где k и b – произвольные (вещественные) числа.
При любых значениях k и b графиком линейной функции является прямая линия .
Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .
При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.
При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.
При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.
имеющие одинаковые угловые коэффициенты и разные свободные члены 
имеющие разные угловые коэффициенты 
y = kx + b1 и
перпендикулярны при любых значениях свободных членов.
Угловой коэффициент прямой линии
равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).
![]() |
| Рис.10 |
![]() |
| Рис.11 |
![]() |
| Рис.12 |
Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .
При 
Прямые, параллельные оси ординат
Прямые, параллельные оси Oy , задаются формулой
где c – произвольное число, и изображены на рис. 13, 14, 15.
![]() |
| Рис.13 |
![]() |
| Рис.14 |
![]() |
| Рис.15 |
Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;
Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые
где p, q, r – произвольные числа.
В случае, когда 
что и требовалось.
В случае, когда 
откуда вытекает, что уравнение (4) задает прямую линию вида (3).
В случае, когда q = 0, p = 0, уравнение (4) имеет вид
и при r = 0 его решением являются точки всей плоскости:
В случае, когда 
Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением
параллельна прямой, заданной уравнением (4) .
Замечание 3 . При любом значении r2 прямая линия, заданная уравнением
перпендикулярна прямой, заданной уравнением (4) .
Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и
- параллельной к прямой
- перпендикулярной к прямой (8).
В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде
где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство
Итак, уравнение прямой, параллельной к прямой
В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде
где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство
График линейной функции, его свойства и формулы
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие функции
Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ — наглядно.
- Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Нам дана функция: у = 0,5х — 2. Значит:
- если х = 0, то у = -2;
- если х = 2, то у = -1;
- если х = 4, то у = 0;
- и т. д.
Для удобства результаты можно оформлять в виде таблицы:
Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».
| Функция | Коэффициент «k» | Коэффициент «b» |
|---|---|---|
| y = 2x + 8 | k = 2 | b = 8 |
| y = −x + 3 | k = −1 | b = 3 |
| y = 1/8x − 1 | k = 1/8 | b = −1 |
| y = 0,2x | k = 0,2 | b = 0 |
Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».
Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!
Свойства линейной функции
- Область определения функции — множество всех действительных чисел.
- Множеством значений функции является множество всех действительных чисел.
- График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
- Функция не имеет ни наибольшего, ни наименьшего значений.
- Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
b ≠ 0, k = 0, значит y = b — четная;
b = 0, k ≠ 0, значит y = kx — нечетная;
b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция. - Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
- График функции пересекает оси координат:
ось абсцисс ОХ — в точке (-b/k, 0);
ось ординат OY — в точке (0; b). - x=-b/k — является нулем функции.
- Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х. - Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k). - Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
Если k > 0, то этот угол острый, если k
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
- если k > 0, то график наклонен вправо;
- если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
- если b 1 /2x + 3, y = x + 3.
Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.
В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).
Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.
В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.
Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).
Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.
Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.
При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
- график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
- график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
- график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).
Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.
Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.
Если k 0, то график функции y = kx + b выглядит так:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Точки пересечения графика функции y = kx + b с осями координат:
- С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
Координаты точки пересечения с осью OY: (0; b). - С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
Координаты точки пересечения с осью OX: (- b /k; 0)
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.
- В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
2 = -4(-3) + b
b = -10 - Таким образом, нам надо построить график функции y = -4x — 10
Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
Поставим эти точки в координатной плоскости и соединим прямой:
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
- Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство. - Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
- Вычтем из второго уравнения системы первое, и получим k = 3.
Подставим значение k в первое уравнение системы, и получим b = -2.
ГДЗ учебник по алгебре 7 класс Мордкович. §10. Взаимное расположение графиков линейных функций. Номер №10.16.
Задайте линейную функцию, график которой параллелен графику данной линейной функции и проходит через данную точку M:
а ) y = 3 x, M( 0 ;− 2 );
б ) y = − 2,5 x, M( 2 ; 1 );
в ) y = − 5 x, M( 0 ; 3 );
г ) y = 1,5 x, M(− 4 ;− 3 ).
Решение а
y = 3 x, M( 0 ;− 2 )
y = 3 x + m
− 2 = 3 * 0 + m
m = 0 − 2
m = − 2
Ответ : y = 3 x − 2
Решение б
y = − 2,5 x, M( 2 ; 1 )
y = − 2,5 x + m
1 = − 2,5 * 2 + m
m = 5 + 1
m = 6
Ответ : y = − 2,5 x + 6
Решение в
y = − 5 x, M( 0 ; 3 )
y = − 5 x + m
3 = − 5 * 0 + m
m = 0 + 3
m = 3
Ответ : y = − 5 x + 3
Решение г
y = 1,5 x, M(− 4 ;− 3 )
y = 1,5 x + m
− 3 = 1,5 * (− 4 ) + m
m = − 3 + 6
m = 3
Ответ : y = 1,5 x + 3
http://skysmart.ru/articles/mathematic/grafik-linejnoj-funkcii
http://reshalka.com/uchebniki/7-klass/algebra/mordkovich/402
1) Найти точку пересечения прямых:
y=2,5−0,5x
и
y=−5x−2
.
Для построения графика каждой линейной функции составим таблицу значений.
Для функции
y=2,5−0,5x
имеем:
| (x) | (0) | (5) |
| (y) | (2,5) | (0) |
Через полученные точки проведём прямую
l1
.
Для функции
y=−5x−2
имеем:
| (x) | (0) | (-0,4) |
| (y) | (-2) | (0) |
Через полученные точки проведём прямую
l2
.
Прямые
l1
и
l2
пересекаются в точке (А(-1;3)).
2) Определить, в какой точке пересекаются прямые:
y=2x−3
и
y=2x+1
.
Угловые коэффициенты линейных функций одинаковые (k=2), то есть прямые
y=2x−3
и
y=2x+1
параллельные, они не пересекаются.
3) Определить, в какой точке пересекаются прямые:
y=3x+11
и
y=−x+11
.
Угловые коэффициенты данных линейных функций различны:
k1=3
и
k2=−1
— прямые пересекаются в одной точке.
Можно заметить, что обе прямые проходят через точку ((0; 11)).
Значит, точка ((0;11)) и есть точка пересечения данных
прямых.
§ 1 Взаимное расположение графиков линейных функций
Из курса геометрии мы знаем, что 2 прямые на плоскости могут совпадать, т.е. иметь бесконечно много общих точек; пересекаться, т.е. иметь одну общую точку или не пересекаться, т. е. не иметь ни одной общей точки. Такие прямые называются параллельными.
Линейная функция задаётся равенством вида у = kх + m. Коэффициент k называют угловым коэффициентом. Он «отвечает» за угол наклона прямой относительно положительного направления оси х. Если k > 0, то угол наклона острый (как на рисунке 1), если k < 0, то угол наклона тупой (как на рисунке 2).
А теперь посмотрим на рисунок 3. На нём изображены 2 прямые, заданные уравнениями у = k1 + m1 и у = k2 + m2. Предположим, что k1 = k2. Это означает, что углы наклона прямой одинаковы. Это соответственные углы, а значит данные нам прямые параллельны по признаку параллельных прямых.
Таким образом, если 2 линейные функции имеют одинаковый угловой коэффициент, то их графики будут параллельны. Если же угловые коэффициенты не равны, то графики будут пересекаться.
Например, даны линейные функции, заданные формулами у = 2х – 1 и у = 2х + 3. Как будут располагаться на плоскости их графики по отношению друг к другу? Так как угловой коэффициент первой функции k1 = 2 и угловой коэффициент второй функции k2 = 2, то графики будут параллельны.
Или другая пара: у = х – 3 и у = 2х + 3. У первой функции коэффициент k1 = 1, а у второй функции коэффициент k2 = 2. Это неравные коэффициенты, поэтому графики этих функций будут пересекаться. А в каком же случае прямые будут совпадать?
Для ответа надо сначала ответить на другой вопрос: а за что «отвечает» коэффициент m? Давайте посмотрим на рисунок, на котором изображены графики трёх функций:
у = х, у = х + 3 и у = х – 2.
У всех трёх функций угловой коэффициент k= 1, т. е. графики параллельны. Но обратите внимание: график функции у = х проходит через начало координат, здесь m = 0. График функции у = х + 3 получен сдвигом графика у = х на 3 единицы вверх, как показывает коэффициент m = 3.
График функции у = х – 2 получен сдвигом графика у = х на 2 единицы вниз, как показывает коэффициент m = –2. Иначе говоря, коэффициент m отвечает за параллельный перенос графика у = kх относительно начала координат на m единиц вдоль оси у.
Теперь можно ответить на поставленный вопрос. 2 прямые будут совпадать, если у них одинаковые угловые коэффициенты и коэффициент m1равен коэффициенту m2.
§ 2 Краткие итоги по теме урока
Графики линейных функций по отношению друг к другу на плоскости могут быть параллельны, если угловые коэффициенты k1 и k2 равны, а коэффициенты m1 и m2 различны. Могут пересекаться в случае, когда угловые коэффициенты k1 и k2 не равны. А также могут совпадать, если угловые коэффициенты k1 и k2 равны и коэффициенты m1 и m2 так же равны. График функции у = kх проходит через начало координат, т. к. коэффициент m = 0, а график функции у = kх + m проходит через точку (0; m).

