Содержание:
Логарифмической функцией называется функция, задаваемая формулой:
где
Теорема 7.
Областью определения логарифмической функции является множество 

Доказательство:
Пусть 


Любое действительное число 




Теорема 8.
Логарифмическая функция на множестве всех положительных действительных чисел является возрастающей при 

Доказательство:
Пусть 





Пусть






Поскольку 
Из доказанной теоремы непосредственно получаем следующие утверждения.
Следствие 2.
Значения логарифмической функции с основанием, большим единицы, на промежутке (0; 1) отрицательны, а на промежутке 
Следствие 3.
Значения логарифмической функции с положительным и меньшим единицы основанием на промежутке (0; 1) положительны, а на промежутке 
Построим график функции 
Используя построенные точки и установленные свойства логарифмической функции, получим график функции 
Для построения графика функции 



Теорема 9.
График функции 


Доказательство:
Пусть точка 







Так же доказывается, что если точка 



Для завершения доказательства остается заметить, что точки 

Теорема 10.
Если положительные основания 







Доказательство:
Сравним значения выражений 

Пусть 

Если 


Если 


Пусть теперь 

Если 




В соответствии с теоремой 10 с увеличением основания 


График любой логарифмической функции 


График любой логарифмической функции 


Логарифм числа:
Определение:
Логарифмом положительного числа 



Обозначение:
Десятичный логарифм — это логарифм по основанию 10. Обозначение:
Примеры:
Определение:
Натуральный логарифм — это логарифм по основанию 


Пример:
Основное логарифмическое тождество:
Примеры:
Свойства логарифмов и формулы логарифмирования:
Логарифм единицы no любому основанию равен нулю.
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
Логарифм степени положительного числа равен произведению показа теля степени на логарифм основания этой степени.
Формула перехода к логарифмам с другим основанием:
Следствия:
Объяснение и обоснование:
Логарифм числа
Если рассмотреть равенство 
Первые две операции, представленные в этой таблице (возведение в степень и извлечение корня 
В общем виде операция логарифмирования позволяет из равенства 

Таким образом, логарифмом положительного числа 


Например:
так как
поскольку
потому что
Отметим, что при положительных 





И так, каждое свое значение 





При 



Отметим, что логарифм по основанию 10 называется десятичным логарифмом и обозначается 
В недалеком прошлом десятичным логарифмам отдавали предпочтение и составляли очень подробные таблицы их значений, которые использовались в различных вычислениях. В эпоху всеобщей компьютеризации десятичные логарифмы утратили свою ведущую роль. В современной науке и технике широко используются логарифмы, основанием которых является особенное число 



Логарифм по основанию 

Основное логарифмическое тождество
По определению логарифма, если 

Например:
Свойства логарифмов и формулы логарифмирования
Во всех приведенных ниже формулах
1) Из определения логарифма получаем, что 

2) Поскольку 
Чтобы получить формулу логарифма произведения 

Перемножив почленно два последних равенства, имеем 
Таким образом,
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
4) Аналогично, чтобы получить формулу логарифма частного — 


Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
5) Чтобы получить формулу логарифма степени 





Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.
Учитывая, что при


(запоминать эту формулу не обязательно, при необходимости можно записывать корень из положительного числа как соответствующую степень).
Замечание. Иногда приходится находить логарифм произведения 

Тогда 









Аналогично можно обобщить и формулы (3) и (4):
при 
при 
4. Формула перехода к логарифмам с другим основанием Пусть







Таким образом, логарифм положительного числа 





С помощью последней формулы можно получить следующие следствия. 1) 


2) Аналогично, учитывая формулу перехода от одного основания логарифма к другому и формулу логарифма степени, получаем (при 
Записав полученную формулу справа налево, имеем

Примеры решения задач:
Пример №1
Вычислите:
Решение:
1)
2) 
Комментарий:
Исходя из определения логарифма, необходимо подобрать такой показатель степени, чтобы при возведении основания логарифма в эту степень получить число, стоящее под знаком логарифма.
Пример №2
Запишите решение простейшего показательного уравнения:
Решение:
По определению логарифма:
1)
2)
3)
Комментарий:
Для любых положительных чисел 







Пример №3
Выразите логарифм по основанию 3 выражения 



Решение:
Комментарий:
Сначала запишем выражения, стоящие в числителе и знаменателе данного выражения, как степени чисел и букв. Далее учтем, что логарифм частного 

Пример №4
Известно, что 

Решение:
Комментарий:
Сначала представим число 700 как произведение степеней данных чисел 5 и 7 и основания логарифма 2, а далее используем свойства логарифмов и подставим в полученное выражение значения 
Пример №5
Прологарифмируйте по основанию 10 выражение
Решение:
Комментарий:
Поскольку логарифмы существуют только для положительных чисел, то мы можем прологарифмировать данное выражение только в случае, когда


Иногда приходится искать выражение, зная его логарифм. Такую операцию называют потенцированием.
Пример №6
Найдите 
Решение:
Комментарий:
Пользуясь формулами логарифмирования справа налево, запишем правые части данных равенств в виде логарифма какого-либо выражения. Из полученного равенства 


Пример №7
Вычислите значение выражения
Решение:
Поскольку
Кроме того
Тогда
Итак,
Комментарий:
Попытаемся привести показатель степени данного выражения к виду 

Логарифмическая функция
Определение:
Логарифмической функцией называется функция вида
1. График логарифмической функции
Функции 
2. Свойства логарифмической функции
1. Область определения: 


С осью 
5. Промежутки возрастания и убывания:




6. Промежутки знакопостоянства:
7. Наибольшего и наименьшего значений функция не имеет.
8.
Объяснение и обоснование:
Понятие логарифмической функции
Логарифмической функцией называется функция вида 
Действительно, показательная функция 














Тогда из уравнения 




Как известно, графики взаимно обратных функций симметричны относительно прямой 






Свойства логарифмической функции
Свойства логарифмической функции и другие свойства прочитаем из полученного графика функции 
Поскольку область определения прямой функции является областью значений обратной, а область значений прямой функции — областью определения обратной, то, зная эти характеристики для функции 
Функция:
1)
Область определения :
1)
Область значений:
1)
Обоснуем это, опираясь на свойства функции
Например, при 









Аналогично можно обосновать, что при 







Значение функции:
1) 
Значение аргумента
1)
Значение аргумента
1)
Примеры решения задач:
Пример №8
Найдите область определения функции:
Решение:
1)Область определения функции 











Комментарий:
Поскольку выражение, стоящее под знаком логарифма, должно быть положительным, то для нахождения области определения данной функции необходимо найти те значения аргумента х, при которых выражение, стоящее под знаком логарифма, будет положительным.
Пример №9
Изобразите схематически график функции:
Комментарий:
Область определения функции 








Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №10
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
Составим план последовательного построения графика данной функции с помощью геометрических преобразований. 1. Можно построить график функции у








Пример №11
Сравните положительные числа 
Решение:
1) Поскольку функция 






Комментарий:
В каждом задании данные выражения — это значения логарифмической функции 





Пример №12
Сравните с единицей положительное число 
Решение:
Поскольку 



Комментарий:
Числа


Решение логарифмических уравнений
1. Основные определения и соотношения
Определение:
Логарифмом положительного числа 


График функции 
2. Решение простейших логарифмических уравнений
Ориентир
Если 

(используем определение логарифма)
Пример:
Ответ: 10
3. Использование уравнений-следствий
Ориентир:
Если из предположения, что первое равенство верно, следует, что каж дое следующее верно, то гарантируем, что получаются уравнения- следствия. При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения.
Пример:
По определению логарифма получаем
Проверка, 
Ответ: 2
4. Равносильные преобразования логарифмических уравнений
Замена переменных
Ориентир:
Если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то соответствующее выражение с переменной удобно обозначить одной буквой (новой переменной).
Пример:
Ответ: 0,1; 1000.
Уравнение вида
Ориентир:
(учитываем ОДЗ и приравниваем выражения, стоящие под знаками логарифмов)
Пример:
На этой ОДЗ данное уравнение равносильно уравнениям:


Равносильные преобразования уравнений в других случаях
Ориентир:
- 1.
данного уравнения (и избегаем преобразований, приводящих к сужению ОДЗ)
- 2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Пример:
На этой ОДЗ данное уравнение равносильно уравнениям:


Объяснение и обоснование:
Решение простейших логарифмических уравнений
Простейшим логарифмическим уравнением обычно считают уравнение
Логарифмическая функция возрастает (или убывает) на всей своей области определения, то есть при 

Если рассмотреть уравнение 


Следовательно, уравнения (2) и (3) равносильны. Таким образом, мы обосновали, что для равносильного преобразования простейшего логарифмического уравнения. (1) или уравнения (2) (которое мы также будем относить к простейшим при условии, что основание 

Напомним, что все равносильные преобразования уравнения выполняются на его области допустимых значений (ОДЗ). Для уравнения (2) ОДЗ задается условием 





Использование уравнений-следствий при решении логарифмических уравнений
При решении уравнения главное — не потерять его корни, и поэтому важно следить за тем, чтобы каждый корень первого уравнения оставался корнем следующего уравнения — в этом случае получаем уравнения-следствия. Напомним, что каждый корень данного уравнения обращает его в верное числовое равенство. Используя это определение, можно обосновать, что в случае, когда преобразования уравнений проводятся так: если из предположения, что первое равенство верно, следует, что каждое следующее верно, то мы получаем уравнения-следствия (поскольку каждый корень первого уравнения будет и корнем следующего уравнения). Хотя при использовании уравнений-следствий и не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составляющей решения при использовании уравнений-следствий.
Пример решения логарифмического уравнения с помощью уравнений- следствий и оформление такого решения приведены в п. 3.
Равносильные преобразования логарифмических уравнений
Одним из часто используемых способов равносильных преобразований уравнений является замена переменной.
Напомним общий ориентир, которого мы придерживались при решении уравнений из других разделов: если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то соответствующее выражение с переменной удобно обозначить одной буквой ( новой переменной).
Например, в уравнение 






Принимая во внимание то, что замена переменной (вместе с обратной заменой) является равносильным преобразованием уравнения на любом множестве, для выполнения замены не обязательно находить ОДЗ данного уравнения. После выполнения обратной замены мы получили простейшие логарифмические уравнения, ОДЗ которых (как было показано выше) учитываются автоматически и могут также не записываться. Таким образом, в приведенном решении ОДЗ данного уравнения учтена автоматически, и поэтому в явном виде ОДЗ можно не записывать в решение. Именно так и оформлено решение этого уравнения в п. 4.
Рассмотрим также равносильные преобразования уравнения вида
Как уже отмечалось, все равносильные преобразования уравнения выполняются на его области допустимых значений. Для уравнения (4) ОДЗ задается системой неравенств 




Полученный результат символично зафиксирован в п. 4, а коротко его можно сформулировать так:
- чтобы решить уравнение вида
с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов.
Пример использования этого ориентира приведен в табл. 23.
Замечание 1.
Полученную систему (5)-(7) можно несколько упростить. Если в этой системе выполняется равенство (5), то значения 


Но учитывая, что ограничения ОДЗ этого уравнения:
мы не решали, а только проверяли, удовлетворяют ли найденные корни этим ограничениям, приведенное упрощение не дает существенного выигрыша при решении.
Замечание 2.
Как было обосновано выше, если выполняется равенство (4), то обязательно выполняется и равенство (5). Таким образом, уравнение (5) является следствием уравнения (4). Поэтому для нахождения корней уравнения (4): 

Выполняя равносильные преобразования логарифмических уравнений в более сложных случаях, можно придерживаться следующего ориентира (он следует из определения равносильных уравнений и обоснован в курсе 10 класса):
- 1) Учитываем ОДЗ данного уравнения,
- 2) Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Например, решим уравнение
с помощью равносильных преобразований. Для этого достаточно учесть ОДЗ уравнения 
Применим этот план к решению уравнения (8).
Чтобы привести это уравнение к простейшему, перенесем все члены уравнения с логарифмами влево. Получим равносильное уравнение
(Равносильность уравнений (8) и (9) следует из известной теоремы: если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное данному на любом множестве. Равносильность этих уравнений следует также из того, что мы можем не только перейти от равенства (8) к равенству (9), но и выполнить обратное преобразование, пользуясь свойствами числовых равенств.) Учитывая, что сумма логарифмов положительных (на ОДЗ) чисел равна логарифму произведения, получаем уравнение
На ОДЗ данного уравнения можно выполнить и обратное преобразование: поскольку 
Выполняя равносильные преобразования полученного уравнения, имеем:
Поскольку все равносильные преобразования выполнялись на ОДЗ данного уравнения, учтем ее, подставляя полученные корни в ограничения ОДЗ: 

Замечание:
Рассмотренное уравнение можно было решить и с использованием уравнений-следствий, не учитывая явно ОДЗ, но проверив полученные решения подстановкой их в исходное уравнение. Поэтому каждый имеет право выбирать способ решения: использовать уравнения- следствия или равносильные преобразования данного уравнения. Однако для многих уравнений проверку полученных корней выполнить достаточно непросто, а для неравенств вообще нельзя использовать следствия.
Это обусловлено тем, что не удается проверить все решения — их количество у неравенств, как правило, бесконечно. Таким образом, для неравенств приходится выполнять только равносильные преобразования (по ориентирам, аналогичным приведенным выше).
Пример №13
Решите уравнение
Решение:
Проверка.

