:
№1. Решить неравенство x 2 ≥ x + 12.
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
x 2 ≥ x + 12
x 2 − x − 12 ≥ 0
x 2 − x − 12 = 0
a = 1, b = − 1, c = − 12
D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49
D > 0 ⇒ будет два различных действительных корня
x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3
Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6. Подставляем эту точку в исходное выражение:
x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0
Это значит, что знак на интервале, в котором лежит точка 6 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .
Точки -3 и 4 будут в квадратных скобках, так как они жирные.
Ответ: x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )
№2. Решить неравенство − 3 x − 2 ≥ x 2 .
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
− 3 x − 2 ≥ x 2
− x 2 − 3 x − 2 ≥ 0
− x 2 − 3 x − 2 = 0
a = − 1, b = − 3, c = − 2
D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1
D > 0 ⇒ будет два различных действительных корня
x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1
x 1 = − 2, x 2 = − 1
Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение:
− x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 < 0
Это значит, что знак на интервале, в котором лежит точка 0 будет − .
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства ≥ , выбираем в ответ интервал со знаком +.
Точки -2 и -1 будут в квадратных скобках, так как они жирные.
Ответ: x ∈ [ − 2 ; − 1 ]
№3. Решить неравенство 4 < x 2 + 3 x .
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
4 < x 2 + 3 x
− x 2 − 3 x + 4 < 0
− x 2 − 3 x + 4 = 0
a = − 1, b = − 3, c = 4
D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25
D > 0 ⇒ будет два различных действительных корня
x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1
x 1 = − 4, x 2 = 1
Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение:
− x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 < 0
Это значит, что знак на интервале, в котором лежит точка 2, будет -.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства < , выбираем в ответ интервалы со знаком − .
Точки -4 и 1 будут в круглых скобках, так как они выколотые.
Ответ: x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )
№4. Решить неравенство x 2 − 5 x < 6.
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
x 2 − 5 x < 6
x 2 − 5 x − 6 < 0
x 2 − 5 x − 6 = 0
a = 1, b = − 5, c = − 6
D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49
D > 0 ⇒ будет два различных действительных корня
x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1
x 1 = 6, x 2 = − 1
Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:
x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 = 44 > 0
Это значит, что знак на интервале, в котором лежит точка 10 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства < , выбираем в ответ интервал со знаком -.
Точки -1 и 6 будут в круглых скобках, так как они выколотые
Ответ: x ∈ ( − 1 ; 6 )
№5. Решить неравенство x 2 < 4.
Решение:
Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.
x 2 < 4
x 2 − 4 < 0
x 2 − 4 = 0
( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2
x 1 = 2, x 2 = − 2
Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3. Подставляем эту точку в исходное выражение:
x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0
Это значит, что знак на интервале, в котором лежит точка 3 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства < , выбираем в ответ интервал со знаком − .
Точки -2 и 2 будут в круглых скобках, так как они выколотые.
Ответ: x ∈ ( − 2 ; 2 )
№6. Решить неравенство x 2 + x ≥ 0.
Решение:
Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.
x 2 + x ≥ 0
x 2 + x = 0
x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1
x 1 = 0, x 2 = − 1
Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1. Подставляем эту точку в исходное выражение:
x 2 + x = 1 2 + 1 = 2 > 0
Это значит, что знак на интервале, в котором лежит точка 1 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Поскольку знак неравенства ≥ , выбираем в ответ интервалы со знаком +.
В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.
Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )
Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.
Дробно рациональные неравенства
Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:
f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0
Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).
Примеры дробно рациональных неравенств:
x − 1 x + 3 < 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3
Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.
Алгоритм решения дробно рациональных неравенств:
- Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):
f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0
- Приравнять числитель дроби к нулю f ( x ) = 0. Найти нули числителя.
- Приравнять знаменатель дроби к нулю g ( x ) = 0. Найти нули знаменателя.
В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.
- Нанести нули числителя и нули знаменателя на ось x.
Вне зависимости от знака неравенства
при нанесении на ось x нули знаменателя всегда выколотые.
Если знак неравенства строгий,
при нанесении на ось x нули числителя выколотые.
Если знак неравенства нестрогий,
при нанесении на ось x нули числителя жирные.
- Расставить знаки на интервалах.
- Выбрать подходящие интервалы и записать ответ.
Примеры решения дробно рациональных неравенств:
№1. Решить неравенство x − 1 x + 3 > 0.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
- Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
- Приравниваем числитель к нулю f ( x ) = 0.
x − 1 = 0
x = 1 — это ноль числителя. Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.
- Приравниваем знаменатель к нулю g ( x ) = 0.
x + 3 = 0
x = − 3 — это ноль знаменателя. При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства).
- Наносим нули числителя и нули знаменателя на ось x.
При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.
- Расставляем знаки на интервалах.
Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3 = 2 − 1 2 + 3 = 1 5 > 0,
Это значит, что знак на интервале, в котором лежит точка 2 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
- Выбираем подходящие интервалы и записываем ответ.
Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.
В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.
Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )
№2. Решить неравенство 3 ( x + 8 ) ≤ 5.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
- Привести неравенство к виду f ( x ) g ( x ) ≤ 0.
3 ( x + 8 ) ≤ 5
3 ( x + 8 ) − 5 x + 8 ≤ 0
3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0
3 − 5 ( x + 8 ) x + 8 ≤ 0
3 − 5 x − 40 x + 8 ≤ 0
− 5 x − 37 x + 8 ≤ 0
- Приравнять числитель к нулю f ( x ) = 0.
− 5 x − 37 = 0
− 5 x = 37
x = − 37 5 = − 37 5 = − 7,4
x = − 7,4 — ноль числителя. Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.
- Приравнять знаменатель к нулю g ( x ) = 0.
x + 8 = 0
x = − 8 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).
- Наносим нули числителя и нули знаменателя на ось x.
При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.
- Расставляем знаки на интервалах.
Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение f ( x ) g ( x ) :
− 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 < 0
Это значит, что знак на интервале, в котором лежит точка 0 будет -.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
- Выбираем подходящие интервалы и записываем ответ.
Поскольку знак неравенства ≤ , выбираем в ответ интервалы со знаком -.
В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.
Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )
№3. Решить неравенство x 2 − 1 x > 0.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
- Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
- Приравнять числитель к нулю f ( x ) = 0.
x 2 − 1 = 0
( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1
x 1 = 1, x 2 = − 1 — нули числителя. Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.
- Приравнять знаменатель к нулю g ( x ) = 0.
x = 0 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).
- Наносим нули числителя и нули знаменателя на ось x.
При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.
- Расставляем знаки на интервалах.
Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f ( x ) g ( x ) :
x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
- Выбираем подходящие интервалы и записываем ответ.
Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.
В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.
Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )
Системы неравенств
Сперва давайте разберёмся, чем отличается знак { системы от знака [ совокупности. Система неравенств ищет пересечение решений, то есть те точки, которые являются решением и для первого неравенства системы, и для второго. Проще говоря, решить систему неравенств — это найти пересечение решений всех неравенств этой системы друг с другом. Совокупность неравенств ищет объединение решений, то есть те точки, которые являются решением либо для первого неравенства, либо для второго, либо одновременно и для первого неравенства, и для второго. Решить совокупность неравенств означает объединить решения обоих неравенств этой совокупности. Более подробно об этом смотрите короткий видео-урок.
Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.
Пример системы неравенств:
{ x + 4 > 0 2 x + 3 ≤ x 2
Алгоритм решения системы неравенств
- Решить первое неравенство системы, изобразить его графически на оси x.
- Решить второе неравенство системы, изобразить его графически на оси x.
- Нанести решения первого и второго неравенств на ось x.
- Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.
Примеры решений систем неравенств:
№1. Решить систему неравенств { 2 x − 3 ≤ 5 7 − 3 x ≤ 1
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
- Решаем первое неравенство системы.
2 x − 3 ≤ 5
2 x ≤ 8 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.
x ≤ 4 ;
Графическая интерпретация:
Точка 4 на графике жирная, так как знак неравенства нестрогий.
- Решаем второе неравенство системы.
7 − 3 x ≤ 1
− 3 x ≤ 1 − 7
− 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 < 0, знак неравенства после деления меняется на противоположный.
x ≥ 2
Графическая интерпретация решения:
Точка 2 на графике жирная, так как знак неравенства нестрогий.
- Наносим оба решения на ось x.
- Выбираем подходящие участки и записываем ответ.
Пересечение решений наблюдается на отрезке от 2 до 4. Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.
Ответ: x ∈ [ 2 ; 4 ]
№2. Решить систему неравенств { 2 x − 1 ≤ 5 1 < − 3 x − 2
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
- Решаем первое неравенство системы.
2 x − 1 ≤ 5
2 x ≤ 6 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.
x ≤ 3
Графическая интерпретация:
Точка 3 на графике жирная, так как знак неравенства нестрогий.
- Решаем второе неравенство системы.
1 < − 3 x − 2
3 x < − 1 − 2
3 x < − 3 | ÷ 3 , поскольку 3 > 0, знак неравенства после деления сохраняется.
x < − 1
Графическая интерпретация решения:
Точка -1 на графике выколотая, так как знак неравенства строгий.
- Наносим оба решения на ось x.
- Выбираем подходящие участки и записываем ответ.
Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.
Ответ: x ∈ ( − ∞ ; − 1 )
№3. Решить систему неравенств { 3 x + 1 ≤ 2 x x − 7 > 5 − x
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
- Решаем первое неравенство системы.
3 x + 1 ≤ 2 x
3 x − 2 x ≤ − 1
x ≤ − 1
Графическая интерпретация решения:
- Решаем второе неравенство системы
x − 7 > 5 − x
x + x > 5 + 7
2 x > 12 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.
x > 6
Графическая интерпретация решения:
- Наносим оба решения на ось x.
- Выбираем подходящие участки и записываем ответ.
Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.
Ответ: x ∈ ∅
№4. Решить систему неравенств { x + 4 > 0 2 x + 3 ≤ x 2
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
- Решаем первое неравенство системы.
x + 4 > 0
x > − 4
Графическая интерпретация решения первого неравенства:
- Решаем второе неравенство системы
2 x + 3 ≤ x 2
− x 2 + 2 x + 3 ≤ 0
Решаем методом интервалов.
− x 2 + 2 x + 3 = 0
a = − 1, b = 2, c = 3
D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16
D > 0 — два различных действительных корня.
x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1
Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.
Графическая интерпретация решения второго неравенства:
- Наносим оба решения на ось x.
- Выбираем подходящие участки и записываем ответ.
Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения ∪ .
Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.
Ответ: x ∈ ( − 4 ; − 1 ] ∪ [ 3 ; + ∞ )
Скачать домашнее задание к уроку 8.
Содержание:
Неравенства
Существует много задач, при решении которых нужно сравнить некоторые числа или величины, найти значения переменной, удовлетворяющие некоторому неравенству.
В этом параграфе мы выясним свойства числовых неравенств, как доказывать неравенства, что такое неравенство с переменной и система неравенств с переменной, как решать неравенства и их системы.
Числовые неравенства
Вы знаете, что записи
являются примерами числовых неравенств. Вы научились сравнивать натуральные числа, дроби, рациональные и действительные числа.
Известно, что 25 > 17. Найдем разность левой и правой частей этого неравенства:
25 — 17 = 8 > 0 — разность положительна.
Найдем разность левой и правой частей неравенства 7 
7 — 10 = -3 
Из равенства 15=15 имеем:
15-15 = 0 — разность равна нулю.
Следовательно, существует зависимость между соотношениями «>», «
Определение:
- Число а больше числа b, если разность а — b — положительное число;
- Число а меньше числа b, если разность а — b — отрицательное число;
- Число а равно числу b, если разность а — b равна нулю.
Так как разность чисел а и b может быть либо положительной, либо отрицательной, либо равна нулю, то для любых чисел а и b выполняется одно и только одно из трех соотношений: а > b, a 
Используя данное определение, сравним числа 

