Содержание:
- Система сходящихся сил
- Равнодействующая системы сходящихся сил
- Разложение силы по заданным направлениям
- Разложение силы по двум заданным направлениям
- Разложение силы по трем заданным направлениям
- Проекция силы на ось и плоскость
- Аналитический способ определения равнодействующей
- Условия и уравнения равновесия системы сходящихся сил
- Геометрическое условие равновесия
- Аналитические условия равновесия. Уравнения равновесия
- Методика решения задач на равновесие
- Примеры решения задач на равновесие под действием системы сходящихся сил
- Система сходящихся сил и решение задач
- Условия равновесия системы совпадающих сил
- Геометрический метод решения задач
- Аналитический метод решения задач
- Проекция силы на ось и на плоскость
- Аналитические условия равновесия системы совпадающих сил
- Образец выполнения и решения задач на темы С2
- Система сходящихся сил на плоскости
- Геометрическое условие равновесия системы сходящихся сил
- Геометрический метод решения задач
- Аналитические условия равновесия системы сходящихся сил
- Примеры решения задач на тему: Система сходящихся сил
Система сходящихся сил — это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух.
На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.
Система сходящихся сил
Определение:
Система сил, линии действия которых пересекаются в одной точке, называется системой сходящихся сил. Системы сходящихся сил могут быть плоскими и пространственными.
Нехай на тверде тіло діє система збіжних сил
Используя теорему 1.1, § 1.3, перенесем силы вдоль линий их действия в точку В и получим эквивалентную систему сил, приложенных к твердому телу в одной точке (рис. 2.1, б), которую еще называют пучком.
Равнодействующая системы сходящихся сил
Силы, приложенные в одной точке твердого тела, можно добавлять, используя аксиому о параллелограмм сил. Пусть к телу в точке О приложена система n сходящихся сил 
Найдем равнодействующую 


(индекс в обозначении равнодействующей соответствует количеству положительных сил).
К равнодействующей 

Составим равнодействующую 


Как видно из рис. 2.2, б, построение параллелограммов сил эквивалентна построении векторного многоугольника сил. Для системы сил, изображенной на рис. 2.2, б, векторный многоугольник сил построим следующим образом: к концу вектора 






Замыкающая сторона силового многоугольника, которая направлена против его обхода, определяет равнодействующую как по величине, так и по направлению (Рис. 2.2, б). Определение равнодействующей системы сходящихся сил по правилу параллелограмма или силового многоугольника называется геометрическим способом определения равнодействующей.
В случае плоской системы сходящихся сил силовой многоугольник используется для графического определения равнодействующей. Изображая силы в определенном масштабе, величину равнодействующей силы определим непосредственным измерением ее на чертеже. Геометрический способ определения равнодействующей используется в графостатици.
Разложение силы по заданным направлениям
Разложить данную силу на несколько составляющих — значит найти такую систему нескольких сил, для которых данная сила равнодействующей. Эта задача является
неопределенной и имеет однозначное решение лишь при задании дополнительных условий. Такими дополнительными условиями могут, например, быть: 1) задания двух направлений, вдоль которых должны действовать составляющие силы; 2) задания
модулей обеих составляющих сил; 3) задания модуля одной составляющей силы и
направление второй. Рассмотрим два частных случая.
Разложение силы по двум заданным направлениям
Задача сводится к построению такого параллелограмма, у которого сила, которая разлагается, является диагональю, а стороны параллельны заданным направлениям. Например, на рис. 2.3, а, показано, что сила 




Разложение силы по трем заданным направлениям
Если заданные направления АВ, АС и АD не лежащих в одной плоскости, то задача является определенной и сводится к построению такого параллелепипеда, в которого диагональ является заданной силой 

Проекция силы на ось и плоскость
Аналитический способ решения задач статики основывается на понятии о проекции силы на ось. Проекция силы на ось является алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и силой (Рис. 2.4)
Отметим, что:
Проекцией силы 

соединяет проекции начала и конца вектора 
В отличие от проекции силы на ось, проекция силы на плоскость является векторной величиной. Она характеризуется не только своим модулем, но и направлением в плоскости Oxу. Модуль проекции силы на плоскость

где θ — угол между направлением силы 
в которой эта ось лежит, а потом найденную проекцию на плоскость спроектировать на эту ось.
Например, в случае, изображенном на рис. 2.5, таким способом найдем, что:
При решении многих задач механики удобно задавать силу через ее проекции на оси прямоугольной декартовой системы координат (рис. 2.6):





Аналитический способ определения равнодействующей
Кроме геометрического существует еще и аналитический способ определения равнодействующей системы сходящихся сил. Если равенство (2.1) спроектируем на оси
декартовой системы координат (рис. 2.2, а), то получим:
где 



