|
0 / 0 / 0 Регистрация: 15.11.2013 Сообщений: 4 |
|
|
1 |
|
максимальный элемент главной диагонали матрицы15.11.2013, 14:17. Показов 17793. Ответов 9
Помогите, какой должен быть код чтобы программа высчитывала максимальный элемент главной диагонали матрицы Х(5 на 5)
0 |
|
Programming Эксперт 94731 / 64177 / 26122 Регистрация: 12.04.2006 Сообщений: 116,782 |
15.11.2013, 14:17 |
|
9 |
|
ПерС 584 / 487 / 371 Регистрация: 05.11.2013 Сообщений: 1,263 Записей в блоге: 6 |
||||
|
15.11.2013, 15:00 |
2 |
|||
|
Помогите, какой должен быть код чтобы программа высчитывала максимальный элемент главной диагонали матрицы Х(5 на 5) Это секретный код… только для тебя…
1 |
|
Hoottie_McGOOB 109 / 107 / 44 Регистрация: 04.10.2013 Сообщений: 231 |
||||
|
15.11.2013, 15:03 |
3 |
|||
0 |
|
Alexxx7 98 / 34 / 10 Регистрация: 24.04.2012 Сообщений: 151 |
||||
|
15.11.2013, 15:14 |
4 |
|||
только что похожее писал, лишнее удали если не надо
1 |
|
jeka950 0 / 0 / 0 Регистрация: 15.11.2013 Сообщений: 4 |
||||
|
15.11.2013, 16:08 [ТС] |
5 |
|||
|
Это секретный код… только для тебя…
получается что Х в данном задании не задана
0 |
|
ПерС 584 / 487 / 371 Регистрация: 05.11.2013 Сообщений: 1,263 Записей в блоге: 6 |
||||
|
15.11.2013, 16:11 |
6 |
|||
|
это огромная проблема, да
представляешь, я шаман… могу предсказать, что ответ будет 4
1 |
|
jeka950 0 / 0 / 0 Регистрация: 15.11.2013 Сообщений: 4 |
||||
|
15.11.2013, 16:23 [ТС] |
7 |
|||
|
это огромная проблема, да
представляешь, я шаман… могу предсказать, что ответ будет 4 ну это понятно что будет 4, в матрицах я разбираюсь но просто С++ для меня так тяжело даётся а как должен выглядеть полный код для такой программы?
0 |
|
ПерС 584 / 487 / 371 Регистрация: 05.11.2013 Сообщений: 1,263 Записей в блоге: 6 |
||||
|
15.11.2013, 17:12 |
8 |
|||
|
хм, если не брать в расчёт зависящих от компилятора операторов, то так:
у тебя в ветке, кажется, ещё пара версий
0 |
|
0 / 0 / 0 Регистрация: 15.11.2013 Сообщений: 4 |
|
|
16.11.2013, 00:57 [ТС] |
9 |
|
а какой должен быть код для того чтобы я вводил значения матрицы в готовой проге?
0 |
|
ПерС 584 / 487 / 371 Регистрация: 05.11.2013 Сообщений: 1,263 Записей в блоге: 6 |
||||||||
|
16.11.2013, 07:28 |
10 |
|||||||
|
а какой должен быть код для того чтобы я вводил значения матрицы в готовой проге? вместо
напиши
дальше без изменений
0 |
|
IT_Exp Эксперт 87844 / 49110 / 22898 Регистрация: 17.06.2006 Сообщений: 92,604 |
16.11.2013, 07:28 |
|
Помогаю со студенческими работами здесь
найти макс элемент матрицы… Поменять местами максимальный элемент в каждой строке матрицы с элементом главной диагонали
Найти максимальный элемент главной диагонали матрицы, вывести строку и столбец, в которых он содержится Искать еще темы с ответами Или воспользуйтесь поиском по форуму: 10 |
@k4roma
Начал изучать JavaScript
Как найти максимальный элемент матрицы на главной диагонали и ниже её?
Как найти максимальный элемент матрицы на главной диагонали и ниже её?
Матрица 5Х5.
Помогите пожалуйста.
-
Вопрос заданболее трёх лет назад
-
2791 просмотр
На PascalABC.NET
program max_element;
var
matrix: array[0..4, 0..4] of integer;
i, j: integer;
max: integer;
begin
Randomize;
// Заполнение матрицы
for i := 0 to 4 do
begin
for j := 0 to 4 do
matrix[i][j] := Random(10, 99);
WriteLn(matrix[i]);
end;
i := 0;
j := 0;
max := matrix[i][j];
for j := 0 to 4 do
for i := j to 4 do
if max < matrix[i][j] then
max := matrix[i][j];
WriteLn(max);
end.