Ответ: 14
Комментарий:
Решим данное уравнение с помощью уравнений-следствий. При использовании уравнений-следствий главное — гарантировать, что в случае, когда первое равенство верно, то и все последующие также будут верны. Чтобы избавиться от дробного коэффициента, умножим обе части уравнения (1) на 2 (если равенство (1) верно, то и равенство (2) верно). Если равенства (1) и (2) верны (при значениях 




Учитывая, что функция

Пример №14
Решите уравнение
Решение:
На этой ОДЗ данное уравнение равносильно уравнениям:
Учитывая ОДЗ, получаем, что х = 1 входит в ОДЗ, таким образом, является корнем; 
Комментарий:
Решим данное уравнение с по мощью равносильных преобразований. Для этого достаточно учесть ОДЗ данного уравнения и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства. Заметим, что на ОДЗ выражение 




Пример №15
Решите уравнение
Решение:

Замена: 
(оба корня входят в ОДЗ). Ответ: 16; 64.
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ 




Пример №16
Решите уравнение
Решение:
ОДЗ: 
Замена: 
Обратная замена дает
Ответ: 0,1; 1000
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ и используем ориентир: если переменная входит и в основание, и в показатель степени, то для решения такого уравнения можно попытаться прологарифмировать обе его части (только если они положительны). В запись уравнения входит десятичный логарифм , поэтому прологарифмируем обе части по основанию 10 (на ОДЗ они обе положительны ). Поскольку функция 


Пример №17
Решите уравнение
Решение:
Замена: 
Обратная замена дает

Комментарий:
Если сначала рассмотреть данное уравнение как простейшее логарифмическое, то по определению логарифма оно равносильно уравнению 



Пример №18
Решите систему уравнений
Решение:
По определению логарифма имеем
Из второго уравнения последней системы получаем 
Проверка 

(под знаком логарифма получаем отрицательные числа). Ответ: (1; 4).
Комментарий:
Как и логарифмические уравнения, системы логарифмических уравнений можно решать как с помощью систем-следствий (каждое решение первой системы является решением второй), так и с помощью равносильных преобразований систем (все решения каждой из них являются решениями другой).
Кроме того, при решении логарифмических систем можно применить те же способы, что и при решении других видов систем (способ алгебраического сложения, подстановка некоторого выражения из одного уравнения в другое, замена переменных).
Решим данную систему с помощью систем-следствий. Для этого достаточно гарантировать, что если данная система состоит из верных равенств, каждая следующая система также будет содержать верные равенства. Как и для уравнений, при использовании систем-следствий необходимо выполнить проверку полученных решений подстановкой в исходную систему.
Замечание. Данную систему можно было решить и с помощью равносильных преобразований систем. При этом пришлось бы учесть ОДЗ данной системы 


Пример №19
Решите систему уравнений
Решение:
Тогда из первого уравнения имеем 

Обратная замена дает 




Ответ: (5; 5).
Комментарий:
Решим данную систему с помощью равносильных преобразований. Для этого достаточно учесть ее ОДЗ 


На ОДЗ 




Решение логарифмических неравенств
1. График функции
2. Равносильные преобразования простейших логарифмических неравенств
Знак неравенства не меняется, и учитывается ОДЗ.
Знак неравенства меняется, и учитывается ОДЗ.
Примеры:
Функция 
Учитывая ОДЗ, имеем
Ответ:
Функция 
Учитывая ОДЗ, имеем
Ответ:
3. Решение более сложных логарифмических неравенств
Ориентир:
I. С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида.
Схема равносильных преобразований неравенства:
- 1. Учитываем ОДЗ данного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).
- 2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было вы полнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
II. Применяется метод интервалов (данное неравенство приводится к неравенству 
Пример №20
1)
ОДЗ: 




Обратная замена дает
Тогда
Учитывая, что функция 
С учетом ОДЗ имеем:
Ответ:
Пример №21
2) 

1.
2. Нули функции: 








Ответ:
Объяснение и обоснование:
Решение простейших логарифмических неравенств
Простейшими логарифмическими неравенствами обычно считают неравенства вида
Для решения такого неравенства можно применять равносильные преобразования. Для этого необходимо учесть его ОДЗ:
и рассмотреть два случая: основание логарифма больше 1 и основание меньше 1 (но больше 0).
I. При 


Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (большему положительному значению аргумента соответствует большее значение функции), получаем, что на ОДЗ неравенство (1) равносильно неравенству (2). Коротко это можно записать так:
II. При 


Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (меньшему положительному значению аргумента соответствует большее значение функции), получаем, что при 
Суммируя полученные результаты, отметим, что для решения неравенства вида 



Примеры использования этих ориентиров приведены в табл. 24. Замечание. Системы неравенств, полученные для случаев I и II, можно несколько упростить. Например, если в системе выполняются неравенство (2): 


(ОДЗ данного неравенства 






Решение более сложных логарифмических неравенств выполняется или с помощью равносильных преобразований данного неравенства (и приведения его к известному виду неравенств), или с помощью метода интервалов
Схема равносильных преобразований логарифмических неравенств полностью аналогична схеме равносильных преобразований логарифмических уравнений:
- учитываем ОДЗ данного неравенства;
- следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
В этом случае на ОДЗ каждое решение данного неравенства будет решением второго и, наоборот, каждое решение второго неравенства будет решением первого, то есть эти неравенства равносильны (на ОДЗ). Примеры решения логарифмических неравенств с помощью равносильных преобразований и методом интервалов и оформления такого решения приведены в табл. 24. Рассмотрим еще несколько примеров.
Примеры решения задач:
Пример №22
Решите неравенство
Комментарий:
Решим данное неравенство с помощью равносильных преобразований. Как и для уравнений, для этого достаточно учесть ОДЗ данного неравенства и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства. Поскольку на ОДЗ выражения, стоящие под знаком логарифмов, положительны, то формулу 



Решение:
На этой ОДЗ данное неравенство равносильно неравенству
Функция 
Получаем 


Ответ:
Пример №23
Решите неравенство
Решение:
Учитывая ОДЗ данного неравенства и то, что функция 
то есть
Тогда
Так как функция 
Это неравенство равносильно системе
которая равносильна системе
Решаем неравенства (4) и (5) методом интервалов и находим их общее решение (см. рисунок)
Для неравенства (4) ОДЗ:
нуль функции
Для неравенства (5) ОДЗ:
нуль функции
Ответ:
Комментарий:
ОДЗ данного неравенства задается системой
При выполнении равносильных преобразований главное — учесть ОДЗ в ходе решения. При переходе от неравенства (1) к неравенству (2) в записи последнего остается выражение 
Следовательно, при таком переходе ограничение (7) будет неявно учтено, поэтому достаточно учесть только ограничение (6) (что и сделано в левой части неравенства (2)). Чтобы применить свойства соответствующих логарифмических функций, записываем сначала 

При переходе от неравенства (2) к неравенству (3) получаем 
Определение логарифмической функции
Если величины 







Заметим, что в этой таблице значения 



Напомним, что отрицательные числа и нуль не имеют логарифмов, точнее, они не имеют действительных логарифмов.
При 


Логарифм числа. Исследование
1)Запишите вместо х такие числа, чтобы равенства были верными.
а) 2х = 16 б) 3х = 9 в) 4х = 64
2)При каких значениях аргумента функция у = 2х получает значение равное 6? Является ли это значение х единственным?
3)Между какими двумя целыми числами находятся значения х удовлетворяющие равенствам? а) 2х = 24 б) 3х = 18 в) 4 х = 56
Что такое логарифм
Логарифмом по основанию а числа b, называется такое число, что
при возведении числа а в эту степень получится число b .
Это записывается так 





То есть записи 

Равенство 
Пример №24
Заменим логарифмическую запись экспоненциальности.
Решение:
логарифмическая запись: экспоненциальная запись:
Пример №25
Найдём значение логарифмического выражения.
Решение:
Логарифм чисел по основанию 10 и е соответственно обозначаются как 
При вычислении логарифмов можно пользоваться калькулятором. Например, виртуальным калькулятором по адресу http://web2.0calc.com
Исследование. Постройте в тетради таблицу значений и график функций 

Логарифмическая функция
Для каждого значения области определения функции 


Значит, если график функции 

1)Область определения логарифмической функции все
положительные числа:
2)Множество значений логарифмической функции множество всех действительных чисел:
3)При 

4)График функции 


Постройте графики в тетради.
Если 


В качестве примера для 

Постройте графики в тетради.Если 


Логарифмическая шкала и решение задач
В химии: Показатель рН-мера активности ионов водорода в растворе, количественно выражающая его кислотность. Для вычисления уровня рН в растворах используется формула
Здесь, Н+ концентрация ионов в мол/л. Из формулы следует, что при увеличении показателя рН па 1 единицу, концентрация ионов в растворе увеличивается в 10 раз. По шкале рН значения показателя рН изменяются от 0 до 14. Если рН равно 7, то раствор считается нейтральным, меньше 7 — кислым, больше 7 — щелочным.
В физике: Громкость звука измеряется в децибелах и вычисляется по формуле 
Землетрясение. В 1935 году американский сейсмолог Чарлз Рихтер вывел формулу 


Биология. Биологи по длине 

Свойства логарифмов
1. Логарифм произведения:
Логарифм произведения двух положительных чисел равен сумме логарифмов множителей. Здесь 

2. Логарифм частного:
Логарифм частного двух положительных чисел равен разности логарифмов. Здесь 

3. Логарифм степени:
Логарифм степени числа равен произведению степени и логарифма этого числа. Здесь

Свойство 1.
Доказательство свойства 1:
Обозначим
Свойство 2.
Доказательство свойства 2:
Обозначим 
Свойство 3.
Доказательство свойства 3:
Обозначим
Используя свойства логарифмов, запишите данные выражения через логарифмы положительных чисел х, у и z.
Пример:
Используя свойства логарифмов запишите в виде логарифма какого-либо числа вида 
Пример:
Запишите в виде логарифма следующие выражения, зная, что переменные могут принимать только положительные значения.
Пример:
Переход к новому основанию:
По основному логарифмическому тождеству и свойству степени логарифма имеем:
Отсюда:
В частном случае при
На многих калькуляторах существуют кнопки для вычисления только десятичного логарифма (lg) и натурального логарифма (In). Поэтому, возникает необходимость представлять логарифмы в виде десятичных и натуральных логарифмов.
Пример:
Запишите в виде : а) десятичного; б) натурального логарифма и вычислите.
Логарифм числа и его свойства
Логарифм числа:
Логарифмом положительного числа b по основанию 