Разность данных чисел — число положительное, поэтому 

Следовательно, для сравнения двух чисел а и b достаточно образовать разность а — b и выяснить, является она положительным числом, отрицательным числом или нулем. Если а — b > 0, то а > b; если а — b 

На координатной прямой большее число изображают точкой, которая лежит правее точки, изображающей меньшее число (см. рис. 1).
Рис. 1
В неравенствах используют знаки: «>» — меньше, «>» — больше, «≤ »— меньше или равно (не больше), «≥» — больше или равно (не меньше).
Неравенства, образованные при помощи знаков «
Из определения соотношений «больше», «меньше», «равно» следует, что а ≥ b, если a — b ≥ 0; a ≤ b, если а — b ≤ 0.
Числовые неравенства могут быть верными и неверными. Например, 5 
Доказательство неравенств
Докажем, что при любом значении а справедливо неравенство
(Еще говорят: докажем неравенство а(а — 4) 
Для этого образуем разность левой и правой частей неравенства и преобразуем ее:
а(а — 4) — (a — 2)² = а² — 4а — а² + 4а — 4 = -4.
Так как разность а(а — 4) — (а — 2)² отрицательна при любом значении а, то неравенство а(а — 4) 
Пример:
Доказать неравенство

Решение:
Образуем разность левой и правой частей неравенства и преобразуем ее:
Разность мы представили в виде дроби, числитель которой неотрицателен, так как он является квадратом некоторого числа, а знаменатель положителен как произведение положительных чисел. Поэтому эта дробь, а значит и разность, неотрицательны: 

Если в доказанном неравенстве принять, что b = 1, то получим верное неравенство:
Итак, сумма двух положительных взаимно обратных чисел не меньше 2.
Пример:
Доказать неравенство
Решение:
Образуем разность левой и правой частей неравенства и преобразуем ее:
Следовательно,
Для положительных чисел а и b число
справедливо и при любых положительных числах а и b. 11оэтому среднее арифметическое двух положительных чисел не меньше их среднего геометрического.
Пример:
Доказать, что неравенство 10a² -6а + 2ab + b² + 2 > 0 справедливо при любых действительных числах а и b.
Решение:
Так как (3а — 1 )² ≥ 0, (а + b)² ≥ 0 при любых действительных числах а и b, то (За — 1)² + (а + b)² + 1 > 0.
Примечание. При доказательстве неравенства при помощи определения соотношений «больше», «меньше» или «равно» разность левой и правой части неравенства нужно преобразовать так, чтобы можно было определить знак разности.
Выражение, полученное после преобразований, принимает неотрицательные значения, если оно является, например, суммой, произведением или частным неотрицательных чисел, четной степенью некоторого выражения и т. п.
Выражение принимает отрицательные значения, если оно является суммой отрицательных чисел, произведением или частным чисел разных знаков и т. п.
Свойства числовых неравенств
Свойство 1 | Если а > b, то b 
Доказательство: Если а > b, то а — b — положительное число. Противоположное ему число — (а — b) = b — а является отрицательным. Так как b — а 

Свойство 2 | Если а 


Доказательство: По условию а 




Геометрическая иллюстрация свойства 2 представлена на рисунке 3.

Аналогично можно доказать утверждение: если а > b и b > с, то а > с.
Свойство 3 | Если к обеим частям верною неравенства прибавить одно и то же число, то получим верное неравенство.
Доказательство: Пусть а 





Аналогично проводится доказательство для случая а > b и любого числа с.
Следствие. Если некоторое слагаемое перенести из одной части верного неравенства в другую, изменив при этом знак слагаемого на противоположный. то получим верное неравенство.
Доказательство: Пусть а 


Свойство 4 | Если обе части верною неравенства умножить или разделить на одно и то же положительное число, то получим верное неравенство. Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получим верное неравенство.
Доказательство: Пусть а 

ас -bc = c(a — b).
По условию а 




Если c 
Аналогично проводится доказательство, если имеем неравенство а > b.
Справедливой является и часть свойства, касающаяся деления обеих частей неравенства на некоторое число, так как деление можно заменить умножением на число, обратное делителю.
Следствие. Если a и b — положительные числа и а 

Доказательство: Разделим обе части неравенства а 
Это следствие можно использовать при сравнении чисел, обратных данным. Например, поскольку 
Замечание. Двойное неравенство а 









Итак, если ко всем частям верного двойною неравенства прибавить одно и то же число, то получим верное двойное неравенство.
Аналогично можно обосновать утверждения:
Пример:
Известно, что —1 

а) х — 3; б) -х; в) 2х — 5.
Решение:
а) Прибавим ко всем частям неравенства -1 

—1 — 3 



б) Умножим все части неравенства -1 

1 > -х > -3, или -3 

в) Умножим все части заданного неравенства на 2, получим: -2 

-2 — 5 



Пример:
Доказать, что а³ + 1 ≥ а² + а, если а ≥ -1.
Решение:
Образуем разность левой и правой частей неравенства и преобразуем её:
Значения выражения (а — 1)² являются неотрицательными. По условию а ≥ -1, прибавим к обеим частям этого неравенства число 1, получим: а + 1 ≥ 0. Поэтому
(а — 1)² (а + 1) ≥ 0.
Следовательно, если а ≥ -1, то неравенство а³ + 1 ≥ а² + а является верным.
Сложение и умножение числовых неравенств. Оценка значений выражений
Рассмотрим действия, которые можно выполнять над верными числовыми неравенствами.
Сложение числовых неравенств
Возьмем верные числовые неравенства с одинаковыми знаками: -3 



Свойство 5 | Если почленно сложить верные неравенства одного знака, сохранив их общий знак, то получим верное неравенство.
Доказательство: Пусть а 





Аналогично можно доказать, что если а > b и с > d, то а + с > b + d.
Умножение числовых неравенств
Возьмем верные неравенства: 7 > 2 и 5 > 3. Почленно перемножим их. Получим верное неравенство 7 • 5 > 2 • 3 или 35 > 6.
Почленно перемножим неравенства -3 


В первом случае все числа данных неравенств были положительными, во втором — положительными и отрицательными. Докажем следующее свойство.
Свойство 4 | Если почленно перемножить верные неравенства одного знака, левые и правые части которых — положительные числа, сохранив при этом их общий знак, то получим верное неравенство.
Доказательство: Пусть а 







Аналогично можно доказать, что если а > b и с > d, где а, b, с и d — положительные числа, то ас > bd.
Следствие. Если а 
При доказательстве следствия достаточно взять н неравенств а 
Оценка значений выражений
Рассмотрим пример.
Пример:
Дано: 11 




Решение:
а) Оценим сумму х + у.
Применим к неравенствам 11 







Сокращенно эти преобразования записывают так:
Общая схема оценки суммы имеет такой вид:
б) Оценим разность х — у.
Зная, как оценивается сумма, представим разность х — у в виде суммы х + (-у).
Сначала оценим значение выражения -у. Умножив все части неравенства 1 



Общая схема оценки разности имеет такой вид:
в) Оценим произведение ху.
Поскольку 11 











Сокращенно эти преобразования записывают гак:
Общая схема оценки произведения имеет такой вид:
г) Оценим частное 
Представим частное 



то

то есть 
Общая схема оценки частного имеет такой вид:
Пример:
Доказать неравенство (m + n)(mn + l) ≥ 4mn, где m ≥ 0, n ≥ 0.
Решение:
Используем известное неравенство 
Запишем это неравенство для чисел m и n, а потом — для чисел mn и 1. Получим два верных неравенства:
Умножим обе части каждого неравенства на 2:
Почленно перемножив эти неравенства, получим:
Примечание. При доказательстве неравенства из примера 1 мы использовали известное неравенство, доказанное ранее. Особенность использованного способа доказательства неравенств состоит в том, что:
- записываем несколько неравенств, доказанных ранее;
- перемножив (или сложив) эти неравенства, приходим к доказываемому неравенству.
Неравенства с одной переменной. Числовые промежутки
Понятие о неравенстве с одной переменной и его решении
Рассмотрим неравенство 2х + 5 > 11. При одних значениях x данное неравенство превращается в верное числовое неравенство, при других — в неверное. Например, при х = 5 получим верное числовое неравенство 2 • 5 + 5 > 11; 15 > 11, а при х = 1 получим неверное числовое неравенство 2 • 1 + 5 > 11; 7 > 11.
Если нужно найти все значения х, при которых неравенство 2х + 5 > 11 является верным, то говорят, что нужно решить неравенство 2х + 5 > 11, содержащее одну переменную х.
При х = 5 неравенство 2х + 5 > 11 является верным. Говорят, что число 5 является решением данного неравенства или удовлетворяет данному неравенству.
Определение: Решением неравенства с одной переменной называют значение переменной, превращающее его в верное числовое неравенство.
Решить неравенство значит найти все его решения или доказать, что решений нет.
Неравенство с одной переменной преимущественно имеет бесконечное множество решений. Так, решениями неравенства 2х + 5 > 11 являются числа

Числовые промежутки
Рассмотрим несколько примеров.
1) Неравенству -2 




Промежуток заштриховывают, точки -2 и 3 изображают «пустыми» («выколотыми»).
Число 2,2 удовлетворяет двойному неравенству -2 


2) Неравенству -2 


3) Множества чисел, удовлетворяющих двойным неравенствам -2 ≤ х 


4) Неравенству х >4 удовлетворяют все действительные числа больше 4. На координатной прямой чти числа изображают точками, лежащими справа от точки с координатой 4. Множество чисел, удовлетворяющих неравенству х > 4, изображают полупрямой, находящейся справа от точки с координатой 4 без этой точки (см. рис. 8). Такое множество называют промежутком от 4 до плюс бесконечности и обозначают (4; 

Множество чисел, удовлетворяющих неравенству х ≥ 4, изображают полупрямой (см. рис. 9). Это множество обозначают [4; 

5) Множество чисел, удовлетворяющих неравенству х 





6) Множество всех действительных чисел изображают всей координатной прямой и обозначают так:
Объединение и пересечение числовых промежутков
Рассмотрим два промежутка: [-1; 4) и (2; 7).

Промежуток [-1; 7) образуют все числа, принадлежащие промежутку [-1; 4) или промежутку (2: 7). Говорят, что промежуток [-1; 7) является объединением промежутков [-1;4) и (2; 7). Записывают: 

Определение: Объединением числовых промежутков называют множество всех чисел, принадлежащих хотя бы одному из этих промежутков.
Промежуток (2; 4) образуют все общие числа из промежутков [-1; 4) и (2; 7), то есть все числа, принадлежащие каждому из промежутков [-1; 4) и (2; 7). Говорят, что промежуток (2; 4) является пересечением промежутков [-1; 4) и (2; 7). Записывают:

Определение: Пересечением числовых промежутков называют множество всех чисел, принадлежащих каждому из этих промежутков.
Для тех, кто хочет знать больше.
Объединением и пересечением двух числовых промежутков могут быть не числовые промежутки. Рассмотрим, например, промежутки [-2; 1] и (3;4). Чисел, принадлежащих обоим этим промежуткам, пет (см. рис. 12). Поэтому говорят, что пересечением этих промежутков является пустое множество. Его обозначают символом


Рис. 12
Для промежутков



Пример:
Указать наименьшее и наибольшее действительные числа, принадлежащие промежутку:
Решение: а) 
б) -2; наибольшего действительно числа, принадлежащего этому промежутку, нет. (Это следует из таких соображений. Предположим, что m — наибольшее число из промежутка [-2; 3). Так как m 
в) наименьшего числа нет; 4,8;
г) ни наименьшего, ни наибольшего чисел нет.
Пример:
Отметить на координатной прямой множество чисел, удовлетворяющих неравенству, и записать это множество в виде промежутка или объединения промежутков: а) 

Решение:
а) Модулем числа х является расстояние от начала отсчета до точки, изображающей число х на координатной прямой. Поэтому решениями данного неравенства являются числа, соответствующие тем точкам координатной прямой, которые лежат от начала отсчета на расстоянии не больше 5.
Следовательно, решениями неравенства
б) Решениями неравенства 


Следовательно, множеством решений неравенства 

Решение неравенств с одной переменной. Равносильные неравенства
Пример:
Одна сторона участка прямоугольной формы на 5 м длиннее другой. Какими могут быть стороны участка, чтобы для его ограждения хватило сетки длиной 46 м?
Решение:
Пусть длина меньшей стороны участка равна х м, тогда длина большей —
(х + 5 )м, а периметр участка — 2(х + х + 5) = (4х + 10) (м). По условию периметр не превышает 46 м. поэтому 4х + 10 ≤ 46.
Чтобы найти стороны участка, нужно решить неравенство 4х + 10 ≤ 46 с одной переменной х.
При решении неравенства его преобразуют, заменяя более простыми неравенствами с теми же решениями.
Неравенства, имеющие одни и тс же решения, называют равносильными. Неравенства, не имеющие решений, также называют равносильными.
Замену неравенства равносильным» ему неравенствами выполняют на основании таких свойств:
- если выполнить тождественные преобразования некоторой чисти неравенства, которые не меняют допустимые значения переменной, то получим неравенство, равносильное данному;
- если из одной части неравенства перенести в другую часть слагаемое, uxwhug его знак ни противоположный, то получим неравенство, равносильное данному;
- если обе чисти неравенства умножить или разделить на одно и то же положительное число, то получим неравенство, равносильное данному;
- если обе чисти неравенства умножить или разделить на одно и то же отрицательное число и при этом изменить знак неравенства на противоположный, то получим неравенство, равносильное данному.
Используя эти и свойства, решим неравенство:
Перенесем слагаемое 10 из левой части неравенства в правую с противоположным знаком, получим неравенство
равносильное заданному неравенству.
В правой части неравенства 4х ≤ 46 — 10 приведем подобные слагаемые, получим:
Разделив обе части последнего неравенства на 4, получим неравенство
Следовательно, неравенство 4х + 10 ≤ 46 равносильно неравенству х ≤ 9, и ему удовлетворяют все числа не больше 9 (см. рис. 16). Множество решений данного неравенства можно записать в виде числового промежутка 

Вернемся к задаче. Длину меньшей стороны участка мы обозначили через х м. Поскольку длина стороны выражается положительным числом, то х может принимать значения из промежутка (0; 9|. Итак, меньшая сторона участка не должна превышать 9 м, большая же сторона на 5 м длиннее нее.
Для тех, кто хочет знать больше.
Решая неравенство
мы перенесли слагаемое 10 из левой части неравенства в правую с противоположным знаком и получили неравенство
Докажем, что неравенства (1) и (2) равносильны.
Пусть х = а — любое решение неравенства (1), тогда 4а + 10 ≤ 46 — верное числовое неравенство. Перенесем слагаемое 10 из левой части неравенства в правую, изменив его знак на противоположный, получим верное числовое неравенство 4а ≤ 46- 10. Из того, что последнее неравенство является верным, следует, что число а является решением неравенства (2).
Пусть х = b — любое решение неравенства (2), тогда 4b ≤ 4b — 10 — верное числовое неравенство. Перенесем слагаемое -10 из правой части неравенства в левую, изменив его знак на противоположный, получим верное числовое неравенство 4b + 10 ≤ 46. Из того, что последнее неравенство является верным, следует, что число b является решением неравенства (1).
Мы показали, что любое решение неравенства (1) является решением неравенства (2) и любое решение неравенства (2) является решением неравенства (1). Поэтому эти неравенства имеют одни и те же решения, то есть являются равносильными.
Равносильность неравенств 4х ≤ 46 — 10 и 4х ≤ 36, а также неравенств 4х ≤ 36 и х ≤ 9 доказывают аналогично.
Пример:
Решить неравенство 3(5х— 1)+ 10 > 7 — 2(1 -6х) и отметить на координатной прямой множество его решений.
Решение:
Раскроем скобки:
перенесем слагаемые, содержащие переменную, в левую часть неравенства, а остальные — в правую часть:
приведем подобные слагаемые:
разделим обе части неравенства на 3:
Ответ.
Пример:
Решить неравенство 
Решение:
Умножим обе части неравенства на наименьший общий знаменатель дробей, входящих в неравенство, то есть на 18. Получим:
Ответ, (
Пример:
Решить неравенство 
Решение:
Умножим все части неравенства на 2: -4 ≤ 3х — 1 ≤ 10. Прибавим ко всем частям неравенства число 1:
Разделим все части неравенства на 3, получим: 
Ответ. 
Пример:
Решить неравенство:
Решение:
а) Решениями неравенства |2х-3| ≤ 5 являются числа, удовлетворяющие двойному неравенству
Прибавим ко всем частям неравенства число 3, получим:
Разделим все части неравенства на 2:
Ответ. [-1; 4].
б) Модуль числа — число неотрицательное, поэтому модуль числа не может быть меньше числа -4. Неравенство |3х — 1| 
Ответ. Решений нет.
в) Выражение 2х — 1, стоящее под знаком модуля, должно принимать значения меньше-5 или больше 5. Итак, 2х — 1 
Если нужно найти все значения х, удовлетворяющие неравенству 2х — 1 
Решая каждое неравенство совокупности, получим:
Решениями совокупности являются значения х, удовлетворяющие неравенству х 
Ответ. х 
Линейные неравенства с одной переменной
Рассмотрим несколько примеров.
Пример:
Решить неравенство 
Решение:
Множеством решений неравенства является числовой промежуток
Ответ.
Пример:
Решить неравенство
Решение:
При любом значении х значение левой части неравенства 0 • х > -8 равно нулю, а нуль больше -8. Поэтому множеством решений данного неравенства является множество всех действительных чисел, то есть промежуток
Ответ.
Пример:
Решить неравенство 
Решение:
Неравенство 0 • х 
ее левой части равно нулю, а нуль не меньше -5.
Ответ. Решений нет.
В результате преобразований мы привели первое неравенство к неравенству 15х 

Неравенства вида ах > b, ax>b, ах 

Если 

- если неравенство содержит дроби, то обе части неравенства умножает на наименьший общий знаменатель дробей, входящих в неравенство;
- если в неравенства есть скобки, то раскрываем их;
- переносим слагаемые, содержащие переменную, в одну часть неравенства (как правило, в левую), а слагаемые, не содержащие переменной, — в другую часть (как правило, в правую);
- приводим подобные слагаемые;
- если получили линейное неравенство и коэффициент при переменной не равен нулю, то делим на него обе части неравенства;
- если коэффициент при переменной равен нулю, то неравенство или не имеет решений, или его решением является любое число.
Пример:
Найти область определения функции 
Решение:
Область определения функции образуют те значения х, при которых выражение 8 — 2х принимает неотрицательные значения. Следовательно, нужно решить неравенство 8 — 2х ≥ 0. Получим:
Областью определения функции является промежуток 
Ответ.
Пример:
Решить неравенство (а + 3)х 
Решение:
Рассмотрим три случая: 1) а + 3 
1) Если а + 3 

2) Если а + 3 = 0, то есть а = -3, то получим неравенство 0 • х 
3) Если а + 3 > 0. то есть а > —3, то
Ответ. Если а 