Пригласить эксперта
-
Показать ещё
Загружается…
25 мая 2023, в 19:25
3000 руб./за проект
23 мая 2023, в 17:42
110000 руб./за проект
25 мая 2023, в 18:47
1 руб./за проект
Минуточку внимания
Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article
Given a square matrix of order n*n, find the smallest and largest elements from both diagonals of the given matrix.
Examples:
Input : matrix = {
{1, 2, 3, 4, -10},
{5, 6, 7, 8, 6},
{1, 2, 11, 3, 4},
{5, 6, 70, 5, 8},
{4, 9, 7, 1, 5}};
Output :
Principal Diagonal Smallest Element: 1
Principal Diagonal Greatest Element :11
Secondary Diagonal Smallest Element: -10
Secondary Diagonal Greatest Element: 11
The idea behind solving this problem is, First check traverse matrix and reach all diagonals elements (for principal diagonal i == j and secondary diagonal i+j = size_of_matrix-1) and compare diagonal element with min and max variable and take new min and max values. and same thing for secondary diagonals.
Here is implementation of above approach:
Example 1: With O(n^2) Complexity
C++
#include<bits/stdc++.h>
using namespace std;
void diagonalsMinMax(int mat[5][5])
{
int n = sizeof(*mat) / 4;
if (n == 0)
return;
int principalMin = mat[0][0],
principalMax = mat[0][0];
int secondaryMin = mat[n - 1][0],
secondaryMax = mat[n - 1][0];
for (int i = 1; i < n; i++)
{
for (int j = 1; j < n; j++)
{
if (i == j)
{
if (mat[i][j] < principalMin)
{
principalMin = mat[i][j];
}
if (mat[i][j] > principalMax)
{
principalMax = mat[i][j];
}
}
if ((i + j) == (n - 1))
{
if (mat[i][j] < secondaryMin)
{
secondaryMin = mat[i][j];
}
if (mat[i][j] > secondaryMax)
{
secondaryMax = mat[i][j];
}
}
}
}
cout << ("Principal Diagonal Smallest Element: ")
<< principalMin << endl;
cout << ("Principal Diagonal Greatest Element : ")
<< principalMax << endl;
cout << ("Secondary Diagonal Smallest Element: ")
<< secondaryMin << endl;
cout << ("Secondary Diagonal Greatest Element: ")
<< secondaryMax << endl;
}
int main()
{
int matrix[5][5] = {{ 1, 2, 3, 4, -10 },
{ 5, 6, 7, 8, 6 },
{ 1, 2, 11, 3, 4 },
{ 5, 6, 70, 5, 8 },
{ 4, 9, 7, 1, -5 }};
diagonalsMinMax(matrix);
}
Java
public class GFG {
static void diagonalsMinMax(int[][] mat)
{
int n = mat.length;
if (n == 0)
return;
int principalMin = mat[0][0], principalMax = mat[0][0];
int secondaryMin = mat[n-1][0], secondaryMax = mat[n-1][0];
for (int i = 1; i < n; i++) {
for (int j = 1; j < n; j++) {
if (i == j) {
if (mat[i][j] < principalMin) {
principalMin = mat[i][j];
}
if (mat[i][j] > principalMax) {
principalMax = mat[i][j];
}
}
if ((i + j) == (n - 1)) {
if (mat[i][j] < secondaryMin) {
secondaryMin = mat[i][j];
}
if (mat[i][j] > secondaryMax) {
secondaryMax = mat[i][j];
}
}
}
}
System.out.println("Principal Diagonal Smallest Element: "
+ principalMin);
System.out.println("Principal Diagonal Greatest Element : "
+ principalMax);
System.out.println("Secondary Diagonal Smallest Element: "
+ secondaryMin);
System.out.println("Secondary Diagonal Greatest Element: "
+ secondaryMax);
}
static public void main(String[] args)
{
int[][] matrix = {
{ 1, 2, 3, 4, -10 },
{ 5, 6, 7, 8, 6 },
{ 1, 2, 11, 3, 4 },
{ 5, 6, 70, 5, 8 },
{ 4, 9, 7, 1, -5 }
};
diagonalsMinMax(matrix);
}
}
Python3
def diagonalsMinMax(mat):
n = len(mat)
if (n == 0):
return