Линейной функцией называется функция вида
В уравнении функции число 

Например, в уравнении функции 

в уравнении функции 

в уравнении функции 

в уравнении функции 

Графиком линейной функции является прямая линия.
1. Чтобы построить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.
Например, чтобы построить график функции 




Получим точки А(0;2) и В(3;3). Соединим их и получим график функции 
2. В уравнении функции 

Коэффициент 

На рисунке ниже изображены графики функций 


Заметим, что во всех этих функциях коэффициент 

Во всех функциях 
Теперь рассмотрим графики функций 


На этот раз во всех функциях коэффициент 
Заметим, что чем больше |k|, тем круче идет прямая. Коэффициент b тот же, b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)
Рассмотрим графики функций 

Теперь во всех уравнениях функций коэффициенты 
Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
График функции 
График функции 
График функции 
Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции 
Если k<0 и b>0, то график функции 
Если k>0 и b>0, то график функции 
Если k>0 и b<0, то график функции 
Если k<0 и b<0, то график функции 
Если k=0 , то функция 

Ординаты всех точек графика функции 
Если b=0, то график функции 
Это график прямой пропорциональности.
3. Отдельно отмечу график уравнения 


Например, график уравнения 
Внимание! Уравнение 
4. Условие параллельности двух прямых:
График функции 

5. Условие перпендикулярности двух прямых:
График функции 


6. Точки пересечения графика функции 
С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).
С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда 

Рассмотрим решение задач.
1. Постройте график функции 
В уравнении функции 
а) Из того, что график функции 
б) Нам осталось найти b. Известно, что график функции 

Таким образом, нам надо построить график функции
Точка А(-3;2) нам известна, возьмем точку B(0;-10)
Поставим эти точки в координатной плоскости и соединим их прямой:
2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).
Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой 
Подставим координаты каждой точки в уравнение 
Вычтем из второго уравнения системы первое, и получим 
Итак, уравнение прямой 
3. Постройте график уравнения
Чтобы найти, при каких значениях неизвестного произведение нескольких множителей равно нулю, нужно каждый множитель приравнять к нулю и учесть ОДЗ каждого множителя.
Это уравнение не имеет ограничений на ОДЗ. Разложим на множители вторую скобку и приравняем каждый множитель к нулю. Получим совокупность уравнений:
Построим графики всех уравнений совокупности в одной коорднатной плоскости. Это и есть график уравнения 



Мы не будем строить график, только найдем уравнение прямой.
а) Так как график функции 



б) Мы знаем, что график функции 


Следовательно, наша функция имеет вид: 
5. Постройте график функции
Упростим выражение, стоящее в правой части уравнения функции.
Важно! Прежде чем упрощать выражение, найдем его ОДЗ.
Знаменатель дроби не может быть равен нулю, поэтому 

Тогда наша функция принимает вид:
То есть нам надо построить график функции 
И.В. Фельдман, репетитор по математике.
Взаимное расположение графиков линейных функций
- Расположение графиков прямых пропорциональностей
- Расположение графиков линейных функций
- Примеры
Расположение графиков прямых пропорциональностей
$$y = kx, k neq 0$$
Функция возрастающая: $x rightarrow, y↑ $
Проходит через I и III квадранты
Функция убывающая: $x rightarrow,y ↓$
Проходит через II и IV квадранты
Угол наклона прямой α = 45° биссектриса I и III квадрантов
Угол наклона прямой α=135° биссектриса II и IV квадрантов
Угол наклона прямой $45° lt α lt 90°$
Угол наклона прямой $90° lt α lt 135°$
$0 lt k lt 1$
$-1 lt k lt 0 $
Угол наклона прямой $0° lt α lt 45°$
Угол наклона прямой $135° lt α lt 180°$
Расположение графиков линейных функций
y = kx+b
Внимание!
Угловой коэффициент k определяет угол наклона прямой y=kx+b.
Прямые с одинаковым угловым коэффициентом параллельны.
Параметр b определяет точку пересечения прямой с осью Y: (0;b)
Две прямые: $y = k_1 x+b_1 и y = k_2 x+b_2$
$k_1 = k_2$
$k_1 neq k_2$
Прямые параллельны
Прямые пересекаются
Прямые перпендикулярны
Примеры
Пример 1. Задайте формулой прямую пропорциональность, график которой параллелен графику линейной функции:
Линейная функция
Прямая пропорциональность, $k_2 = k_1$
$б) y = frac{2}{3} x+8$
$y = frac{2}{3} x$
$в) y = -frac{63}{64} -5$
$y = -frac{63}{64} x$
$г) y = 8x-frac{1}{7}$
$y = 8x$
Пример 2. Задайте формулой прямую пропорциональность, график которой перпендикулярен графику линейной функции:
Линейная функция
Прямая пропорциональность, $k_2 = -frac{1}{k_1}$
а) y = -3x+5
$y = frac{1}{3}x$
$б) y = frac{2}{3} x+8$
$y = -frac{3}{2} x$
$в) y = -frac{63}{64} -5$
$y = -frac{64}{63} x$
$г) y = 8x-frac{1}{7}$
$y = -frac{1}{8}x$






















