Десятичный логарифм — это логарифм по основанию 10. Обозначение:
Натуральный логарифм — это логарифм по основанию 
Обозначение:
2. Основное логарифмическое тождество
3. Свойства логарифмов и формулы логарифмирования




4. Формула перехода к логарифмам с другим основанием
Следствия

Объяснение и обоснование:
Логарифм числа в высшей математике
Если рассмотреть равенство 
Первые две операции, представленные в этой таблице (возведение в степень и извлечение корня 
В общем виде операция логарифмирования позволяет из равенства 






2) Например: 1) 

3) 
Отметим, что при положительных 




Итак, каждое свое значение 





При 



Например, не существуют значения
Отметим, что логарифм по основанию 10 называется десятичным логарифмом и обозначается
Например,
В недалеком прошлом десятичным логарифмам отдавали предпочтение и составляли очень подробные таблицы их значений, которые использовались в разных вычислениях. В эпоху всеобщей компьютеризации десятичные логарифмы утратили свою ведущую роль. В современной науке и технике широко используются логарифмы, основанием которых является особенное число 





Например,
Основное логарифмическое тождество
По определению логарифма, если 


Например:
Свойства логарифмов и формулы логарифмирования
Во всех приведенных ниже формулах
1) Из определения логарифма получаем, что
поскольку 
2) Поскольку 
3) Чтобы получить формулу логарифма произведения 

Перемножив почленно два последних равенства, имеем 

Логарифм произведения положительных чисел равен сумме логарифмов множителей.
4) Аналогично, чтобы получить формулу логарифма частного 


Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
5) Чтобы получить формулу логарифма степени 





Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.
Учитывая, что при 



Замечание. Иногда приходится находить логарифм произведения 







Таким образом, для логарифма произведения 

Отметим, что полученная формула справедлива и при 


Аналогично можно обобщить и формулы (3) и (4):
при 


Формула перехода к логарифмам с другим основанием
Пусть 


Используя в левой части этого равенства формулу логарифма степени, имеем 



Таким образом, логарифм положительного числа 


С помощью последней формулы можно получить следующие следствия.
Учитывая, что
имеем
где
- Аналогично, учитывая формулу перехода от одного основания логарифма к другому и формулу логарифма степени, получаем (при
Записав полученную формулу справа налево, имеем 
Примеры решения задач:
Пример №26
Вычислите:
Решение:
1) 
2) 
Комментарий:
Учитывая определение логарифма, необходимо подобрать такой показатель степени, чтобы при возведении основания логарифма в эту степень получить число, стоящее под знаком логарифма.
Пример №27
Запишите решение простейшего показательного уравнения:
Комментарий:
Для любых положительных чисел 






Решение:
По определению логарифма:
Пример №28
Выразите логарифм по основанию 3 выражения 

через логарифмы по основанию 3 чисел 
Комментарий:
Сначала запишем выражения, стоящие в числителе и знаменателе данного выражения, как степени чисел и букв. Далее учтем, что логарифм частного 

После этого учтем, что каждый из логарифмов степеней 
Решение:
Пример №29
Известно, что 

Решение:
Комментарий Сначала представим число 700 как произведение степеней данных чисел 5 и 7 и основания логарифма 2, а далее используем свойства логарифмов и подставим в полученное выражение значения
Пример №30
Прологарифмируйте по основанию 10 выражение
Комментарий:
Поскольку логарифмы существуют только для положительных чисел, то мы можем прологарифмировать данное выражение только в случае когда 


Решение:
Иногда приходится искать выражение, зная его логарифм. Такую операцию называют потенцированием.
Пример №31
Найдите х по его логарифму:
Решение:
Комментарий:
Пользуясь формулами логарифмирования справа налево, запишем правые части данных равенств в виде логарифма какого-то выражения.
Из полученного равенства 


Пример №32
Вычислите значение выражения
Комментарий:
Попытаемся привести показатель степени данного выражения к виду 
Для этого перейдем в показателе степени к одному основанию логарифма (к основанию 5).
Решение:
Поскольку 
Кроме того,
Тогда
Итак
Логарифмическая функция, ee свойства и график
Определение. Логарифмической функцией называется функция вида
График логарифмической функции:
Функции 
Свойства логарифмической функции:
1. Область определения:
2. Область значений:
3. Функция ни четная, ни нечетная.
4. Точки пересечения с осями координат: с осью 
5. Промежутки возрастания и убывания:
функция 

функция 

6. Промежутки знакопостоянства:


7. Наибольшего и наименьшего значений функция не имеет.
8.
Объяснение и обоснование:
Понятие логарифмической функции и ее график
Логарифмической функцией называется функция вида
Покажем, что эта функция является обратной к функции 




















Как известно, графики взаимно обратных функций симметричны относительно прямой 




Свойства логарифмической функции
Свойства логарифмической функции, указанные в пункте 8 таблицы 54. Другие свойства функции 
Поскольку область определения прямой функции является областью значений обратной, а область значений прямой функции — областью определения обратной, то, зная эти характеристики для функции 
- Областью определения функции
является множество
всех положительных чисел
- Областью значений функции
является множество
всех действительных чисел (тогда функция
не имеет ни наибольшего, ни наименьшего значений).
- Функция
не может быть ни четной, ни нечетной, поскольку ее область определения не симметрична относительно точки 0.
- График функции
не пересекает ось
поскольку на оси
а это значение не принадлежит области определения функции
График функции
пересекает ось
в точке
поскольку
при всех значениях
- Из графиков функции
приведенных на рисунке 127, видно, что прu
функция
возрастает на всей области определения, а при
— убывает на всей области определения. Это свойство можно обосновать, опираясь не на вид графика, а только на свойства функции
Например, при
возьмем
По основному логарифмическому тождеству можно записать:
Тогда, учитывая, что
имеем
Поскольку при
функция
является возрастающей, то из последнего неравенства получаем
А это и означает, что при
функция
возрастает на всей области определения. Аналогично можно обосновать, что при
функция
убывает на всей области определения.
- Промежутки знакопостоянства. Поскольку график функции
пересекает ось
в точке
то, учитывая возрастание функции при
и убывание при
имеем:
Примеры решения задач:
Пример №33
Найдите область определения функции:
Решение:
- Область определения функции
задается неравенством
Отсюда
То есть
- Область определения функции
задается неравенством
Это неравенство выполняется при всех действительных значениях
Таким образом,
- Область определения функции
задается неравенством
Решая это квадратное неравенство, получаем
или
(см. рисунок).
То есть
Комментарий:
Поскольку выражение, стоящее под знаком логарифма, должно быть положительным, то для нахождения области определения заданной функции необходимо найти те значения аргумента 
Пример №34
Изобразите схематически график функции:
Комментарий:
Область определения функции 



При 

При 

Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №35
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
Составим план последовательного построения графика данной функции с помощью геометрических преобразований.
Пример №36
Сравните положительные числа 
Решение:
Комментарий:
В каждом задании данные выражения — это значения логарифмической функции 
Используем возрастание или убывание соответствующей функции:
Пример №37
Сравните с единицей положительное число 
Решение:
Поскольку 



Комментарий:
Числа 


- Заказать решение задач по высшей математике
Решение логарифмических уравнении и неравенств
Основные определения и соотношения:
Определение: Логарифмом положительного числа b по основанию 

График функции


Решение простейших логарифмических уравнений:
Если 


Пример №38
Ответ: 10.
Если из предположения, что первое равенство верно, следует, что каждое следующее верно, то гарантируем, что получаем уравнения следствия. При использовании уравнений»следствий не происходит потери корней исходного уравнения, но возможно появление по» сторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения.
Пример №39
По определению логарифма получаем
Проверка. 

Ответ: 2.
Равносильные преобразования логарифмических уравнений:
Если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Пример №40
Замена переменных:
Замена:
Следовательно, 
Ответ:
Пример №41
Уравнение вида
(учитываем ОДЗ и приравниваем выражения, стоящие под знаками логарифмов)
ОДЗ:
На этой ОДЗ данное уравнение равносильно уравнениям:


Ответ: 3.
1. Учитываем ОДЗ данного уравнения (и избегаем преобразований, приводящих к сужению ОДЗ);
2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и обратном направлениях с сохранением верного равенства
ОДЗ:
На этой ОДЗ данное уравнение равносильно уравнениям:


Ответ:1.
Объяснение и обоснование:
Решение простейших логарифмических уравнений
Простейшим логарифмическим уравнением обычно считают уравнение
Логарифмическая функция возрастает (или убывает) на всей своей области определения, то есть при 

Если рассмотреть уравнение 



Следовательно, уравнения (2) и (3) — равносильны. Таким образом, мы обосновали, что для равносильного преобразования простейшего логарифмического уравнения (1) или уравнения (2) (которое мы также будем относить к простейшим при условии, что основание 

Напомним, что все равносильные преобразования уравнения выполняются на его области допустимых значений (ОДЗ). Для уравнения (2) ОДЗ задается условием 

Например, уравнение 


Аналогично записано и решение простейшего уравнения 
Использование уравнений-следствий при решении логарифмических уравнений
При решении уравнения главное — не потерять его корни, и поэтому важно следить за тем, чтобы каждый корень первого уравнения оставался корнем следующего уравнения — в этом случае получаем уравнения-следствия. Напомним, что каждый корень заданного уравнения обращает его в верное числовое равенство. Используя это определение, можно обосновать, что в случае, когда преобразования уравнений проводятся так: если из предположения, что первое равенство верно, следует, что каждое следующее верно, то мы получаем уравнения-следствия (поскольку каждый корень первого уравнения будет и корнем следующего уравнения). Напомним, что хотя при использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения при использовании уравнений-следствий.
Пример решения логарифмического уравнения с помощью уравнений-следствий и оформление такого решения приведены в пункте 3 таблицы 55.
Равносильные преобразования логарифмических уравнений
Одним из часто используемых способов равносильных преобразований уравнений является замена переменной.
Напомним общий ориентир, которого мы придерживались при решении уравнений из других разделов: если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Например, в уравнение 





Принимая во внимание то, что замена переменной (вместе с обратной заменой) является равносильным преобразованием уравнения на любом множестве, для выполнения замены не обязательно находить ОДЗ данного уравнения. После выполнения обратной замены мы получили простейшие логарифмические уравнения, ОДЗ которых (как было показано выше) учитываются автоматически и могут также не записываться. Таким образом, в приведенном решении ОДЗ данного уравнения учтена автоматически, и поэтому в явном виде ОДЗ можно не записывать в решение. Именно так и оформлено решение этого уравнения в пункте 4 таблицы 55.
Рассмотрим также равносильные преобразования уравнения вида
Как уже говорилось, все равносильные преобразования уравнения выполняются на его области допустимых значений. Для уравнения (4) ОДЗ задается системой неравенств 





- чтобы решить уравнение
с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов.
Пример использования этого ориентира приведен в таблице 55.
Замечание 1. Полученную систему (5)-(7) можно несколько упростить. Если в этой системе выполняется равенство (5), то значения 
Например, уравнение 


Замечание 2. Как было обосновано выше, если выполняется равенство (4), то обязательно выполняется и равенство (5). Таким образом, уравнение (5) является следствием уравнения (4), и поэтому для нахождения корней уравнения (4): 

Выполняя равносильные преобразования логарифмических уравнений в более сложных случаях, можно придерживаться следующего ориентира (он следует из определения равносильных уравнений):
- Учитываем ОДЗ данного уравнения.
- Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Например, решим уравнение 
Для этого достаточно учесть ОДЗ уравнения 
Применим этот план к решению уравнения (8).
Чтобы привести это уравнение к простейшему, перенесем все члены уравнения с логарифмами влево. Получим равносильное уравнение
(Равносильность уравнений (8) и (9) следует из известной теоремы: если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное данному на любом множестве. Равносильность этих уравнений следует также из того, что мы можем перейти не только от равенства (8) к равенству (9), но и выполнить обратное преобразование, пользуясь свойствами числовых равенств.)
Учитывая, что сумма логарифмов положительных (на ОДЗ) чисел равна логарифму произведения, получаем уравнение
На ОДЗ данного уравнения можно выполнить и обратное преобразование: поскольку 
Выполняя равносильные преобразования полученного уравнения, имеем:
Поскольку все равносильные преобразования выполнялись на ОДЗ данного уравнения, учтем ее, подставляя полученные корни в ограничения ОДЗ: 

Замечание. Рассмотренное уравнение можно было решить и с использованием уравнений-следствий.
Примеры решения задач:
Пример №42
Решите уравнение
Решение:
Проверка. 