Итак, проекция равнодействующей системы сходящихся сил на эту ось равна алгебраической сумме проекций составляющих сил на эту же ось.
Поскольку формулы (2.7) определяют проекции равнодействующей на три взаимно перпендикулярные оси, то модуль и направление равнодействующей 
Условия и уравнения равновесия системы сходящихся сил
По определению уравновешенной системы сил имеем
а для системы сходящихся сил (см. § 2.2) получили
Сравнивая эквивалентности (а) и (б), получим векторное условие равновесия: для равновесия системы сходящихся сил необходимо и достаточно, чтобы ее равнодействующая была равна нулю:
Векторное равенство (2.9) является необходимым и достаточным условием равновесия
системы сходящихся сил. Условия, которым при этом должны удовлетворять самые силы, можно выразить в геометрической или аналитической форме.
Геометрическое условие равновесия
Как известно, равнодействующая — это замыкающая сторона силового многоугольника (рис. 2.2, б). Условие (2.9) будет выполняться только тогда, когда конец последней силы совместится с началом первой силы при построении силового многоугольника, то есть когда силовой многоугольник будет замкнутым. Необходимым и достаточным условием равновесия системы сходящихся сил есть замкнутость ее силового многоугольника (рис. 2.2, в).
Аналитические условия равновесия. Уравнения равновесия
Аналитические условия равновесия системы сходящихся сил вытекают из условия (2.9), согласно которой модуль равнодействующей равна нулю. Используя формулу (2.8), получаем
Это означает, что для равновесия системы сходящихся сил необходимо и достаточно, чтобы алгебраические суммы проекций всех сил на три взаимно перпендикулярные
оси равны нулю.
Равенства (2.10) называются аналитическими условиями равновесия системы сходящихся сил.
Для случая плоской системы сходящихся сил будем иметь:
Итак, задачи на равновесие системы сходящихся сил можно решать двумя способами — геометрически и аналитически. Первый способ удобен для плоской системы сходящихся сил.
Аналитические условия равновесия (2.10) или (2.11), расписаны для конкретной задачи, в которые входят неизвестные параметры, реакции связей, активные силы, расстояния, углы и т.д., называются уравнениями равновесия.
При решении задач статики реакции связей всегда есть неизвестными величинами. Для их определения используют условия равновесия той или другой системы сил.
Задачи, в которых число неизвестных величин равно числу уравнений равновесия, в которые они входят, называются статически определенными. Системы, для которых это имеет место, называются статически определенными.
Задачи, в которых число неизвестных величин больше, чем число уравнений равновесия, в которые входят эти величины, называются статически неопределенными. Системы, для которых это имеет место, называются статически неопределенными.
Методика решения задач на равновесие
Все задачи на равновесие желательно решать по такой методике.
1. Следуя масштаба, сделать четкий схематический рисунок к задачи.
2. Выбрать объект равновесия. Последним может быть точка, тело или
система тел, к которым приложено заданные и неизвестные силы. Если заданы
силы действуют на одно тело, а неизвестные — на второе, то необходимо рассматривать
равновесие системы тел в целом или последовательно равновесие каждого тела.
3. Изобразить на рисунке все заданные силы, приложенные к объекту равновесия.
4. Условно освободить объект равновесия от наложенных связей, а их действие заменить реакциями связей. Изобразить на рисунке реакции связей.
5. Выяснить, какая система сил действует на объект равновесия и условия равновесия рационально использовать.
6. В соответствии с условиями равновесия составить уравнение равновесия или выполнить соответствующие графические построения.
7. Решить уравнение равновесия, найти неизвестные величины и проанализировать полученные результаты.
Все расчеты в процессе решения задачи рекомендуется выполнять в общем виде, а числовые значения подставлять только в конечные алгебраические выражения.
Примеры решения задач на равновесие под действием системы сходящихся сил
Задача 2.1. Однородная горизонтальная балка, вес которой
Решение. Объектом равновесия выберем балку АВ, на которую действует одна заданная сила
Мысленно освободимся от связей. Линия действия реакции 




Балка находится в равновесии под действием трех сходящихся сил 





Поскольку в 


Задача 2.2. Вертикальный стояк подъемного крана опирается на подпятник A и подшипник В (рис. 2.8, а). В точке С действует вертикальная нагрузка Р = 20 кН. Высота стояка АВ равна 2 м, вылет стрелы крана — 4 м. Найти опорные реакции при условии, что кран находится в
равновесии.
Решение. Рассмотрим равновесие крана. На него действует заданная сила






