Как найти направление выпуклости графика функции

Интервалы выпуклости и вогнутости графика функции

С помощью онлайн-калькулятора можно найти точки перегиба и промежутки выпуклости графика функции с оформлением решения в Word. Является ли функция двух переменных f(x1,x2) выпуклой решается с помощью матрицы Гессе.

  • Решение онлайн
  • Видеоинструкция

Направление выпуклости графика функции. Точки перегиба

Определение: Кривая y=f(x) называется выпуклой вниз в промежутке (a; b), если она лежит выше касательной в любой точке этого промежутка.

Определение: Кривая y=f(x) называется выпуклой вверх в промежутке (a; b), если она лежит ниже касательной в любой точке этого промежутка.

Определение: Промежутки, в которых график функции обращен выпуклостью вверх или вниз, называются промежутками выпуклости графика функции.

Выпуклость вниз или вверх кривой, являющейся графиком функции y=f(x), характеризуется знаком ее второй производной: если в некотором промежутке f’’(x) > 0, то кривая выпукла вниз на этом промежутке; если же f’’(x) < 0, то кривая выпукла вверх на этом промежутке.

Определение: Точка графика функции y=f(x), разделяющая промежутки выпуклости противоположных направлений этого графика, называется точкой перегиба.



Точками перегиба могут служить только критические точки II рода, т.е. точки, принадлежащие области определения функции y = f(x), в которых вторая производная f’’(x) обращается в нуль или терпит разрыв.

Правило нахождения точек перегиба графика функции y = f(x)

  1. Найти вторую производную f’’(x).
  2. Найти критические точки II рода функции y=f(x), т.е. точки, в которой f’’(x) обращается в нуль или терпит разрыв.
  3. Исследовать знак второй производной f’’(x) в промежутка, на которые найденные критические точки делят область определения функции f(x). Если при этом критическая точка x0 разделяет промежутки выпуклости противоположных направлений, то x0 является абсциссой точки перегиба графика функции.
  4. Вычислить значения функции в точках перегиба.

Пример 1. Найти промежутки выпуклости и точки перегиба следующей кривой: f(x) = 6x2–x3.

Решение: Находим f ‘(x) = 12x – 3x2, f ‘’(x) = 12 – 6x.

Найдем критические точки по второй производной, решив уравнение 12-6x=0. x=2.

f(2) = 6*22 – 23 = 16

Ответ: Функция выпукла вверх при x∈(2; +∞); функция выпукла вниз при x∈(-∞; 2); точка перегиба (2;16).

Пример 2. Имеет ли точки перегиба функция: f(x)=x3-6x2+2x-1

Пример 3. Найти промежутки, на которых график функции является выпуклым и выгнутым: f(x)=x3-6x2+12x+4

Содержание:

  • Теоремы о выпуклости функции и точках перегиба
  • Схема исследования функции на выпуклость, вогнутость

График функции $y=f(x)$, дифференцируемой на интервале
$(a ; b)$, является на этом интервале выпуклым, если график
этой функции в пределах интервала $(a ; b)$ лежит не выше любой
своей касательной (рис. 1).

График функции $y=f(x)$, дифференцируемой на интервале
$(a ; b)$, является на этом интервале вогнутым, если график
этой функции в пределах интервала $(a ; b)$ лежит не ниже любой
своей касательной (рис. 2).

Выпуклость и вогнутость функции

Теоремы о выпуклости функции и точках перегиба

Теорема

(Об условиях выпуклости или вогнутости графика функции)

Пусть функция $y=f(x)$ определена на интервале
$(a ; b)$ и имеет непрерывную, не равную нулю в точке
$x_{0} in(a ; b)$ вторую производную. Тогда, если
$f^{prime prime}(x)>0$ всюду на интервале
$(a ; b)$, то функция имеет вогнутость на этом интервале,
если $f^{prime prime}(x) lt 0$, то функция имеет выпуклость.