Ответ: 14
Комментарий:
Решим данное уравнение с помощью уравнений-следствий. Напомним, что при использовании уравнений-следствий главное — гарантировать, что в случае, когда первое равенство будет верным, то и все последующие также будут верными.
Чтобы избавиться от дробного коэффициента, умножим обе части уравнения (1) на 2 (если равенство (1) верно, то и равенство (2) также верно). Если равенства (1) и (2) верны (при тех значениях 





Если равенство (5) верно, то знаменатель дроби не равен нулю, и после умножения обеих ее частей на 
Пример №43
Решите уравнение
Комментарий:
Решим данное уравнение с помощью равносильных преобразований. Напомним, что для этого достаточно учесть ОДЗ данного уравнения и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Заметим, что на ОДЗ выражение 




Решение:
ОДЗ: 
На этой ОДЗ данное уравнение равносильно уравнениям:
Учитывая ОДЗ, получаем, что 

Пример №44
Решите уравнение
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ 
После приведения логарифмов к одному основанию переменная входит в уравнение только в одном виде 


Поскольку замена и обратная замена являются равносильными преобразованиями на ОДЗ, то для полученных решений достаточно проверить, входят ли они в ОДЗ.
Решение:
ОДЗ: 
Замена: 
(оба корня входят в ОДЗ).
Ответ: 16; 64.
Пример №45
Решите уравнение
Решение:
ОДЗ:
На ОДЗ данное уравнение равносильно уравнениям:
Замена:
Получаем:
Обратная замена дает
Отсюда 
Ответ: 0,1; 1000.
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ и используем ориентир: если переменная входит и в основание, и в показатель степени, то для решения такого уравнения можно попытаться прологарифмировать обе части уравнения (только если они положительны). В запись уравнения уже входит десятичный логарифм, поэтому прологарифмируем обе части по основанию 10 (на ОДЗ обе части данного уравнения положительны).
Поскольку функция 


Обоснование равносильности дальнейших преобразований полностью совпадает с аналогичным обоснованием в предыдущей задаче.
Пример №46
Решите уравнение
Решение:
Замена: 
Обратная замена дает 
Ответ: 2
Комментарий:
Если сначала рассмотреть данное уравнение как простейшее логарифмическое, то по определению логарифма оно равносильно уравнению 


Поскольку 
Пример №47
Решите систему уравнений
Решение:
По определению логарифма имеем 

Тогда:
Проверка: 

(под знаком логарифма получаем отрицательные числа).
Ответ: (1; 4).
Комментарий:
Как и логарифмические уравнения, системы логарифмических уравнений можно решать как с помощью систем-следствий (каждое решение первой системы является решением второй), так и с помощью равносильных преобразований систем (все решения каждой из них являются решениями другой).
Кроме того, при решении логарифмических систем можно применить те же способы, что и при решении других видов систем (способ алгебраического сложения, подстановка некоторого выражения из одного уравнения в другое, замена переменных).
Например, решим данную систему с помощью систем-следствий. Для этого достаточно гарантировать, что в случае, когда заданная система состоит из верных равенств, каждая следующая система также будет содержать верные равенства. Как и для уравнений, при использовании систем-следствий необходимо выполнить проверку полученных решений подстановкой в исходную систему.
Замечание. Данную систему можно было решить и с помощью равносильных преобразований систем. При этом пришлось бы учесть ОДЗ данной системы 


Пример №48
Решите систему уравнений
Решение:
ОДЗ:
Тогда из первого уравнения имеем
Замена 
Обратная замена дает
Тогда из второго уравнения системы имеем


Таким образом, решение данной системы
Ответ: (5:5)
Комментарий:
Решим данную систему с помощью равносильных преобразований. Для этого достаточно учесть ее ОДЗ 
На ОДЗ 



Поскольку замена (вместе с обратной заменой) является равносильным преобразованием, то, заменяя первое уравнение системы равносильным ему (на ОДЗ) уравнением 
Решение логарифмических неравенств
График функции 


Равносильные преобразования простейших логарифмических неравенств:
Знак неравенства не меняется, и учитывается ОДЗ:
Знак неравенства меняется, и учитывается ОДЗ:
ОДЗ:
Функция 
Учитывая ОДЗ, имеем
Ответ:
ОДЗ:
Функция 

Ответ:
Решение более сложных логарифмических неравенств:
I. С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида.
Схема равносильных преобразований неравенства:
1. Учитываем ОДЗ заданного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).
2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
ОДЗ: 





Обратная замена дает 



Ответ:
II. Применяется общий метод интервалов (данное неравенство приводится к неравенству 
- Найти ОДЗ;
- Найти нули
- Отметить нули функции на ОДЗ и найти знак
на каждом из промежутков, на которые разбивается ОДЗ;
- Записать ответ, учитывая знак неравенства.
Решим неравенство методом интервалов. Оно равносильно неравенству 
1. ОДЗ:
2. Нули функции: 



3. Отмечаем нули функции на ОДЗ, находим знак 
Ответ:
Объяснение и обоснование:
Решение простейших логарифмических неравенств
Простейшими логарифмическими неравенствами обычно считают неравенства вида
Для решения такого неравенства можно применять равносильные преобразования. Для этого необходимо учесть его ОДЗ: 
I. При 


Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (большему положительному значению аргумента соответствует большее значение функции), получаем, что на ОДЗ неравенство (1) равносильно неравенству (2). Коротко это можно записать так:
II. При 


Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (меньшему положительному значению аргумента соответствует большее значение функции), получаем, что при 
Суммируя полученные результаты, отметим, что для решения неравенства вида 
Примеры использования этих ориентиров приведены в таблице 56.
Замечание. Системы неравенств, полученные для случаев I и II, можно несколько упростить. Например, если в системе выполняются неравенство (2): 


Аналогично обосновывается, что в случае II в системе неравенство (4) является следствием неравенств (3) и (5), и его также можно не записывать в систему.
Например, решим неравенство
(ОДЗ данного неравенства 

Решаем неравенство 


Решение более сложных логарифмических неравенств
Решение более сложных логарифмических неравенств выполняется или с помощью равносильных преобразований данного неравенства (и приведения его к известному виду неравенств), или с помощью метода интервалов.
Схема равносильных преобразований логарифмических неравенств полностью аналогична схеме равносильных преобразований логарифмических уравнений:
- учитываем ОДЗ данного неравенства;
- следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
В этом случае на ОДЗ каждое решение данного неравенства будет и решением второго и, наоборот, каждое решение второго неравенства будет решением первого, то есть эти неравенства будут равносильными (на ОДЗ).
Примеры решения логарифмических неравенств с помощью равносильных преобразований и методом интервалов и оформления такого решения приведены в таблице 56. Рассмотрим еще несколько примеров.
Примеры решения задач:
Пример №49
Решите неравенство
Комментарий:
Решим данное неравенство с помощью равносильных преобразований. Как и для уравнений, для этого достаточно учесть ОДЗ данного неравенства и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства. Поскольку на ОДЗ выражения, стоящие под знаком логарифмов, положительны, то формулу 

Чтобы применить свойства логарифмической функции, запишем число (-1) как значение логарифмической функции: 
Решение:
ОДЗ: 
На этой ОДЗ данное неравенство равносильно неравенству
Функция 
Получаем 

Учитывая ОДЗ, получаем
Ответ:
Пример №50
Решите неравенство
Решение:
Учитывая ОДЗ данного неравенства и то, что функция 
то есть
Тогда
Учитывая, что функция 
Это неравенство равносильно системе 
Решаем неравенства (4) и (5) методом интервалов и находим их общее решение (см. рисунок).
Для неравенства (4) ОДЗ: 
Для неравенства (5) ОДЗ: 
Ответ:
Комментарий:
ОДЗ данного неравенства задается системой
При выполнении равносильных преобразований главное не записать ОДЗ, а учесть ее в ходе решения. При переходе от неравенства (1) к неравенству (2) в записи последнего неравенства остается выражение

Следовательно, при таком переходе ограничение (7) будет неявно учтено и поэтому достаточно учесть только ограничение (6) (что и сделано в левой части неравенства (2)). Чтобы применить свойства соответствующих логарифмических функций, записываем сначала 



Логарифмические функции и их нахождение
Как известно, если 



Функцию, заданную формулой 
Примеры логарифмических функций:
Как связаны между собой функции
Равенство 






график функции 


Итак, графики функций 
Последовательность описанных преобразований рассматриваемых функций для 
Функции, графики которых симметричны относительно прямой 

Если две функции взаимно обратные, то область определения одной из них является областью значений другой и наоборот.
Следует обратить внимание и на такое. Если одна из двух взаимно обратных функций на всей области определения возрастает, то и другая возрастает. Например, если функция
возрастает, то большему значению 







Из всего сказанного вытекают следующие свойства функции
- Область определения — промежуток
- Область значений — множество
- Функция возрастает на всей области определения, если
а если
убывает.
- Функция ни чётная, ни нечётная, ни периодическая.
- Если
то значения функции
положительные при
и отрицательные при
- Если
то значения функции
положительные при
и отрицательные при
- График функции всегда проходит через точку
Несколько графиков логарифмических функций показано на рисунке 33.
Если известно значение основания логарифма, то график логарифмической функции можно построить по точкам, составив предварительно таблицу значений. Постройте таким образом графики функций 
Обратите внимание на такие утверждения:
- если
- если
- если
Вы уже знаете, что графики функций 

Поскольку 



Показательные и логарифмические функции удобны для моделирования процессов, связанных с ростом населения, капитала, размножением бактерий, изменением атмосферного давления, радиоактивным распадом и т. п.
Пример №51
Найдите область определения функции
Решение:
Областью определения логарифмической функции является промежуток 



Ответ.
Пример №52
Сравните числа:
Решение:
а) Функция 


Из последнего неравенства следует, что 
- Логарифмические выражения
- Показательная функция, её график и свойства
- Производные показательной и логарифмической функций
- Показательно-степенные уравнения и неравенства
- Дифференциал функции
- Дифференцируемые функции
- Техника дифференцирования
- Дифференциальная геометрия
Функцию, заданную формулой
y=logax
, называют логарифмической функцией с основанием (a).
Основные свойства логарифмической функции:
1) область определения
D(f)=0;+∞
;
2) множество значений
E(f)=−∞;+∞
;
3) если (a>1), то функция возрастает на всей области определения;
если (0<a<1), то функция убывает на всей области определения.
Обрати внимание!
Логарифмическая функция не является ни чётной, ни нечётной;
не имеет ни наибольшего, ни наименьшего значений;
не ограничена сверху, не ограничена снизу;
график любой логарифмической функции
y=logax
проходит через точку ((1; 0)).
Построим графики двух функций.
Пример:
1.
y=log2x
, основание (2>1)
| (x) | 14 | 12 | (1) | (2) | (4) | (8) |
| y=log2x | (-2) | (-1) | (0) | (1) | (2) | (3) |
Пример:
2.
y=log13x
основание (0<)
13
(<1)
| (x) | (9) | (3) | (1) | 13 | 19 |
| y=log13x | (-2) | (-1) | (0) | (1) | (2) |
Логарифмическая функция
y=logax
и показательная функция
y=ax
, где
(a>0,a≠1)
, взаимно обратны.