замкнутый силовой треугольник (рис. 2.8, в). Видим, что треугольник сил подобен треугольника АВD (рис. 2.8, б). С подобия треугольников записываем отношение соответствующих сторон:
откуда определяем величины реакции связей 
Задачи 2.1, 2.2 могут быть решены аналитическим способом, с использованием условий равновесия произвольной плоской системы сил (см. раздел 6).
Задача 2.3. Груз Р весом 2 кН содержится в равновесии лебедкой D с помощью каната, перекинутого через блок B (рис 2.9, а). пренебрегая трением на блоке, определить усилия в стержнях AB и CВ, считая, что крепления в точках A, B и С — шарнирные. Углы показано на рис. 2.9, а. Размерами блока и весом стержней пренебречь.
Решение. Объект равновесия выбираем блок B, который рассматриваем как точку. К нему приложена заданная сила тяжести груза 
то есть реакции стержней будут направлены вдоль их осей.
Стержень АВ является растянутый, поэтому его реакция 
точки А, стрижень ВС — сжат, и его реакция 
пренебрегаем, то
На блок В действует система сходящихся сил, расположенных в плоскости рисунка. Для решения задачи используем аналитические условия равновесия. Для этого выберем систему координат с началом в точке В (рис. 2.9, б) и запишем два уравнения равновесия (2.11):
Решим эти уравнения и определим неизвестные величины:
Анализируя полученные результаты, мы видим, что усилия 

Задача 2.4. Найти усилия, возникающие в стержнях АВ, АС и AD (рис. 2.10) под действием
силы 


Решение. Объект равновесия выберем узел А. На него действуют заданные силы 



На узел А действует пространственная система сходящихся сил. Выберем систему координат с началом в точке О и запишем уравнение равновесия (2.10):
Решим полученную систему уравнений и определим неизвестные величины усилий в стержнях:
Полученные результаты свидетельствуют о том, что стержни АВ и АС работают на растяжение, а стержень АD — на сжатие.
Система сходящихся сил и решение задач
Система сходящихся сил — это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух.
Условия равновесия системы совпадающих сил
Совпадающими называются силы, линии действия которых
пересекаются в одной точке.
Если все силы по линиям их действия перенести в эту точку, то получим эквивалентную систему сил, которая приложена к одной точке. Равнодействующая 

Поскольку система смежных сил может быть заменена одной силой (равнодействующей), то необходимым и достаточным условием равновесия тела под действием системы совпадающих сил является равенство нуля этого равнодействующего:
Геометрически это уравнение означает, что в построенном многоугольнике конец последнего вектора совпадает с началом первого, то есть многоугольник представляет
собой замкнутую фигуру.
В случае, когда на тело действуют три уравновешенные совпадающие силы, силовой (векторный) многоугольник сводится к силовому треугольнику. Решение задачи на равновесие в этом случае сводится к нахождению сторон треугольника с помощью тригонометрических формул.
Теорема о трех непараллельных силах. Если тело находится в равновесии под действием трех непараллельных сил, то линии действия этих сил обязательно пересекаются в одной точке и лежат в одной плоскости, то есть силы образуют плоскую систему совпадающих сил.
Теорема о трех силах облегчает решение задачи на равновесие твердого тела в том случае, когда направление одной из сил неизвестно. Найдя точку пересечения линий действий двух сил, направления которых известны, можно определить направление линии действия третьей силы, поскольку она должна проходить через точку приложения этой силы и точку пересечения линий действий первых двух сил.
Геометрический метод решения задач
Непосредственное использование сил многоугольника для решение задач статики сводится к геометрическому построению в масштабе векторного многоугольника с
дальнейшим определением неизвестных элементов с помощью тригонометрических формул. При решении задач на равновесие твердого тела геометрическим методом рекомендуется соблюдать следующий порядок:
1. Выделить объект равновесия;
2. Показать на чертежах точки примера и направления активных сил, действующих на объект равновесия;
3. Выяснить характер связей и возможные направления их реакций;
4. Построить замкнутый силовой многоугольник (построение надо начинать с силы, которая известна как по модулю, так и по направлению);
5. Из силового многоугольника найти неизвестные величины.
Аналитический метод решения задач
Аналитический метод решения задачи рекомендуется использовать в тех случаях, когда требуется определить скорости точек для большого числа положений плоской фигуры.
Проекция силы на ось и на плоскость
Общим способом определения модуля и направления равнодействующей является аналитический, который тоже следует из условия (C2.1) и базируется на аналитическом методе обозначения силы.
Аналитический метод обозначения силы заключается в том, что, выбрав некоторую прямоугольную систему координат 

Алгебраические значения длин направленных отрезков 

проекциями силы на оси 


Если





Модуль и направление силы по известным проекциям на
три взаимно перпендикулярные оси 

При определении проекции силы на ось возможны 4 случаи (рис.C2.2).
1. Вектор силы образует острый угол 

2. Вектор силы образует с положительным направлением оси тупой угол (рис.С2.2, б). В этом случае проекция силы на ось отрицательная и по модулю равна:
3. Вектор силы образует прямой угол с осью 
4. Сила параллельна к координатной оси. В этом случая сила проецируется на ось в натуральную величину со знаком плюс, когда ее направление совпадает с положительным направлением оси (рис.С2.2, г), и со знаком минус в противоположном случае (рис.С2.2, д):
В некоторых случаях для нахождения проекции силы на ось удобнее сначала найти ее проекцию на плоскость, в которой лежит эта ось, а уже затем спроектировать найденную проекцию на нужную ось.
Например, в случае, что изображен на рис. 2.3, сначала лучше спроектировать
силу 





Аналитические условия равновесия системы совпадающих сил
Пусть силы 

Если тело под действием заданной системы сил находится в равновесии, то 

Таким образом, для равновесия пространственной системы совпадающих сил необходимо и достаточно, чтобы сумма проекций этих сил на каждую из трех
координатных осей равнялась нулю.
При решении задачи аналитическим способом до трех первых пунктов, приведенных в разделе С2.2, надо добавить следующие:
4. Выбрать декартовую систему координат
5. Составить уравнение равновесия твердого тела в проекциях на оси координат;
6. Решить полученную систему уравнений равновесия и найти неизвестные величины.
Образец выполнения и решения задач на темы С2
Задача 1
Задано:
Определить: натяжение 

Решение.
Центр шарнира точка В находится в равновесии под действием сил натяжения нитей



(п. С1.4, задача 1).
Таким образом, точка В находится в равновесии под действием трех сил, лежащих в одной плоскости и линии действия которых пересекаются в одной точке.
Величину и направление реакции 

Для решения уравнения (1) построим силовой (векторный) треугольник (рис.2).
Для этого из произвольной точки Р (полюса) отложим вектор 
нам известна. Поскольку векторный треугольник должен быть замкнутым, то с начала этого вектора проведем направление 

Векторы 

Определив углы треугольника, можно записать теорему синусов:
Отсюда получим:
Ответ:
Задача 2
Задано:
Определить: натяжение нити 


Решение. Шарнир D находится в равновесии под действием силы тяжести 



Реакции 

Все силы приложены к одной точке D и для определение неизвестных реакций можно воспользоваться аналитическими условиями равновесия системы совпадающих сил.
С точкой О свяжем пространственную систему координат, направив ось перпендикулярно плоскости АВС, а оси 

Спроектировав все силы на оси выбранной системы координат, достанем:
Из уравнения (1) находим:
Выразим из уравнения (2) натяжение нити и 
Откуда:
Если при решении задачи какая-то из реакций приобретает отрицательное значение, то это означает, что направление этой реакции надо изменить на противоположное. Тогда, действительное направление реакций 

Ответ:
Система сходящихся сил на плоскости
Система сходящихся сил на плоскости — это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух.
Геометрическое условие равновесия системы сходящихся сил
Сходящимися называются силы, линии действия которых пересекаются в одной точке (рис.2.1, а).
Если перенести все силы вдоль линии их действия в эту точку, получим эквивалентную систему сил, приложенных к одной точке.
Равнодействующая 

на прилагаемых силах, то есть равнодействующая 
Поскольку система сходящихся сил может быть заменена одной силой — равнодействующей, то необходимым и достаточным условием равновесия тела под действием системы сходящих сил является равенство нулю этой равнодействующей:
Геометрически это условие состоит в том, чтобы конец последнего вектора совпадал с началом первого в векторном (силовом) многоугольнике, построенном из сил системы, то есть силы должны образовывать замкнутый многоугольник.
Если тело находится в равновесии под действием трех сходящихся сил, то силовой многоугольник сводится к силовому треугольнику. Решения же задачи о равновесии в этом случае требует нахождения неизвестных элементов треугольника с помощью тригонометрических формул или измерений.
При решении задач на равновесие тела под действием трех сил часто приходится пользоваться теоремой о трех силах:
Если тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил обязательно пересекаются в одной точке, то есть силы образуют сходящуюся систему сил.
Теорема о трех непараллельных силах облегчает решение задач на равновесие твердого тела в тех случаях, когда направление одной из трех сил неизвестное. Определив точку пересечения линий действия двух сил, направление которых известно, можно указать направление линии действия третьей силы, поскольку она должна пройти через точку приложения этой силы и точку пересечения линий действия первых двух сил.
Геометрический метод решения задач
Непосредственное использование многоугольника сил при решение задач статики приводит к геометрическим построениям с последующим определением неизвестных элементов с помощью, например, формул тригонометрии.
При решении задач на равновесие твердого тела геометрическим методом рекомендуется придерживаться следующего порядка:
- Выделить объект, который будет рассматриваться в равновесии.
- Установить и показать на схеме активные силы, действующие на тело.
- Выяснить характер связей и установить направления их реакций.
- Построить замкнутый силовой многоугольник (построение надо начинать с сил, известных по модулю и по направлению).
- Из силового многоугольника определить неизвестные силы.
Аналитические условия равновесия системы сходящихся сил
Наиболее общим способом определения модуля и направления равнодействующей является аналитический, который базируется на аналитическом определении силы.
Если выбрать некоторую прямоугольную систему координатных осей 