Определение

Точкой перегиба графика функции $y=f(x)$
называется точка $Mleft(x_{1} ; fleft(x_{1}right)right)$, разделяющая промежутки выпуклости и вогнутости.

Теорема

(О необходимом условии существования точки перегиба)

Если функция $y=f(x)$ имеет перегиб в точке
$Mleft(x_{1} ; fleft(x_{1}right)right)$, то
$f^{prime prime}left(x_{1}right)=0$ или не существует.

Теорема

(О достаточном условии существования точки перегиба)

Если:

  1. первая производная $f^{prime}(x)$
    непрерывна в окрестности точки $x_{1}$;
  2. вторая производная $f^{prime prime}(x)=0$ или не существует в точке $x_{1}$;
  3. $f^{prime prime}(x)$ при переходе через точку $x_{1}$ меняет свой знак,

тогда в точке $Mleft(x_{1} ; fleft(x_{1}right)right)$ функция $y=f(x)$ имеет перегиб.

Схема исследования функции на выпуклость, вогнутость

  1. Найти вторую производную функции.
  2. Найти точки, в которых вторая производная равна нулю или не существует.
  3. Исследовать знак производной слева и справа от каждой найденной точки и сделать вывод об интервалах выпуклости и точках перегиба.

Пример

Задание. Найти интервалы выпуклости/вогнутости функции
$y=frac{x^{3}}{6}-x^{2}+3 x+1$

Решение. Найдем вторую производную заданной функции:

$y^{prime prime}=left(frac{x^{3}}{6}-x^{2}+3 x+1right)^{prime prime}=left(frac{x^{2}}{2}-2 x+3right)^{prime}=x-2$

Находим точки, в которых вторая производная равна нулю, для этого решаем уравнение
$y^{prime prime}(x)=0$:

$y^{prime prime}(x)=x-2=0 Rightarrow x=2$

Исследуем знак второй производной слева и справа от полученной точки:

Так как на промежутке $(-infty ; 2)$ вторая производная
$y^{prime prime}(x) lt 0$, то на этом промежутке функция
$y(x)$ выпукла; в силу того, что на промежутке
$(2 ;+infty)$ вторая производная
$y^{prime prime}(x)>0$ — функция вогнута. Так как при переходе через
точку $x=2$ вторая производная сменила знак, то
эта точка является точкой перегиба графика функции.

Ответ. Точка $x=2$ — точка перегиба графика функции.

На промежутке $(-infty ; 2)$ функция выпукла, на промежутке
$(2 ;+infty)$ функция вогнута.

Читать дальше: асимптоты графика функции.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

  1. Направление выпуклости и точки перегиба графика функции.

1). Предположим, что функция f(x)
дифференцируема в любой точке интервала
.
Тогдасуществует
касательная к графику функции
,
проходящая через любую точкуэтого графика,
причем эта касательная не параллельна
оси Oy.

Определение.График функции

имеет на интервале
выпуклость, направленную вниз (вверх),
если график этой функции в пределах
указанного интервала лежит не ниже (не
выше) любой своей касательной.

Теорема 9.4.Если функция

имеет на интервале
конечную вторую производную и если эта
производная неотрицательна (неположительна)
всюду на этом интервале, то график
функции

имеет на интервале
выпуклость, направленную вниз (вверх).

Доказательство.Рассмотрим случай

всюду на
.
Пустьс
– любая точка интервала
(рисунок). Требуется доказать, что график
функции

лежит не ниже касательной, проходящей

через точку
.
Запишем уравнение касательной, обозначая
ее ординату через Y.
Т. к. угловой коэффициент касательной
равенf’(c),
то

(1)

Разложим f(x)
в окрестности точки с
по формуле Тейлора до n
= 1. Получим

(2)

где остаточный член взят в форме Лагранжа,
лежит междуc
иx. Поскольку по
условиюf(x)
имеет вторую производную на интервале
,
формула (2) справедлива длялюбого
x
из этого интервала. Сопоставляя
(2) и (1), имеем

(3)

Поскольку вторая производная по условию
0 всюду на
,
то правая часть (3)неотрицательна,
т.е. для всех xиз
или.
Это неравенство доказывает, что график

всюду в пределах интервала
лежит не ниже касательной (1).