Основные сведения об области определения логарифмической функции
Содержание:
- Логарифм числа и его свойства
- Логарифмическая функция, ее свойства и график
- Область определения функции с корнем
- Примеры решения задач
Логарифм числа и его свойства
Логарифм некого числа b по основанию а является показателем степени, в которую требуется возвести основание а для получения в результате числа b.
В качестве обозначения логарифма используют: (log _{a}b)
Данную запись можно прочитать, как «логарифм b по основанию а».
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Рассмотрим следующее равенство:
(x=log _{a}b)
Согласно записанному ранее определению логарифма, получим, что данное соотношение является равносильным следующему:
(a^{x}=b)
Пример
Рассмотрим пример логарифмического уравнения:
(log _{2}8=3)
Равенство является справедливым по той причине, что:
(2^{3}=8)
Логарифмирование — операция по определению логарифма.
В определении логарифма принято использовать числа а и b из множества вещественных чисел. В некоторых случаях применима теория комплексных логарифмов.
С помощью логарифмов удается значительно упростить решение многих задач. Например, в процессе перехода к логарифмическому уравнению умножение может быть заменено на операцию сложения, а вместо деления используют вычитания, также возведение в степень и извлечение корня трансформируются в умножение и деление на показатель степени соответственно.
Примечание 1
Математик из Шотландии Джон Непер в 1614 году первым сформулировал определение логарифмов и представил таблицу со значениями тригонометрических функций. Со временем таблицы были уточнены и дополнены. До появления калькуляторов и компьютерной техники эти таблицы активно применялись на протяжении веков для выполнения расчетов в математике, инженерии и других научных областях знаний.
Изобразим в качестве примера двоичный логарифм на графике:
Рассмотрим логарифм какого-то числа из множества вещественных:
(x=log _{a}b)
Исходя из определения логарифма, данное соотношение представляет собой решение следующего уравнения:
(a^{x}=b)
В том случае, когда a=1 при (bneq 1), у записанного уравнения отсутствуют решения. Если b=1, то в качестве решения можно представить любое число. Эти два варианта приводят к неопределенности логарифма. Таким же образом, можно сделать вывод об отсутствии логарифма, когда а принимает нулевое или отрицательное значение.
Зная, что показательная функция (a^{x}) во всех случаях положительна, исключим также случаи, при которых b имеет отрицательное значение. Обобщая вышесказанное, запишем: вещественный логарифм (log _{a}b) обладает смыслом, если (a>0,aneq 1,b>0.)
Распространенными являются следующими виды логарифмов:
- Натуральные: (log _{e},b) или (ln ,b) с основанием в виде числа Эйлера (e).
- Десятичные: (log _{10},b) или (lg ,b ) с основанием в виде числа 10.
- Двоичные: (log_{2},b) или (operatorname {lb},b) с основанием 2, которые нашли применение в теории информации, информатике, в разных разделах дискретной математики.
Свойства логарифма удобно использовать при решении различных задач. Рассмотрим главное логарифмическое тождество.
Основным логарифмическим тождеством называют справедливое равенство, которое вытекает из определения логарифма и имеет следующий вид: ( a^{log _{a}b}=b)
Следствие
Согласно равенству пары вещественных логарифмов, логарифмируемые выражения равны, то есть при (log _{a}b=log _{a}) c справедливо, что (a^{log _{a}b}=a^{log _{a}c},) тогда по основному логарифмическому тождеству получаем: b=c.
Исходя из определения логарифма, можно вывести следующие справедливые равенства:
(log _{a}1=0)
(log _{a}a=1.)
Рассмотрим, как вычисляют логарифм произведения, частного от деления, степени и корня при положительных значениях переменных.
Произведение:
(log _{a}(xy)=log _{a}(x)+log _{a}(y))
К примеру:
(log _{3}(243)=log _{3}(9cdot 27)=log _{3}(9)+log _{3}(27)=2+3=5)
Частное от деления:
(log _{a}!left({frac {x}{y}}right)=log _{a}(x)-log _{a}(y))
Например:
(lg left({frac {1}{1000}}right)=lg(1)-lg(1000)=0-3=-3)
Степень:
(log _{a}(x^{p})=plog _{a}(x))
Докажем это равенство:
(log _{a}{x^{p}}=y)
(a^{y}=x^{p}{displaystyle }a^{y}=x^{p})
(a^{frac {y}{p}}=x{displaystyle }a^{frac {y}{p}}=x)
(log_{a}{x}={frac {y}{p}}{displaystyle} log_{a}{x}={frac {y}{p}})
(pcdot log_{a}{x}=y{displaystyle} pcdot log_{a}{x}=y)
Применим данную формулу для решения примера:
(log _{2}(64)=log _{2}(2^{6})=6log _{2}(2)=6)
Степень в основании:
(log _{(a^{p})}(x)={frac {1}{p}}log _{a}(x)={frac {log _{a}(x)}{p}})
Докажем, что записанное равенство является справедливым:
(log _{a^{p}}{x}=y)
(a^{ycdot p}=x{displaystyle} a^{ycdot p}=x)
(log_{a}{x}=pcdot y{displaystyle} log_{a}{x}=pcdot y)
(frac {log_{a}{x}}{p}=y)
В качестве примера упростим выражение:
(log _{2^{10}}{sin {left({frac {pi }{6}}right)}}={frac {log _{2}{frac {1}{2}}}{10}}=-{frac {1}{10}}=-0{,}1)
Корень:
(log _{a}{sqrt[{p}]{x}}={frac {1}{p}})
Докажем данное свойство:
(log _{a}{sqrt[{p}]{x}}=y)
(a^{y}={sqrt[{p}]{x}}{displaystyle} a^{y}={sqrt[{p}]{x}})
(a^{pcdot y}=x{displaystyle} a^{pcdot y}=x)
(log_{a}{x}=pcdot y{displaystyle} log_{a}{x}=pcdot y)
({frac {log_{a}{x}}{p}}=y{displaystyle} {frac {log_{a}{x}}{p}}=y)
Рассмотрим наглядный пример:
(lg {sqrt {1000}}={frac {1}{2}}lg 1000={frac {3}{2}}=1{,}5)
Корень в основании:
(log _{sqrt[{p}]{a}}(x)=plog _{a}(x))
Представим доказательства:
(log _{sqrt[{p}]{a}}{x}=y)
(a^{frac {y}{p}}=x{displaystyle} a^{frac {y}{p}}=x)
(a^{y}=x^{p}{displaystyle} a^{y}=x^{p})
(a^{frac {y}{p}}=x{displaystyle} a^{frac {y}{p}}=x)
(log_{a}{x}={frac {y}{p}}{displaystyle} log_{a}{x}={frac {y}{p}})
(pcdot log_{a}{x}=y{displaystyle} pcdot log_{a}{x}=y)
Применим записанное свойство на практике:
(log _{sqrt {pi }}{(4cdot operatorname {arctg} {1})}=2cdot log _{pi }{left(4cdot {frac {pi }{4}}right)}=2cdot log _{pi }{(pi )}=2)
В том случае, когда переменная обладает отрицательным значением, следует обратиться к обобщенной записи перечисленных свойств логарифма:
(log _{a}|xy|=log _{a}|x|+log _{a}|y|)
(log _{a}!left|{frac {x}{y}}right|=log _{a}|x|-log _{a}|y|)
Формулы для вычисления произведения допустимо обобщить с расчетом на любое число сомножителей:
(log _{a}(x_{1}x_{2}dots x_{n})=log _{a}(x_{1})+log _{a}(x_{2})+dots +log _{a}(x_{n}))
(log _{a}|x_{1}x_{2}dots x_{n}|=log _{a}|x_{1}|+log _{a}|x_{2}|+dots +log _{a}|x_{n}|)
Многозначные числа x, y можно умножать с помощью таблиц логарифмов таким образом:
- определить по таблице логарифмы x, y;
- суммировать полученные логарифмы, что соответствует (исходя из первого свойства логарифма) логарифму произведения xcdot y;
- согласно логарифму произведения определить по таблице значение самого произведения.
Аналогичным способом выполняют деление. Только при этом вместо умножения применяют операцию вычитания, а алгоритм действий остается прежним.
Логарифм (log _{a}b) по основанию a допустимо записать в виде логарифма по другому основанию c:
(log _{a}b={frac {log _{c}b}{log _{c}a}})
Следствием из данной формулы, если b=c, является перестановка местами основания и логарифмируемого выражения:
(log _{a}b={frac {1}{log _{b}a}})
Обратим внимание на то, что коэффициент ({frac {1}{log _{c}a}}=log _{a}c) в рассматриваемом выражении замены основания носит названием модуля перехода от одного основания к другому.
При решении логарифмических неравенств следует помнить, что логарифм (log _{a}{b}) обладает положительным значение в том случае, когда a, b расположены с одной стороны относительно единицы, то есть оба больше, либо меньше по сравнению с 1. В противном случае логарифм имеет знак минуса.
Какое-либо неравенство в случае положительных чисел допустимо логарифмировать:
- при основании больше, чем единица, знак неравенства остается без изменений;
- при основании меньше, чем единица, знак неравенство нужно поменять на противоположный.
Существует тождество, которое поможет упростить действия, когда в основании или логарифмируемом выражении содержится степень:
({log _{a^{q}}{b}}^{p}={frac {p}{q}}log _{a}{b})
Данное соотношение получают путем замены в левой части логарифма основания (a^{q}) на a по ранее рассмотренной формуле замены основания. Из этого справедливого равенства можно вывести следующее:
(log _{a^{k}}b={frac {1}{k}}log _{a}b;quad log _{sqrt[{n}]{a}}b=nlog _{a}b;quad log _{a^{k}}b^{k}=log _{a}b)
Другим полезным тождеством является:
(c^{log _{a}b}=b^{log _{a}c})
В этом случае, можно заметить совпадение логарифмов слева и справа по основанию а, то есть являются равными (log _{a}bcdot log _{a}c). По следствию из главного логарифмического тождества получим, что части слева и справа равны друг другу тождественно.
С помощью логарифмирования предыдущего тождества по какому-либо произвольно выбранному основанию d можно получить дополнительное тождество для замены оснований:
(log _{a}bcdot log _{d}c=log _{d}bcdot log _{a}c.)
Логарифмическая функция, ее свойства и график
При рассмотрении какого-либо логарифмируемого числа в качестве переменной получается логарифмическая функция, имеющая следующий вид: (y=log _{a}x).
Областью определения данной функции являются такие значения, которые соответствуют интервалу:
(a>0; aneq 1;x>0.)
Область значений логарифмической функции определена таким образом:
(E(y) = (-infty ;+infty).)
На графике логарифмическая функция имеет вид кривой, которую часто называют логарифмикой. Согласно формуле, с помощью которой осуществляют замену основания логарифма, сделаем вывод о том, что:
- графики логарифмических функций, имеющих разные основания, больше единицы, различаются по масштабу относительно оси y;
- графики логарифмических функций для оснований, меньших, чем единица, представляют собой их зеркальное отражение по отношению к горизонтальной оси.
Изобразим графики логарифмических функций:
Согласно определению, логарифмическая функция является обратной для показательной функции (y=a^{x}). По этой причине графические изображения данных функций будут симметричными по отношению к биссектрисе первого и третьего квадрантов. Обе эти функции трансцендентны.
Заметим следующие особенности логарифмической функции:
- строгое возрастание графика, если a>1;
- строгое убывание графика, если 0<a<1.
Графически изображенная логарифмическая функция в любом случае будет пересекать точку с координатами (1;0). Функция не прерывается и дифференцируется без ограничений на любом участке в рамках собственной области определений.
Ось ординат при x=0 представляет собой вертикальную асимптоту, так как:
- (lim _{xto 0+0}log _{a}x=-infty) при a>1;
- (lim _{xto 0+0}log _{a}x=+infty) при 0<a<1.
Производную логарифмической функции вычисляют по формуле:
({frac {d}{dx}}log _{a}x={frac {1}{xcdot ln a}})
Логарифмическая функция представляет собой непрерывное решение, которое считают единственно верным, для следующего функционального уравнения:
(f(xy)=f(x)+f(y).)
Свойства функции (y={{log}_a x }), при a >1:
- Областью определения данной функции является интервал ((0,+infty )).
- Значения функции определяются, как множество действительных чисел.
- Данную функцию нельзя отнести к типу четных или нечетных.
- График пересекает оси координат. С осью Oy точки пересечения отсутствуют. Если (y=0), ({{log}_a x }=0, x=1). Функция пересекается с осью Ox в точке (1,0).
- Функция является положительной, если (xin (1,+infty )). Функция является отрицательной в том случае, когда (xin (0,1)).
- (y’=frac{1}{xlna}).
- Точки минимума и максимума: (frac{1}{xlna}=0), при этом корни отсутствуют, то есть максимальные и минимальные точки также отсутствуют.
- Функция является возрастающей на всей области определения.
- (y^{»}=-frac{1}{x^2lna}).
- Промежутки выпуклости и вогнутости: (-frac{1}{x^2lna}). Функция является выпуклой на всей области, в которой определяется.
- ({mathop{lim}_{xto 0} y }=-infty , {mathop{lim}_{xto +infty } y }=+infty.)
Рассмотрим свойства функции (y={{log}_a x }, 0 < a < 1:)
- Функция определяется на интервале ((0,+infty).)
- Значениями функции являются все числа из множества действительных.
- Данную функцию нельзя отнести к типу четных или нечетных.
- Отсутствуют пересечения графика с осью Oy. Если (y=0, {{log}_a x }=0, x=1).Функция пересекает ось Ox в точке с координатами: (1,0).
- Функция является положительной, если (xin (0,1)). Функция является отрицательной в том случае, когда (xin (1,+infty).)
- (y’=frac{1}{xlna}.)
- Точки минимума и максимума: ( frac{1}{xlna}=0); в этом случае корни отсутствуют — значит, отсутствуют максимальные и минимальные точки.
- Функция является убывающей на всей области, в которой она определена.
- (y^{»}=-frac{1}{x^2lna}).
- Промежутки выпуклости и вогнутости: ( -frac{1}{x^2lna}>0). Функция является вогнутой на всей области, в которой она определена.
- (mathop{lim}_{xto 0} y =+infty , {mathop{lim}_{xto +infty } y }=-infty).
Область определения функции с корнем
По определению, логарифмическая функция имеет вид:
(y=log _{a} x,; a,, x>0,; ane 1.)
Областью определения функции (Dleft(yright)) является такое множество, на котором задана функция (y=fleft(xright)), при этом каждая точка рассматриваемого множества соответствует определенному значению функции.
В случае логарифмической функции, в том числе, с корнем квадратным, дробью со знаменателем, отличным от нуля, область определения соответствует какому-либо числу со знаком плюс из множества действительных чисел:
(Dleft(log _{a} xright):xin left(0;; +infty right))
Рассмотрим несколько примеров логарифмических функций, чтобы узнать область их определений:
(y=log _{ frac{2}{3} } x;)
(y=log _{ sqrt{5}} x;)
(y=log _{7} x.)
Областью определения записанных логарифмических функций, в том числе, с корнем, является интервал ((0, +infty)).
Попробуем решить задачу. Здесь требуется искать область определения в случае функции:
(f(x)=frac{1}{ln(x+3)})
Условия следующие:
х + 3 > 0
(x + 3 neq 1)
Тогда:
х > -3
(x neq -2)
Тогда область определения соответствует следующим значениям:
(D(f) = (-3, -2) cup (-2, +infty).)
Примеры решения задач
Задача 1
Дана функция:
(y=log _{pi } left(2x-4right).)
Требуется обозначить область определения данной функции.
Решение
Область определения рассматриваемой функции можно задать с помощью следующего неравенства:
(2x-4>0.)
Найдем решения для этого линейного неравенства:
(2x>4Rightarrow x>2Rightarrow xin left(2;; +infty right).)
В результате:
(Dleft(yright):xin left(2;; +infty right))
Ответ: (Dleft(yright):xin left(2;; +infty right).)
Задача 2
Имеется некая функция:
(y=log _{2} left(left(x-1right)left(x+5right)right).)
Нужно найти область, на которой определяется данная функция.
Решение
Логарифм определен в том случае, когда подлогарифмическая функция обладает положительным значением. Исходя из этого, запишем:
(Dleft(yright):left(x-1right)left(x+5right)>0.)
Решим получившееся неравенство:
(left(x-1right)left(x+5right)>0.)
Воспользуемся способом интервалов. В процессе определим, каковы нули всех сомножителей:
(begin{array}{c} {x-1=0Rightarrow x=1,} \ {x+5=0Rightarrow x=-5,} end{array})
В результате:
(Dleft(yright):xin left(-infty ;; -5right)bigcup left(1;; +infty right).)
Ответ: (xin left(-infty ;; -5right)bigcup left(1;; +infty right).)
Задача 3
Построен график логарифмической функции (fleft(xright)={{log}_a left(x+bright)}):
Требуется определить (fleft(11right)).
Решение
Заметим, что изображенный график функции (y={{log}_a left(x+bright) }) пересекает следующие точки:
(-3; 1)
(-1; 2)
Следует выполнить подстановку данных точек в уравнение функции. Получим:
(left{ begin{array}{c}{{log}_a left(-3+bright)=1 } \{{log}_a left(-1+bright) }=2 end{array}right.)
Тогда:
(left{ begin{array}{c}b-3=a \b-1=a^2 end{array};right.)
Путем вычитания из второго уравнения первого получим:
(a^2-a=2; a^2-a-2=0;)
a=2 или a=-1
Отрицательное значение является посторонним, так как a = 0, исходя из определения основания логарифма.
В результате:
(b=a+3=5; fleft(xright)={{log}_2 left(x+5right) })
(fleft(11right)={{log}_2 16=4.})
Ответ: 4.
Задача 4
Представлено графическое изображение функции (fleft(xright)=a{{log}_5 x }-c:)
Требуется вычислить (f(0,2)).
Решение
Заметим, что функция на графике пересекает следующие точки:
(left(1;-2right))
(left(5;3right))
Тогда путем поочередной подстановки координат данных точек в уравнение функции получим:
(left{ begin{array}{c}a{{log}_5 1 }-c=-2 \a{{log}_5 5 }-c=3 end{array}right.)
(left{ begin{array}{c}-c=-2 \a-c=3 end{array}right.)
(left{ begin{array}{c}c=2 \a=5 end{array}right.)
Уравнение функции:
(fleft(xright)=5{{log}_5 x }-2.)
Определим значение (fleft(0,2right)=fleft(frac{1}{5}right):)
(displaystyle 5cdot {{log}_5 frac{1}{5} }-2=-5-2=-7.)
Ответ: -7.
Пример:
Найти положительный корень уравнения
( По определению арифметического корня имеем-
Пример:
Решить уравнение
Запишем данное уравнение так: 