Системы линейных неравенств с одной переменной
Понятие системы неравенств с одной переменной и ее решения
Пример:
Одна хозяйка купила на рынке 10 кг помидоров и заплатила за них больше 18 руб. Вторая хозяйка купила такие же помидоры и заплатила за 5 кг меньше 14 руб. По какой цене покупали помидоры хозяйки?
Решение:
Пусть цена 1 кг помидоров х руб., тогда 10 кг стоят 10х руб., что по условию задачи больше 18 руб., то есть 10х > 18.
5 кг помидоров стоят 5х руб., что по условию задачи меньше 14 руб., то есть 5х 
Чтобы решить задачу, нужно найти те значения х, при которых верным будет как неравенство 10х > 18, так и неравенство 5х 
Если нужно найти те значения переменной, которые удовлетворяют двум неравенствам, то говорят, что нужно решить систему неравенств. Для нашей задачи систему записывают так:
Решив каждое из неравенств системы, получим:
Следовательно, значения х должны удовлетворять условию 1,8 

Значение х = 2 является решением обоих неравенств системы
поскольку каждое из числовых неравенств 10 • 2 > 18 и 5 • 2 
верным. Такое значение х называют решением системы неравенств.
Определение: Решением системы неравенств с одной переменной называют значение переменной, при котором выполняется каждое из неравенств системы.
Решить систему неравенств значит найти все ее решения или доказать, что их нет.
Решение систем линейных неравенств с одной переменной
Рассмотрим примеры.
Пример:
Решить систему неравенств
Решение:
Решим каждое из неравенств системы:
Отметим на координатной прямой множество чисел, удовлетворяющих первому неравенству последней системы, — промежуток 

Общими решениями неравенств являются значения х, принадлежащие обеим промежуткам, то есть их пересечению:
Пример:
Решить систему неравенств
Решение:
На координатной прямой отметим множество чисел, удовлетворяющих неравенству 

Общими решениями неравенств являются значения х, принадлежащие промежутку
Ответ.
Пример:
Решить систему неравенств
Решение:
На координатной прямой отметим множество чисел, удовлетворяющих неравенству х > 2, и множество чисел, удовлетворяющих неравенству х 
Общих решений неравенства не имеют.
Ответ. Решений нет.
Следовательно, систему линейных неравенств с одной переменной можно решить, используя следующую схему:
- решаем каждое неравенство системы;
- отмечаем множество решений каждого неравенства на одной координатной прямой;
- находим пересечение множеств решений неравенств и записываем множество решений системы в виде промежутка или соответствующего неравенства.
Примечание.
- Если система неравенств приводится к виду
где а
b, то решениями системы являются х
a, то есть х меньше меньшего из чисел а и b.
- Если система неравенств приводится к виду
где а > b, то решениями системы являются x > а, то есть x больше большего из чисел а и b.
Пример:
Решить неравенство 
Решение:
Найдем значения х, при которых значения выражений, стоящих под знаком модуля, равны нулю:
Значения х = -1 и х = 2 разбивают координатную прямую на три промежутка.
Раскроем модули на каждом из промежутков и решим соответствующие неравенство.
1) х 







Решим полученное неравенство:
Кроме того, значения х должны удовлетворять неравенству х 
системе неравенств 
2) 





3) 






Значения х должны удовлетворять двум неравенствам: 

системе 
Итак, множеством решений заданного неравенства является объединение промежутков (-2,5; -1), [-1; 2) и |2; 3,5), то есть промежуток (-2,5; 3,5).
Ответ. (-2,5; 3,5).
Пример:
При каких значениях х имеет смысл выражение
Решение:
Данное выражение имеет смысл при тех значениях х, при которых каждое из выражений 2х + 9 и 5 + х принимает неотрицательные значения. Поэтому искомые значения л должны удовлетворять систему неравенств
Решим полученную систему:
Общими решениями неравенств являются значения х, удовлетворяющие неравенству х > -4,5.
Ответ, х > -4,5.
Пример:
Решить неравенство
Решение:
Дробь положительна только тогда, когда ее числитель и знаменатель положительны или когда они оба отрицательны. Поэтому решение данного неравенства сводится к решению двух систем неравенств:
Решениями первой системы являются значения х, удовлетворяющие неравенству х > 2, а второй — неравенству х 
Ответ, х 
Замечание. Решение неравенства (х — 2)(х + 1) > 0 также сводится к решению двух систем, приведенных в предыдущем примере. Поэтому множеством решений этого неравенства также является 
Пример:
Решить двойное неравенство 
Решение:
Данное двойное неравенство можно записать в виде системы
Решим систему:
Ответ. [-3; -0,5).
Заметим, что двойное неравенство в упражнении 3 можно решать и на основании свойств равносильности неравенств (см. пункт 5, упражнение 3).
Как известно, возникновение чисел обусловлено потребностями практической деятельности человека. Применение чисел требовало умения их сравнивать. Делать это люди научились много тысячелетий назад.
Где в «Началах» Евклида сугубо геометрически было обосновано неравенство 
Рассмотрим геометрическую иллюстрацию неравенства

На отрезке MN длиной а + b как на диаметре построим полуокружность, О — ее центр, МК — a, KN — b. Проведем перпендикуляры РО и LK к прямой MN, где Р и L — точки полуокружности. Треугольник MLN — прямоугольный 

Отрезок РО — радиус полуокружности, поэтому 
Поскольку 
Это известное неравенство между средним арифметическим и средним геометрическим двух положительных чисел, которое можно распространить па случай большего количества чисел, называют еще неравенством Коши.
Огюстен Луи Коши — известный французский математик. Он является автором более 800 работ по арифметике и теории чисел, алгебре, математическому анализу, теоретической и небесной механике, математической физике и т. п. Были периоды, когда Коши каждую неделю подавал в Парижскую Академию наук новую математическую работу. Скорость, с какой Коши переходил от одного предмета к другому, позволила ему проложить в математике немало новых путей. Многие теоремы, определения, признаки носят его имя.
Приведем еще два известных неравенства, которые, как и неравенство Коши, используют для доказательства многих математических утверждений, в частности, для доказательства других неравенств.
Неравенство Коши — Буняковского:
где 
О В. Я. Буняковском читайте в рубрике «Отечественные математики».
Неравенство Бернулли:
где 
Якоб Бернулли — швейцарский математик, профессор Базельского университета. Основные его работы посвящены математическому анализу, но особое внимание ученый уделял теории вероятностей. Немало теорем названы его именем. Бернулли положил начало одному из разделов прикладной математики — математической статистике.
Неравенства
- В этом параграфе вы узнаете, в каком случае число а считают больше (меньше) числа b, каковы свойства числовых неравенств, в каких случаях можно складывать и умножать числовые неравенства, что называют решением неравенства с одной переменной, решением системы неравенств с одной переменной.
- Вы научитесь оценивать значения выражений, доказывать неравенства, решать линейные неравенства и системы линейных неравенств с одной переменной.
На практике вам часто приходится сравнивать величины. Например, площадь России (603,7 тыс. км2) больше площади Франции (551 тыс. км2), высота горы Роман-Кош (1545 м) меньше высоты горы Говерлы (2061 м), расстояние от Киева до Харькова (450 км) равно 0,011 длины экватора.
Когда мы сравниваем величины, нам приходится сравнивать числа. Результаты этих сравнений записывают в виде числовых равенств и неравенств, используя знаки =, >, < .
Если число а больше числа b, то пишут а > b; если число а меньше числа b, то пишут а < b.
Очевидно, что 
Однако числа можно сравнивать не только с помощью изученных ранее правил. Другой способ, более универсальный, основан на таких очевидных соображениях: если разность двух чисел положительна, то уменьшаемое больше вычитаемого, если же разность отрицательна, то уменьшаемое меньше вычитаемого.
Если разность двух чисел положительна, то уменьшаемое больше вычитаемого, если же разность отрицательна, то уменьшаемое меньше вычитаемого.
Эти соображения подсказывают, что удобно принять такое определение.
Определение: Число a считают больше числа b, если разность а — b является положительным числом. Число а считают меньше числа b, если разность а — b является отрицательным числом.
Это определение позволяет задачу о сравнении двух чисел свести к задаче о сравнении их разности с нулем. Например, чтобы сравнить значения выражений 

Поскольку 

Заметим, что разность чисел а и b может быть либо положительной, либо отрицательной, либо равной нулю, поэтому для любых чисел а и b справедливо одно и только одно из таких соотношений:
Если
Часто в повседневной жизни мы пользуемся высказываниями «не больше», «не меньше». Например, в соответствии с санитарными нормами количество учеников в 9 классе должно быть не больше чем 35. Дорожный знак, изображенный на рис. 2, означает, что скорость движения автомобиля должна быть не меньше 30 км/ч.
Числовые неравенства
В математике для высказывания «не больше» используют знак 



Если 

Например, неравенства 

Знаки 

Пример:
Докажите, что при любых значениях а верно неравенство
Решение:
Для решения достаточно показать, что при любом а разность левой и правой частей данного неравенства положительна. Имеем:
В таких случаях говорят, что доказано неравенство
Пример:
Докажите неравенство 

Решение:
Рассмотрим разность левой и правой частей данного неравенства:
При любом значении а имеем: 


Пример:
Докажите неравенство
Решение:
Рассмотрим разность левой и правой частей данного неравенства. Имеем:
Выражение 

Заметим, что выражение 
Пример:
Докажите, что 
Решение:
Имеем:
Поскольку 

Следовательно, 
Основные свойства числовых неравенств
В этом пункте рассмотрим свойства числовых неравенств, часто используемые при решении задач. Их называют основными свойствами числовых неравенств.
Теорема: Если а > b и b > с, то а > с.
Доказательство: 
Аналогично доказывают свойство: если а < b и b < с, то а < с.
Теорему 2.1 можно проиллюстрировать геометрически: если на координатной прямой точка А (а) лежит правее точки В (b), а точка В (b) — правее точки С (с), то точка А (а) лежит правее точки С (с) (рис. 3).
Теорема: Если а > b и с — любое число, то а + с > b + с.
Доказательство: 
Аналогично доказывают свойство: если а < b и с — любое число, то а + с < b + с.
Поскольку вычитание можно заменить сложением (а — с = а + (-с)), то, учитывая теорему 2.2, можно сделать такой вывод.
Если к обеим частям верного неравенства прибавить или из обеих частей правильного неравенства вычесть одно и то же число, то получим верное неравенство.
Следствие: Если любое слагаемое перенести из одной части верного неравенства в другую, изменив знак слагаемого на противоположный, то получим верное неравенство.
Доказательство: 
Теорема: Если а > b и с — положительное число, то ас > bc. Если а > b и с — отрицательное число, то ас < bc.
Доказательство: 
По условию а > b, следовательно, разность а — b является положительным числом.
Если с > 0, то произведение с (а — b) является положительным числом, следовательно, разность ас — bc является положительной, то есть ас > bc.
Если с < 0, то произведение с (а — b) является отрицательным числом, следовательно, разность ас — bc является отрицательной, то есть ас < bc.
Аналогично доказывают свойство: если а < b и с — положительное число, то ас < bc. Если а < b и с — отрицательное число, то ас > bc.
Поскольку деление можно заменить умножением 
Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получим верное неравенство.
Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получим верное неравенство.
Следствие:
Доказательство: 