Аналогично доказывается
теорема для случая
.

Теорема доказана.

2). Точки перегиба графика функции.

Определение.
Точка
графика функции

называется точкой
перегиба
этого графика,
если существует такая окрестность точки
с оси
абсцисс, в пределах которой график
функции

слева и справа от с
имеет разные направления выпуклости.
(см. рисунок).

Иногда при определении точки
перегиба графика функции

дополнительно требуют, чтобы этот график
всюду в пределах достаточно малой
окрестности точки с
оси абсцисс слева и справа от с
лежал по разные стороны от касательной
к этому графику в точке
.

  1. Необходимое условие перегиба графика функции.

Определение.
Точка
графика функции

называется точкой
перегиба
этого графика,
если существует такая окрестность точки
с оси
абсцисс, в пределах которой график
функции

слева и справа от с
имеет разные направления выпуклости.
(см. рисунок).

Иногда при определении точки
перегиба графика функции

дополнительно требуют, чтобы этот график
всюду в пределах достаточно малой
окрестности точки с
оси абсцисс слева и справа от с
лежал по разные стороны от касательной
к этому графику в точке
.

Лемма 1.Пусть функция

имеет производную f’(x)
всюду в -окрестности
точки с,
причем эта производная непрерывна в
точке с.
Тогда, если график

имеет на интервале
выпуклость, направленную вниз (вверх),
то всюду в пределах интервалаэтот график лежит не ниже (не выше)
касательной, проведенной в точке.

Доказательство.
Рассмотрим последовательность
точек интервала,
сходящуюся к точкес.
Через каждую точку
графика

проведем касательную к этому графику,
т.е. прямую

Т.к. по условию

имеет на интервале
выпуклость, напрвленную вниз (вверх),
то для любогоnи
любойфиксированной точкиxинтервала

(
0) (1)

Из непрерывности f’(x)
в точке с
следует, что существует предел

(2)

Из (2) и (1) следует, что

(
0) (3)

Если обозначить через Yтекущую ординату касательной, проходящей
через точку
,
то (3) можно переписать в виде

(
0) (4)

Переходя в неравенстве (1) к пределу при
получим, что

(
0) (5)

для любой фиксированной точки xиз интервала
.

Лемма доказана.

Соседние файлы в папке 67 вопросов

  • #
  • #
  • #

1. Исследование выпуклости графика функции

График функции (f(x)) имеет на ((a,b)) выпуклость, направленную вниз (вверх), если он расположен не ниже (не выше) любой касательной к графику функции на ((a,b)).

Если функция (f(x)) имеет на интервале ((a,b)) вторую производную и

f′′(x)≥0

(

f′′(x)≤0

) во всех точках ((a,b)), то график функции (f(x)) имеет на ((a,b)) выпуклость, направленную вниз (вверх).

Пример:

определить выпуклости функции

f(x)=x3+x

.

Вторая производная этой функции — это

f′′(x)=6x

. Она отрицательна, если (x<0), положительна, если (x>0).

Значит, график (f(x)) в интервале 

−∞;0

 имеет выпуклость, направленную вверх, и в интервале 

0;+∞

 имеет выпуклость, направленную вниз.

2. Нахождение точек перегиба функции

Чтобы определить точки перегиба функции (f(x)), нужно найти точки, в которых вторая производная этой функции является нулём или не существует (и которые принадлежат области определения функции). Тогда можно определить знак второй производной функции в соответствующих интервалах — вычислив значения второй производной в какой-либо точке интервала.

Если вторая производная функции в точке меняет знак, эта точка является точкой перегиба, если не меняет, не является точкой перегиба.