Уравнение 

гарифмом числа b по основанию а и обозначают 
корнем уравнения 
Лаплас Пьер Симон (1749— 1827)— французский математик, физик и астроном, адъюнкт Французской Академии Наук. После Великой Французской революции принимал активное участие в реорганизации системы образования. Важнейшие направления его исследований — математика, небесная механика и математическая физика. Один из создателей теории вероятностей.
Итак, логарифмом положительного числа b по основанию а, где
а > 0, 
Например, 

так как 
так как
Определение логарифма можно кратко записать так:

Это равенство справедливо при b > 0, а > 0, 
называют основным логарифмическим тождеством.
Например, 
С помощью основного логарифмического тождества можио
показать, например, что 
В самом деле,
Действие нахождения логарифма числа называют логарифмированием.
Пример:
Вычислить
Обозначим 
Так как 

откуда 
Ответ.
Пример:
Вычислить
Используя свойства степени и основное логарифмическое равенство, находим:

Пример:
Решить уравнение
Но определению логарифма 
Пример:
При каких значениях х существует
Так как основание логарифма 5 > 0 и 
существует тогда и только тогда, когда
Получено неравенство, находим 1 < х < 2.
Свойства логарифмов
При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.
Пусть а>0, 

По основному логарифмическому тождеству

1) Перемножая равенства (4) и (5), получаем:
откуда по определению логарифма
Формула (1) доказана.
2) Разделив равенства (4) и (5), получим:

откуда по определению логарифма следует формула (2).
3) Возводя основное логарифмическое тождество
в степень с показателем r, получаем:

откуда по определению логарифма следует формула (3). •
Приведем примеры применения формул (1) — (3):

Пример:
Вычислить 
Применяя формулы (1) — (3), находим:

Десятичные и натуральные логарифмы
Для логарифмов чисел составлены специальные таблицы
(таблицы логарифмов). Логарифмы вычисляют также с помощью
микрокалькулятора. И в том и в другом случае находятся только
десятичные или натуральные логарифмы.
Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут lg b вместо
Натуральным логарифмом числа называют логарифм этого числа по основанию e, где е — иррациональное число, приближенно равное 2,7. При этом пишут ln e вместо
Иррациональное число е играет важную роль в математике
и ее приложениях. Число е можно представить как сумму:

Вычисление числа е на микрокалькуляторе проводится по
программе:

Вычисления на микрокалькуляторе lg b и ln b проводятся
соответственно по программам:

Например, вычисляя lg 13, получаем:

вычисляя ln 13, получаем:

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить
логарифмы чисел по любому основанию. Для этого используется
формула перехода от логарифма по одному основанию к
логарифму по другому основанию:

где b > 0, а > 0 , 
Докажем справедливость формулы (1).
Запишем основное логарифмическое тождество
Возьмем от обеих его частей логарифмы по основанию с:

Используя свойство логарифма степени, получаем:

Из формулы (1) при с = 10 и с = е получаются формулы
перехода к десятичным и натуральным логарифмам:

Пример:
С помощью микрокалькулятора МК-54 вычислить
1) С помощью десятичных логарифмов:

2) С помощью натуральных логарифмов:

Ответ. 
Формула перехода от одного основания логарифма к другому
иногда используется при решении уравнений.
Пример:
Решить уравнение
По формуле перехода

Поэтому уравнение принимает вид 

Пример:
Двухпроцентный вклад в Сбербанк, равный
а рублям, через п лет становится равным 
трехпроцентный вклад становится равным
Через сколько лет каждый из вкладов удвоится?
1) Для первого вклада 
2. Вычисления проведем на МК-54:

2) Для второго вклада 
такова:

Ответ. По первому вкладу приближенно через 36 лет, а
по второму — через 23,5 года.
Логарифмическая функция и ее график
В математике и ее приложениях часто встречается
логарифмическая функция

где а — заданное число, а > 0, 
Логарифмическая функция обладает следующими свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.
Это следует из определения логарифма, так как выражение 
2) Множество значений логарифмической функции — множество R всех действительных чисел.
Это следует из того, что для любого действительного числа
b есть такое положительное число х, что 