Обратим внимание: требование, чтобы числа а и b были одного знака (ab > 0), является существенным. Действительно, неравенство 5 > -3 верно, однако неравенство 
В теоремах этого пункта шла речь о строгих неравенствах. Нестрогие неравенства также обладают аналогичными свойствами. Например, если 
Сложение и умножение числовых неравенств. Оценивание значения выражения
Рассмотрим примеры.
- Если с одного поля собрали не менее 40 т пшеницы, а со второго поля — не менее 45 т, то очевидно, что с двух полей вместе собрали не менее 85 т пшеницы.
- Если длина прямоугольника не больше, чем 70 см, а ширина — не больше, чем 40 см, то очевидно, что его площадь не больше, чем 2800 см2.
Выводы из этих примеров интуитивно очевидны. Их справедливость подтверждают следующие теоремы.
Теорема: (о почленном сложении неравенств).
Если а > b и с > d, то а + с > b + d .
Доказательство: 
Так как а > b и с > d, то разности а — b и с — d являются положительными числами Следовательно, рассматриваемая разность является положительной, т. е. а + с > b + d
Аналогично доказывается свойство: если а < b и с < d, то а + с
Неравенства а > b и с > d (или а < b и с < d) называют неравенствами одного знака, а неравенства а > b и с < d (или а < b и с > d) — неравенствами противоположных знаков.
Говорят, что неравенство а + с > b + d получено из неравенств а > b и с > d путем почленного сложения.
Теорема: означает, что при почленном сложении верных неравенств одного знака результатом является верное неравенство того же знака.
Отметим, что теорема 3.1 справедлива и в случае почленного сложения трех и более неравенств. Например, если
Теорема: (о почленном умножении неравенств). Если а > Ь, с > d и а, и, с, d — положительные числа, то ас > bd.
Доказательство: 
По условию а — b > 0, с — d > 0, с > 0, b > 0. Следовательно, рассматриваемая разность является положительной. Из этого следует, что ас > bd.
Аналогично доказывается свойство: если а < b, с < d и a, b, с, d — положительные числа, то ас < bd.
Говорят, что неравенство ас > bd получено из неравенств а > b и с > d путем почленного умножения.
Теорема: означает, что при почленном умножении верных неравенств одного знака, у которых левые и правые части — положительные числа, результатом является верное неравенство того же самого знака.
Обратим внимание: требование, чтобы обе части умножаемых неравенств были положительными, является существенным. Действительно, рассмотрим два верных неравенства -2 > -3 и 4 > 1. Умножив почленно эти неравенства, получим верное неравенство -8 > -3.
Заметим, что теорема 3.2 справедлива и в случае почленного умножения трех и более неравенств. Например, если 


Следствие: Если 


Доказательство: 


Так как а и b — положительные числа, то можем перемножить почленно 
Заметим, что все рассмотренные свойства неравенств справедливы и в случае нестрогих неравенств:
Часто значения величин, являющихся результатами измерений, не точны. Измерительные приборы, как правило, позволяют лишь установить границы, между которыми находится точное значение.
Пусть, например, в результате измерения ширины х и длины у прямоугольника было установлено, что 2,5 см < х < 2,7 см и 4,1 см < у < 4,3 см. Тогда с помощью теоремы 3.2 можно оценить площадь прямоугольника. Имеем:
Вообще, если известны значения границ величин, то, используя свойства числовых неравенств, можно найти границы значения выражения, содержащего эти величины, т. е. оценить его значение.
Пример:
Дано: 
Решение:
1) Применив теорему о почленном сложении неравенств, получим:
2) Умножив каждую часть неравенства 




3) Так как 

Применив теорему о почленном умножении неравенств, получим:
4) Так как 

Учитывая, что — 
5) Умножим каждую часть неравенства 6 < а < 8 на 3, а каждую часть неравенства 

Сложим полученные неравенства:
Ответ:
Пример:
Докажите, что
Решение:
Так как
О некоторых способах доказательства неравенств
Мы использовали такой прием: рассматривали разность левой и правой частей неравенства и сравнивали ее с нулем.
Однако существует и ряд других способов доказательства неравенств. Ознакомимся с некоторыми из них.
Рассуждения «от противного». Само название этого метода отображает его суть.
Пример:
Для любых значений 
Решение:
Пусть доказываемое неравенство неверно. Тогда найдутся такие числа 

Последнее неравенство неверно. Полученное противоречие означает, что неравенство (*) верно. Неравенство (*) является частным случаем более общего неравенства

Огюстен Луи Коши (1789-1857)
Выдающийся французский математик, автор более 800 научных трудов.
Виктор Яковлевич Буняковский (1804-1889)
Выдающийся математик XIX в. Родился в г. Баре (ныне Винницкой обл.). В течение многих лет был вице- президентом Петербургской академии наук.
Метод использования очевидных неравенств
Пример:
Докажите неравенство
Решение:
Очевидно, что при любых значениях а, b, с выполняется такое неравенство:
Отсюда:
Метод применения ранее доказанного неравенства
Мы доказали, что для любых 

Его называют неравенством Коши для двух чисел. Рассмотрим на примере, как можно использовать неравенство Коши при доказательстве других неравенств.
Пример:
Докажите, что для положительных чисел а и b справедливо неравенство
Решение:
Применим неравенство Коши для положительных чисел
Имеем:
Отсюда
Аналогично доказываем, что
Применив теорему о почленном умножении неравенств, получим:
Отсюда
Метод геометрической интерпретации
Пример:
Докажите неравенство:
Решение:
Рассмотрим четверть окружности с центром О радиуса 1. Впишем в нее ступенчатую фигуру, составленную из 99 прямоугольников, так, как показано на рисунке 4,

Для второго прямоугольника имеем:
Площадь ступенчатой фигуры меньше площади четверти круга, т. е.
Отсюда следует доказываемое неравенство.
Неравенства с одной переменной
Рассмотрим такую задачу. Одна из сторон параллелограмма равна 7 см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?
Пусть искомая сторона равна х см. Тогда периметр параллелограмма равен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма.
Если в это неравенство вместо переменной х подставить, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.
Определение: Решением неравенства с одной переменной называют значение переменной, которое обращает его в верное числовое неравенство.
Так, каждое из чисел 
Замечание. Определение решения неравенства аналогично определению корня уравнения. Однако не принято говорить «корень неравенства».
Решить неравенство означает найти все его решения или доказать, что решений не существует.
Все решения неравенства образуют множество решений неравенства. Если неравенство решений не имеет, то говорят, что множеством его решений является пустое множество. Пустое множество обозначают символом
Например, в задаче «решите неравенство 
Очевидно, что неравенство 
Определение: Неравенства называют равносильными, если они имеют одно и то же множество решений.
Приведем несколько примеров.
Неравенства 
Неравенства 
Так как каждое из неравенств 
Решение линейных неравенств с одной переменной
Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.
Решая уравнение, мы заменяли его другим, более простым уравнением, но равносильным данному. По аналогичной схеме решают и неравенства.
При замене уравнения на равносильное ему уравнение используют теоремы о перенесении слагаемых из одной части уравнения в другую и об умножении обеих частей уравнения на одно и то же отличное от нуля число.
Аналогичные правила применяют и при решении неравенств.
- Если какое-либо слагаемое перенести из одной части неравенства в другую, изменив при этом его знак на противоположный, то получим неравенство, равносильное данному.
- Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, равносильное данному.
- Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получим неравенство, равносильное данному.
С помощью этих правил решим неравенство, полученное в задаче о периметре параллелограмма (см. п. 4).
Имеем: 14 + 2х > 44.
Переносим слагаемое 14 в правую часть неравенства: 2х > 44 -14.
Отсюда 2х > 30.
Разделим обе части неравенства на 2:
х > 15.
Заметим, что полученное неравенство равносильно исходному неравенству. Множество его решений состоит из всех чисел, которые больше 15. Это множество называют числовым промежутком и обозначают (15; +
Точки координатной прямой, изображающие решения неравенства х > 15, расположены справа от точки, изображающей число 15, и образуют луч, у которого «выколото» начало (рис. 5).
Ответ может быть записан одним из способов: (15 ; + 
Заметим, что для изображения на рисунке числового промежутка используют два способа: с помощью либо штриховки (рис. 5, а), либо дуги (рис. 5, б). Мы будем использовать второй способ.
Пример:
Решите неравенство
Решение:
Перенесем слагаемое х из правой части неравенства в левую, а слагаемое 3 — из левой части в правую и приведем подобные члены:
Умножим обе части неравенства на -2:
Множеством решений этого неравенства является числовой промежуток, который обозначают 
Точки координатной прямой, изображающие решения неравенства х > -8, образуют луч (рис. 6).
Ответ можно записать одним из способов: 
Пример:
Решите неравенство
Решение:
Запишем цепочку равносильных неравенств:
Множеством решений последнего неравенства является числовой промежуток, который обозначают 
Ответ можно записать одним из способов: 
Пример:
Решите неравенство
Решение:
Запишем цепочку равносильных неравенств:
Множеством решений последнего неравенства является числовой промежуток, который обозначают 


Точки координатной прямой, изображающие решения неравенства 
Ответ можно записать одним из способов: 
Пример:
Решите неравенство
Решение:
Имеем:
Последнее неравенство при любом значении х превращается в верное числовое неравенство 
Ответ: х — любое число.
Этот ответ можно записать иначе 
Пример:
Решите неравенство
Решение:
Имеем:
Полученное неравенство при любом значении х превращается в неверное числовое неравенство 0 < -9.
Ответ можно записать одним из способов: решений нет либо 
Каждое из неравенств, рассмотренных в примерах 1-5, сводилось к равносильному неравенству одного из четырех видов: ах > b, ах < b, ах > b, ах < b, где х — переменная, а и b — некоторые числа. Такие неравенства называют линейными неравенствами с одной переменной.
Приведем таблицу обозначений и изображений изученных числовых промежутков:
Системы линейных неравенств с одной переменной
Рассмотрим выражение 
Так как подкоренное выражение может принимать только неотрицательные значения, то должны одновременно выполняться два неравенства 
Если требуется найти все общие решения двух или нескольких неравенств, то говорят, что надо решить систему неравенств.
Как и систему уравнений, систему неравенств записывают с помощью фигурной скобки. Так, для нахождения области определения выражения 