Алгебраические значения длин направленных отрезков 





Если 



Модуль и направление силы по известным проекциям на взаимно перпендикулярные оси 

При определении проекции силы на ось возможны следующие случаи (рис.2.3):
Рис. 2.3
1. Сила образует острый угол 
2. Сила образует с положительным направлением оси тупой угол (рис.2.3, б). В этом случае ее проекция на координатную ось имеет отрицательный знак и равна
3. Сила образует прямой угол 
4. Сила параллельна координатной оси (рис.2.3, г, д). В этом случае сила проецируется в натуральную величину и проекция положительна, если ее направление совпадает с положительным направлением оси (рис.2.3, г), и отрицательная, если направление силы совпадает с отрицательным направлением оси (рис.2.3, д).
Если силы 

Поскольку модуль равнодействующей определяется по формуле
то тело под действием системы сходящихся сил будет находиться в равновесии, когда 


Таким образом, для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы суммы проекций всех этих сил на каждую из координатных осей равнялись нулю.
При решении задач аналитическим способом нужно выполнить три первых пункта, указанные в параграфе 2.2, а затем следующие:
4. Выбрать декартову систему координат 
5. Составить уравнения равновесия твердого тела в проекциях на эти оси координат.
6. Решить систему составленных уравнений и определить неизвестные величины.
Примеры решения задач на тему: Система сходящихся сил
Задача № 1
Идеальный стержень 



Определить натяжение нити 

Решение. Рассмотрим равновесие узла 









Величину и направление усилия 


Согласно записанному векторному уравнению построим силовой треугольник.
Для этого с произвольной точки 









Найти неизвестные величины можно или померив соответствующие стороны силового треугольника, или, по известным углам треугольника из теоремы синусов:
Откуда:
Ответ:
Задача № 2
Нить с двумя телами на концах 








Определить вес тел 

Решение. Сначала выясним, равновесие какого объекта надо рассмотреть при решении задачи. По условию задачи нужно определить вес тела 







Поскольку прямые 




Таким образом, на объект равновесия, точку 








Составим уравнение равновесия. Для этого, выберем систему координат 

Для проекций на ось 
Знак проекции 





Сумма проекций всех сил на ось 
Проекции сил 



С учетом численных значений тригонометрических функций и величины 
Найдя из первого уравнения:
и подставив во второе, получим:
Ответ:
Задача № 3
Однородный стержень 




Определить величину и направление реакции 
Решение. Задачу решим геометрическим и аналитическим способами, используя теорему о равновесии тела под действием 3-х сил.
Рассмотрим равновесие стержня 



Направление натяжения троса 






Найдем точку пересечения линий действия силы тяжести 



На рис.2.7 









Соответственно, отрезок 

Таким образом
После определения направления реакции 
Запишем геометрическое условие равновесия системы сил, действующих на стержень 
Согласно записанному векторному уравнению построим замкнутый силовой треугольник (рис.2.8).
Для этого из произвольной точки 






Проведенные прямые пересекаются в точке 



Из силового треугольника находим:
Решим задачу аналитическим способом. Для этого выберем прямоугольную систему координат 
Из первого уравнения выразим 
Отсюда получим:
Ответ:
Балка 



Определить реакции опор 

Решение. Рассмотрим равновесие балки 







Для определения направления реакции 






С рис.2.10 видно, что 

Теперь перейдем к определению величин реакций опор.
Составим уравнение равновесия сил в проекциях на оси выбранной системы координат 
С учетом числовых значений:
В результате получим:
Ответ:
Перейдем к определению реакций опор балки 
В этом случае, реакция 






Определим угол 


Составим уравнение равновесия для системы сил, действующей на балку:
С учетом числовых данных:
Добавив уравнение получим:
Подставив значение 

Ответ:
Услуги по теоретической механике:
- Заказать теоретическую механику
- Помощь по теоретической механике
- Заказать контрольную работу по теоретической механике
Учебные лекции:
- Статика
- Момент силы
- Пара сил
- Произвольная система сил
- Плоская произвольная система сил
- Трение
- Расчет ферм
- Расчет усилий в стержнях фермы
- Пространственная система сил
- Произвольная пространственная система сил
- Плоская система сходящихся сил
- Пространственная система сходящихся сил
- Равновесие тела под действием пространственной системы сил
- Естественный способ задания движения точки
- Центр параллельных сил
- Параллельные силы
- Система произвольно расположенных сил
- Сосредоточенные силы и распределенные нагрузки
- Кинематика
- Кинематика твердого тела
- Движения твердого тела
- Динамика материальной точки
- Динамика механической системы
- Динамика плоского движения твердого тела
- Динамика относительного движения материальной точки
- Динамика твердого тела
- Кинематика простейших движений твердого тела
- Общее уравнение динамики
- Работа и мощность силы
- Обратная задача динамики
- Поступательное и вращательное движение твердого тела
- Плоскопараллельное (плоское) движение твёрдого тела
- Сферическое движение твёрдого тела
- Движение свободного твердого тела
- Сложное движение твердого тела
- Сложное движение точки
- Плоское движение тела
- Статика твердого тела
- Равновесие составной конструкции
- Равновесие с учетом сил трения
- Центр масс
- Колебания материальной точки
- Относительное движение материальной точки
- Статические инварианты
- Дифференциальные уравнения движения точки под действием центральной силы и их анализ
- Динамика системы материальных точек
- Общие теоремы динамики
- Теорема об изменении кинетической энергии
- Теорема о конечном перемещении плоской фигуры
- Потенциальное силовое поле
- Метод кинетостатики
- Вращения твердого тела вокруг неподвижной точки
4. Определение равнодействующей аналитическим способом
Проекция сил на ось определяется отрезком оси, отсекаемой перпендикулярами, опущенными на ось из начала и конца вектора.
Величина проекции силы на ось равна произведению модуля силы на косинус угла между вектором силы и положительным направлением сил. Проекция имеет знак: положительный при одинаковом направлении вектора силы и оси и отрицательный при направлении в сторону отрицательной полуоси.
Проекция силы на две взаимно перпендикулярные оси.
Fx = Fcosα > 0
Fy = Fcosβ = Fsinα > 0
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определим равнодействующую аналитическим способом. Выберем систему координат, определим проекции всех заданных векторов на эти оси. Складываем проекции всех векторов на оси х и у.
FΣx= F1x + F2x + F3x + F4x;
FΣy= F1y + F2y + F3y + F4y.
Модуль (величину) равнодействующей можно определить по известным проекциям:
Направление вектора равнодействующей можно определить по величинам и знакам косинусов углов, образуемых равнодействующими с осями координат:
Плоская система сходящихся сил находится в равновесии, если алгебраическая сумма проекций всех сил системы на любую ось равна нулю.
Система уравнений равновесия плоской системы сходящихся сил:
При решении задач координатные оси выбирают так, чтобы решение было наиболее простым. При этом желательно, чтобы хотя бы одна неизвестная сила совпадала с осью координат.
Равнодействующая
системы сходящихся сил —
сила, оказывающая на твёрдое тело такое же механическое действие, как и данная система приложенных ктелу сил. В простейших случаях (например, для сил, приложенных в одной точке или расположенных в однойплоскости) равнодействующую можно найти, последовательно применяя закон параллелограмма сил.Равнодействующую имеет не всякая система сил, например, пара сил или две силы, не лежащие в одной
плоскости, равнодействующей не имеют.
Определение
равнодействующей системы сил аналитическим
способом
Величина
равнодействующей равна векторной
(геометрической) сумме векторов системы
сил. Определяем равнодействующую
геометрическим способом. Выберем
систему координат, определим проекции
всех заданных векторов на эти оси (рис.
3.4а). Складываем проекции всех векторов
на оси х и у (рис. 3.46).
Рис.3.4
FΣч = Flx + F2x + F3x
+ F4x; FΣн = Fly + F2y + F3y + F4y;
;
.
Модуль (величину)
равнодействующей можно найти по известным
проекциям:
.
Направление вектора
равнодействующей можно определить по
величинам и знакам косинусов углов,
образуемых равнодействующей с осями
координат (рис. 3.5). Растяжение сжатие
Продольные силы и определение напряжений.
-
;
Рис.3.5
Условия равновесия