3) Логарифмическая функция 
0 < а < 1 .
Пусть а > 1. Докажем, что если 

Пользуясь основным логарифмическим
тождеством, условие 

Пусть 0 < a < 1 . Докажем, что если 




4) Если а > 1, то функция 

Это следует из того, что функция 
значение, равное нулю, при x = 1 и является возрастающей на промежутке x > 0, если а > 1, и убывающей, если 0 < а < 1 .
Из рассмотренных свойств логарифмической функции 
На рисунке 9 изображен график функции 
Отметим, что график любой логарифмической функции 
Теорема:
Если 


Предположим, что 



0 < а < 1 , то из неравенства 
В обоих случаях получилось противоречие с условием 
Пример:
Решить уравнение
Используя доказанную теорему, получаем Зх — 2 = 7, откуда Зх = 9,
х = 3.
Пример:
Решить неравенство
Пользуясь тем, что 



Ответ. 0 < х < 8 .
Пример:
Решить неравенство
Запишем данное неравенство так:
Функция 

Ответ.
Обратная функция
Известно, что зависимость скорости v от времени t движения
тела, брошенного вверх с начальной скоростью 
формулой
Из этой формулы можно найти обратную зависимость — времени от скорости: 


Рассмотрим теперь показательную и логарифмическую
функции. Обозначим символом f(х) показательную функцию,
a g (х) — логарифмическую функцию:

где а — заданное число, а > 0, 
Решим уравнение 
логарифма 
получим логарифмическую функцию 







Вообще если функция y = f(x) задана формулой, то для
нахождения обратной функции нужно решить уравнение
f (x) = у относительно х и затем поменять местами х и у.
Если уравнение f(x)= y имеет более чем один корень, то
функции, обратной к y = f (x), не существует.
Например, функция 
уравнение 

у > 0.
Если функцию 




Пример:
Найти функцию, обратную к функции
Решая это уравнение относительно х, получаем
Заменив х на у и у на х, находим
В этой задаче область определения функции 
множество действительных чисел, не равных 2, а множество ее значений — все действительные числа, не равные 0. График этой
функции изображен на рисунке 11.
Для обратной функции 
множество действительных чисел, не равных 0, а множество значений — все действительные числа, не равные 2. График обратной функции изображен на рисунке 12.
Вообще область определения обратной функции совпадает
с множеством значений исходной функции, а множество
значений обратной функции совпадает с областью определения
исходной функции.
Можно показать, что если функция имеет обратную, то
график обратной функции симметричен графику данной
функции относительно прямой у = х.
Примеры графиков взаимно обратных функций показаны на
рисунке 13.
Логарифмические уравнения
Пример:
Решить уравнение
( 1 )
Предположим, что х — такое число, при котором равенство ( 1 ) является верным, т. е. х — корень уравнения ( 1 ).
Тогда по свойству логарифма верно равенство

Из этого равенства по определению логарифма получаем:

откуда 
Последнее равенство верно, если 
Итак, предположив, что число х — корень уравнения (1),
мы показали, что х может быть равным или 1, или —5.
Проверим, являются ли эти числа корнями уравнения (1).
Подставляя в левую часть данного уравнения х = 1 , получаем
т. е. х = 1 — корень уравнения ( 1 ).
При х = — 5 числа х + 1 и х + З отрицательны, и поэтому
левая часть уравнения ( 1 ) не имеет смысла, т. е. х = — 5 не
является корнем этого уравнения.
Ответ. х = 1 .
Заметим, что х = — 5 является корнем уравнения (2), так
как

Получилось, что число х = 1 является корнем обоих уравнений
( 1 ) и (2), а число х = — 5 не является корнем уравнения (1 ), но является корнем уравнения (2). Таким образом, при переходе от уравнения (1) к уравнению (2 ) корень х = 1 сохранился и появился посторонний корень х = —5. В этом случае уравнение (2) называют следствием уравнения (1 ).
Если все корни первого уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого уравнения.
Отметим, что в уравнении, которое является следствием
данного, не всегда появляются посторонние корни; важно лишь
то, чтобы корни исходного уравнения не терялись.
В большинстве случаев, как и в задаче 1, уравнения решаются постепенным переходом к более простым уравнениям,
которые являются следствием исходного уравнения. В таких
случаях после нахождения корней необходима их проверка.
Пример:
Решить уравнение

Перенесем логарифм из правой части в левую;

откуда

Решая это уравнение, получаем
Число 
как при x = 5 левая и правая части уравнения теряю т смысл.
Проверка показывает, что число х = — 1 является корнем
исходного уравнения.
Ответ. х = — 1. ▲
Пример:
Решить уравнение

По свойству логарифмов

откуда


являются корнями исходного уравнения.
Ответ. 
Проверкой можно убедиться в том, что числа 
(4) и (5). Все эти уравнения других корней не имеют. Такие
уравнения называют равносильными.
Уравнения, имеющие одно и то же множество корней,
называют равносильными.
В частности, два уравнения, не имеющие корней, являются
равносильными.
Отметим, что любое из двух равносильных уравнений является следствием другого.
Большинство уравнений, с которыми вы встречались в курсе
алгебры, решались с помощью перехода от данного уравнения
к равносильному. Так решались уравнения первой степени с
одним неизвестным, квадратные уравнения, показательные
уравнения.
Напомним, что уравнение заменяется ему равносильным при
следующих преобразованиях:
любой член уравнения можно переносить из одной части
в другую, изменив его знак на противоположный;
обе части уравнения можно умножить или разделить на
одно и то же число, не равное нулю.
Однако не при любом преобразовании уравнение заменяется
на равносильное. Например, при возведении обеих частей
уравнения 

Пример:
Решить уравнение

Приравнивая выражения, стоящие под знаком логарифма,
получаем:

откуда х = — 2. Выполняя проверку, убеждаемся, что при х = — 2
левая и правая части исходного уравнения не имеют смысла.
Ответ. Корней нет.
Здесь посторонний корень появился потому, что при переходе
от равенства логарифмов к равенству чисел не было учтено
требование, чтобы эти числа были положительными.
Рассмотренные примеры логарифмических уравнений
показывают, что при их решении с использованием свойств логарифмов получаются уравнения, которые являются следствиями исходного. Поэтому необходима проверка, которая позволяет
обнаружить посторонние корни. ▲
Пример:
Решить уравнение

Преобразуем данное уравнение:

Приравнивая каждый из множителей левой части уравнения
к нулю, получаем:
Проверка показывает, что оба значения х являются корнями
исходного уравнения.
Ответ.
Отметим, что если обе части уравнения (7) разделить на
выражение 
Вообще при делении обеих частей уравнения на выражение, содержащее неизвестное, может произойти потеря корней.
Поэтому уравнение, обе части которого содержат общий
множитель, решают переносом всех членов в одну часть и
разложением на множители.
При решении уравнений главное не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.
Пример:
Решить систему уравнений

Из первого уравнения выразим х через 
получим 
Найдем значения х : 
что 
решение.
Ответ.
Логарифмические неравенства
При изучении логарифмической функции рассматривались
неравенства вида 
Приведем примеры решения более сложных логарифмических неравенств. Обычный способ решения таких неравенств заключается в переходе от них к более простому неравенству или системе неравенств, имеющей то же самое множество решений.
Пример:
Решить неравенство

Правая часть данного неравенства имеет смысл при всех значениях x, а левая часть — при x + 1 > 0, т. е. при х > — 1.
Промежуток х > — 1 называют областью определения неравенства (1). Так как логарифмическая функция с основанием
10 возрастающая, то неравенство ( 1 ) при условии x + 1 > 0
выполняется, если 
образом, неравенство ( 1 ) равносильно системе неравенств

т. е. неравенство ( 1 ) и система (2) имеют одно и то же множество решений. Решая систему (2), находим
Пример:
Решить неравенство

Логарифмическая функция определена при положительных значениях аргумента, поэтому левая часть неравенства имеет смысл при х — 3 > 0 и х — 2 > 0.
Следовательно, областью определения этого неравенства является промежуток х > 3 . По свойствам логарифма неравенство (3)
при х > 3 равносильно неравенству

Логарифмическая функция с основанием 2 возрастающая. Поэтому при х > 3 неравенство (4) выполняется, если
Таким образом, исходное неравенство (3) равносильно системе неравенств

Решая первое неравенство этой системы, получаем 
Совмещая этот отрезок с промежутком х > 3 , получаем 
Пример:
Решить неравенство

Область определения неравенства находится из условия

Неравенство (5) можно записать в следующем виде:

Так как логарифмическая функция с основанием 
убывающей, то для всех х из области определения неравенства
получаем:

Таким образом, исходное неравенство (5) равносильно системе неравенств


Решая первое квадратное неравенство, получаем х < — 4, х > 2 (рис. 15). Решая второе квадратное неравенство, получаем 
мы выполняются одновременно при 

Ответ.
Определение:
Логарифмом числа а по основанию b называется показатель степени, в которую надо возвести а, чтобы получить число b.
В качестве основания мы будем всегда брать положительное число а, отличное от 1.
В записи b = 

Можно сказать, что формулы 

Подставляя в равенство 

Представляя в равенстве

Свойства логарифмов
Теорема:
Верны следующие тождества, выражающие свойства логарифмов:
1)
2) 
3) 
Доказательство:
Свойства логарифмов выводятся из свойств степеней с помощью основного логарифмического тождества, выражающего определение логарифма. Выведем для примера первое свойство.
Обозначим
Перемножим эти равенства: 
По определению логарифма t1+ t2 = 

Свойства степеней и логарифмов тесно связаны между собой. Они фактически выражают одно и то же, только один раз мы обращаем внимание на поведение самих степеней, а другой — на поведение показателей:

С помощью свойств логарифмов можно логарифмировать выражения, составленные с помощью операций умножения, деления и возведения в степень.
Примеры.

Иногда приходится искать выражение по его логарифму. Такую операцию называют потенцированием.
Примеры:

Замечание. Запись 

Если же х<0, то оба множителя отрицательны и А нужно разложить на множители так: А =( — x)(1 — x), откуда

Аналогично 


Модуль перехода
В вычислениях в качестве основания а часто берется число а=10. В то же время зачастую необходимы вычисления степеней и логарифмов с разными основаниями. Возникает вопрос: как связать между собой степени и логарифмы с разными основаниями?
Пусть дана степень b = 









Выведенную формулу называют формулой перехода от одного основания логарифма к другому.
Таким образом, мы видим, что при изменении основания значения логарифмов изменяются пропорционально. Коэффициент пропорциональности 
Отметим простые следствия выведенной формулы:
1) 
2) 
3) 
С помощью логарифмов все степени можно привести к одному основанию. Если в качестве основания берется число a =10, то соответствующие логарифмы обозначаются знаком lg и называются десятичными. Можно записать:

Если в качестве основания берется число е, то соответствующие логарифмы обозначаются знаком ln и называются натуральными:

Значения модулей перехода от десятичных логарифмов к натуральным и наоборот таковы:

Исследование логарифмической функции
Определение:
Логарифмической функцией называется функция вида
Напомним, что в качестве основания логарифмов выбирается число а> 0, отличное от 1.
Основные свойства логарифмической функции (схема X).
- 1) Область определения: множество всех положительных чисел, т. е. промежуток (0; + ∞).
- 2) Монотонность: если а>1, то логарифмическая функция строго возрастает; если 0<а<1, то она строго убывает.
- 3) Область значений: множество всех вещественных чисел R.
Так как определение логарифмов основано на понятии степени,
то при доказательстве свойств логарифмической функции используют свойства показательной функции.
Свойство 1 в доказательстве не нуждается: оно опирается на определение логарифма числа х, по которому необходимо, чтобы число х было положительным.
Докажем свойство 2. Для этого сначала рассмотрим случай а>1. Возьмем два положительных числа х1 и x2, такие, что x1 <x2, и докажем, что 
Если бы выполнялось неравенство t1 ≥ t2, то по свойству монотонности показательной функции выполнялось бы неравенство т. е. 
Следовательно, t1<t2, что и требовалось доказать. Случай 0<а<1 рассматривается аналогично.
Свойство 3 утверждает, что всякое вещественное число t может быть логарифмом некоторого числа х. Так как степень 


Графики логарифмических функций при различных основаниях показаны на рисунке 108.


Графики функций 

Так как точки Р (с; d) и Q (d; с) симметричны относительно прямой у = х (рис. 109), то симметричны и графики показательной и логарифмической функций.
Вместо логарифмических функций с произвольным основанием удобно рассматривать функции вида у = с ln х. Так как 
Функция у = ln х растет с ростом х, однако медленнее, чем любая степенная функция вида 

Производная логарифмической функции
Рассмотрим две функции у = 
Пусть a1 и а2 — углы, образованные проведенными касательными с осью абсцисс. Из рисунка 109 ясно, что
Так как
Таким образом, производная функции у = ln х в точке x = d равна
Можно написать:

Мы видим, что производная логарифмической функции y = ln х равна степенной функции 


Так как 

По формулам производной показательной функции 
Известно, что ,


Примеры:
Зная производные экспоненты и логарифма, можно получить приближенные формулы для их вычисления.
Пусть
Разность 

Более точная формула для вычисления экспоненты такова:

Пусть теперь у =lnх. Выберем дго=1, xо = ln l =0. Положим dx = h и вычислим ln (l+h). Найдем dy при xo=1. Так как
(In то y’ (jc0)= 1 и dy= 1 •dx = h.

Заменяя ∆y= ln (1+h) — ln l = ln (l+h), получаем приближенную формулу

Более точная формула для вычисления логарифма такова:

Вычисление логарифмов
Более 300 лет логарифмы использовались для облегчения вычислений. Их основное достоинство — способность сводить умножение к сложению по формуле
Были составлены обширные таблицы логарифмов чисел, с помощью которых можно легко переходить от чисел к их логарифмам и обратно.
Все таблицы логарифмов до 1950 г. являлись перепечаткой или сокращением таблиц Бриггса. Генри Бриггс (1561 —1630) с очень большой точностью (16 знаков после запятой) извлек подряд 57 квадратных корней из 10 и получил значения
Комбинируя эти значения, он получил густую сетку чисел с известными десятичными логарифмами: 
Это огромная работа, и за 300 лет не нашлось никого, кто повторил бы ее. Любопытно, что немного раньше Бриггса таблицу натуральных логарифмов составил Джон Непер (1550—1617).
С появлением ЭВМ ситуация переменилась. Умножение по-прежнему выполняется дольше, чем сложение, но логарифмирование требует еще больше времени. Поиск числа в таблице очень дорогая операция для ЭВМ. Поэтому теперь значение логарифмов как инструмента вычисления резко упало, а с распространением калькуляторов оно сходит на нет. С другой стороны, сами по себе логарифмические зависимости легко обрабатываются и используются при вычислениях на ЭВМ. Например, формула xk = exp(k ln x) служит основным средством возведения в степень (кроме k= l, 2, 3) на всех ЭВМ и на калькуляторах.
На современных ЭВМ (и на калькуляторах) значения In х и 
Прикладные примеры
Во вводной беседе мы уже говорили о том, что многие процессы описываются с помощью показательных функций. Почему так происходит, это мы обсудим в следующей главе, а сейчас приведем примеры зависимостей, в которых встречаются экспоненты и логарифмы.
- Радиоактивный распад. Изменение массы радиоактивного вещества происходит по формуле
, где m0 — масса вещества в начальный момент t = 0, m — масса вещества в момент времени t, Т — некоторая константа, смысл которой мы сейчас выясним.
Вычислим значение m при t — Т. Так,
Это означает, что через время Т после начального момента масса радиоактивного вещества уменьшается вдвое. Поэтому число Т называют периодом полураспада. Период полураспада радия равен 1600 лет, урана-238 — 4,5 млрд. лет, цезия-137 —31 год, иода-131 —8 суток.
Закон радиоактивного распада часто записывают в стандартном виде 
2. Рост народонаселения. Изменение количества людей в стране на небольшом отрезке времени с хорошей точностью описывается формулой 
Барометрическая формула. Давление воздуха убывает с высотой (при постоянной температуре) по закону 
4. Формула Циолковского. Эта формула, связывающая скорость ракеты у с ее массой m, такова: 

5. Коэффициент звукоизоляции стен измеряется по формуле 

Дополнение к логарифмической функции
Смотрите также:
Предмет высшая математика
Логарифмическая функция
Определение логарифма: Логарифмом числа N по данному основанию а называется такой показатель степени, в который надо возвести основание а, чтобы получить число N; запись
Примеры:

Таким образом, 
Примеры:
1. Проверить справедливость следующих равенств:

Решение:


б), г), е) верны; 

2.Следующие равенства переписать в виде логарифмических равенств:
Решение:

Указать, какие из нижеследующих уравнений имеют решение. Запишите это решение с помощью логарифма:

Решение:
а) Уравнение 

б) Уравнение 

в) Уравнение 

Десятичные логарифмы
Если основанием логарифмов служит число 10, то такие логарифмы называются десятичными. Десятичный логарифм числа N принято обозначать
Примеры:
Найти десятичные логарифмы следующих чисел:
Решение:
Так как 


2.Решить следующие уравнения:

Решение:

Функция 
Функция 




1.Областью определения функции является множество всех положительных чисел.
2.Областью значений функции является множество всех действительных чисел.
Справедливость этих двух свойств вытекает из того факта, что функции 
3.Функция 
4.При 


Примеры:
1. На рис. 89 изображен график функции 
а) найти 
Решение:

б) если
Если
2.Сравнить значения выражений:
Решение:
а) Функция 




3.Решить уравнения и неравенства:

Решение:
Воспользовавшись изображенным на рис. 89 графиком функции 

4.Найти область определения функции:

Решение:
При решении этих примеров надо помнить о том, что область определения функции 


Область определения —объединение двух множеств
Область определения —множество

5.Решить уравнения:
Решение:
а) Так как 




Аналогично решаются и остальные уравнения;










Логарифмирование и потенцирование
Применение логарифмов позволяет во многих случаях значительно упростить вычисления. Чтобы убедиться в этом, прежде всего выясним, как находятся логарифмы произведения, частного, степени и корня.
Теорема:
Логарифм произведения любых двух положительных чисел равен сумме логарифмов множителей, т. е.

Доказательство:
Пусть 


значит,

Предлагаем читателю самому доказать, что установленное свойство справедливо для любого числа положительных множителей.
Теорема:
Логарифм степени с положительным основанием равен произведению показателя степени и логарифма ее основания, т. е.

Доказательство:
Пусть 


Покажем, что знания этих теорем достаточно для нахождения логарифмов дроби и корня. Действительно, пусть дано выражение 



Пусть теперь дано выражение 

Примеры:
1. Найти приближенные значения следующих логарифмов: 
Решение:
Прежде всего, воспользовавшись графиком функции 

Теперь имеем:

2.Прологарифмировать следующие выражения (буквами обозначены положительные числа):

Решение:

3.Решить уравнения:

Решение:
а) Прологарифмировав обе части данного равенства, получим 


б) в результате логарифмирования имеем равенство 


4.Найти x, если:
Решение:
5.Решить уравнения:

Решение:
а) Потенцируя обе части равенства, получаем уравнение

Сделаем проверку. Подставив в уравнение найденное решение х = 21, получим:

Таким образом, корень данного уравнения x=21;
б) прежде чем потенцировать, заметим, что 

откуда

Сделаем проверку: 

откуда

Сделаем проверку. Корень 
Корень x = 5, как легко видеть, удовлетворяет уравнению (Проверьте сами!);
г) уравнение 

а эта система противоречива и решения не имеет.
Стандартный вид числа. Характеристика и мантисса
Любое положительное число х можно записать в так называемом стандартном виде: 
Примеры:
Записать следующие числа в стандартном виде и указать их порядок: а) 273; б) 51,83; в) 0,8912; г) 400012; д) 0,00051; е) 1,002.
Решение:

Легко видеть, что если 


Если же число 


Пример:
Не переходя к стандартному виду записи, найти порядок чисел: а) х = 373,25; б) x: = 0,00085.
Решение:
а) Число 373,25 больше единицы и содержит в целой части три цифры. Следовательно, его порядок n= 2;
б) число 0,00085 меньше единицы и содержит четыре нуля до первой значащей цифры. Следовательно, n =—4.
Пусть х=375,8. Запишем это число в стандартном виде и найдем его логарифм:

Так как 



Целая часть логарифма числа называется его характеристикой, а дробная часть — мантиссой.
Теорема:
Характеристика логарифма числа 

Доказательство:
Пусть 




Следствие:
Логарифмы чисел, отличающихся друг от друга только порядком, имеют одну и ту же мантиссу.
Доказательство:
Пусть 

Таким образом,

Например, пусть 
Таким образом, доказанное следствие можно сформулировать иначе: мантисса логарифма числа не зависит от положения запятой в числе.
Примеры:
1. Найти характеристику логарифма числа а) 302;б) 87,5; в) 0,015.
Решение:
Как было доказано Выше, характеристика логарифма числа равна его порядку, а поэтому
2.Зная, что 
Решение:
Вычисления с помощью таблиц логарифмов
Как известно, характеристика логарифма числа легко находится устно (она равна порядку числа). Значения мантисс приведены в таблице «Четырехзначных математических таблиц» В. М. Брадиса. Приведем часть этой таблицы и укажем как ею пользоваться.
Примеры:
1. Найти логарифмы следующих чисел:

Решение:
а) Характеристика 


Для отыскания мантиссы мы, прочитав число 8739 на пересечении строки с меткой «74» и столбца с меткой «8», прибавим к этому числу поправку на четвертую цифру. Эта поправка расположена в правой части таблицы на пересечении той же строки и столбца поправок с меткой «5». Поправка равна 3, следовательно, мантисса равна 


2.Найти x:, если:
Решение:
а) По таблице значений функции 


б) представим данный логарифм в виде суммы характеристики и мантиссы:

Мантиссу 0,0335 имеет любое число вида 

В заключение приведем пример вычисления с помощью таблиц логарифмов.
3.Вычислить значение х, если
Решение:
Логарифмируя, имеем:

По таблице логарифмов найдем:

Решение:
а) Характеристика 


Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат


































так как 
поскольку 
потому что 




































































































данного уравнения (и избегаем преобразований, приводящих к сужению ОДЗ)








с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов. 












































































































































































Учитывая, что
имеем
где 












































является множество
всех положительных чисел 
является множество
всех действительных чисел (тогда функция
не имеет ни наибольшего, ни наименьшего значений).
не может быть ни четной, ни нечетной, поскольку ее область определения не симметрична относительно точки 0.
не пересекает ось
поскольку на оси
а это значение не принадлежит области определения функции
График функции
пересекает ось
в точке
поскольку
при всех значениях 
приведенных на рисунке 127, видно, что прu
функция
возрастает на всей области определения, а при
— убывает на всей области определения. Это свойство можно обосновать, опираясь не на вид графика, а только на свойства функции
Например, при
возьмем
По основному логарифмическому тождеству можно записать:
Тогда, учитывая, что
имеем
Поскольку при
функция
является возрастающей, то из последнего неравенства получаем
А это и означает, что при
функция
возрастает на всей области определения. Аналогично можно обосновать, что при
функция
убывает на всей области определения.
пересекает ось
в точке
то, учитывая возрастание функции при
и убывание при
имеем:

задается неравенством
Отсюда
То есть 
задается неравенством
Это неравенство выполняется при всех действительных значениях
Таким образом, 
задается неравенством
Решая это квадратное неравенство, получаем
или
(см. рисунок).







































с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов.


































































на каждом из промежутков, на которые разбивается ОДЗ; 




















































а если
убывает.
то значения функции
положительные при
и отрицательные при 
то значения функции
положительные при
и отрицательные при 
































































































































