Определение: Решением системы неравенств с одной переменной называют значение переменной, превращающее каждое неравенство системы в верное числовое неравенство.
Например, числа 2, 3,4, 5 являются решениями системы (*), а число 7 не является ее решением.
Решить систему неравенств — это означает найти все ее решения или доказать, что решений нет.
Все решения системы неравенств образуют множество решений системы неравенств. Если система решений не имеет, то говорят, что множеством ее решений является пустое множество.
Например, в задаче «Решите систему неравенств
ответ будет таким: «множество действительных чисел».
Очевидно, что множество решений системы 
Система 
Решим систему (*). Преобразовав каждое неравенство в равносильное ему, получим:
Множество решений последней системы состоит из всех чисел, которые не меньше 




Точки, изображающие решения системы (*), расположены между точками 

Ответ к задаче о нахождении области определения выражения 

Заметим, что все общие точки промежутков 



Записывают
Промежутки 



Пример:
Решите систему неравенств
Решение:
Имеем:
С помощью координатной прямой найдем пересечение множеств решений неравенств данной системы, т. е. пересечение промежутков 

Искомое пересечение состоит из чисел, удовлетворяющих неравенству -2 < х < 3. Это множество является числовым промежутком, который обозначают (—2; 3) и читают: «промежуток от —2 до 3».
Ответ можно записать одним из способов: (—2; 3) либо -2 < х < 3.
Пример:
Решите систему неравенств
Решение:
Имеем:
С помощью координатной прямой найдем пересечение промежутков 

Искомое пересечение состоит из всех чисел,удовлетворяющих неравенству 
Ответ можно записать одним из способов: [-2; 1) либо -2 < х < 1,
Пример:
Решите систему неравенств
Решение:
Множеством решений данной системы является пересечение промежутков 
Пример:
Найдите область определения функции
Решение:
Искомая область определения — это множество решений системы
Имеем:
Изобразим на координатной прямой пересечение промежутков 


Ответ:
Приведем таблицу обозначений и изображений числовых промежутков, изученных в этом пункте:
—————-
Неравенства
В этом разделе вы научитесь:
- решать неравенства;
- решать задачи из реальной жизни, при помощи неравенств;
- тригонометрическим соотношениям;
- применять тригонометрические соотношения при решении задач;
- систематизировать и представлять информацию в различных формах;
- при помощи мер центральных тенденций оценивать и давать прогнозы;
- определять генеральную совокупность (или популяцию) и выборку для исследования;
- различать независимые и зависимые события, а также вычислять их вероятность.
Это интересно!
Великий Азербайджанский мыслитель, философ, математик, астроном Насреддин Туси создал научные труды, которые внесли большой вклад в историю человечества. В письменных источниках его называют «Отецом тригонометрии». В своём труде «Об измерении круга» он впервые доказал теорему синусов и применил их для астрономических расчетов.
Неравенства:
Неравенства записываются при помощи знаков 
Для сравнения чисел и выражений применяются различные методы. Одним из них является метод оценки разности.
На числовой оси большему числу соответствует точка, расположенная правее, а меньшему числу соответствует точка, расположенная левее. Значит, если 



Пример:
Сравним выражения 



Свойства неравенств
- Если
, то
- Если
, то
- Если
и
, то
- Если
и
, то
Доказательство 3-го свойства: если 





Исследование
Рассмотрим неравенство
При значении переменной меньше 7, значение суммы 
При значении переменной равной 7, значение суммы 
При значении переменной больше 7, значение суммы 
Неравенство 
Свойства неравенств
Теорема. Если неравенство верное, то прибавив или отняв от обеих частей данного неравенства одно и то же число, получим верное неравенство.
Если 

Если 


Пример:
Масса морского тюленя может достигать максимально 650 кг. В настоящее время тюлень весит 398 кг. Как при помощи неравенства можно записать массу, которую еще сможет набрать тюлень?
Свойства неравенств
Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получим верное неравенство.
Для любых чисел 

- Если
, то
и
Пример 1.
- Если
, то
и
Пример 2.
Если обе части верного неравенства разделить или умножить на одно и то же отрицательное число и поменять знак неравенства на противоположный, то получим верное неравенство.
Для любых чисел 

- Если , то
,
и
Пример 3.
- Если , то
,
и
Пример 4.
Сложение и вычитание неравенств
Теорема. Если
Если к обеим частям неравенства 

Если к обеим частям неравенства 

Из 
Данная теорема верна при сложении двух и более неравенств. Если почленно сложить верные неравенства одного знака, то получится верное неравенство.
Теорема. Если перемножить почленно верные неравенства одного знака, левые и правые части которых — положительные числа, то получится верное неравенство.
Если 



Если в неравенстве 




Отсюда следует что, 
Следствие. Если 


- Заказать решение задач по высшей математике
Числовые промежутки
При 


Если в множество точек интервала 


Множество всех чисел 



Множество всех точек, удовлетворяющих условию 



Если точка 


Множество всех чисел, удовлетворяющих условию 

Если точка 


Решение линейных неравенств с одной переменной
Определение. Решением линейною неравенства с одной переменной называется множество всех значений переменной превращающих данное неравенство в верное.
Решить неравенство, значит найти все его решения или докатать, что решений нет. Неравенства, имеющие одинаковые множества решений, называются равносильными. Неравенства, не имеющие решения, также называются равносильными. При решении неравенств используются следующие следствия, полученные из свойств числовых неравенств:
1) Если из одной части неравенства перенести в другую слагаемое с противоположным знаком, то получится равносильное ему неравенство.
2) Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное ему неравенство. Например, неравенство 



3) Если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится равносильное ему неравенство.
Неравенства вида 

Решение неравенства
- Если
, то
;
- Если
, то
.
Решение неравенства
- Если
, то
;
- Если
, то
.
Пример:


Графическое представление решения:
Решение двойных неравенств
Двойные неравенства
Пример 1. Запишем неравенство 
Надо найти такие значения 

Пример 2.
Надо найти такие значения х, которые будут удовлетворять неравенствам
Решаем каждое неравенство и находим объединение множеств.
Пример 3. Двойное неравенство 
Простые неравенства с переменной, входящей под знаком модуля
Геометрически решением неравенства 

При 





Поэтому неравенство 


При 










Множество решений неравенства 

——-
Неравенства
В этой лекции вы:
- вспомните числовые неравенства, двойные неравенства;
- познакомитесь с понятиями объединения и пересечения множеств, линейными неравенствами с одной переменной и их системами;
- узнаете о свойствах числовых неравенств;
- научитесь решать линейные неравенства с одной переменной и системы линейных неравенств с одной переменной.
Числовые неравенства
В предыдущих классах вы научились сравнивать всевозможные числа и записывать результат их сравнения в виде равенства или неравенства с помощью знаков 

Неравенство, обе части которого — числа, называют числовым неравенством. Например,
Для любых двух чисел 



Известно, что 





Приходим к определению сравнения чисел:
Пример №285
Сравнить 

Решение:
Рассмотрим разность чисел 

Разность отрицательна, значит 
Ответ.
Напомним, что на координатной прямой точка, соответствующая меньшему числу, лежит левее точки, соответствующей большему числу. На рисунке 1 точка, соответствующая числу 


Числовые неравенства бывают верные и неверные.
Например,

Кроме знаков 







Из определения соотношений «больше», «меньше» и «равно» получаем, что 



Рассмотрим, как с помощью определения сравнения чисел можно доказывать неравенства.
Пример №286
Доказать, что при любом значении 

Доказательство: Рассмотрим разность левой и правой частей неравенства и упростим ее:

Так как 



Условие для примера 2 можно было сформулировать проще, например: доказать неравенство 
Пример №287
Доказать неравенство 
Доказательство: Рассмотрим разность левой и правой частей неравенства и упростим ее:

Так как 




Пример №288
Доказать неравенство 
Доказательство: В левой части неравенства выделим квадраты двучленов:

При любых значениях 


А значит, 
Следовательно, 
Напомним, что число 





Пример №289
Доказать, что среднее арифметическое двух неотрицательных чисел 


Доказательство: Рассмотрим разность левой и правой частей неравенства и преобразуем ее, учитывая, что 













Чтобы оценить отношение длины круга 



Привычные нам символы для записи неравенств появились лишь в XVII—XVIII в. Знаки 



Кроме неравенства Коши отметим еще и такие известные неравенства:
1) Неравенство Бернулли.



2) Неравенство Чебышёва.



3) Неравенство Коши-Буняковского.


