Наименьшее решение неравенства
Задания, в которых требуется найти наименьшее решение неравенства, а также наименьшее целое или наименьшее натуральное решение неравенства, в курсе алгебры впервые встречаются при изучении темы «Линейные неравенства». Рассмотрим на примерах решение такого рода задач.
1) Найти наименьшее решение неравенства
Умножим обе части неравенства на наименьший общий знаменатель дробей, равный 12:
При умножении на положительное число знак неравенства не изменяется:
Раскрываем скобки:
Упрощаем:
Неизвестные — в одну сторону, известные — в другую с противоположным знаком:
Обе части неравенства делим на число, стоящее перед иксом:
При делении на положительное число знак неравенства не изменяется:
Наименьшее значение неравенства равно -3,4 (неравенство нестрогое, поэтому -3,4 входит в множество решений). Для большей наглядности решение неравенства можно изобразить на числовой прямой:
Ответ: -3,4.
2) Назвать наименьшее решение неравенства:
Первые скобки раскроем по формуле квадрата суммы. Перед произведением двух скобок стоит знак «минус», поэтому, чтобы не допустить ошибки в знаках, лучше сначала выполнить умножение, а уже потом раскрыть скобки, изменив знак каждого слагаемого на противоположный:
Неизвестные — в одну сторону, известные — в другую с противоположным знаком:
Обе части неравенства делим на число, стоящее перед иксом
При делении на положительное число знак неравенства не изменяется:
Решением данного неравенства является любое число, большее 3:
Но наименьшего решения неравенство не имеет — 3 не входит в решение, так как неравенство строгое, а любое другое число, большее 3, наименьшим решением не является.
Ответ: неравенство наименьшего решения не имеет.
3) Найти наименьшее целое решение неравенства:
Обе части неравенства умножаем на наименьший общий знаменатель 30:
Раскрываем скобки и упрощаем:
Неизвестные — в одну сторону, известные — в другую с противоположными знаками:
Обе части неравенства делим на число, стоящее перед иксом. Так как 21 — положительное число, знак неравенства не изменяется:
Наименьшим целым решением данного неравенства является x=2 (так как неравенство нестрогое, 2 входит в множество решений).
Ответ: 2.
4) Найти наименьшее натуральное решение неравенства:
Упрощаем:
Неизвестные — в одну сторону, известные — в другую с противоположными знаками:
Обе части неравенства делим на число, стоящее перед иксом:
При делении на отрицательное число знак неравенства изменяется на противоположный:
Наименьшим натуральным решением этого неравенства является x=1.
Ответ: 1.
Как найти наименьшее натуральное решение неравенства?
На этой странице находится вопрос Как найти наименьшее натуральное решение неравенства?, относящийся к категории
Математика. По уровню сложности данный вопрос соответствует знаниям
учащихся 5 — 9 классов. Здесь вы найдете правильный ответ, сможете
обсудить и сверить свой вариант ответа с мнениями пользователями сайта. С
помощью автоматического поиска на этой же странице можно найти похожие
вопросы и ответы на них в категории Математика. Если ответы вызывают
сомнение, сформулируйте вопрос иначе. Для этого нажмите кнопку вверху.
- Учебники
- 5 класс
- Математика 👍
- Мерзляк
- №1136
Найдите наименьшее натуральное значение x, при котором будет верным неравенство:
1) 4x > 14;
2)
7
x
>
40
7
9
.
reshalka.com
Математика 5 класс Мерзляк. Номер №1136
Решение 1
4x > 14
14 : 4 = 3,5, значит наименьшее натуральное значение x, при котором будет верным неравенство равно 4.
Решение 2
7
x
>
40
7
9
40 : 7 ≈ 5,7, значит наименьшее натуральное значение x, при котором будет верным неравенство равно 6.
- Предыдущее
- Следующее
Нашли ошибку?
Если Вы нашли ошибку, неточность или просто не согласны с ответом, пожалуйста сообщите нам об этом
При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы.
Напомним свойства числовых неравенств.
1. Если а > b , то b < а; наоборот, если а < b, то b > а.
2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
3. Если а > b, то а + c > b+ c (и а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.
Замечание.
Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
6. Если а > b и m – положительное число, то m а > m b и 
Если же а > b и n – отрицательное число, то n а < n b и 
7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.
8. Если а > b, где а, b > 0, то 

Виды неравенств и способы их решения
1. Линейные неравенства и системы неравенств
Пример 1. Решить неравенство 
Решение:

Ответ: х < – 2.
Пример 2. Решить систему неравенств 
Решение:

Ответ: (– 2; 0].
Пример 3. Найти наименьшее целое решение системы неравенств
Решение:
Ответ:
2. Квадратные неравенства
Пример 4. Решить неравенство х2 > 4.
Решение:
х2 > 4 (х – 2)∙(х + 2) > 0.
Решаем методом интервалов.
Ответ:
3. Неравенства высших степеней
Пример 5. Решить неравенство (х + 3)∙(х2 – 2х + 1) > 0.
Решение:

Ответ: 
Пример 6. Найти середину отрезка, который является решением неравенства 4х2 – 24х + 24 < 4у2, где 
Решение:
Область определения неравенства: 
С учётом области определения 4х2 – 24х + 24 < 4у2 будет равносильно неравенству
Решаем методом интервалов.
Решение неравенства: 
Середина отрезка: 
Ответ: 
4. Рациональные неравенства
Пример 7. Найти все целые решения, удовлетворяющие неравенству 
Решение:

Методом интервалов:
Решение неравенства: 
Целые числа, принадлежащие полученным полуинтервалам: – 6; – 5; – 4; 1.
Ответ: – 6; – 5; – 4; 1.
5. Иррациональные неравенства
Помните! Начинать решение иррациональных неравенств нужно с нахождения области определения.
Пример 8. Решить неравенство 
Решение:
Область определения: 
Так как арифметический корень не может быть отрицательным числом, то 
Ответ: 
Пример 9. Найти все целые решения неравенства 
Решение:
Область определения 



Целыми числами из этого отрезка будут 2; 3; 4.
Ответ: 2; 3; 4.
Пример 10. Решить неравенство 
Решение:
Область определения: 
Преобразуем неравенство: 


Ответ: 
Пример 11. Решить неравенство 
Решение:
Раскрываем знак модуля.
Объединим решения систем 1) и 2): 
Ответ: 
6. Показательные, логарифмические неравенства и системы неравенств
Пример 12. Решите неравенство 
Решение:

Ответ: 
Пример 13. Решите неравенство 
Решение:

Ответ: 
Пример 14. Решите неравенство 
Решение:
Ответ: 
Пример 15. Решите неравенство 
Решение:
Ответ: 
Задания для самостоятельного решения
Базовый уровень
Целые неравенства и системы неравенств
1) Решите неравенство 2х – 5 ≤ 3 + х.
2) Решите неравенство – 5х > 0,25.
3) Решите неравенство 
4) Решите неравенство 2 – 5х ≥ – 3х.
5) Решите неравенство х + 2 < 5x – 2(x – 3).
6) Решите неравенство
.
7) Решите неравенство (х – 3) (х + 2) > 0.


9) Найдите целочисленные решения системы неравенств 
10) Решить систему неравенств 
11) Решить систему неравенств 
12) Найти наименьшее целое решение неравенства 
13) Решите неравенство 
14) Решите неравенство 
15) Решите неравенство 
16) Решите неравенство 
17) Найдите решение неравенства 

18) Решить систему неравенств 
19) Найти все целые решения системы 
Рациональные неравенства и системы неравенств
20) Решите неравенство 
21) Решите неравенство 
22) Определите число целых решений неравенства 
23) Определите число целых решений неравенства 
24) Решите неравенство 
25) Решите неравенство 2x<16 .
26) Решите неравенство 
27) Решите неравенство 
28) Решите неравенство 
29) Найдите сумму целых решений неравенства 
30) Решите неравенство 
31) Решите неравенство 
Иррациональные неравенства
32) Решите неравенство 
33) Решите неравенство
34) Решите неравенство 
Показательные, логарифмические неравенства и системы неравенств
35) Решите неравенство 
36) Решите неравенство 
37) Решите неравенство 
38) Решите неравенство 
39) Решите неравенство 
40) Решите неравенство 49∙7х < 73х + 3.
41) Найдите все целые решения неравенства 
42) Решите неравенство 
43) Решите неравенство 
44) Решите неравенство 7x+1-7x<42 .
45) Решите неравенство log3(2x2+x-1)>log32 .
46) Решите неравенство log0,5(2x+3)>0 .
47) Решите неравенство 
48) Решите неравенство 
49) Решите неравенство 
50) Решите неравенство logx+112>logx+12 .
51) Решите неравенство logx9<2.
52) Решите неравенство 
Повышенный уровень
53) Решите неравенство |x-3|>2x.
54) Решите неравенство 2│х + 1| > х + 4.
55) Найдите наибольшее целое решение неравенства 
56) Решить систему неравенств 
57) Решить систему неравенств 
58) Решите неравенство 
59) Решите неравенство 25•2x-10x+5x>25 .
60) Решите неравенство 
Ответы
1) х ≤ 8; 2) х < – 0,05; 3) х ≥ 5; 4) х ≤ 1; 5) х > –2; 6) х < 11; 7) 





20) (0; 2); 21) (0; 1,5); 22) 3; 23) 6; 24) (–1; 1,5); 25) х < 4; 26)
; 29) – 10; 30) (0; + ∞); 31)









.
Ответ:
7.
Пошаговое объяснение:
Решим данное неравенство
Определим знак функции на каждом из промежутков и получим
при x ∈ (-∞; -√38) ∪(√38; +∞)
Натуральные решения в промежутке (√38; +∞) .
Так 36 < 38 < 49, то
Тогда 7 — наименьшее натуральное число, которое является решением данного неравенства.



