плоской системы сходящихся сил в
аналитической форме. Исходя из того,
что равнодействующая равна нулю, получим:
FΣ = 0.
Условия равновесия
в аналитической форме можно сформулировать
следующим образом:
Плоская
система сходящихся сил находится в
равновесии, если алгебраическая
сумма проекций всех сил системы на любую
ось равна нулю. Система уравнений
равновесия плоской сходящейся системы
сил:.
7. Условие равновесия системы сходящихся сил в аналитической и геометрической формах
Равновесие
системы сходящихся сил.
Из законов механики
следует, что твердое тело, на которое
действуют взаимно уравновешенные
внешние силы, может не только находиться
в покое, но и совершать движение, которое
мы назовем движением «по инерции».
Таким движением будет, например,
поступательное равномерное и прямолинейное
движение тела.
Отсюда получаем
два важных вывода:
1) Условиям равновесия
статики удовлетворяют силы, действующие
как на покоящееся тело, так и на тело,
движущееся «по инерции».
2) Уравновешенность
сил, приложенных к свободному твердому
телу, является необходимым, но не
достаточным условием равновесия (покоя)
самого тела; в покое тело будет при этом
находиться лишь в том случае, если оно
было в покое и до момента приложения к
нему уравновешенных сил.
Для равновесия
приложенной к твердому телу системы
сходящихся сил необходимо и достаточно,
чтобы равнодействующая этих сил была
равна нулю. Условия, которым при этом
должны удовлетворять сами силы, можно
выразить в геометрической или
аналитической форме.
1. Геометрическое
условие равновесия. Так
как равнодействующая сходящихся
сил определяется как замыкающая сторона
силового многоугольника, построенного
из этих сил, то может
обратиться в нуль тогда и только тогда,
когда конец последней силы в многоугольнике
совпадает с началом первой, т.
е. когда многоугольник замкнется.
Следовательно,
для равновесия системы, сходящихся сил
необходимо и достаточно, чтобы силовой
многоугольник, построенный из этих
сил, был замкнут.
2. Аналитические
условия равновесия. Аналитически
равнодействующая системы сходящихся
сил определяется формулой
.
Так
как под корнем стоит сумма положительных
слагаемых, то R обратится
в нуль только тогда, когда одновременно ,
т. е. когда действующие на тело силы
будут удовлетворять равенствам:
Равенства
выражают условия
равновесия в аналитической форме: для
равновесия пространственной системы
сходящихся сил необходимо и достаточно,
чтобы суммы проекций этих сил на каждую
из трех координатных осей были равны
нулю.
Если все действующие
на тело сходящиеся силы лежат в одной
плоскости, то они образуют плоскую
систему сходящихся сил. В случае плоской
системы сходящихся сил получим, очевидно,
только два условия равновесия
Равенства выражают
также необходимые условия (или уравнения)
равновесия свободного твердого тела,
находящегося под действием сходящихся
сил.
Теорема
о трех силах. Уравновешенная
плоская система трех непараллельных
сил является сходящейся.
Условие
«плоская» в формулировке теоремы не
является необходимым можно
убедиться, что любая уравновешенная
система трех сил всегда будет плоской.
Это следует из условий равновесия
произвольной пространственной системы
сил, которые будут рассмотрены далее.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Системой сходящихся сил называют группу двух, трех и более сил, приложенных к телу, линии действия которых пересекаются в некоторой точке.
Пусть, к абсолютно твердому телу приложена система N сил (F1, F2, … FN), расположенных в пространстве так, что их линии действия пересекаются в одной точке О (рисунок 1).
Такую систему сил называют системой сходящихся сил. Упростим систему сходящихся сил, т.е. решим первую задачу статики.
Приведение к равнодействующей
Докажем, что данная система сил эквивалентна одной силе, т.е. приводится к равнодействующей силе.
Рисунок 1
В самом деле, так как сила есть вектор скользящий, то все силы данной системы можно перенести вдоль линий их действия в точку О.
Далее, по четвертой аксиоме, силы F1 и F2 можно заменить их равнодействующей R1,2 (рисунок 1), которая определяется диагональю параллелограмма, построенного на этих силах как на сторонах, и направленной по этой диагонали, т.е.
(F1, F2) ~ R1,2,
где R1,2=F1+F2.
Далее можно записать аналогичные соотношения для полученной равнодействующей силы R*1,2 и силы F3, тогда
(R1,2 F3) ~ (F1, F2, F3) ~ R1,2,3,
где R1,2,3=F1+F2+F3 и т.д.
Для системы N сил окончательно будем иметь
(F1 F2 … FN) ~ R*,
R*= F1 + F2 + … + FN= ∑Fi . (1)
На рисунке 2, a показано построение равнодействующей указанным способом на примере системы, состоящей из четырех сил. Однако процесс определения равнодействующей удобнее вести иным путем, с помощью построения так называемого силового многоугольника.
Силовой многоугольник
Из конца вектора силы F1 (точки В) проводим вектор ВС, геометрически равный силе F2. Из конца этого вектора (точки С) проводим вектор СD равный силе F3. Из конца этого вектора (точки D) проводим вектор DE, равный силе F4.
Рисунок 2
Полученный многоугольник ABCDE называется силовым многоугольником. Процесс его построения хорошо виден на рисунке 2, б. Стороны силового многоугольника называются составляющими силами.
Вектор АЕ, соединяющий начало А первой силы с концом Е последней силы и направленный навстречу составляющим силам, называется замыкающей стороной силового многоугольника.
Следовательно, равнодействующая системы сходящихся сил изображается в выбранном масштабе замыкающей силового многоугольника, построенного на составляющих силах.
Нахождение равнодействующей системы сходящихся сил по правилу силового многоугольника называется векторным или геометрическим сложением сил.
Таким образом, мы доказали, что система сходящихся сил в общем случае эквивалентна одной силе, т.е. равнодействующей, которая приложена в точке пересечения линий действия всех сил и равна их геометрической сумме.
Вычисление равнодействующей
Для аналитического определения равнодействующей найдем ее проекции Rx, Ry, Rz на оси декартовой системы координат. Имеем
Rx = ∑ Fkx ,
Ry = ∑ Fky ,
Rz = ∑ Fkz . (2)
Тогда величина равнодействующей определится следующей формулой:
или
Для определения направления равнодействующей R* воспользуемся обычными выражениями для направляющих косинусов:
cos α = Rx/R, cos β = Ry/R, cos γ = Rz/R. (5)
Здесь α , β , γ — углы между положительным направлением осей координат и равнодействующей.
Равенства (2)-(5) позволяют определить модуль и направление равнодействующей по заданным проекциям составляющих сил.
В случае плоской системы сходящихся сил оси координат можно взять в плоскости действия сил и тогда формулы (2)-(5) упрощаются.
Примеры решения задач >
Условия равновесия системы сходящихся сил >
I. Механика
Тестирование онлайн
Определение
Это векторная сумма всех сил, действующих на тело.
Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности
Взаимосвязь со вторым законом Ньютона
Вспомним закон Ньютона:
Равнодействующая сила может быть равна нулю в том случае, когда одна сила компенсируется другой, такой же силой, но противоположной по направлению. В этом случае тело находится в покое или движется равномерно.
Сила Архимеда уравновешивается силой тяжести, тело равномерно перемещается в жидкости вниз. |
Сила тяжести уравновешивается силой упругости. Книга покоится |
Если равнодействующая сила НЕ равна нулю, то тело движется равноускоренно. Собственно именно эта сила является причиной неравномерного движения. Направление равнодействующей силы всегда совпадает по направлению с вектором ускорения.
Когда требуется изобразить силы, действующие на тело, при этом тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая.
Сила реакции опоры (сила, направленная вверх) длиннее силы тяжести, так как шарик движется по окружности, центростремительное ускорение направлено вверх |
Сила реакции опоры (сила, направленная вверх) короче силы тяжести, так как шарик движется по окружности, центростремительное ускорение направлено вниз. Вектор силы тяжести, направленный вниз, длиннее. |
Нахождение равнодействующей силы
Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы, действующие на тело; затем изобразить координатные оси, выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; записать уравнения.
Кратко: 1) обозначить силы; 2) выбрать оси, их направления; 3) найти проекции сил на оси; 4) записать уравнения.
Как записать уравнения? Если в некотором направлении тело двигается равномерно или покоится, то алгебраическая сумма (с учетом знаков) проекций сил равна нулю. Если в некотором направлении тело движется равноускоренно, то алгебраическая сумма проекций сил равна произведению массы на ускорение, согласно второму закону Ньютона.
Примеры
На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.
Обозначим силы, выберем координатные оси
Найдем проекции
Записываем уравнения
Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.
Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.
Главное запомнить
1) Если тело покоится или движется равномерно, то равнодействующая сила равна нулю и ускорение равно нулю;
2) Если тело движется равноускоренно, значит равнодействующая сила не нулевая;
3) Направление вектора равнодействующей силы всегда совпадает с направлением ускорения;
4) Уметь записывать уравнения проекций действующих на тело сил













































































































