Последнее неравенство доказали французский математик О. Л. Коши (1789-1857) и наш земляк В. Я. Буняковский. Виктор Яковлевич Буняковский (1804-1889) родился в г. Бар (сейчас — Винницкая обл.). Учился по большей части за рубежом, в основном во Франции, где его ближайшим наставником был сам Коши. В 1825 году в Парижском университете Буняковский защитил диссертацию и получил степень доктора наук. Его исследования касались области прикладной математики и математической физики. В 1826 году он переезжает из Парижа в Петербург и начинает преподавать математику и механику в известных на то время учебных заведениях, одновременно занимаясь переводом работ Коши с французского.
Основные свойства числовых неравенств
Рассмотрим свойства числовых неравенств.
Свойство 1.
Доказательство: Поскольку 





Аналогично будем рассуждать и в случае, когда 
Свойство 2.
Доказательство: По условию 









Аналогично рассуждаем, когда 

Геометрическая иллюстрация свойства 2 представлена на рисунках 2 и 3.
Свойство 3.
Доказательство: По условию 




Следствие: 
Доказательство: Так как 





Из этого следствия имеем:
если некоторое слагаемое перенести из одной части верного неравенства в другую, изменив при этом его знак на противоположный, то получим верное неравенство.
Свойство 4.
Доказательство: Пусть 



Если 





Так как 


Следовательно,
- если обе части верного неравенства у множить или <*> разделить на одно и то же положительное число, то получим верное неравенство;
- если обе части верного неравенства у множить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получим верное неравенство.
Следствие:
Доказательство: Разделим обе части неравенства



Пример №290
Дано: 
Решение:
1) Если к обеим частям верного неравенства 

2) Если к обеим частям верного неравенства 

3) Если обе части верного неравенства 

4) Если обе части верного неравенства 

5) Если обе части верного неравенства 

Решение таких упражнений можно записать короче:
6) Если обе части верного неравенства 

Напомним, что в математике есть и двойные числовые неравенства: 








Таким образом, если ко всем частям верного двойного неравенства прибавить одно и то же число, то получим верное двойное неравенство.
Рассуждая аналогично, получаем:
Рассмотренные нами свойства числовых неравенств можно использовать для оценивания значении выражении.
Пример №291
Оценить периметр квадрата со стороной 
Решение:
Так как периметр 




Следовательно, периметр квадрата больше чем 12,8 см, но меньше чем 15,6 см.
Ответ. 
Пример №292
Дано: 
Решение:
Используя форму записи, предложенную в задании 5 примера, получим:
Почленное сложение и умножение неравенств
Продолжим рассмотрение свойств неравенств.
Допустим, имеем два верных неравенства одного знака: 



Свойство 5 (почленное сложение неравенств). Если 


Доказательство: К обеим частям неравенства 






Аналогично доказываем, что если 


Свойство 5 справедливо и в случае почленного сложения более чем двух неравенств.
Пример №293
Стороны некоторого треугольника равны 




Решение:
Приведем сокращенную запись решения:
Таким образом, 
Ответ. 
Свойство, аналогичное почленному сложению двух и более неравенств, существует и для умножения. Почленно умножив верные неравенства 








Свойство 6 (почленное умножение неравенств). Если 



Доказательство: Умножим обе части неравенства 






Аналогично можно доказать, что если 



Отметим, что свойство 6 справедливо и для более чем двух неравенств.
Следствие: Если 



Доказательство: Перемножив почленно 




С помощью рассмотренных нами свойств можно оценивать сумму, разность, произведение и частное чисел.
Пример №294
Дано: 
Решение:
1)
2) Чтобы оценить разность 


Умножив все части неравенства 



3)
4) Чтобы оценить частное 





Ответ.
С помощью рассмотренных свойств можно также доказывать неравенства.
Пример №295
Доказать, что 

Решение:
К каждому множителю левой части неравенства применим неравенство между средним арифметическим и средним геометрическим (неравенство Коши), получим:
Используя свойство 4, обе части каждого из этих неравенств умножим на 2, получим:

Перемножим эти неравенства почленно:
Таким образом,
Неравенства с переменными. решение неравенства
Рассмотрим неравенство 







Также решениями неравенства 

Решением неравенства с одной переменной называют такое значение переменной, которое обращает его в верное числовое неравенство.
Решить неравенство — означает найти все его решения или доказать, что решений нет.
Пример №296
Решить неравенство: 1)
Решение:
1) 




2) 


любом 




Ответ. 1) Любое число, большее нуля; 2) нет решений.
Числовые промежутки. пересечение и объединение множеств
Множество решений неравенств удобно записывать с помощью числовых промежутков.
Пример №297
Рассмотрим двойное неравенство 


Число -1 удовлетворяет неравенству 





Пример №298
Двойному неравенству 

Пример №299
Множество чисел, удовлетворяющих двойному неравенству 

Пример №300
Множество чисел, удовлетворяющих двойному неравенству 

Пример №301
Неравенству 

Пример №302
Неравенству 

Пример №303
Множество чисел, удовлетворяющих условию 

Пример №304
Множество чисел, удовлетворяющих условию 
Таким образом, если конец промежутка принадлежит промежутку (например, для нестрогого неравенства), то этот конец заключают в квадратную скобку, во всех остальных случаях конец заключают в круглую скобку.
Множество всех чисел изображает вся координатная прямая и его записывают в виде 

Над множествами можно выполнять некоторые действия (операции). Рассмотрим два из них: пересечение и объединение.
Пересечением множеств 



Пересечение множеств записывают с помощью символа 
Пример №305
Если даны множества 




Пересечением числовых промежутков называют множество, которое содержит все числа, принадлежащие как одному промежутку, так и другому.
Пример №306

Пример №307
Промежутки 


Объединением множеств 



Для записи объединения множеств используют символ 
Пример №308
Если даны множества 



Объединением числовых промежутков называют множество, которое состоит из всех чисел, принадлежащих хотя бы одному из этих промежутков.
Пример №309


Линейные неравенства с одной переменной. Равносильные неравенства
Неравенства вида 






Пример №310
Решить неравенство: 1) 
Решение:
1) Разделив обе части неравенства на 2, получим: 

2) Разделив обе части неравенства на -3 и изменив при этом знак неравенства на противоположный, получим: 

Ответ. 1) 

Отметим, что ответ можно было записать и так:
1) 

Неравенства, имеющие одни и те же решения, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.
Для неравенств с переменными имеют место свойства, подобные тем, которые справедливы и для уравнений:
- если в любой части неравенства раскрыть скобки или привести подобные слагаемые, то получим неравенство, равносильное данному;
- если в неравенстве перенести слагаемое из одной его части в другую, изменив его знак на противоположный, то получим неравенство, равносильное данному;
- если обе части неравенства умножить или разделить на одно и то же положительное число, то получим неравенство, равносильное данному; если же обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получим неравенство, равносильное данному.
Чтобы решить уравнение, мы приводим его к равносильному ему, но более простому уравнению. Аналогично, пользуясь свойствами неравенств, можно решать и неравенства, приводя их к более простым неравенствам, им равносильным.
Пример №311
Решить неравенство
Решение:
Умножим обе части неравенства на наименьший общий знаменатель дробей — число 6, далее упростим его левую часть и перенесем слагаемые с переменной в левую часть неравенства, а без переменной — в правую.
Получили неравенство, равносильное исходному. Оно не имеет решений, так как при любом значении 

Ответ. Решений нет.
Пример №312
Решить неравенство 
Решение:
Раскрыв скобки, получим:

Решая далее, имеем: 

Последнее неравенство равносильно исходному и является верным при любом значении 



Ответ: 
Из примеров 2 и 3 можно сделать вывод, что
неравенства вида 
Пример №313
Для каждого значения 


Решение:
Чтобы привести неравенство к линейному, перенесем слагаемые, содержащие переменную, в левую часть неравенства, остальные — в правую часть:
Значение выражения 

1) Если 


2) Если 


3) Если 


Ответ. Если 




Системы линейных неравенств с одной переменной, их решение
Рассмотрим задачу. Велосипедист за 2 ч преодолевает расстояние, большее чем 24 км, а за 3 ч — расстояние, меньшее чем 39 км. Найти скорость велосипедиста.
Решим ее. Пусть скорость велосипедиста равна 




Нам нужно найти такие значения 


Так как оба неравенства — линейные, то получим систему линейных неравенств с одной переменной.
Решив каждое из неравенств системы, имеем систему:
Значит, значение 

Следовательно, скорость велосипедиста больше чем 12 км/ч, но меньше чем 13 км/ч.
Число 12,6 удовлетворяет каждому из неравенств системы
И действительно, каждое из числовых неравенств 

Решением системы неравенств с одной переменной называют значение переменной, при котором верным является каждое из неравенств системы.
Решить систему — означает найти все ее решения или доказать, что решений нет.
При решении системы неравенств целесообразно придерживаться следующей последовательности действий:
- решить каждое из неравенств системы;
- отметить множество решений каждого из неравенств на координатной прямой;
- найти пересечение этих множеств, которое и будет множеством решений системы;
- записать ответ.
Пример №314
Решить систему неравенств:
Решение:
Постепенно заменяя каждое из неравенств системы ему равносильным, но более простым, получим:
Отметим на координатной прямой множество чисел, удовлетворяющих неравенству 


Ответ. 
Ответ в примере 1 можно записать и так: 
Пример №315
Найти все целые решения системы неравенств:
Решение:
Найдем сначала все решения системы:
Очевидно, решением системы является промежуток 
Ответ. -5; -4; -3.
Пример №316
Решить систему неравенств:
Решение:
Имеем:
Отметив полученные решения неравенств системы на координатной прямой (рис. 28), видим, что общих точек у них нет, а значит, пересечением промежутков является пустое множество. Следовательно, система решений не имеет.
Ответ. Решений нет.
Пример №317
Решить неравенство 
Решение:
Перепишем данное двойное неравенство в виде системы неравенств:
Решим эту систему:
Таким образом, 

Ответ. 
Решение можно записать и так:
А ответ можно также представить в виде: 
—-10 клас
Неравенства: равносильные преобразования неравенств и общий метод интервалов
Понятия неравенства с одной переменной и его решений
Определение:
Если два выражения с переменной соединить одним из знаков 

Пример:



Определение:
Решением неравенства с переменной называется значение переменной, которое обращает заданное неравенство в верное числовое неравенство. Решить неравенство — значит найти все его решения или доказать, что их нет
Пример:




2. Область допустимых значений (ОДЗ)
Определение:
Областью допустимых значений (или областью определения) неравенства называется общая область определения для функций 

Пример:
Для неравенства 





3. Равносильные неравенства
Определение:
Два неравенства называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же решения
то есть каждое решение первого неравенства является решением второго и наоборот, каждое решение второго неравенства является решением первого
Простейшие теоремы
1. Если из одной части неравенства перенести в другую часть слагаемые с противоположным знаком, то получим неравенство, равносильное заданному (на любом множестве)
2. Если обе части неравенства умножить или разделить на одно и то же положительное число (или на одну и ту же функцию, которая определена и положительна на ОДЗ заданного неравенства), не меняя знак неравенства, то получим неравенство, равносильное заданному (на ОДЗ заданного неравенства)
3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число (или на одну и ту же функцию, которая определена и отрицательна на ОДЗ заданного неравенства) и изменить знак неравенства на противоположный, то получим неравенство, равносильное заданному (на ОДЗ заданного неравенства)
4. Метод интервалов (решения неравенств вида 
План
1. Найти ОДЗ.
2. Найти нули функции
3. Отметить нули на ОДЗ и найти знак функции 
4. Записать ответ, учитывая знак заданного неравенства
Пример:
Решите неравенство
Решение
► Пусть
1. ОДЗ: 

2. Нули функции:

3.
Ответ:
5. Схема поиска решения неравенств



Объяснение и обоснование:
Понятия неравенства с переменной и его решений
Если два выражения с переменной соединить одним из знаков 
Аналогично уравнению, неравенство с переменной (например, со знаком 

Напомним, что решением неравенства называется значение переменной, которое обращает это неравенство в верное числовое неравенство.
Решить неравенство — значит найти все его решения или доказать, что их нет.
Например, решениями неравенства 






Область допустимых значений (ОДЗ) неравенств
Область допустимых значений (ОДЗ) неравенства определяется аналогично ОДЗ уравнения. Если задано неравенство 







Понятно, что каждое решение заданного неравенства входит как в область определения функции 

Например, в неравенстве 





В основном при решении неравенств различных видов приходится применять один из двух методов решения: равносильные преобразования неравенств или так называемый метод интервалов.
Равносильные неравенства
С понятием равносильности неравенств вы знакомы еще из курса алгебры 9 класса. Как и для случая равносильных уравнений, равносильность неравенств мы будем рассматривать на определенном множестве.
Два неравенства называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же решения, то есть каждое решение первого неравенства является решением второго, и наоборот, каждое решение второго неравенства является решением первого.
Договоримся, что в дальнейшем все равносильные преобразования неравенств будем выполнять на ОДЗ заданного неравенства. В случае когда ОДЗ заданного неравенства является множество всех действительных чисел, мы не всегда будем его записывать (как не записывали ОДЗ при решении линейных или квадратных неравенств). И в других случаях главное — не записать ОДЗ при решении неравенства, а действительно учесть ее при выполнении равносильных преобразований заданного неравенства.
Общие ориентиры выполнения равносильных преобразований неравенств аналогичны соответствующим ориентирам выполнения равносильных преобразований уравнений.
Как указывалось выше, выполняя равносильные преобразования неравенств, необходимо учитывать ОДЗ заданного неравенства — это и есть первый ориентир для выполнения равносильных преобразований неравенств.
По определению равносильности неравенств необходимо обеспечить, чтобы каждое решение первого неравенства было решением второго, и наоборот, каждое решение второго неравенства было решением первого. Для этого достаточно обеспечить сохранение верного неравенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях. Это и есть второй ориентир для решения неравенств с помощью равносильных преобразований. Действительно, каждое решение неравенства обращает его в верное числовое неравенство, и если верное неравенство сохраняется, то решение каждого из неравенств будет также и решением другого, таким образом, неравенства будут равносильны (соответствующие ориентиры схематически представлены в пункте 5 табл. 11).
Например, чтобы решить с помощью равносильных преобразований неравенство
достаточно учесть его ОДЗ: 
Решение
► Данное неравенство равносильно
совокупности двух систем:


Тогда получаем 
Таким образом, 

Ответ: 
Комментарий:
Заметим, что при записи условия положительности дроби — совокупности систем (2) — мы неявно учли ОДЗ неравенства (1). Действительно, если 


Кроме выделенных общих ориентиров, для выполнения равносильных преобразований неравенств можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности неравенств обобщим также формулировки простейших теорем о равносильности неравенств, известных из курса алгебры 9 класса.
1. Если из одной части неравенства перенести в другую часть слагаемые с противоположным знаком, то получим неравенство, равносильное заданному (на любом множестве).
2. Если обе части неравенства умножить или разделить на одно и то же положительное число (или на одну и ту же функцию, которая определена и положительна на ОДЗ заданного неравенства), не изменяя знак неравенства, то получим неравенство, равносильное заданному (на ОДЗ заданного).
3. Если обе части неравенства у множить или разделить на одно и то же отрицательное число (или на одну и ту же функцию, которая определена и отрицательна на ОДЗ заданного неравенства ) и изменить знак неравенства на противоположный, то получим неравенство,равносильное заданному (на ОДЗ заданного).
Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований заданного неравенства.
Замечание. Для обозначения перехода от заданного неравенства к неравенству, равносильному ему, можно применять специальный значок 
Метод интервалов
Решение неравенств методом интервалов опирается на свойства функций, связанные с изменением знаков функции. Объясним эти свойства, используя графики известных нам функций, например функций 

Рассматривая эти графики, замечаем, что функция может изменить свой знак только в двух случаях:
1) если график разрывается (как в случае функции 
2) если график без разрыва переходит из нижней полуплоскости в верхнюю (или наоборот). Но тогда график пересекает ось 









В таблице 12 приведено решение дробно-рационального неравенства 

Пример:
Решение:
►
1. ОДЗ: 
2. Нули
тогда 
3.
4. Ответ: 
Комментарий:
1. Рассмотрим функцию, стоящую в левой части этого неравенства, и обозначим ее через 
Решением неравенства 

2. Нас интересуют те промежутки области определения функции 



3. Если теперь отметить нули на области определения функции 

4. Из рисунка видно, что решением неравенства является объединение промежутков
План решения
1. Найти ОДЗ неравенства
2. Найти нули 
3. Отметить нули на ОДЗ и найти знак функции в каждом промежутке, на которые разбивается ОДЗ
4. Записать ответ, учитывая знак неравенства
Приведем пример решения более сложного дробно-рационального неравенства методом интервалов и с помощью равносильных преобразований.
Пример:
Решите неравенство
I способ (метод интервалов)
Решение:
►Пусть
1. ОДЗ:
2. Нули

3. Отмечаем нули функции на ОДЗ и находим знак 

Комментарий:
Данное неравенство имеет вид 
При нахождении нулей 

Записывая ответ к нестрогому неравенству, следует учесть, что все нули функции должны войти в ответ (в данном случае — числа 
II способ (с помощью равносильных преобразований)
Комментарий:
Выберем для решения метод равносильных преобразований неравенства. При выполнении равносильных преобразований мы должны учесть ОДЗ данного неравенства, то есть учесть ограничение 
Но если 



Чтобы решить полученное квадратное неравенство, найдем корни квадратного трехчлена 


Поскольку все преобразования были равносильными только на ОДЗ, то мы должны выбрать те решения квадратного неравенства, которые удовлетворяют ограничению ОДЗ.
Решение:
► ОДЗ: 

Тогда 





Учитывая ОДЗ, получаем ответ.
Ответ: 
- Числовые последовательности
- Предел числовой последовательности
- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
- Системы линейных уравнений с двумя переменными
- Рациональные выражения
- Квадратные корни
- Квадратные уравнения
Несмотря на то, что решение неравенств очень напоминает решение уравнений, все-таки неравенства вызывают у школьников больше затруднений.
Ученики часто спрашивают как решать неравенства те или иные, просят оценить решение неравенства, полученное у доски в школе или помочь в решении домашнего задания с неравенством. В основном они связаны не с решением неравенства как такового, а с проблемой записи решения и с проблемой знака неравенства, которое в определенные моменты заменяется на противоположный.
Решение неравенств – это материал, который помогает выявить у экзаменуемого сразу несколько умений и навыков: умение решать уравнения, работать со знаком неравенства, оценить полученное решение с точки зрения постановки неравенства. Поэтому неравенства включены в ОГЭ (ГИА).
Как решать простейшие неравенства из ОГЭ (ГИА)
Итак, первое неравенство:
3х-4<6x-6
Решаем неравенство как уравнение – перенесем все неизвестные в левую часть, а все числа – в правую. Неизвестные – это все выражения с х: 3х и 6х.
3х уже находится слева, а вот 6х – справа, и 6х мы перенесем в левую часть нашего неравенства. Не забываем, что когда мы переносим любые выражения и числа из одной части неравенства, как и равенства, в другую, то мы обязательно меняем знак. То есть слева у нас запишется:
3х-6х.
Что будет справа? Справа останется число -6 (со знаком минус), и еще мы перенесем 4 из левой части в правую. Перед четверкой в левой части неравенства стоит знак минус, значит, при переносе мы получим четверку со знаком +. Смотрите, что получилось:
3х-6х<-6+4
Упростим левую и правую части, получим:
-3х<-2
Если бы у нас вместо неравенства было уравнение: -3х=-2, то x мы бы нашли разделив -2 на -3. Точно также поступают и в неравенстве, но, помнят одно простое правило,
если мы делим или умножаем на отрицательное число (число со знаком минус), то знак неравенства меняется на противоположный.
То есть мы запишем решение нашего неравенства вот так:
Мы поменяли знак, так как делили на отрицательное число – -3. При этом знак бы не менялся, если бы мы делили отрицательное число на положительное. Знак неравенства меняется только тогда – когда отрицательным является число на которое делят или умножают.
Итак, ответ у нас будет таким:
.
Как решать нестрогое неравенство
Нестрогим неравенством называется неравенство, у которого вместо строгого знака “больше” или “меньше”, стоит знак “больше или равно” или “меньше или равно”. Например, давайте решим нестрогое неравенство. Возьмем простое неравенство, чтобы вы поняли суть вопроса.
Решаем аналогично – только сначала упростим правую часть нашего неравенства. Переносим неизвестные в левую часть неравенства, а известные (числа) в правую часть неравенства:
Упрощаем правую часть:
Посчитаем, получим:
Ответ: .
Обратите внимание на запись ответа. Так как у нас неравенство нестрогое, то число 2 будет входить в решение этого неравенства, поэтому мы его включаем в ответ, отмечая квадратной скобкой.
Вот так:
Решение неравенств из сборника ОГЭ по математике ФИПИ
Неравенство 1
Укажите решение неравенства
Решение:
Перенесем неизвестные в левую часть неравенства, а известные – в правую часть неравенства:
Посчитаем:
, отсюда
искомый интервал: . Таким образом, из списка предложенных интервалов нам подходит интервал под номером 2.
Ответ 2.
Неравенство 2
Укажите множество решений неравенства:
Решение:
Как обычно, переносим неизвестные влево от знака неравенства, а известные величины – вправо:
Обратите внимание – здесь мы делим отрицательное число. Но делим то мы его на положительное число 6. Поэтому знак неравенства остается прежним!
или
Нам подходит вариант решения 4.
Ответ: 4.
Неравенство 3
Укажите решение неравенства
Решение:
Подходит вариант решения 2.
Ответ: 2
Неравенство 4
Укажите множество решений неравенства
Решение:
Итак, решение неравенство иллюстрируется графиком 3.
Ответ: 3.
Теперь вы знаете, как решать неравенства, которые даны в части “Алгебра” ОГЭ (ГИА).

























































































































































где а
b, то решениями системы являются х
a, то есть х меньше меньшего из чисел а и b.
где а > b, то решениями системы являются x > а, то есть x больше большего из чисел а и b.





























































































































, то 




и
Пример 1. 
, то
и
Пример 2. 















, то
;
, то
.









































































