principalMin = mat[0][0]
principalMax = mat[0][0]
secondaryMin = mat[0][n-1]
secondaryMax = mat[0][n-1]
for i in range(1, n):
for j in range(1, n):
if (i == j):
if (mat[i][j] < principalMin):
principalMin = mat[i][j]
if (mat[i][j] > principalMax):
principalMax = mat[i][j]
if ((i + j) == (n - 1)):
if (mat[i][j] < secondaryMin):
secondaryMin = mat[i][j]
if (mat[i][j] > secondaryMax):
secondaryMax = mat[i][j]
print("Principal Diagonal Smallest Element: ",
principalMin)
print("Principal Diagonal Greatest Element : ",
principalMax)
print("Secondary Diagonal Smallest Element: ",
secondaryMin)
print("Secondary Diagonal Greatest Element: ",
secondaryMax)
matrix = [[ 1, 2, 3, 4, -10 ],
[ 5, 6, 7, 8, 6 ],
[ 1, 2, 11, 3, 4 ],
[ 5, 6, 70, 5, 8 ],
[ 4, 9, 7, 1, -5 ]]
diagonalsMinMax(matrix)
C#
using System;
public class GFG {
static void diagonalsMinMax(int[,] mat)
{
int n = mat.GetLength(0);
if (n == 0)
return;
int principalMin = mat[0,0], principalMax = mat[0,0];
int secondaryMin = mat[n-1,0], secondaryMax = mat[n-1,0];
for (int i = 1; i < n; i++) {
for (int j = 1; j < n; j++) {
if (i == j) {
if (mat[i,j] < principalMin) {
principalMin = mat[i,j];
}
if (mat[i,j] > principalMax) {
principalMax = mat[i,j];
}
}
if ((i + j) == (n - 1)) {
if (mat[i,j] < secondaryMin) {
secondaryMin = mat[i,j];
}
if (mat[i,j] > secondaryMax) {
secondaryMax = mat[i,j];
}
}
}
}
Console.WriteLine("Principal Diagonal Smallest Element: "
+ principalMin);
Console.WriteLine("Principal Diagonal Greatest Element : "
+ principalMax);
Console.WriteLine("Secondary Diagonal Smallest Element: "
+ secondaryMin);
Console.WriteLine("Secondary Diagonal Greatest Element: "
+ secondaryMax);
}
static void Main()
{
int[,] matrix = {
{ 1, 2, 3, 4, -10 },
{ 5, 6, 7, 8, 6 },
{ 1, 2, 11, 3, 4 },
{ 5, 6, 70, 5, 8 },
{ 4, 9, 7, 1, -5 }
};
diagonalsMinMax(matrix);
}
}
PHP
<?php
function diagonalsMinMax($mat)
{
$n = count($mat);
if ($n == 0)
return;
$principalMin = $mat[0][0];
$principalMax = $mat[0][0];
$secondaryMin = $mat[$n - 1][0];
$secondaryMax = $mat[$n - 1][0];
for ($i = 1; $i < $n; $i++)
{
for ($j = 1; $j < $n; $j++)
{
if ($i == $j)
{
if ($mat[$i][$j] < $principalMin)
{
$principalMin = $mat[$i][$j];
}
if ($mat[$i][$j] > $principalMax)
{
$principalMax = $mat[$i][$j];
}
}
if (($i + $j) == ($n - 1))
{
if ($mat[$i][$j] < $secondaryMin)
{
$secondaryMin = $mat[$i][$j];
}
if ($mat[$i][$j] > $secondaryMax)
{
$secondaryMax = $mat[$i][$j];
}
}
}
}
echo "Principal Diagonal Smallest Element: ",
$principalMin, "n";
echo "Principal Diagonal Greatest Element : ",
$principalMax, "n";
echo "Secondary Diagonal Smallest Element: ",
$secondaryMin, "n";
echo "Secondary Diagonal Greatest Element: ",
$secondaryMax, "n";
}
$matrix = array(array ( 1, 2, 3, 4, -10 ),
array ( 5, 6, 7, 8, 6 ),
array ( 1, 2, 11, 3, 4 ),
array ( 5, 6, 70, 5, 8 ),
array ( 4, 9, 7, 1, -5 ));
diagonalsMinMax($matrix);
?>
Javascript
<script>
function diagonalsMinMax(mat)
{
let n = mat.length;
if (n == 0)
return;
let principalMin = mat[0][0],
principalMax = mat[0][0];
let secondaryMin = mat[n - 1][0],
secondaryMax = mat[n - 1][0];
for (let i = 1; i < n; i++)
{
for (let j = 1; j < n; j++)
{
if (i == j)
{
if (mat[i][j] < principalMin)
{
principalMin = mat[i][j];
}
if (mat[i][j] > principalMax)
{
principalMax = mat[i][j];
}
}
if ((i + j) == (n - 1))
{
if (mat[i][j] < secondaryMin)
{
secondaryMin = mat[i][j];
}
if (mat[i][j] > secondaryMax)
{
secondaryMax = mat[i][j];
}
}
}
}
document.write("Principal Diagonal Smallest Element: "
+ principalMin + "<br>");
document.write("Principal Diagonal Greatest Element : "
+ principalMax + "<br>");
document.write("Secondary Diagonal Smallest Element: "
+ secondaryMin + "<br>");
document.write("Secondary Diagonal Greatest Element: "
+ secondaryMax + "<br>");
}
let matrix = [[ 1, 2, 3, 4, -10 ],
[ 5, 6, 7, 8, 6 ],
[ 1, 2, 11, 3, 4 ],
[ 5, 6, 70, 5, 8 ],
[ 4, 9, 7, 1, -5 ]];
diagonalsMinMax(matrix);
</script>
Output
Principal Diagonal Smallest Element: -5 Principal Diagonal Greatest Element : 11 Secondary Diagonal Smallest Element: 4 Secondary Diagonal Greatest Element: 11
Example 2: With O(n) Complexity
C++
#include<bits/stdc++.h>
using namespace std;
const int n = 5;
void diagonalsMinMax(int mat [n][n])
{
if (n == 0)
return;
int principalMin = mat[0][0],
principalMax = mat[0][0];
int secondaryMin = mat[n - 1][0],
secondaryMax = mat[n - 1][0];
for (int i = 0; i < n; i++)
{
if (mat[i][i] < principalMin)
{
principalMin = mat[i][i];
}
if (mat[i][i] > principalMax)
{
principalMax = mat[i][i];
}
if (mat[n - 1 - i][i] < secondaryMin)
{
secondaryMin = mat[n - 1 - i][i];
}
if (mat[n - 1 - i][i] > secondaryMax)
{
secondaryMax = mat[n - 1 - i][i];
}
}
cout << "Principal Diagonal Smallest Element: "
<< principalMin << "n";
cout << "Principal Diagonal Greatest Element : "
<< principalMax << "n";
cout << "Secondary Diagonal Smallest Element: "
<< secondaryMin << "n";
cout << "Secondary Diagonal Greatest Element: "
<< secondaryMax;
}
int main()
{
int matrix [n][n] = {{ 1, 2, 3, 4, -10 },
{ 5, 6, 7, 8, 6 },
{ 1, 2, 11, 3, 4 },
{ 5, 6, 70, 5, 8 },
{ 4, 9, 7, 1, -5 }};
diagonalsMinMax(matrix);
}
Java
public class GFG {
static void diagonalsMinMax(int[][] mat)
{
int n = mat.length;
if (n == 0)
return;
int principalMin = mat[0][0], principalMax = mat[0][0];
int secondaryMin = mat[n-1][0], secondaryMax = mat[n-1][0];
for (int i = 0; i < n; i++) {
if (mat[i][i] < principalMin) {
principalMin = mat[i][i];
}
if (mat[i][i] > principalMax) {
principalMax = mat[i][i];
}
if (mat[n - 1 - i][i] < secondaryMin) {
secondaryMin = mat[n - 1 - i][i];
}
if (mat[n - 1 - i][i] > secondaryMax) {
secondaryMax = mat[n - 1 - i][i];
}
}
System.out.println("Principal Diagonal Smallest Element: "
+ principalMin);
System.out.println("Principal Diagonal Greatest Element : "
+ principalMax);
System.out.println("Secondary Diagonal Smallest Element: "
+ secondaryMin);
System.out.println("Secondary Diagonal Greatest Element: "
+ secondaryMax);
}
static public void main(String[] args)
{
int[][] matrix = {
{ 1, 2, 3, 4, -10 },
{ 5, 6, 7, 8, 6 },
{ 1, 2, 11, 3, 4 },
{ 5, 6, 70, 5, 8 },
{ 4, 9, 7, 1, -5 }
};
diagonalsMinMax(matrix);
}
}
Python
n = 5
def diagonalsMinMax(mat):
if (n == 0):
return
principalMin = mat[0][0]
principalMax = mat[0][0]
secondaryMin = mat[n - 1][0]
secondaryMax = mat[n - 1][0]
for i in range(n):
if (mat[i][i] < principalMin):
principalMin = mat[i][i]
if (mat[i][i] > principalMax):
principalMax = mat[i][i]
if (mat[n - 1 - i][i] < secondaryMin):
secondaryMin = mat[n - 1 - i][i]
if (mat[n - 1 - i][i] > secondaryMax):
secondaryMax = mat[n - 1 - i][i]
print("Principal Diagonal Smallest Element: ",principalMin)
print("Principal Diagonal Greatest Element : ",principalMax)
print("Secondary Diagonal Smallest Element: ",secondaryMin)
print("Secondary Diagonal Greatest Element: ",secondaryMax)
matrix= [[ 1, 2, 3, 4, -10 ],
[ 5, 6, 7, 8, 6 ],
[ 1, 2, 11, 3, 4 ],
[ 5, 6, 70, 5, 8 ],
[ 4, 9, 7, 1, -5 ]]
diagonalsMinMax(matrix)
C#
using System;
public class GFG {
static void diagonalsMinMax(int[,] mat)
{
int n = mat.GetLength(0);
if (n == 0)
return;
int principalMin = mat[0,0], principalMax = mat[0,0];
int secondaryMin = mat[n-1,0], secondaryMax = mat[n-1,0];
for (int i = 0; i < n; i++) {
if (mat[i,i] < principalMin) {
principalMin = mat[i,i];
}
if (mat[i,i] > principalMax) {
principalMax = mat[i,i];
}
if (mat[n - 1 - i,i] < secondaryMin) {
secondaryMin = mat[n - 1 - i,i];
}
if (mat[n - 1 - i,i] > secondaryMax) {
secondaryMax = mat[n - 1 - i,i];
}
}
Console.WriteLine("Principal Diagonal Smallest Element: "
+ principalMin);
Console.WriteLine("Principal Diagonal Greatest Element : "
+ principalMax);
Console.WriteLine("Secondary Diagonal Smallest Element: "
+ secondaryMin);
Console.WriteLine("Secondary Diagonal Greatest Element: "
+ secondaryMax);
}
public static void Main()
{
int[,] matrix = {
{ 1, 2, 3, 4, -10 },
{ 5, 6, 7, 8, 6 },
{ 1, 2, 11, 3, 4 },
{ 5, 6, 70, 5, 8 },
{ 4, 9, 7, 1, -5 }
};
diagonalsMinMax(matrix);
}
}
Javascript
<script>
function diagonalsMinMax(mat)
{
let n = mat.length;
if (n == 0)
return;
let principalMin = mat[0][0],
principalMax = mat[0][0];
let secondaryMin = mat[n-1][0],
secondaryMax = mat[n-1][0];
for (let i = 0; i < n; i++) {
if (mat[i][i] < principalMin) {
principalMin = mat[i][i];
}
if (mat[i][i] > principalMax) {
principalMax = mat[i][i];
}
if (mat[n - 1 - i][i] < secondaryMin) {
secondaryMin = mat[n - 1 - i][i];
}
if (mat[n - 1 - i][i] > secondaryMax) {
secondaryMax = mat[n - 1 - i][i];
}
}
document.write("Principal Diagonal Smallest Element: "
+ principalMin+"<br>");
document.write("Principal Diagonal Greatest Element : "
+ principalMax+"<br>");
document.write("Secondary Diagonal Smallest Element: "
+ secondaryMin+"<br>");
document.write("Secondary Diagonal Greatest Element: "
+ secondaryMax+"<br>");
}
let matrix = [
[ 1, 2, 3, 4, -10 ],
[ 5, 6, 7, 8, 6 ],
[ 1, 2, 11, 3, 4 ],
[ 5, 6, 70, 5, 8 ],
[ 4, 9, 7, 1, -5 ]
];
diagonalsMinMax(matrix);
</script>
Output
Principal Diagonal Smallest Element: -5 Principal Diagonal Greatest Element : 11 Secondary Diagonal Smallest Element: -10 Secondary Diagonal Greatest Element: 11
Complexity Analysis:
- Time complexity: O(n)
- Auxiliary space: O(1) because it is using constant space
Last Updated :
18 Jan, 2023
Like Article
Save Article
Improved By :
- 29AjayKumar
- ihritik
- ankthon
- Shashank_Sharma
- mohit kumar 29
- sravankumar_171fa07058
- user_n13p
- subham348
- surinderdawra388
- hardikkoriintern
- mitalibhola94
- noviced3vq6
Дана квадратная матрица размером nxn. Найти минимальный элемент среди элементов, расположенных ниже главной диагонали, найти максимальный элемент, среди элементов расположенных выше побочной диагонали. Найденные минимальный и максимальный элементы поменять местами и вывести их индексы.
// main_secondary_diagonal.cpp: определяет точку входа для консольного приложения.
#include "stdafx.h"
#include <iostream>
#include <iomanip>
using namespace std;
int main(int argc, char* argv[])
{
srand(time(NULL));
int size_array; // размер квадратной матрицы
setlocale(LC_ALL, "rus");
cout << "Введите размер квадратной матрицы: ";
cin >> size_array;
// динамическое создание двумерного массива
int **arrayPtr = new int* [size_array];
for (int count = 0; count < size_array; count++)
arrayPtr[count] = new int [size_array];
for (int counter_rows = 0; counter_rows < size_array; counter_rows++)
{
for (int counter_columns = 0; counter_columns < size_array; counter_columns++)
{
arrayPtr[counter_rows][counter_columns] = rand() % 100; // заполнение массива случайными числами
cout << setw(2) << arrayPtr[counter_rows][counter_columns] << " "; // вывод на экран двумерного массива
}
cout << endl;
}
cout << endl;
int min = arrayPtr[1][0], // минимальный елемент массива, ниже главной диагонали
row_min = 1, // номер строки минимального элемента
column_min = 0; // номер столбца минимального элемента
// поиск минимального элемента в массиве, ниже главной диагонали
for (int counter_rows = 1; counter_rows < size_array; counter_rows++)
{
for (int counter_columns = 0; counter_columns < counter_rows ; counter_columns++)
{
if ( arrayPtr[counter_rows][counter_columns] < min )
{
min = arrayPtr[counter_rows][counter_columns];
row_min = counter_rows;
column_min = counter_columns;
}
}
}
cout << "min" << "[" << (row_min + 1) << "][" << (column_min + 1) << "]" << " = " << min << endl;
int max = arrayPtr[0][0], // максимальный элемнет массива, выше побочной диагонали
row_max = 0, // номер строки максимального элемента
column_max = 0; // номер столбца максимального элемента
for (int counter_rows = 0; counter_rows < size_array - 1; counter_rows++)
{
for (int counter_columns = 0; counter_columns < (size_array - counter_rows - 1); counter_columns++)
{
if ( arrayPtr[counter_rows][counter_columns] > max )
{
max = arrayPtr[counter_rows][counter_columns];
row_max = counter_rows;
column_max = counter_columns;
}
}
}
cout << "max" << "[" << (row_max + 1) << "][" << (column_max + 1) << "]" << " = " << max << endl;
//////////////////перестановка элементов////////////////////////////////////////////////
arrayPtr[row_min][column_min] = max;
arrayPtr[row_max][column_max] = min;
////////////////////////////////////////////////////////////////////////////////////////
cout << "nМассив после перестановки максимального и минимального элементов:n";
for (int counter_rows = 0; counter_rows < size_array; counter_rows++)
{
for (int counter_columns = 0; counter_columns < size_array; counter_columns++)
{
cout << setw(2) << arrayPtr[counter_rows][counter_columns] << " "; // вывод на экран двумерного массива
}
cout << endl;
}
cout << endl;
cout << "min" << "[" << (row_max + 1) << "][" << (column_max + 1) << "]" << " = " << min << endl;
cout << "max" << "[" << (row_min + 1) << "][" << (column_min + 1) << "]" << " = " << max << endl;
// удаление двумерного динамического массива
for (int count = 0; count < size_array; count++)
delete []arrayPtr[count];
system("pause");
return 0;
}
Результат работы программы показан ниже:
program fd;
uses crt;
var a:array[1..10,1..10] of integer;
max:array[1..20,1..10]of integer;
i,j,m,n,l,k:integer;
f:string;
begin
clrscr;
randomize;
read(n,m);
for i:=1 to n do
for j:=1 to m do
a[i,j]:=random(201)-100;
for i:=1 to n do begin
for j:=1 to m do
write(a[i,j]:4); writeln; end;
i:=1;j:=1;
repeat
max[i,j]:=a[i,j];
if (a[i+1,j+1]>max[i,j]) then max[i,j]:=a[i,j];
i:=i+1;j:=j+1;
until (i>n)or (j>m);
writeln(max[i,j]);
end.


если X задана, то
Найти максимальный элемент матрицы среди расположенных выше главной диагонали