Пример:

рассмотрим функцию 

f(x)=x3+x

.

Вторая производная этой функции — это

f′′(x)=6x

. Она отрицательна, если (x<0), и положительна, если (x>0). Значит, в точке (x=0) вторая производная меняет знак, и эта точка — точка перегиба функции.

tema 09.bmp

Заказать задачи по любым предметам можно здесь от 10 минут

Точки перегиба графика функции

В задачах на исследование функции в одном из пунктов предлагается найти точки перегиба графика функции. Как это решить? Необходимо понимать, что такое точка перегиба по определению и её признаки. 

Точка перегиба функции — это точка, в которой график функции изменяет свою выпуклость или вогнутость

Как найти?

  1. Найти вторую производную функции $ y»(x) $
  2. Найти точки $ x_0 $, в которых вторая производная равна нулю, имеет разрыв, или не существует
  3. Исследовать каждую найденную точку $ x_0 $ на перегиб, с помощью третьей производной $ y»'(x) $

Как проверить является ли найденная точка $ x_0 $ перегибом? Необходимо найти третью производную $ y»'(x)$. Если $ y»'(x_0) $ ≠ $ 0 $, то исследуемая точка — это точка перегиба.

Примеры решений 

Пример 1
Найти точки перегиба графика функции: $ y = 2x^4-6x^2+1 $
Решение

Найдем первую производную, заданной функции:

$$ y’ = (2x^4 — 6x^2 + 1)’ = 8x^3 — 12x $$

Теперь получим вторую производную:

$$ y» = (y’)’ = (8x^3 — 12x)’ = 24x^2 — 12 $$

Приравниваем к нулю $ y» = 0 $ и решаем уравнение:

$$ 24x^2 — 12 = 0 $$

$$ x^2 = frac{1}{2} $$

$$ x_1 = -frac{1}{sqrt{2}}, x_2 = frac{1}{sqrt{2}} $$

Найдем третью производную и вычислим её значения в точках $ x_1 $ и $ x_2 $:

$$ y»'(x) = (y»(x))’ = 48x $$

$$ y»'(x_1) = y»'(-frac{1}{sqrt{2}}) = -frac{48}{sqrt{2}} $$

$$ y»'(x_2) = y»'(frac{1}{sqrt{2}}) = frac{48}{sqrt{2}} $$

Так как $ y»'(x_1) $ и $ y»'(x_2) $ не равны нулю, то точки $ x_1 $ и $ x_2 $ соответственно точки перегиба функции.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

$$ x_1 = — frac{1}{sqrt{2}}, x_2 = frac{1}{sqrt{2}} $$

Пример 2
Узнать, является ли для графика функции $ y = cos x $ точка $ x_0 = frac{pi}{2} $ точкой перегиба
Решение

Найдем производные до третьего порядка фунции, указанной в условии к задаче:

$$ y'(x) = (cos x)’ = — sin x $$ $$ y»(x) = (-sin x)’ = -cos x $$ $$ y»'(x) = (-cos x)’ = sin x $$

Вычислим значения $ y»(x_0) text{ и } y»'(x_0) $:

$$ y»(x_0) = y»(frac{pi}{2}) = — cos frac{pi}{2} = 0 $$

$$ y»'(x_0) = y»'(frac{pi}{2}) = sin frac{pi}{2} = 1 $$

Так как $ y»(frac{pi}{2}) = 0 $, а $ y»'(frac{pi}{2}) neq 0 $, то делаем вывод, что точка $ x_0 = frac{pi}{2} $ является точкой перегиба для функции $ y = cos x $

Ответ
Точка $ x_0 = frac{pi}{2} $ точка перегиба

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Найти как вызвать русалку
  • Как составить карту тестирования
  • Как найти радиус если известна сторона квадрата
  • Тихие наушники как исправит
  • Как найти заблокированные номера whatsapp

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии